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1. Introduction and preliminaries

A C∗-ternary ring is a complex Banach space A, equipped with a ternary product (x, y,z)
�→ [x, y,z] of A3 into A, which is C-linear in the outer variables, conjugate C-linear in
the middle variable, and associative in the sense that [x, y, [z,w,v]] = [x, [w,z, y],v] =
[[x, y,z],w,v], and satisfies ‖[x, y,z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖[x,x,x]‖ = ‖x‖3 (see [1]).

If a C∗-ternary ring (A, [·,·,·]) has an identity, that is, an element e ∈ A such that
x = [x,e,e] = [e,e,x] for all x ∈ A, then it is routine to verify that A, endowed with x ◦
y := [x,e, y] and x∗ := [e,x,e], is a unital C∗-algebra. Conversely, if (A,◦) is a unital C∗-
algebra, then [x, y,z] := x ◦ y∗ ◦ z makes A into a C∗-ternary ring (see [2]).

Ulam [3] gave a talk before the Mathematics Club of the University of Wisconsin in
which he discussed a number of unsolved problems, containing the stability problem of
homomorphisms. Hyers [4] proved the stability problem of additive mappings in Banach
spaces. Rassias [5] provided a generalization of Hyers’ theorem which allows the Cauchy
difference to be unbounded: let f : E→ E′ be a mapping from a normed vector space E into
a Banach space E′ subject to the inequality

∥
∥ f (x+ y)− f (x)− f (y)

∥
∥≤ ε(‖x‖p +‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Inequality (1.1) pro-
vided a lot of influence in the development of a generalization of the Hyers-Ulam stability
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concept. Găvruţa [6] provided a further generalization of Hyers-Ulam theorem (see [7,
8]).

A square norm on an inner product space satisfies the important parallelogram equal-
ity

‖x+ y‖2 +‖x− y‖2 = 2‖x‖2 + 2‖y‖2. (1.2)

The functional equation

f (x+ y) + f (x− y)= 2 f (x) + 2 f (y) (1.3)

is called the quadratic functional equation whose solution is said to be a quadratic map-
ping. A generalized stability problem for the quadratic functional equation was
proved by Skof [9] for mappings f : E1 → E2, where E1 is a normed space and E2 is a
Banach space. Cholewa [10] noticed that the theorem of Skof is still true if the relevant
domain E1 is replaced by an Abelian group. Czerwik [11] proved the generalized stabil-
ity of the quadratic functional equation, and Park [12] proved the generalized stability of
the quadratic functional equation in Banach modules over a C∗-algebra. Jun and Lee [13]
proved the further generalized stability of a Pexiderized quadratic functional equation

f (x+ y) + g(x− y)= 2h(x) + 2k(y). (1.4)

Recently, a fixed point approach to the stability of Pexiderized quadratic equation was
established by Mirzavaziri and Moslehian [14].

Throughout this paper, assume that A is a C∗-ternary ring with norm ‖ · ‖A and that
B is a C∗-ternary ring with norm ‖ · ‖B.

A quadratic mapping Q : A→ B is called a C∗-ternary quadratic mapping if

Q
(

[x, y,z]
)= [Q(x),Q(y),Q(z)

]

(1.5)

for all x, y,z ∈ A.

Example 1.1. Let (A, [·,·,·]) be a C∗-ternary ring derived from a unital commutative
C∗-algebra A, and let Q : A→ A satisfy Q(x)= x2 for all x ∈ A. It is easy to show that the
mapping Q : A→ A is a C∗-ternary quadratic mapping.

In this paper, we prove the further generalized stability of C∗-ternary quadratic map-
pings in C∗-ternary rings.

2. Stability of C∗-ternary quadratic mappings

We prove the further generalized stability of C∗-ternary quadratic mappings in C∗-
ternary rings for the quadratic functional equation

Q(x+ y) +Q(x− y)= 2Q(x) + 2Q(y). (2.1)
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Theorem 2.1. Let f : A→ B be a mapping for which there exists a function ϕ : A3 → [0,∞)
such that

∞
∑

j=0

43 jϕ
(
x

2 j ,
y

2 j ,
z

2 j

)

<∞, (2.2)

∥
∥ f (x+ y) + f (x− y)− 2 f (x)− 2 f (y)

∥
∥
B ≤ ϕ(x, y,0), (2.3)

∥
∥ f
(

[x, y,z]
)− [ f (x), f (y), f (z)

]∥
∥
B ≤ ϕ(x, y,z) (2.4)

for all x, y,z ∈A. Then there exists a unique C∗-ternary quadratic mapping Q : A→ B such
that

∥
∥ f (x)−Q(x)

∥
∥
B ≤ ϕ̃

(
x

2
,
x

2
,0
)

(2.5)

for all x ∈A. Here,

ϕ̃(x, y,z) :=
∞
∑

j=0

4 jϕ
(
x

2 j ,
y

2 j ,
z

2 j

)

(2.6)

for all x, y,z ∈A.

Proof. If follows from (2.3) that f (0)= 0. Letting y = x in (2.3), we get

∥
∥ f (2x)− 4 f (x)

∥
∥
B ≤ ϕ(x,x,0) (2.7)

for all x ∈ A. So

∥
∥
∥
∥ f (x)− 4 f

(
x

2

)∥
∥
∥
∥
B
≤ ϕ

(
x

2
,
x

2
,0
)

(2.8)

for all x ∈ A. Hence,

∥
∥
∥
∥4l f

(
x

2l

)

− 4m f
(
x

2m

)∥
∥
∥
∥
B
≤

m−1
∑

j=l

∥
∥
∥
∥4 j f

(
x

2 j

)

− 4 j+1 f
(

x

2 j+1

)∥
∥
∥
∥
B
≤

m−1
∑

j=l
4 jϕ
(

x

2 j+1 ,
x

2 j+1 ,0
)

(2.9)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.9) that
the sequence {4n f (x/2n)} is a Cauchy sequence for all x ∈ A. Since B is complete, the
sequence {4n f (x/2n)} converges. So one can define the mapping Q : A→ B by

Q(x) := lim
n→∞4n f

(
x

2n

)

(2.10)

for all x ∈ A. Moreover, letting l = 0 and passing the limit m→∞ in (2.9), we get (2.5).
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It follows from (2.3) that
∥
∥Q(x+ y) +Q(x− y)− 2Q(x)− 2Q(y)

∥
∥
B

= lim
n→∞4n

∥
∥
∥
∥ f
(
x+ y

2n

)

+ f
(
x− y

2n

)

− 2 f
(
x

2n

)

− 2 f
(
y

2n

)∥
∥
∥
∥
B

≤ lim
n→∞4nϕ

(
x

2n
,
y

2n
,0
)

= 0

(2.11)

for all x, y ∈A. So

Q(x+ y) +Q(x− y)= 2Q(x) + 2Q(z) (2.12)

for all x, y ∈A.
It follows from (2.4) and the continuity of the ternary product that

∥
∥Q
(

[x, y,z]
)− [Q(x),Q(y),Q(z)

]∥
∥
B

= lim
n→∞43n

∥
∥
∥
∥ f
(

[x, y,z]
23n

)

−
[

f
(
x

2n

)

, f
(
y

2n

)

, f
(
z

2n

)]∥
∥
∥
∥
B

≤ lim
n→∞43nϕ

(
x

2n
,
y

2n
,
z

2n

)

= 0

(2.13)

for all x, y,z ∈ A. So

Q
(

[x, y,z]
)= [Q(x),Q(y),Q(z)

]

(2.14)

for all x, y,z ∈ A.
Now, let T : A→ B be another quadratic mapping satisfying (2.5). Then we have

∥
∥Q(x)−T(x)

∥
∥
B = 4n

∥
∥
∥
∥Q
(
x

2n

)

−T
(
x

2n

)∥
∥
∥
∥
B

≤ 4n
(∥
∥
∥
∥Q
(
x

2n

)

− f
(
x

2n

)∥
∥
∥
∥
B

+
∥
∥
∥
∥T
(
x

2n

)

− f
(
x

2n

)∥
∥
∥
∥
B

)

≤ 2 · 4nϕ
(
x

2n
,
x

2n
,0
)

,

(2.15)

which tends to zero as n→∞ for all x ∈ A. So we can conclude that Q(x) = T(x) for
all x ∈ A. This proves the uniqueness of Q. Thus, the mapping Q : A→ B is a unique
C∗-ternary quadratic mapping satisfying (2.5). �

Theorem 2.2. Let f : A→ B be a mapping for which there exists a function ϕ : A3 → [0,∞)
satisfying (2.3) and (2.4) such that

ϕ̃(x, y,z) :=
∞
∑

j=0

1
4 j ϕ

(

2 jx,2 j y,2 jz
)

<∞ (2.16)
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for all x, y,z ∈A. Then there exists a unique C∗-ternary quadratic mapping Q : A→ B such
that

∥
∥ f (x)−Q(x)

∥
∥
B ≤

1
4
ϕ̃(x,x,0) (2.17)

for all x ∈A.

Proof. It follows from (2.7) that

∥
∥
∥
∥ f (x)− 1

4
f (2x)

∥
∥
∥
∥
B
≤ 1

4
ϕ(x,x,0) (2.18)

for all x ∈ A. So

∥
∥
∥
∥

1
4l
f
(

2lx
)− 1

4m
f
(

2mx
)
∥
∥
∥
∥
B
≤

m−1
∑

j=l

∥
∥
∥
∥

1
4 j f

(

2 jx
)− 1

4 j+1 f
(

2 j+1x
)
∥
∥
∥
∥
B
≤

m−1
∑

j=l

1
4 j+1 ϕ

(

2 jx,2 jx,0
)

(2.19)

for all nonnegative integers m and l with m > l and all x ∈ A. It follows from (2.19) that
the sequence {(1/4n) f (2nx)} is a Cauchy sequence for all x ∈ A. Since B is complete, the
sequence {(1/4n) f (2nx)} converges. So one can define the mapping Q : A→ B by

Q(x) := lim
n→∞

1
4n

f
(

2nx
)

(2.20)

for all x ∈A. Moreover, letting l = 0 and passing the limit m→∞ in (2.19), we get (2.17).
It follows from (2.4) and the continuity of the ternary product that

∥
∥Q
(

[x, y,z]
)− [Q(x),Q(y),Q(z)

]∥
∥
B

= lim
n→∞

1
43n

∥
∥ f
(

23n[x, y,z]
)− [ f (2nx), f (2ny), f (2nz)]∥∥B

≤ lim
n→∞

1
43n

ϕ
(

2nx,2ny,2nz
)

≤ lim
n→∞

1
4n

ϕ
(

2nx,2ny,2nz
)= 0

(2.21)

for all x, y,z ∈ A. So

Q
(

[x, y,z]
)= [Q(x),Q(y),Q(z)

]

(2.22)

for all x, y,z ∈ A.
The rest of the proof is similar to the proof of Theorem 2.1. �

Remark 2.3. For a Pexiderized quadratic functional equation

f (x+ y) + g(x− y)= 2h(x) + 2k(y), (2.23)

one can obtain similar results to Theorems 2.1 and 2.2.
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[6] P. Găvruţa, “A generalization of the Hyers-Ulam-Rassias stability of approximately additive
mappings,” Journal of Mathematical Analysis and Applications, vol. 184, no. 3, pp. 431–436,
1994.

[7] C. Park, “Isomorphisms between C∗-ternary algebras,” Journal of Mathematical Physics, vol. 47,
no. 10, Article ID 103512, 12 pages, 2006.

[8] C. Park, “Isomorphisms between C∗-ternary algebras,” Journal of Mathematical Analysis and
Applications, vol. 327, no. 1, pp. 101–115, 2007.
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