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Weighted weak type (1, 1) estimates for singular
integrals with non-isotropic homogeneity

Shuichi Sato

Abstract. We prove sharp weighted weak type (1, 1) estimates for rough singular integral

operators on homogeneous groups. Similar results are shown for singular integrals on R
2 with the

generalized homogeneity.

1. Introduction

We consider singular integrals defined by kernels homogeneous with respect to

non-isotropic dilations, which generalize homogeneous singular integrals studied in

Calderón-Zygmund [3]. In this note we deal with weighted weak type boundedness,

for rough singular integrals on R
2 with generalized homogeneity and for rough

singular integrals on homogeneous groups; we shall prove analogues of a result of

Vargas [30] concerning weighted weak type (1, 1) estimates for homogeneous singular

integrals on R
2.

Let P be an n×n real matrix whose eigenvalues have positive real parts. A dila-

tion group {At}t>0 on R
n is defined by At=exp((log t)P ). We assume n≥2. Then,

there is a norm function r on R
n associated with {At}t>0, which is non-negative,

continuous, even on R
n and infinitely differentiable in R

n\{0}; furthermore it sat-

isfies

(1) r(Atx)=tr(x) for all t>0 and x∈Rn;

(2) r(x+y)≤N1(r(x)+r(y)) for a positive constant N1;

(3) if Σ={x∈Rn :r(x)=1}, then Σ={θ∈Rn :〈Bθ, θ〉=1} for a positive symmet-

ric matrix B, where 〈·, ·〉 denotes the inner product in R
n.
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We have a polar coordinates expression for the Lebesgue measure:

∫
Rn

f(x) dx=

∫ ∞

0

∫
Σ

f(Atθ)t
γ−1 dS(θ) dt

with γ=trace P and dS=ω dS0, where ω is a strictly positive C∞ function on Σ

and dS0 is the Lebesgue surface measure on Σ. Also, there are positive constants

c1, c2, d1, d2, α1, α2, β1 and β2 such that

c1|x|α1 ≤ r(x)≤ c2|x|α2 or d1|x|β1 ≤ r(x)≤ d2|x|β2

according as r(x)>1 or r(x)≤1, where |·| denotes the Euclidean norm. Let Sn−1=

{x∈Rn :|x|=1} be the unit sphere with the Euclidean norm. The Lebesgue surface

measure on Sn−1 will be denoted also by dσ. See [2], [21] and [28] for more details.

We denote by L logL(Σ) the Zygmund class on Σ with the norm defined as

‖Ω‖L logL = inf

{
λ> 0 :

∫
Σ

∣∣Ω(θ)/λ∣∣ log(2+∣∣Ω(θ)/λ∣∣) dS(θ)≤ 1

}
.

Also, we consider the Lq(Σ) spaces. We write ‖Ω‖q=(
∫
Σ
|Ω(θ)|q dS(θ))1/q , 0<q<∞,

‖Ω‖∞=supθ∈Σ |Ω(θ)|.
Let Ω be locally integrable in R

n\{0} and homogeneous of degree 0 with respect

to the dilation group {At}. Thus Ω(Atx)=Ω(x) for x 	=0 and t>0. We assume the

cancellation property

∫
Σ

Ω(θ) dS(θ)= 0.(1.1)

Let K(x)=r(x)−γΩ(x′), where x′=Ar(x)−1(x) for x 	=0, and define the singular

integral

Tf(x)=p.v.

∫
Rn

f(x−y)K(y) dy.(1.2)

Then it is known that T is bounded on Lp(Rn) for all p∈(1,∞) if Ω∈L logL(Σ).

A proof of this based on [10] can be found in [22], where a wider class of singular

integrals including the one in (4.1) below is treated. Also, the following result is

known (see [24]).

Theorem A. Let n=2 and Ω∈L logL(Σ). Then T is of weak type (1, 1) on R
2.
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For Ω∈L1(Sn−1), let

MΩ(f)(x)= sup
t>0

t−n

∫
|y|<t

∣∣f(x−y)
∣∣∣∣Ω(

y′
)∣∣ dy, y′ = y/|y|.(1.3)

Put MΩ,s(f)=[MΩ(|f |s)]1/s, s>0. We then recall a result of Vargas [30] on R
2 with

the usual isotropic dilation and the Euclidean norm.

Theorem B. Let Ω∈Lq(S1), q>1,
∫
S1 Ω dσ=0, and let T be defined as in

(1.2) with n=2 and K(x)=Ω(x′)/|x|2 (x′=x/|x|). For a weight w define

W (x)= ‖Ω‖1/β
′

q MβMΩ̃,βMβ(w)(x)+‖Ω‖qMβ(w)(x),

where β∈(1,∞), 1/β+1/β′=1, Ω̃(θ)=Ω(−θ), Mβ(f)=[M(|f |β)]1/β with M denot-

ing the Hardy-Littlewood maximal operator on R
2. Then

sup
λ>0

λw
({

x∈R
2 :

∣∣Tf(x)∣∣>λ
})

≤C

∫
R2

∣∣f(x)∣∣W (x) dx

for a positive constant C independent of Ω, where w(E)=
∫
E
w(x) dx.

Theorem B is generalized to higher dimensions by [12] on the basis of [26]. In

this note we shall extend Theorem B to the cases of singular integrals on R
2 with

generalized homogeneity and singular integrals on homogeneous groups.

We regard R
n as the underlying manifold of a homogeneous group. The mul-

tiplication is given by a polynomial mapping and there is a dilation family {At}t>0

on R
n such that each At is an automorphism of the group structure with the form

Atx=
(
ta1x1, t

a2x2, ..., t
anxn

)
, x=(x1, ..., xn),

for some real numbers a1, ..., an satisfying 0<a1≤a2≤...≤an. We denote by H the

homogeneous group. Thus H is equipped with a homogeneous nilpotent Lie group

structure, where Lebesgue measure is a bi-invariant Haar measure, the identity is

the origin 0, x−1=−x and multiplication xy, x, y∈H, satisfies

(4) At(xy)=(Atx)(Aty), x, y∈H, t>0;

(5) if z=xy, then z1=x1+y1 and zk=xk+yk+Rk(x, y) for k≥2 with a poly-

nomial Rk(x, y) depending only on xi, yj , 1≤i, j≤k−1;

(6) r(xy)≤N2(r(x)+r(y)) for a positive constant N2.

We may assume that Σ=Sn−1, where Σ is as in (3). The space H with a left

invariant quasi-metric d(x, y)=r(x−1y) can be regarded as a space of homogeneous

type. We refer to [5], [8], [13], [20] and [29] for more details.
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If we define the multiplication

(x, y, u)
(
x′, y′, u′)= (

x+x′, y+y′, u+u′+
(
xy′−yx′)/2),

then R
3 with this group law is the Heisenberg group H1, which is an example of

homogeneous groups. Dilations At(x, y, u)=(tx, ty, t2u) (2-step) and A′
t(x, y, u)=

(tx, t2y, t3u) (3-step) are automorphisms on H1. The Euclid space Rn with the usual

addition is also a homogeneous group; for the associated dilation At=exp((log t)P ),

we may choose any diagonal matrix P with entries in ascending order.

The convolution on H is defined by

f ∗g(x)=
∫
H

f(y)g
(
y−1x

)
dy.

Let K(x)=r(x)−γΩ(x′) be the homogeneous kernel associated with {At} as above

and define

Tf(x)=p.v.f ∗K(x)=p.v.

∫
H

f(y)K
(
y−1x

)
dy.(1.4)

Then, in [29], the following two results are proved.

Theorem C. Suppose that Ω∈L logL(Σ). Then, T is bounded on Lp(H) for

all p∈(1,∞).

Theorem D. Let Ω∈L logL(Σ). Then, T is of weak type (1, 1) on H.

Theorem A follows from Theorem D when the matrix P is diagonal.

A result similar to Theorem C is proved in [25] for the maximal singular inte-

grals T∗ defined by

T∗f(x)= sup
N,ε>0

∣∣∣∣
∫
ε<r(y)<N

f
(
xy−1

)
K(y) dy

∣∣∣∣.
We shall prove weighted versions of Theorems A and D, generalizing Theorem B.

Let w be a measurable, almost everywhere positive function on R
n, which we call a

weight function. We denote by Lp(w) (p>0) the space of all measurable functions

f on R
n such that

‖f‖Lp(w) =

(∫
Rn

∣∣f(x)∣∣pw(x) dx
)1/p

<∞

and by L1,∞(w) the weak L1(w) space of all those functions f which satisfy

‖f‖L1,∞(w) =sup
λ>0

λw
({

x∈R
n :

∣∣f(x)∣∣>λ
})

<∞,

where we recall that w(E)=
∫
E
w(x) dx.
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Let B(a, s)={x∈H:d(a, x)<s} be a ball in H with center a and radius s.

Note that |B(a, s)|=csγ , where |S| denotes the Lebesgue measure of a set S and

c=|B(0, 1)|. If s=2k for some k∈Z (the set of all integers), then S=B(a, 2k) is

called a dyadic ball. Also, we write a=xS , k=k(S). We define τB(a, s)=B(a, τs)

for τ>0.

Let Ap, 1<p<∞, be the weight class of Muckenhoupt on H defined to be the

collection of all weight functions w on H satisfying

sup
B

(
|B|−1

∫
B

w(x) dx

)(
|B|−1

∫
B

w(x)−1/(p−1)dx

)p−1

<∞,

where the supremum is taken over all balls B in H. Let M be the Hardy-Littlewood

maximal operator defined as usual by

Mf(x)= sup
B

|B|−1

∫
B

∣∣f(y)∣∣ dy,
where the supremum is taken over all balls B in H containing x. We then recall

the class A1 is defined to be the family of all weight functions w on H satisfying

Mw≤Cw a.e. (See [1], [8] and [14].)

For functions Ω on Σ and f on H, we define a maximal function

MΩ(f)(x)= sup
t>0

t−γ

∫
r(y)<t

∣∣f(
xy−1

)∣∣∣∣Ω(
y′

)∣∣ dy,
generalizing (1.3). Some weighted estimates for MΩ, T , T∗ analogous to those in

the Euclidean case of [9] and [31] are shown in [25].

Put Ms(f)=[M(|f |s)]1/s, s>0, and MΩ,s(f)=[MΩ(|f |s)]1/s. Then

MΩ,s(f)≤
(
‖Ω‖1/γ

)1/s−1/t
MΩ,t(f), if s<t;(1.5)

MΩ,s(f)≤C‖Ω‖1/sq Msq′(f) if q>1.(1.6)

We have the following result.

Theorem 1.1. Let w∈A2 and β∈(1,∞). Suppose that T is as in (1.4) with

Ω∈Lq(Σ) for some q, 1<q≤∞. Then, there exists a positive constant C independent

of Ω such that

‖Tf‖L1,∞(w) ≤C

∫
H

∣∣f(x)∣∣(‖Ω‖1/β′

q MβMΩ̃,β(w)(x)+‖Ω‖qMβ(w)(x)
)
dx.

Here g̃(x)=g(x−1). See [6], [7], [12], [15], [16] and [26] for relevant results. By

Theorem 1.1 and (1.5) we can easily prove the weighted weak type estimates for T

analogous to Theorem B (see Remark 2 of [12]).
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Corollary 1.2. Suppose that Ω∈Lq(Σ) for some 1<q≤∞ and wq′∈A1. Then

T is bounded from L1(w) to L1,∞(w).

This follows from Theorem 1.1 with β sufficiently close to 1 and (1.6).

To prove Theorem 1.1, we use the following weighted L2-estimates.

Theorem 1.3. Let Ω, q, T, w, β be as in Theorem 1.1. Then, there exists a

constant C independent of q and Ω such that

‖Tf‖L2(w) ≤Cq′‖Ω‖1−1/(2β)
q

(∫
H

∣∣f(x)∣∣2MβMΩ̃,β(w)(x) dx

)1/2

.

To state results with Ω∈L logL(Σ), we consider the maximal function

M∗(f)(x)= sup
F

MF (f)(x),

where the supremum is taken over all the functions F∈L1(Σ) with ‖F‖1=1. Put

M∗
s (f)=[M∗(|f |s)]1/s. Then we have the following.

Theorem 1.4. Let T be as in (1.4) with Ω∈L logL(Σ). Suppose that w∈A2

and β∈(1,∞). Then

‖Tf‖L1,∞(w) ≤C‖Ω‖L logL‖f‖L1(MβM∗
β (w))

for a constant C independent of Ω.

Let A1(M
∗) be the collection of all the weight functions w such that

M∗w≤Cww a.e. for some constant Cw. Then, if w satisfies that wτ∈A1(M
∗)

for some τ>1 and Ω∈L logL(Σ), by Theorem 1.4 it follows that T is bounded from

L1(w) to L1,∞(w) on H.

To prove Theorem 1.4 we apply the following.

Theorem 1.5. Let w, β, Ω and T be as in Theorem 1.4. Then

‖Tf‖L2(w) ≤C‖Ω‖L logL‖f‖L2(MβM∗
β (w))

with a constant C independent of Ω.

Remark 1.6. Let MΩ(f) be as in (1.3). Let w(x)=|x|α, Ω∈Lq , q≥1. Then,

MΩ(w)(x)≤C‖Ω‖qw(x) if −n+(n−1)/q<α≤0 (see [19]). In the case of the Eu-

clidean structure, this observation and Theorem 1.1 will be used to get a better

result when w(x)=|x|α than the one Corollary 1.2 can provide (see [27] for relevant

results).
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Proofs of Theorems 1.3 and 1.5 will be given in Section 2. Theorem 1.3 will

be shown by applying two parameter Littlewood-Paley type decomposition of T

depending on q>1 in the theorem (see (2.4)), which is introduced in [25], and using

the decay estimates (Lemma 2.3) which can be proved through orthogonality via

convolution. Such two parameter decomposition is needed at the present stage

of the research, since in general homogeneous groups Fourier transform estimates

cannot be applied as effectively as in the Euclidean situation of [10] (see the proof

of Theorem 4.3 in Section 4) and the group convolution may be noncommutative.

Theorem 1.5 will be proved by extrapolation using Theorem 1.3.

In Section 3 we shall prove Theorems 1.1 and 1.4. We apply the Koranyi-Vagi

version of the Calderón-Zygmund decomposition f=g+b. The evaluation of Tg can

be accomplished by the weighted L2 estimates of Theorems 1.3 and 1.5 as usual.

To treat Tb we apply a result of Tao [29] (Proposition 3.4). We interpolate with

change of measures, between unweighted estimates shown from the result of Tao

(Lemma 3.2) and weighted estimates which can be obtained by a straightforward

computation (Lemma 3.3), to prove some key estimates. The interpolation is a vari-

ant of the methods of Vargas [30]. Since Vargas’s interpolation arguments cannot

be applied directly to get necessary estimates for the proofs of the theorems, we

need to further develop the idea of the methods and suitably modify the arguments

to be adapted for the present situation (see also [11] and [12]).

We shall consider singular integrals on R
2 with generalized homogeneity defined

by (1.2) in Section 4. We are able to prove results analogous to those stated above

for singular integrals on H (Theorems 4.1–4.4). To prove analogues for Theorems 1.1

and 1.4 (Theorems 4.1, 4.2), we apply Proposition 2.1 of [24], which will play a role

similar to the one Proposition 3.4 performs in the proofs of Theorems 1.1 and 1.4.

In Section 5, we focus on the case of Rn with the Euclidean structure and give

an application of Theorem 1.4. We shall show a sharp weighted weak type (1, 1)

estimate conjectured in [9].

2. Proofs of Theorems 1.3 and 1.5

Let φ be a non-negative, smooth function on H with support in B(0, 1)\
B(0, 1/2) satisfying

∫
φ=1, φ=φ̃. For ρ≥2, define

Δk = δρk−1φ−δρkφ, k∈Z,

where δtφ(x)=t−γφ(A−1
t x). Note that supp(Δk)⊂B(0, ρk)\B(0, ρk−2), Δk=Δ̃k

and
∑

k Δk=δ, where δ is the delta function.
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For any ρ≥2 we can find a sequence {ψj}j∈Z of non-negative functions in

C∞
0 (R) such that

supp(ψj)⊂
{
t∈R:ρj≤t≤ρj+2

}
,

∑
j∈Z

ψj(t)=1 for t>0,

∣∣(d/dt)mψj(t)
∣∣≤cm|t|−m for m=0, 1, 2, ...,

where cm is a constant independent of ρ, which is possible as ρ≥2.

Define the operator Sj by

SjF (x)= (log 2)−1

∫ ∞

0

ψj(t)δtF (x) dt/t.(2.1)

Then SjK0(x)=r(x)−γΩ(x′)Ψj(r(x)), where

K0(x)=K(x)χD0(x), D0=
{
x∈Rn :1≤r(x)≤2

}
,

Ψj(s)=(log 2)−1

∫ 1

1/2

ψj(ts) dt/t.

Here χE denotes the characteristic function of a set E. It follows that
∑

j∈Z
SjK0=

K. Thus

Tf =
∑
j

f ∗SjK0.

We have the following L2 estimates.

Lemma 2.1. Suppose that 1<q≤∞, ρ=2q
′
and Ω∈Lq(Σ). Then, for j, k∈Z

we have

‖f ∗SjK0∗Δk‖2 ≤Cq′2−ε|j−k|‖Ω‖q‖f‖2

for some positive constants C, ε independent of q and Ω.

This is proved in [29] when q=∞. The result for the whole range of q is shown

in [25] by further developing the methods of [29].

We use the weighted Littlewood-Paley inequalities given in [25].
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Lemma 2.2. Let w∈Ap, 1<p<∞. Then

∥∥∥∥
∑
k

fk∗Δk

∥∥∥∥
Lp(w)

≤Cp,w

∥∥∥∥
(∑

k

|fk|2
)1/2∥∥∥∥

Lp(w)

,(2.2)

∥∥∥∥
(∑

k

|f ∗Δk|2
)1/2∥∥∥∥

Lp(w)

≤Cp,w‖f‖Lp(w),(2.3)

where Cp,w is independent of ρ≥2.

To prove Theorem 1.3, we apply a Littlewood-Paley decomposition depending

on ρ and obtain a decomposition of T analogous to the one used in [10] in the case

of the Euclidean structure. We write

Tf =
∑
k1,k2

Uk1,k2f,(2.4)

where

Uk1,k2f =
∑
j

f ∗Δk1+j∗SjK0∗Δk2+j , k1, k2 ∈Z.

This two parameter decomposition is to be compared with (4.2) based on the Fourier

transform. Lemma 2.1 enables us to get the following estimates.

Lemma 2.3. Let Ω∈Lq(Σ), 1<q≤∞, and ρ=2q
′
. Then, for any integers

k1, k2 we have

‖Uk1,k2f‖2 ≤Cq′2−ε|k1|2−ε|k2|‖Ω‖q‖f‖2
with some positive constants C and ε independent of q and Ω.

See [25, Section 4]. We give a proof for completeness.

Proof of Lemma 2.3. Let Lj=SjK0. We may assume that all the functions

under discussion are real valued. We note that Lemma 2.1 and duality imply

‖f ∗Δk∗Lj‖2 ≤Cq′2−ε|j−k|‖Ω‖q‖f‖2.

If we apply this estimate and Lemma 2.1 for Lj and L̃j along with Young’s inequality

and the evaluations

‖Δk2+j∗Δk2+j′‖1 ≤Cmin
(
1, ρ−ε(|j−j′|−c)

)
, ‖Δk‖1 ≤C,

which hold for some positive constants C, c independent of q and can be proved

easily, then we obtain
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∥∥f ∗(Δk1+j∗Lj)∗(Δk2+j∗Δk2+j′)∗(L̃j′ ∗Δk1+j′)
∥∥
2

≤C
(
q′‖Ω‖q

)2
2−2ε|k1| min

(
1, ρ−ε(|j−j′|−c)

)
‖f‖2.

Similarly, by the associative law of convolution the same quantity can be estimated

as

∥∥f ∗Δk1+j∗(Lj∗Δk2+j)∗(Δk2+j′ ∗L̃j′)∗Δk1+j′
∥∥
2
≤C

(
q′‖Ω‖q

)2
2−2ε|k2|‖f‖2.

Thus, taking the geometric mean we have

‖f ∗Δk1+j∗Lj∗Δk2+j∗Δk2+j′ ∗L̃j′ ∗Δk1+j′‖2

≤C
(
q′‖Ω‖q

)2
2−ε|k1|2−ε|k2| min

(
1, ρ−ε(|j−j′|−c)/2

)
‖f‖2.

Obviously, a similar estimate is valid for

‖f ∗Δk2+j′ ∗L̃j′ ∗Δk1+j′ ∗Δk1+j∗Lj∗Δk2+j‖2.

Thus, applying the Cotlar-Knapp-Stein lemma we can reach the conclusion. �

On the other hand, since w∈A2, applying (2.2) of Lemma 2.2 with p=2 we

have

‖Uk1,k2f‖L2(w) ≤C

(∑
j

‖f ∗Δk1+j∗SjK0‖2L2(w)

)1/2

.(2.5)

We note that

‖g∗SjK0‖L1(w) ≤
∫
H

(∫
ρj≤r(y−1x)≤ρj+3

∣∣∣∣g(y)Ω((y
−1x)′)

r(y−1x)γ

∣∣∣∣ dy
)
w(x) dx

≤
∫
H

∣∣g(y)∣∣
(

N∑
m=1

ρ−jγ2−(m−1)γ

×
∫
ρj2m−1≤r(y−1x)≤ρj2m

∣∣Ω((
y−1x

)′)∣∣w(x) dx
)
dy,(2.6)

where N is determined by 2N−1<ρ3≤2N ; therefore N∼log ρ. From this we can see

that

‖f ∗Δk1+j∗SjK0‖2L2(w) ≤ C(log ρ)‖Ω‖1
∥∥|f ∗Δk1+j |2∗|SjK0|

∥∥
L1(w)

≤ C(log ρ)2‖Ω‖1‖f ∗Δk1+j‖2L2(MΩ̃(w)).(2.7)
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Combining the inequalities (2.5) and (2.7), we have

‖Uk1,k2f‖L2(w) ≤ C(log ρ)‖Ω‖1/21

(∑
j

‖f ∗Δk1+j‖2L2(MΩ̃(w))

)1/2

≤ C(log ρ)‖Ω‖1/21 ‖f‖L2(MβMΩ̃(w)),(2.8)

where the last inequality follows from (2.3) of Lemma 2.2 with p=2 and the fact that

MβMΩ̃(w) is in A1 and hence in A2, if it is finite a.e. Let 0<θ<1. Interpolating

with change of measures between the estimates in Lemma 2.3 and (2.8), we get

‖Uk1,k2f‖L2(wθ) ≤Cq′2−(1−θ)ε(|k1|+|k2|)‖Ω‖θ/21 ‖Ω‖1−θ
q ‖f‖L2(MβMΩ̃(w)θ).

Thus by (2.4)

‖Tf‖L2(wθ) ≤
∑

‖Uk1,k2f‖L2(wθ) ≤Cq′‖Ω‖θ/21 ‖Ω‖1−θ
q ‖f‖L2(MβMΩ̃(w)θ)(2.9)

for any w∈A2 and θ∈(0, 1). For w∈A2 we choose θ∈(0, 1) sufficiently close to 1

such that w1/θ∈A2 and βθ>1. Then by (2.9) with w1/θ and βθ in place of w and

β, respectively, we have

‖Tf‖L2(w) ≤Cq′‖Ω‖θ/21 ‖Ω‖1−θ
q ‖f‖L2(MβMΩ̃,1/θ(w)).

Since ‖Ω‖1≤S(Σ)1/q
′‖Ω‖q , from this and (1.5) the conclusion of Theorem 1.3 fol-

lows.

Applying extrapolation methods using Theorem 1.3, we can show Theorem 1.5

as follows. Decompose Ω∈L logL(Σ) as Ω=
∑∞

k=1 ckΩk, where each Ωk satisfies

(1.1), supk≥1 ‖Ωk‖1+1/k≤1 and {ck} is a sequence of non-negative real numbers

such that
∑∞

k=1 kck<∞ (see [23]). By Theorem 1.3 we have

‖Tf‖L2(w) ≤ C
∞∑
k=1

kck‖Ωk‖1−1/(2β)
1+1/k ‖Ωk‖1/(2β)1 ‖f‖L2(MβMΩ̃k/‖Ωk‖1,β(w))

≤ C

( ∞∑
k=1

kck

)
‖f‖L2(MβM∗

β (w)).

Taking the infimum over the sequences {ck}, we can get the conclusion of Theo-

rem 1.5, since it is not difficult to show the infimum is equivalent to the norm of Ω

in L logL.
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3. Proofs of Theorems 1.1 and 1.4

For η>0, Ω∈Lq(Σ) and a positive integer s, let

Ωη,s

(
x′)=Ω

(
x′)χ{|Ω|/‖Ω‖q>2ηs}

(
x′).(3.1)

For a weight w, define wΩ,η=
∑

s≥1 MΩ̃η,s
(w). Theorem 1.1 will be deduced from

the following.

Proposition 3.1. Let w∈A2, β∈(1,∞). Suppose that Ω∈Lq(Σ) for some

q>1 and T is as in (1.4). Then, there exist positive constants C and η independent

of Ω such that

‖Tf‖L1,∞(w) ≤C‖f‖L1(W )

with

W = ‖Ω‖1/β
′

q MβMΩ̃,β(w)+‖Ω‖qMβ(w)+M(wΩ,η).

Indeed, note that

|Ω̃η,s| ≤ 2ηs(1−q)|Ω̃η,s|q‖Ω‖1−q
q

and hence ‖Ω̃η,s‖1≤2ηs(1−q)‖Ω‖q . Thus by (1.5)

MΩ̃η,s
(w)≤C2ηs(1−q)/β′

‖Ω‖1/β
′

q MΩ̃,β(w).

Consequently, by summation in s, wΩ,η≤C‖Ω‖1/β
′

q MΩ̃,β(w), which will be used to

get the conclusion of Theorem 1.1.

Assuming that f is smooth and compactly supported, we shall show that

w
({

x∈H :
∣∣Tf(x)∣∣>λ

})
≤Cλ−1‖f‖L1(W ) for all λ> 0,

where W is as in Proposition 3.1. To prove this we may assume that ‖Ω‖q=1 and

λ=1. By the Calderón-Zygmund decomposition at height 1, we have a family F of

disjoint dyadic balls B, an associated family {QB}B∈F of disjoint sets and functions

g, b such that

f=g+b;(3.2)

B⊂QB⊂B∗ with B∗=ˇB for some ˇ≥1;(3.3)

c|B|≤
∫
B

|f |≤
∫
B∗

|f |≤C|B| for some c, C>0;(3.4)

‖g‖∞≤C, ‖g‖L1(v)≤C‖f‖L1(M(v));(3.5)
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b=
∑
B∈F

bB, ‖b‖L1(v)≤C‖f‖L1(M(v));(3.6)

supp(bB)⊂QB,

∫
bB=0, ‖bB‖1≤C|B|,(3.7)

where v is any weight function (see [18, Section 2], [8], [13] and [20]). We may

assume without loss of generality that F has a finite cardinality.

We have {
x∈H :

∣∣Tf(x)∣∣> 1
}
⊂O1∪O2∪O3,

where

O1 =
{
x∈H :

∣∣Tg(x)∣∣> 1/3
}
,

O2 =

{
x∈H :

∑
s≤C0

∣∣∣∣
∑
B∈F

bB∗Sk(B)+sK0(x)

∣∣∣∣> 1/3

}
,

O3 =

{
x∈H :

∑
s>C0

∣∣∣∣
∑
B∈F

bB∗Sk(B)+sK0(x)

∣∣∣∣> 1/3

}
.

Here Sj is defined as in (2.1) with ρ=2 and we recall that k(B) denotes the radius

of B. We assume that the positive constant C0 is sufficiently large. This may imply

that bB∗Sk(B)+sK0 is supported in an annulus {c12k(B)+s≤r(x−1
B x)≤c22

k(B)+s+3}
(c1, c2>0), if s>C0.

Applying Theorem 1.3, by Chebyshev’s inequality and the first part of (3.5)

we have

w(O1)≤C‖Tg‖2L2(w) ≤C‖g‖2L2(W1)
≤C‖g‖L1(W1),

where W1=MβMΩ̃,β(w). Since W1∈A1 if it is finite a.e., using the second part of

(3.5), we see that

w(O1)≤C‖g‖L1(W1) ≤C‖f‖L1(M(W1)) ≤C‖f‖L1(W1).(3.8)

Note that O2 is contained in E=
⋃

B CB for some C>0, since supp(SjK0) is

contained in {2j≤r(x)≤2j+3} and supp(bB) in B∗ (see (3.7) and (3.3)). Therefore,

by (3.4) we have

w(O2) ≤ w(E)≤
∑
B

w(CB)

≤ C
∑
B

|B| inf
B

M(w)≤C
∑
B

∫
B

∣∣f(x)∣∣M(w)(x) dx

≤ C‖f‖L1(M(w)),(3.9)

where infB M(w)=infx∈B M(w)(x).
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To prove Proposition 3.1, it remains to show w(O3)≤C‖f‖L1(W ) with W de-

scribed there. In the following arguments, s is a positive integer greater than C0,

where C0 is as in the definition of O3.

Lemma 3.2. Let η>0 and

Ls(x)=χ[1,2]

(
r(x)

)
r(x)−γΩ∗

η,s

(
x′), Ω∗

η,s

(
x′)=Ω

(
x′)χ{|Ω|≤2ηs}

(
x′).

Then, if η is sufficiently small, we have
∣∣∣∣
{
x∈H :

∣∣∣∣
∑
B∈F′

bB∗Sk(B)+sLs(x)

∣∣∣∣> 1

}∣∣∣∣≤C2−εs
∑
B∈F′

|B|

for some constants C, ε>0, where F′ is any subset of F.

Lemma 3.3. Let Ls,F
′ be as in Lemma 3.2. Then

w

({
x∈H :

∣∣∣∣
∑
B∈F′

bB∗Sk(B)+sLs(x)

∣∣∣∣> 1

})
≤C2ηs

∑
BF′

|B| inf
B

M(w).

In proving Lemma 3.2 we need a result of [29]. To recall the result, we introduce

a function ψB defined as

ψB(x)=ψ0

(
A2−k(B)

(
x−1
B x

))

with a non-negative, smooth function ψ0 on H such that supp(ψ0)⊂{d−1≤r(x)≤d},
ψ0(x)=1 if 2/d≤r(x)≤d/2 for a sufficiently large positive number d and ‖ψ0‖∞≤1.

Also, let B be a finite family of disjoint dyadic balls such that
∑
B∈B

|B| ≤ 1.(3.10)

Then, the following result is shown in [29].

Proposition 3.4. Let B be as in (3.10) and let bB be a function satisfying

(3.7) for each B∈B. Suppose 1<p<2. Then, there exist a positive number ε0 and

a set Es⊂H such that

|Es|≤C2−ε0s;
∥∥∥∥

∑
B∈B

ψ2sB(bB∗Sk(B)+sfB)

∥∥∥∥
Lp(H\Es)

≤C2−ε0s

( ∑
B∈B

|B|‖fB‖22
)1/2

for any functions fB in L2(H).
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Proof of Lemma 3.2. We observe that by dilation invariance we may assume

c<
∑

B∈F′ |B|≤1 for some positive constant c. Then, if d is sufficiently large so that

ψ2sB is identically 1 on the support of bB∗Sk(B)+sLs, using Proposition 3.4 with

B=F′ and fB=Ls for all B along with Chebyshev’s inequality, we get

∣∣∣∣
{
x∈H :

∣∣∣∣
∑
B∈F′

bB∗Sk(B)+sLs(x)

∣∣∣∣> 1

}∣∣∣∣

≤ |Es|+
∣∣∣∣
{
x∈H\Es :

∣∣∣∣
∑
B∈F′

bB∗Sk(B)+sLs(x)

∣∣∣∣> 1

}∣∣∣∣

≤C2−ε0s+C2−pε0s

(
C22ηs

∑
B∈F′

|B|
)p/2

≤C2−ε0s+C2−pε0sCp/22pηs,

which will prove Lemma 3.2, if η is small enough, since
∑

B∈F′ |B|>c. �

Proof of Lemma 3.3. If we apply (2.6) with ρ=2 and bB∗Sk(B)+sLs in place

of g∗SjK0, since |Ω∗
η,s|≤2ηs, we see that

‖bB∗Sk(B)+sLs‖L1(w)

≤C2ηs
∫
B∗

∣∣bB(y)∣∣
(
2−(k(B)+s)γ

∫
r(y−1x)≤2k(B)+s+3

w(x) dx

)
dy.(3.11)

If z∈B, y∈B∗ and r(y−1x)≤2k(B)+s+3, then

r
(
z−1x

)
≤N2r

(
z−1xB

)
+N2

2 r
(
x−1
B y

)
+N2

2 r
(
y−1x

)
≤C2k(B)+s,

which implies

sup
y∈B∗

2−(k(B)+s)γ

∫
r(y−1x)≤2k(B)+s+3

w(x) dx≤C inf
B

M(w).

Using this in (3.11) and applying the last property of bB in (3.7), we see that

‖bB∗Sk(B)+sLs‖L1(w) ≤C2ηs inf
B

M(w)

∫
B∗

∣∣bB(y)∣∣ dy≤C2ηs|B| inf
B

M(w).(3.12)

Now Lemma 3.3 follows from (3.12) and Chebyshev’s inequality. �

Lemmas 3.2 and 3.3 are used to prove the following estimates.
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Lemma 3.5. For α>0, put

Es
α =

{
x∈H :

∣∣∣∣
∑
B∈F

bB∗Sk(B)+sLs(x)

∣∣∣∣>α

}
.

Then we have∫
Es

1

min
(
w(x), u

)
dx≤C2ηs

∑
B∈F

|B|min
(
u2−εs, inf

B
M(w)

)
(3.13)

for all u>0, where ε is as in Lemma 3.2 and w is any weight function.

Proof. For u>0, set

Fu =
{
B ∈F : inf

B
M(w)<u2−εs

}

and Fc
u=F\Fu. Let α>0 and

Eu,α =

{
x∈H :

∣∣∣∣
∑

B∈Fu

bB∗Sk(B)+sLs(x)

∣∣∣∣>α

}
,

E′
u,α =

{
x∈H :

∣∣∣∣
∑

B∈Fc
u

bB∗Sk(B)+sLs(x)

∣∣∣∣>α

}
.

Then, Es
α⊂Eu,α/2∪E′

u,α/2, and hence

∫
Es

1

min
(
w(x), u

)
dx ≤

∫
Eu,1/2

min
(
w(x), u

)
dx+

∫
E′

u,1/2

min
(
w(x), u

)
dx

≤
∫
Eu,1/2

w(x) dx+

∫
E′

u,1/2

u dx.

From Lemma 3.3, we easily see that

∫
Eu,1/2

w(x) dx≤C2ηs
∑

B∈Fu

|B| inf
B

M(w)=C2ηs
∑

B∈Fu

|B|min
(
u2−εs, inf

B
M(w)

)
.

Also, Lemma 3.2 implies that

∫
E′

u,1/2

u dx≤Cu2−εs
∑

B∈Fc
u

|B|=C
∑

B∈Fc
u

|B|min
(
u2−εs, inf

B
M(w)

)
.

Combining these estimates, we get the conclusion of Lemma 3.5. �
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Multiply both sides of the inequality in (3.13) by u−1+θ (θ∈(0, 1)), and inte-

grate them over (0,∞) with respect to the measure du/u. Interchanging the order

of integration on the left hand side, performing termwise integration on the right

hand side, and using the formula∫ ∞

0

min(Ξ, u)u−1+θ du

u
= cθΞ

θ (Ξ> 0),

we then get ∫
Es

1

w(x)θ dx ≤ C2ηs
∑
B∈F

|B|2−(1−θ)εs inf
B

M(w)θ

≤ C2ηs2−(1−θ)εs
∑
B∈F

inf
B

M(w)θ
∫
B

∣∣f(x)∣∣ dx

≤ C2ηs2−(1−θ)εs

∫ ∣∣f(x)∣∣M(w)(x)θ dx,

where the second inequality follows from (3.4). Substituting w1/θ for w and reducing

η, if necessary, we get

w
(
Es

1

)
≤C2−(1−θ)εs/2

∫ ∣∣f(x)∣∣M1/θ(w)(x) dx.(3.14)

Similarly, we have for any θ∈(0, 1)

w
(
Es

cδ2−δs

)
≤C2−τs‖f‖L1(M1/θ(w)),(3.15)

where δ and τ are sufficiently small positive constants depending on θ and cδ is

chosen so that
∑

s>C0
cδ2

−δs=1. This can be achieved by applying the proof of

(3.14) to a version of Es
1 , where Ω∗

η,s is replaced by c−1
δ 2δsΩ∗

η,s.

We note that{
x∈H :

∑
s>C0

∣∣∣∣
∑
B∈F

bB∗Sk(B)+sLs(x)

∣∣∣∣> 1

}
⊂

⋃
s>C0

Es
cδ2−δs ,

since
∑

s>C0
cδ2

−δs=1. Therefore, (3.15) implies that

w

({
x∈H :

∑
s>C0

∣∣∣∣
∑
B∈F

bB∗Sk(B)+sLs(x)

∣∣∣∣> 1

})

≤
∑
s>C0

w
(
Es

cδ2−δs

)

≤C
∑
s>C0

2−τs‖f‖L1(M1/θ(w)) ≤C‖f‖L1(M1/θ(w)).(3.16)
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Next, let

Rs(x)=χ[1,2]

(
r(x)

)
r(x)−γΩη,s

(
x′),

where Ωη,s is as in (3.1). Arguing similarly to the proof of (3.12) in view of (2.6)

(with ρ=2), we have

‖bB∗Sk(B)+sRs‖L1(w) ≤C

∫
QB

∣∣bB(y)∣∣MΩ̃η,s
(w)(y) dy.

Combined with (3.6), this implies

∑
s>C0

∑
B∈F

‖bB∗Sk(B)+sRs‖L1(w) ≤ C

∫ ∣∣b(y)∣∣ ∑
s>C0

MΩ̃η,s
(w)(y) dy

≤ C‖f‖L1(M(wΩ,η)).(3.17)

Noticing K0=Ls+Rs for all s, by (3.16) and (3.17) with Chebyshev’s inequality,

we have

w(O3)≤C‖f‖L1(Mβ(w))+C‖f‖L1(M(wΩ,η))(3.18)

for any β∈(1,∞). Thus we have w(O3)≤C‖f‖L1(W ) as claimed, which combined

with (3.8), (3.9) completes the proof of Proposition 3.1.

We now proceed to the proof of Theorem 1.4. We may assume that ‖Ω‖L logL=1.

Furthermore, arguing as in the proof of Proposition 3.1, the proof of Theorem 1.4

can be also reduced to the estimates of w(Oi), i=1, 2, 3, where each Oi is defined

similarly. By Theorem 1.5 we have

w(O1)≤C‖f‖L1(MβM∗
β (w)).(3.19)

Also

w(O2)≤C‖f‖L1(M(w)).(3.20)

Further, similarly to the proof of (3.18), we obtain

w(O3)≤C

∫
H

∣∣f(x)∣∣[Mβ(w)(x)+M(wΩ,η)(x)
]
dx,(3.21)

where wΩ,η is defined as above from Ωη,s in (3.1) with ‖Ω‖q replaced by ‖Ω‖L logL

and η is sufficiently small. We observe that

wΩ,η ≤CM∗(w)
∑
s≥1

‖Ω̃η,s‖1 ≤CM∗(w),(3.22)

since we assume that ‖Ω‖L logL=1. Using this in (3.21) we have

w(O3)≤C‖f‖L1(Mβ(w))+C‖f‖L1(MM∗(w)).(3.23)

The conclusion follows from (3.19), (3.20) and (3.23).
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4. Singular integrals on R
2 with the generalized homogeneity

In this section we consider singular integrals on the Euclid space R
n, with the

usual addition, associated with the non-isotropic dilations At=exp((log t)P ), where

P is not restricted to diagonal matrices. Similarly to the case of Rn considered as

a homogeneous group with a diagonal matrix P , we can also define the maximal

operators M , Ms, MΩ, MΩ,s, M∗, M∗
s in this context with a norm function r

related to {At}. Also, the Muckenhoupt class Ap(R
n) is defined as in Section 1.

We have results on R
2 analogous to Theorems 1.1 and 1.4 in Section 1.

Theorem 4.1. Suppose that w∈A2(R
2), β∈(1,∞) and Ω∈Lq(Σ) for some q,

1<q≤∞. Let T be as in (1.2) with n=2. Then

‖Tf‖L1,∞(w) ≤C

∫
R2

∣∣f(x)∣∣(‖Ω‖1/β′

q MβMΩ̃,β(w)(x)+‖Ω‖qMβ(w)(x)
)
dx

for some positive constant C independent of Ω.

Theorem 4.2. Let Ω∈L logL(Σ) and let T be as in (1.2) with n=2. If

w∈A2(R
2) and β∈(1,∞), then

‖Tf‖L1,∞(w) ≤C‖Ω‖L logL‖f‖L1(MβM∗
β (w))

with a constant C independent of Ω.

We also have an analogue of Corollary 1.2 in the present context.

To describe results on L2 estimates, we introduce a kernel L on R
n defined by

L(y)=h
(
r(y)

)
K(y), K(y)= r(y)−γΩ

(
y′

)
,

where h is a bounded function on R+=(0,∞) and K is a homogeneous kernel as in

(1.2). We consider a singular integral operator S on R
n defined by

Sf(x)=p.v.

∫
Rn

f(x−y)L(y) dy.(4.1)

Then, we have the following results, which are stated more generally than needed

for the proofs of Theorems 4.1 and 4.2.

Theorem 4.3. Let Ω∈Lq(Σ), 1<q≤∞, h∈L∞(R+) and let S be as in (4.1).

Suppose that w∈A2(R
n) and β∈(1,∞). Then

‖Sf‖L2(w) ≤Cq′‖h‖∞‖Ω‖1−1/(2β)
q

(∫
Rn

∣∣f(x)∣∣2MβMΩ̃,β(w)(x) dx

)1/2

for a positive constant C independent of q, Ω and h.



176 Shuichi Sato

Theorem 4.4. Suppose that w∈A2(R
n) and β∈(1,∞). Let S be as in (4.1)

with Ω∈L logL(Σ) and h∈L∞(R+). Then, there is a constant C independent of Ω

and h such that

‖Sf‖L2(w) ≤C‖h‖∞‖Ω‖L logL‖f‖L2(MβM∗
β (w)).

A result similar to Theorem 4.3 can be found in [17]. Theorem 4.4 can be

derived from Theorem 4.3 by an extrapolation argument similar to the one that

proves Theorem 1.5 from Theorem 1.3.

We give a proof of Theorem 4.3 using Fourier transform estimates, which differs

from the proof of Theorem 1.3 in Section 2 in that it allows the presence of the

function h in the kernel L.

Proof of Theorem 4.3. We apply methods of [10]. Let Ej={x∈Rn :2j<r(x)≤
2j+1}, j∈Z. Set

Lj(x)=L(x)χEj (x).

Let A∗
t =exp((log t)P ∗), where B∗ denote the adjoint of a matrix B. A norm func-

tion s(ξ) will be defined from {A∗
t } in the same way as r(x) is defined from {At}.

Let ϕ be a non-negative function in C∞(R+) such that

supp(ϕ)⊂
[
2−1, 2

]
,

∞∑
k=−∞

ϕ
(
2kt

)2
=1, t > 0.

Define the operator Dk by

(Dkf)ˆ(ξ)=ϕ
(
2ks(ξ)

)
f̂(ξ),

where f̂(ξ)=
∫
f(x)e−2πi〈x,ξ〉 dx is the Fourier transform. We write

Sf =

∞∑
k=−∞

Ukf,

where

Ukf =
∞∑

j=−∞
Dj+k(Lj∗Dj+kf).(4.2)

Then, it is known that

‖Ukf‖2 ≤C‖h‖∞‖Ω‖q2−ε|k|/q′‖f‖2(4.3)
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for some ε>0 (see [10], [22]). Since we also have weighted Littlewood-Paley inequal-

ities with operators {Dk} analogous to Lemma 2.2, arguing similarly to the proof

of (2.8), we have

‖Ukf‖L2(w) ≤C‖h‖∞‖Ω‖1/21 ‖f‖L2(MβMΩ̃(w)).(4.4)

Applying interpolation with change of measures between (4.3) and (4.4) and arguing

similarly to the proof of Theorem 1.3, we can obtain the conclusion. �

To prove Theorem 4.1, we show a version of Proposition 3.1 relevant to The-

orem 4.1 by using a Calderón-Zygmund decomposition f=g+b analogous to (3.2)

and arguing similarly to the proof of Proposition 3.1. To treat Tg we apply Theo-

rem 4.3 with n=2 and h identically 1. A version of the set O2 of Section 3 can be

handled similarly. Also, to prove an analogue of (3.16), we apply Proposition 2.1 of

[24], which is analogous to Proposition 3.4, in the same way as Proposition 3.4 is

used in proving (3.16), along with an interpolation argument with change of mea-

sures similar to the one used in the proof of (3.16). Finally, it is obvious that an

analogue of (3.17) can be shown also in the present context. Combining results,

we complete the proof of the result analogous to Proposition 3.1, which implies

Theorem 4.1.

Also, we can prove Theorem 4.2 arguing similarly to the proof of Theorem 4.1

with suitable modifications using Theorem 4.4 with n=2 and h=1 and with an

observation similar to (3.22), as we prove Theorem 1.4 from the procedure of the

proof of Theorem 1.1 with suitable adjustments in Section 3.

Remark 4.5. To prove Theorem 4.3 we applied a Littlewood-Paley decomposi-

tion adapted to a fixed lacunary sequence. On the other hand, the Littlewood-Paley

decomposition used in the proof of Theorem 1.3 is adapted to a lacunary sequence

depending on q. This is needed to get the required estimates of Theorem 1.3 through

the two parameter decomposition in (2.4).

5. Weighted weak type estimates with Ω in L logL

In this section, we review Theorem 1.4 for the case of Rn with the usual addi-

tion, the isotropic dilation and the Euclidean norm.

Let A1(R+) be the A1 class on R+. We recall a weight class introduced by [9].

Define

Ã1

(
R

n
)
=

{
w(x)= v(|x|) : v is in A1(R+) and is decreasing or v2 ∈A1(R+)

}
.
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For θ∈Σ=Sn−1, let

Mθ(f)(x)= sup
t>0

t−1

∫ t

0

∣∣f(x+tθ)
∣∣ dt.

Then, it was noted in [9] that Mθ(w)≤Cw uniformly in θ∈Sn−1 if w∈Ã1(R
n), by

the arguments based on results of [4]. Thus it follows that

MF (w)(x) = sup
t>0

t−n

∫
|y|<t

w(x−y)
∣∣F (

y′
)∣∣ dy

≤ C

∫
Sn−1

Mθ(w)(x)
∣∣F (θ)

∣∣ dσ(θ)≤C‖F‖1w(x),

and hence M∗(w)≤Cw whenever w∈Ã1(R
n). Therefore, since it is easy to see that

wτ∈Ã1(R
n) for some τ>1 if w∈Ã1(R

n), Theorem 1.4 implies the following.

Corollary 5.1. Let

Tf(x)=p.v.

∫
Rn

f(x−y)
Ω(y′)

|y|n dy

with Ω∈L logL(Sn−1) satisfying
∫
Sn−1 Ω dσ=0. Suppose that w∈Ã1(R

n). Then

‖Tf‖L1,∞(w) ≤C‖Ω‖L logL‖f‖L1(w),

where C is a constant independent of Ω.

This is foreseen in [9, p. 879, (e)]. If wα(x)=|x|α, then wα∈Ã1(R
n) for

−1<α≤0. So, T is bounded from L1(wα) to L1,∞(wα) if −1<α≤0 (the range

of α is sharp). This result on the power weights follows from [27] combined with

[26]; see [16] for the two dimensional case. Our treatment of Theorem 1.4 provides

a different proof.
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