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Uniform exponential stability of the Ekman
spiral

Yoshikazu Giga and Jürgen Saal

Abstract. This paper studies stability of the Ekman boundary layer. We utilize a new

approach, developed by the authors in a precedent paper, based on Fourier transformed finite

vector Radon measures, which yields exponential stability of the Ekman spiral. By this method

we can also derive very explicit bounds for solutions of the linearized and the nonlinear Ekman

systems. For example, we can prove these bounds to be uniform with respect to the angular

velocity of rotation, which has proved to be relevant for several aspects. Another advantage of

this approach is that we obtain well-posedness in classes containing nondecaying vector fields

such as almost periodic functions. These outcomes give respect to the nature of boundary layer

problems and cannot be obtained by approaches in standard function spaces such as Lebesgue,

Bessel-potential, Hölder or Besov spaces.

1. Introduction and main results

In this note we apply a new approach to rotating boundary layers developed

in [12] in order to examine stability of the Ekman boundary layer problem

(1)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tv−νΔv+ωe3×v+(v ·∇)v=−∇q in (0, T )×G,

div v=0 in (0, T )×G,

v=UE |∂G on (0, T )×∂G,

v|t=0 = v0 in G.

Here e3=(0, 0, 1)T , ν>0 is the viscosity coefficient, and ω∈R is the Coriolis param-

eter, which equals twice the angular velocity of rotation. For G we will consider
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simultaneously the half-space R
3
+ or a layer, i.e., we have G=R

2×D with D=(0, d)

and either a finite fixed d∈(0,∞) or d=∞. The vector field UE is the so-called

Ekman spiral (introduced by the geophysicist Ekman [8]) given as

(2) UE(x3)=U∞

(
1−e−x3/δ cos

x3

δ
, e−x3/δ sin

x3

δ
, 0
)T

, x3 ≥ 0.

System (1) is known to be a well-established model for the layer arising in a rotating

system (e.g. the earth) between a straight geostrophic flow (e.g. wind) and the

surface on which the no slip condition is imposed.

Observe that in the above model rotation about the x3-axis is assumed, whereas

U∞ denotes the total velocity of the flow, blowing in direction of the x1-axis. The

parameter δ denotes the layer thickness given by δ=
√
2ν/|ω|. By geostrophic ap-

proximation (see [23]) (1) is a reasonable model at least for the upper part of the

northern hemisphere. The couple (UE , pE) with pressure

pE(x2)=−ωU∞x2

represents a stationary solution of system (1). Note that UE(0)=0, i.e. system (1)

is subject to Dirichlet conditions at the lower boundary, and that UE is oscillating

and nondecaying in the tangential direction. We note that remarkable persistent

stability of UE is observed in geophysical literature.

As for the Ekman problem, the tangentially nondecaying and oscillating be-

havior is typical for geostrophic boundary layer problems. To give respect to this

fact, it seems natural to consider this type of boundary layer problems in classes

containing nondecaying functions. Hence, the frequently performed Lp approach for

1<p<∞ to the corresponding mathematical models fails in this situation. Giving

account to this fact, in [12] an operator theory on spaces of Fourier transformed fi-

nite vector-valued Radon measures is developed. These spaces in particular include

nondecaying such as almost periodic functions (see Remark 2.9).

A further advantage in dealing with Fourier transformed quantities lies in the

fact that all performed calculations and estimations become rather explicit. As a

consequence we can derive detailed information on how the solution depends on

involved parameters such as time, viscosity, layer thickness, and angular velocity

of rotation. In particular, we obtain that the corresponding bounds are uniform in

the angular velocity of rotation. This turned out to be relevant for several reasons

such as, for instance, the investigation of statistical properties of turbulence, cf.

[22] and [25]. It also represents the basis for the examination of rapidly oscillating

limits as ω→∞, cf. [1]–[3], [5], [16], [18]–[20] and [26]. We refer to [12] for a more

extensive motivation of the importance of the uniformity in ω and the functional

setting chosen here in general.
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Mathematically, an approach to stability in time is given in [6] and to asymp-

totic stability in [15]. These two papers consider the problem in the L2 setting,

which, of course, does not include nondecaying perturbations of UE . We refer to

[4], [5], [14], [17] and [24] for more mathematical literature on the Ekman problem

dealing also with vanishing Rossby and Ekman numbers and with stratification. For

a spectral analysis of the linearized problem we refer to [13] and [21]. Local-in-time

well-posedness in the homogeneous Lp-valued Besov space Ḃ0
∞,1(R

2, Lp(R+)) is ob-

tained in [10]. By the fact that almost periodic functions are contained in Ḃ0
∞,1(R

2),

this represents the first result in a space including nondecaying functions. This

local-in-time well-posedness is recovered in [12] in the Fourier transformed Radon

measure setting, however, with much more explicit bounds on the solution. In par-

ticular, the derived quantities such as the existence interval of the solution as well

as its bound are uniform in ω, which is not possible in Ḃ0
∞,1(R

2, Lp(R+)). The

approach developed in [12] also gives access to instability of the Ekman problem for

large Reynolds numbers as demonstrated in [9].

Next, we formulate our main results. For a rigorous definition of the appearing

spaces we refer to Section 2. Let M0(R
2, L2(D)3) denote the space of finite L2(D)3-

valued Radon measures with no point mass at the origin. We consider its Fourier

image, i.e.,

FM0(R
2, L2(D)3) := {Fμ :μ∈M0(R

2, L2(D)3)}

and equip it with its canonical norm. It can be shown that FM0(R
2, L2(D)3)⊂

BUC(R2, L2(D)3) (see Lemma 2.8(iii)) and that this space includes almost periodic

functions (see Remark 2.9). Let �≥0. Then FM�(R
2, L2(D)3):=FM0(R

2, L2(D)3)

for �=0. For �>0 and a sum-closed frequency set F� (see Definition 2.4) we also

consider the space

FM�(R
2, L2(D)3) := {v ∈FM0(R

2, L2(D)3) : supp v̂ ∈F�}.

Note that the Helmholtz projection P is bounded on FM�(R
2, L2(D)3) for �≥0 (see

Proposition 3.3(a)). Thus we may define its solenoidal part as

FM�,σ(R
2, L2(D)3) :=P (FM�(R

2, L2(D)3)), �≥ 0.

Next, we set u0 :=v0−UE , u=v−UE and p:=q−pE . Then (v, q) solves (1) if and

only if (u, p) solves the transformed system

(3)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tu−νΔu+ωe3×u+(UE ·∇)u+u3∂3U
E+(u·∇)u=−∇p in (0, T )×G,

div u=0 in (0, T )×G,

u=0 on (0, T )×∂G,

u|t=0=u0 in G.
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The Stokes–Coriolis–Ekman operator ASCE is defined as the full linear operator

of the linearized Cauchy problem associated with (3) (see Section 3 for a rigorous

definition, in particular Proposition 3.4). For ASCE we prove the following theorem,

which is our main result for the linearized Ekman problem.

Theorem 1.1. Let ν, U∞>0, δ=
√

2ν/|ω|, d>0, �≥0 and set X2 :=L2(0, d)3.

Assume that the Reynolds number Re of the Ekman spiral satisfies

(4) Re :=
U∞δ

ν
<

1√
2
.

Further we assume that �=0 implies d<∞, and that �>0 implies d=∞. (This

means that either we consider a layer (d<∞) or the half-space R
3
+ and Fourier

transformed initial data supported in a sum-closed frequency set F�.) According to

the two cases we set

ε� :=

⎧
⎪⎨

⎪⎩

ν(1−
√
2Re)

d2
, �=0,

ν
(
1−

√
2Re

)
�2, �> 0.

Then the C0-semigroup (exp(−tASCE))t≥0 on FM�,σ(R
2, X2) satisfies

(i) ‖exp(−tASCE)‖L (FM�,σ(R2,X2))≤e−2ε�t, t≥0;

(ii)

‖∇ exp(−(ASCE−ε�) · )u0‖L2(R+,FM�(R2,X2)) ≤
‖u0‖FM�(R2,X2)√

ν(1−
√
2Re)

;

(iii)

‖∇ exp(−(ASCE−ε�) · )�f‖L2(R+,FM�(R2,X2)) ≤
‖f‖L1(R+,FM�(R2,X2))√

ν(1−
√
2Re)

;

for all u0∈FM�,σ(R
2, X2) and f∈L1(R+,FM�,σ(R

2, X2)), where

g�f(t) :=

∫ t

0

g(t−s)f(s) ds.

In particular, all estimates are uniform in ω∈R.

Remark 1.2. The physically most relevant case for the layer height is d>δ.

Based on Theorem 1.1 and a fixed point argument, in Section 4 we derive the

following main result for the full nonlinear Ekman problem (1).
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Theorem 1.3. Let the assumptions of Theorem 1.1 be satisfied, and let UE

be the Ekman spiral given in (2). Then for every v0∈FMl,σ(R
2, X2)+UE such that

‖v0−UE‖FM0(L2) <

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πν(1−
√
2Re)

21/43
√
d

, if �=0 and d<∞,

πν(1−
√
2Re)

√
�

21/43
, if �> 0 and d=∞,

there is a unique global (mild) solution v of (1) satisfying

exp(2ε� · )(v−UE) ∈ BC((0,∞),FM0,σ(R
2, X2)),

exp(ε� · )∇(v−UE) ∈ L2((0,∞),FM0(R
2, X2)).

In particular, the Ekman spiral is exponentially stable. More precisely, we have

‖v(t)−UE‖FM0(R2,X2) ≤ 2 exp(−2ε�t)‖v0−UE‖FM0(R2,X2), t≥ 0.

In addition, all estimates above are uniform in ω∈R, i.e., with respect to the angular

velocity of rotation.

Remark 1.4. By standard bootstrap arguments it can be proved that the solu-

tion v given by Theorem 1.3 enjoys higher regularity in FM�(R
2, X2). By this fact

we can recover the pressure via

∇q=(I−P )(νΔv−ωe3×v−(v ·∇)v).

Then it can be shown that

(v, q)∈C∞((0,∞)×R
2×(0, d)),

i.e., (v, q) is the unique classical solution of problem (1).

2. Vector-valued Radon measures

Here we introduce notation and recall basic ingredients on X-valued Radon

measures. For basic theory we refer to [7]. The theory related to boundary layers is

developed in [12]. Therein also the proofs of the results listed below can be found.

We use standard notation throughout this article. The symbols R, C and

Z denote the sets of reals, complex numbers and integers, respectively. We also

write N={1, 2, 3, ...} for the natural numbers and set N0 :=N∪{0}. The symbols

X , Y and Z usually denote Banach spaces, whereas L (X,Y ) stands for the set

of bounded linear operators from X to Y . If X=Y , we write L (X). Let G⊂R
n
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be a domain. As usual L2(G,X) and Hk(G,X)=W k,2(G,X) denote X-valued

Lebesgue and Sobolev space respectively. The space C∞
c (G,X) is the set of smooth

and compactly supported functions. We will also write C(G,X), BC(G,X) and

BUC(G,X) for the spaces of continuous, bounded and continuous, and bounded

and uniformly continuous functions, respectively. The ball in R
n centered at x0

with radius R>0 is denoted by B(x0, R).

The Fourier transformation on the space of rapidly decreasing functions S(Rn)

in this note is defined as

û(ξ)=Fu(ξ)=
1

(2π)n/2

∫

Rn

e−iξxu(x) dx, u∈S(Rn).

As usual, its extension by duality to the space S ′(Rn, X):=L (S(Rn), X) of tem-

pered distributions is again denoted by Fu or û for u∈S ′(Rn, X).

Next we recall some basic definitions related to X-valued measures, cf. [7].

Definition 2.1. Let X be a Banach space, Ω be a set, A be a σ-algebra over Ω,

and μ : A →X be a set function.

(i) The function μ is a vector-valued (or X-valued) measure if it is σ-additive,

that is, if it satisfies

μ

( ∞⋃

j=1

Aj

)

=

∞∑

j=1

μ(Aj)

for all pairwise disjoint sets Aj∈A , j=1, 2, ... .

(ii) The variation of an X-valued measure μ is defined as

|μ|(O) := sup

{
∑

A∈Π(O)

‖μ(A)‖X : Π(O)⊂A is a finite decomposition of O
}

for O∈A . (Note that Π(O) is a decomposition of O∈A if A∩B=∅ for all A,B∈
Π(O) with A �=B, and

⋃
A∈Π(O) A=O.)

(iii) The quantity |μ|(Ω) is the total variation of μ. If |μ|(Ω)<∞, then μ is

called finite or of bounded variation.

Next we define X-valued Radon measures. For this purpose let Ω⊂R
n be open,

A be a σ-algebra over Ω, and denote by B(Ω) the Borel σ-algebra over Ω. Recall

that η : A →[0,∞) is a Radon measure if it is Borel regular, that is, if B(Ω)⊆A
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and if for each A⊆Ω there exists a B∈B(Ω) such that A⊆B and η∗(A)=η∗(B),

where η∗ denotes the outer measure associated with η given by

(5) η∗(A) := inf

{ ∞∑

j=1

η(Ej) : {Ej}j∈N ⊆A and A⊆
∞⋃

j=1

Ej

}

Also observe that in the sequel we identify a measure η by its outer measure, so

that η is complete in the sense that all subsets B of a set A∈A satisfying η(A)=0

belong to A .

Definition 2.2. Let Ω⊂R
n be open, X be a Banach space, and A be a σ-

algebra over Ω. The set function μ : A →X is a finite X-valued Radon measure if

μ is an X-valued measure and if the variation |μ| is a finite Radon measure. The

set of all finite X-valued Radon measures is denoted by M(Ω, X).

From now on assume X to have the Radon–Nikodým property and Ω⊂R
n to be

open. By ρμ∈L1(Ω, X, |μ|) we denote the Radon–Nikodým derivative of a measure

μ∈M(Ω, X) with respect to (Ω,A , |μ|). Then we have the representation

μ(O)=

∫

O
ρμ d|μ|, O∈A .

Note that by definition each vector Radon measure is well-defined on B(Ω). By

this fact, for every ψ∈BC(Ω,L (X,Y )), where Y is another Banach space, its mul-

tiplication by an arbitrary μ∈M(Ω, X) can be defined as

(6) μ�ψ(O) :=

∫

O
ψρμ d|μ|, O∈A .

The properties of this quantity are summarized in the following lemma.

Lemma 2.3. ([12, Lemma 2.6]) Let Ω⊂R
n be open and let X , Y and Z be

Banach spaces having the Radon–Nikodým property. Furthermore, let μ∈M(Ω, X)

and the functions ψ, φ∈BC(Ω,L (Y, Z)) be given. Then

(i)
∣
∣μ�ψ

∣
∣=|μ|�‖ψρμ‖Y ≤|μ|�‖ψ‖L (X,Y ),

(ii) μ�ψ∈M(Ω, Y ),

(iii)
(
μ�ψ
)
�φ=μ�(φψ).

By the intention to introduce the Fourier transform of vector Radon measures,

from now on we assume Ω=R
n. Note that the fact that the Schwartz space S(Rn) of

rapidly decreasing functions with its canonical topology is continuously and densely

embedded in C∞(Rn):={v∈C(Rn):limR→0 supRn\B(0,R) |v(x)|=0} gives us

L (C∞(Rn), X) ↪−→L (S(Rn), X)=S ′(Rn, X).
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Thus, in the sense of the identification

μ �−→Tμ, Tμf :=μ�f(Rn),

we have the embedding

M(Rn, X) ↪−→S ′(Rn, X).

This allows for the definition of the space of Fourier transformed Radon measures

FM(Rn, X) := {μ̂ :μ∈M(Rn, X)},

which we equip with the canonical norm

‖u‖FM := ‖F−1u‖M .

Observe that replacing the Fourier transform by its inverse in the definition does

not change the value of the norm, i.e., we have ‖ · ‖FM=‖F · ‖M=‖F−1 · ‖M . In

order to define multipliers with symbols not necessarily continuous at the origin,

we also introduce the spaces

M0(R
n, X) := {μ∈M(Rn, X) :μ({0})= 0},

that is, the subspace of Radon measures with no point mass at the origin and

FM0(R
n, X) := {μ̂ :μ∈M0(R

n, X)}.

Related to exponential stability we introduce further subspaces. These rely on

sum-closed frequency sets, which are defined as follows.

Definition 2.4. We say that F⊆R
n is a sum-closed frequency set in R

n, if

(i) F is closed;

(ii) 0 /∈F ;

(iii) F+F :={x+y :x, y∈F}⊆F∪{0}.
For a sum-closed frequency set with distance �

√
2>0 from zero in the sequel we write

F�.(
1) For consistency we also set F�=R

n\{0} if �=0. The class of all sum-closed

frequency sets in R
n is denoted by Fn.

Typical examples of sum-closed frequency sets are (see also [11]):

(i) Countable sum-closed frequency sets in R
n for which pairwise distances

between frequency vectors are uniformly bounded away from zero. This case corre-

sponds to almost periodic initial data.

(1) Observe that this differs from the definition of F� in [11] by the factor
√
2.
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(ii) The set Zn\{0} or more general

F :=

{ n∑

j=1

mjaj :m=(m1, ...,mn)∈Z
n

}

\{0},

where a={a1, ..., an} represents a basis of Rn. This case corresponds to periodic

initial data. Indeed, supp û0 is contained in the above F for some a if and only if

u0 is periodic. Clearly, this is a special case of (i).

(iii) The set {x∈Rn :xj≥ε} for j∈{1, ..., n} and ε>0. Note that this example

provides non-real-valued initial data only.

We also rigorously clarify what we mean by the support of a vector measure.

Definition 2.5. Let X and Y be Banach spaces having the Radon–Nikodým

property. For μ∈M0(R
n, X) we set

Nμ :=
⋃

O⊂R
n open

μ=0 on O

O,

where we recall that vanishing of a vector-valued measure is canonically defined as

μ=0 on O :⇐⇒ μ(E)= 0 for E⊂O.

The support of μ is defined as

suppμ :=Rn\Nμ.

Remark 2.6. Note that the support of μ defined above coincides with the sup-

port of μ regarded as a tempered distribution.

In the sequel we will frequently make use of the following observation, mostly

without any further notice.

Remark 2.7. LetX and Y be Banach spaces having the Radon–Nikodým prop-

erty. For σ∈BC(Rn\{0},L (X,Y )) and μ∈M0(R
n) we have

suppμ�σ⊂ suppμ.

Proof. Let O⊂R
n be open and such that μ=0 on O. Since M0(R

n, X) is a

Banach space (see Lemma 2.8(i)), the latter is equivalent to |μ|(O)=0. As μ�σ by

Lemma 2.3(i) is obviously continuous with respect to |μ|, this yields μ�σ=0 on O.

Consequently, we have Nμ⊂Nμ�σ , which implies that

suppμ�σ=Rn\Nμ�σ ⊂Rn\Nμ =suppμ. �
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Now let �≥0. For �=0 we set FM�(R
n, X):=FM0(R

n, X). For �>0 and a

sum-closed frequency set F�∈Fn we also define the space

FM�(R
n, X) := {u∈FM0(R

n, X) : supp û⊂F�}.

Next, we list some useful properties of the spaces just introduced.

Lemma 2.8. ([12, Lemma 2.12]) Suppose X , X1 and X2 are Banach spaces

having the Radon–Nikodým property and that X1 ·X2 ↪→X with an embedding con-

stant less or equal to one. Then the following assertions hold :

(i) The spaces M(Rn, X) and M0(R
n, X), and thus also the spaces FM(Rn, X)

and FM�(R
n, X) for �≥0, are Banach spaces.

(ii) For all u∈FM(Rn, X2) and v∈FM(Rn, X1) we have that

‖u·v‖FM(Rn,X) ≤ (2π)−n/2‖u‖FM(Rn,X2)‖v‖FM(Rn,X1),

i.e., FM(Rn, X2)·FM(Rn, X1)↪→FM(Rn, X). In particular, (FM(Rn, X), · ) is an

(abelian) algebra (with unit), if (X, · ) is an (abelian) algebra (with unit).

(iii) We have

(7) FL1(Rn, X) ↪−→FM0(R
n, X) ↪−→ Ḃ0

∞,1(R
n, X) ↪−→BUC(Rn, X),

where Ḃ0
∞,1(R

n, X) denotes the homogeneous Besov space.

Observe that the space FM�(R
n, X), �≥0, is not an algebra, but at least we

obtain by Lemma 2.8(ii) that

FM�(R
n, X2)·FM�(R

n, X1) ↪−→FM(Rn, X),

which is crucial to handle nonlinear terms.

Remark 2.9. The fact that the product δt0a∈M0(R
n, X) for Dirac measures

δt0 , t0∈Rn\{0}, and a∈X , gives rise to another interesting class of functions con-

tained in the space FM0(R
n, X). In fact, every sequence {aj}j∈N⊆X satisfying

∑∞
j=1 ‖aj‖X<∞ defines for each sequence of frequencies {λj}j∈N⊆F� an element

(

x �→
∞∑

j=1

aje
−iλjx

)

∈FM0(R
n, X),

by the fact that
∑∞

j=1 δλjaj∈M0(R
n, X). This class of almost periodic functions

is significant for applications to rotating boundary layers as explained in the intro-

duction.
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For σ∈BC(Rn\{0},L (X,Y )) we define

(8) op(σ)f :=F−1f̂�σ, f ∈FM0(R
n, X).

We recall three results from [12], which allow for a transfer of L2-boundedness to

the FM-setting. First, as a consequence of the theory for vector measures developed

above we obtain the following multiplier result.

Proposition 2.10. ([12, Proposition 2.13]) Let �≥0. Let X and Y be Banach

spaces having the Radon–Nikodým property and suppose that

σ ∈BC(Rn\{0},L (X,Y )).

Then op(σ) as defined in (8) is bounded from FM0(R
n, X) to FM0(R

n, Y ) and we

have

‖op(σ)‖L (FM�(Rn,X),FM�(Rn,Y )) = ‖σ‖L∞(Rn,L (X,Y )).

Remark 2.11. If H1 and H2 are Hilbert spaces, Plancherel’s theorem implies

that the right-hand side of the equality in Proposition 2.10 equals the operator norm

of op(σ) in L (L2(Rn, H1), L
2(Rn, H2)). Hence in this case we have

‖op(σ)‖L (FM0(Rn,H1),FM0(Rn,H2)) = ‖σ‖∞ = ‖op(σ)‖L (L2(Rn,H1),L2(Rn,H2)).

In the last part of this section the domain R
n is essentially fixed. So we

occasionally suppress R
n and simply write FM(X) instead of FM(Rn, X) and so

on. In applications we will often use the fact noted in the above remark for the case

that H1 and H2 are certain L2-spaces. In the same spirit the following lemma will

turn out to be helpful.

Lemma 2.12. ([12, Lemma 2.15]) Let �≥0, J⊂R be an interval, and let H1

and H2 be Hilbert spaces. Assume that

L∈L (L2(Rn, H1), L
2(J, L2(Rn, H2))) with ‖L‖L (L2(H1),L2(J,L2(H2))) ≤M

is an operator with a symbol σL satisfying

σL ∈C(Rn\{0},L (H1, L
2(J,H2))).

Then

L∈L (FM�(R
n, H1), L

2(J,FM�(R
n, H2))), ‖L‖L (FM�(H1),L2(J,FM�(H2))) ≤M.
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Remark 2.13. In [12] Proposition 2.10 and Lemma 2.12 are established for the

case �=0. However, in view of Remark 2.7, under the action of operators having

a suitable symbol representation, FM�(R
n, X) is a closed invariant subspace of

FM0(R
n, X). Therefore these two results readily generalize to the case �≥0.

We will also make use of the following general result on operator-valued con-

volution.

Lemma 2.14. ([12, Lemma 2.16]) Let X and Y be Banach spaces, 1≤p≤∞,

T∈(0,∞], and set J=(0, T ). For g∈L (X,Lp(J, Y )) and f∈L1(J,X) we have
(

t �→ g�f(t) :=

∫ t

0

g(t−s)f(s) ds

)

∈Lp(J, Y )

and

(9) ‖g�f‖Lp(J,Y ) ≤‖g‖L (X,Lp(J,Y ))‖f‖L1(J,X).

Remark 2.15. Observe that (9) is sharper than the usual Young inequality by

the fact that ‖ · ‖L (X,Lp(J,Y ))≤‖ · ‖Lp(J,L (X,Y )), but the converse in general is not

true. Indeed, (9) provides an estimate for singular integral operators, which is not

possible with the standard Young’s inequality.

3. Proof of Theorem 1.1

The major advantage of working with d<∞ or �>0 lies in the fact that ex-

ponential decay of the Stokes–Coriolis–Ekman semigroup can be provided. This

follows as a consequence of Poincaré’s inequality, which is valid in these situations.

Let �≥0, d∈(0,∞] and as before we set G=R
2×(0, d) and X2=L2(0, d)3. Similarly

to the FM-setting we put

L2
�(G)3 =L2

�(R
2, X2) := {v ∈L2(R2, X2) : supp v̂ ∈F�}.

We emphasize that here v is regarded as a function v : R2→X2 with supp v̂⊂R
2.

Also note that L2
�(G)=L2(G) if �=0, see Definition 2.4.

Lemma 3.1. Let either �=0 and 0<d<∞, or �>0 and d=∞. Then

‖u‖L2
�(G)3 ≤

⎧
⎪⎪⎨

⎪⎪⎩

d√
2
‖∇u‖L2

�(G)3 , �=0,

1

�
√
2
‖∇u‖L2

�(G)3 , �> 0,

for all u∈L2
�(G)3. The assertion remains true, if we replace L2

�(G)3 by the space

FM�(R
2, X2).
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Proof. The inequalities in case when �=0 (i.e. d<∞) are standard, since we

can apply the one-dimensional Poincaré inequality in the x3-direction. For �>0

we give a proof in the FM-setting. By Plancherel’s theorem the L2-case follows

similarly.

We observe that by definition supp û⊂R
2\B

(
0, �

√
2
)
. Since 1≤|ξ|/�

√
2 on

R
2\B

(
0, �

√
2
)
this gives us in view of Lemma 2.3(i),

|û|(B(0, R)) =
(
|û|�1

)({
�
√
2≤ |ξ| ≤R

})

≤
(

|û|
⌊ |ξ|
�
√
2

)
({

�
√
2≤ |ξ| ≤R

})
=

1

�
√
2

∣
∣û�iξ

∣
∣(B(0, R))

for R>�
√
2 and u∈FM�(R

2, X2). Thus we have, for u∈FM�(R
2, X2),

‖u‖FM(X2) = lim
R→∞

|û|(B(0, R))

≤ 1

�
√
2

lim
R→∞

∣
∣û�iξ

∣
∣(B(0, R))=

1

�
√
2
‖∇u‖FM(X2). �

In order to estimate the crucial perturbation arising from the Ekman spiral,

also the following Poincaré type inequality will be used, cf. [12, Lemma 3.7]. Its

proof is a simple consequence of the fundamental theorem of calculus.

Lemma 3.2. We have, for α, d>0 and v∈C∞
c ([0, d)),

‖e−(·)/αv‖L2(0,d) ≤α

(∫ d/α

0

e−2xx dx

)1/2

‖v′‖L2(0,d) ≤
α

2
‖v′‖L2(0,d).

Next, we recall existence of the Helmholtz decomposition and the Stokes–

Coriolis–Ekman semigroup in the FM-setting. We define solenoidal fields as

FM�,σ(R
n−1, Xp)

:=

{

u∈FM∞
0

(

Rn−1,

∞⋂

k=0

W k,p(D)

)

: div u=0 and u3|∂(Rn−1×D) =0

}‖·‖FM

(10)

and gradient fields as

(11) GFM = {∇p : p∈L1
loc(R

n−1×D) and ∇p∈FM�(R
n−1, Xp)}.

In [12, Lemma 3.4] the following was established.
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Proposition 3.3. Let d∈(0,∞] and �≥0. We have the Helmholtz decomposi-

tion

FM�(R
2, X2)=FM�,σ(R

2, X2)⊕GFM.

The associated Helmholtz projector P : FM�(R
2, X2)→FM�,σ(R

2, X2) admits a sym-

bol representation σP =FPF−1∈BC(R2\{0},L (X2)) such that

‖P‖L (FM(X2)) = ‖σ‖L∞(R2,L (X2)) =1.

Applying P to the first line of (3), the resulting linear operator is given as

ASCE=Aν+Bω+BE with

Aνu=−PΔu, Stokes operator,

Bωu=ωPe3×u, Coriolis part,

BEu=P (UE ·∇)u+Pu3∂3U
E , Ekman part.

We call ASCE with the domain

D(ASCE)= {u∈FM�,σ(R
n−1, X2) : ∂

αu∈FM�(R
n−1, X2),

α∈N
n
0 , |α| ≤ 2 and u|∂(Rn−1×D) =0}

the Stokes–Coriolis–Ekman operator. In [12, Theorem 3.6] the following proposition

was proved.

Proposition 3.4. Let d∈(0,∞] and �≥0. Then the Stokes–Coriolis–Ekman

operator ASCE is the generator of the holomorphic C0-semigroup (exp(−tASCE))t≥0

on FM�,σ(R
2, X2) having the symbol representation

σexp(−t(ASCE+λ0)) =F exp(−t(ASCE+λ0))F−1 ∈BC(R2\{0},L (X2)), t≥ 0,

for λ0>0 sufficiently large.

Remark 3.5. Again we note that, concerning the statements in Propositions 3.3

and 3.4, in [12] only the case �=0 is treated. However, since we have suitable symbol

representations, also here the argument performed in Remark 2.13 applies to the

general case.

The space L2
�,σ(G) and the Stokes–Coriolis–Ekman operator ASCE in L2

�,σ(G)

are defined accordingly. Now we prove Theorem 1.1 in the L2-setting.
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Proposition 3.6. Let ν, U∞, d, �, δ, Re and ε� satisfy the relations given in

Theorem 1.1 and set G=R
2×(0, d). Then the C0-semigroup (exp(−tASCE))t≥0 on

L2
l,σ(G) satisfies

(i) ‖exp(−tASCE)‖L (L2
�,σ(G))≤e−2ε�t,

(ii) ‖∇ exp(−(ASCE−ε�) · )u0‖L2(R+,L2
�(G))≤‖u0‖L2

�(G)/
√

ν
(
1−

√
2Re

)
,

for all u0∈L2
�,σ(G) and t≥0. In particular, all estimates are uniform in ω∈R.

Proof. For u0∈L2
�,σ(G), according to Proposition 3.3(b) we may set u(t):=

e−tASCEu0. Then u solves

{
u′+ASCEu=0 in (0,∞),

u(0)=u0.

Multiplying the above equation with u, integrating with respect to x, and taking

into account the skew-symmetry of Bω and B1
E we obtain

(12)
1

2

d

dt
‖u(t)‖22+ν‖∇u(t)‖22+(u3(t)∂3U

E , u(t))= 0, t > 0.

Note that by (2), for the derivative of the Ekman spiral we obtain

∂3U
E(x3)=

U∞
δ

e−x3/δ

⎛

⎜
⎜
⎜
⎝

cos
x3

δ
+sin

x3

δ

cos
x3

δ
−sin

x3

δ
0

⎞

⎟
⎟
⎟
⎠

.

The third term in (12) we estimate as

|(u3(t)∂3U
E , u(t))| ≤

2∑

j=1

‖u3(t)e(·)/2δ(∂3U
E)j‖2‖e−(·)/2δuj(t)‖2

≤
√
2U∞
δ

2∑

j=1

‖e−(·)/2δu3(t)‖2‖e−(·)/2δuj(t)‖2

≤
√
2U∞δ‖∇u(t)‖22,

where we twice applied Lemma 3.2 with α=2δ. Inserting this into (12) we deduce

(13)
1

2

d

dt
‖u(t)‖22+ν

(
1−

√
2Re

)
‖∇u(t)‖22 ≤ 0, t > 0.
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Combining estimate (13) with Poincaré’s inequality from Lemma 3.1 and keeping

in mind that ν−
√
2U∞δ>0 due to assumption (4), we deduce

(14)
d

dt
‖u(t)‖22 ≤−2ν

(
1−

√
2Re

)
‖∇u(t)‖22 ≤−4ε�‖u(t)‖22, t > 0.

By virtue of Grönwall’s lemma we therefore obtain

(15) ‖u(t)‖2 ≤ e−2ε�t‖u0‖2, t≥ 0.

Thus (i) is proved. Multiplying (13) with e2ε�t and integrating over t∈R+ yields

due to (15) that for t≥0,

∫ ∞

0

‖eε�t∇u(s)‖22 ds ≤ − 1

2ν
(
1−

√
2Re

)

∫ ∞

0

e2ε�t
d

dt
‖u(t)‖22 dt

≤ 1

2ν
(
1−

√
2Re

)

(

‖u0‖22+2ε�

∫ ∞

0

e2ε�t‖u(t)‖22 dt
)

≤ 1

ν
(
1−

√
2Re

)‖u0‖22.

Thus the proposition is proved. �

We turn to the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof is completely analogous to [12, Theorem 7.10].

For the reader’s convenience we repeat the steps. First recall that in [12, Lemma 3.9]

it is proved that

(1) (ξ′ �→σTSCE(t, ξ
′))∈C(R2\{0},L (X2)), t≥0, and

(2) (ξ′ �→σTSCE( · , ξ′))∈C(R2\{0},L (X2, L
2((0, T ), X2)))

for every T∈(0,∞), where σTSCE=F exp(−tASCE)F−1 denotes the symbol of the

Stokes–Coriolis–Ekman semigroup. Note that by Plancherel’s theorem we have

‖σ‖L∞(Rn,L (H1,H2)) = ‖op(σ)‖L (L2(Rn,H1),L2(Rn,H1))

for Hilbert spaces H1 and H2. Using this fact, Proposition 3.6(i), Lemma 3.3, and

(1) we observe that

σTSCE(t)σP ∈BC(R2\{0},L (X2))

and

‖σTSCE(t)σP ‖L∞(R2,L (X2)) ≤ e−2ε�t, t≥ 0.

Proposition 2.10 then yields (i).



Uniform exponential stability of the Ekman spiral 121

Next, from Proposition 3.6(ii) we infer

‖∇ exp(−(ASCE−ε�) · )P‖L (L2(R2,X2),L2((0,T ),L2(R2,X2))) ≤
1

√

ν
(
1−

√
2Re

)

for all T>0. Setting H1=H2=X2, J=(0, T ), L=exp(−(ASCE−ε�) · )P and M=

1/
√

ν
(
1−

√
2Re

)
we therefore see that relation (ii) is obtained as a consequence of

Lemma 2.12 and (2).

In order to see assertion (iii) observe that (ii) implies that for T>0,

‖∇ exp(−(ASCE−ε�) · )‖L (FM�,σ(R2,X2),L2((0,T ),FM�(R2,X2))) ≤
1

√

ν(1−
√
2Re)

.

Thus, by setting p=2, g=∇ exp(−(ASCE−ε�) · ) as well as X=FM�,σ(R
2, X2), and

Y =FM�(R
2, X2), Lemma 2.14 yields

‖∇ exp(−(ASCE−ε�) · )�f‖L2((0,T ),FM(X2)) ≤
1

√

ν(1−
√
2Re)

‖f‖L1((0,T ),FM(X2))

for T>0 and all f∈L1(R+,FM�,σ(R
2, X2)). Hence Theorem 1.1 is proved. �

4. Proof of Theorem 1.3

Again we assume that either �=0 and 0<d<∞, or �>0 and d=∞. We define

the space

E := {v ∈BC(R+,FM�,σ(R
2, X2)) :∇v ∈L2(R+,FM�,σ(R

2, X2))}

equipped with the norm

‖v‖E :=
supt>0 ‖e2ε�tu(t)‖FM(X2)√

ν
(
1−

√
2Re

) +‖eε� ·∇u(t)‖L2(R+,FM(X2)).

Observe that for u∈E and T∈(0,∞) we have u∈L2((0, T ),FM�(R
2, H1(0, d)3)),

and hence u(t, x′, · )|∂(0,d) and therefore also u|∂G is well-defined. For fixed initial

value u0∈FM�,σ(R
2, X2) we further set

Bu0 := {v ∈E : v|∂G =0 and v|t=0 =u0 and ‖v‖E ≤M‖u0‖FM(X2)}.
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On Bu0 we consider the map

Hu(t) := exp(−tASCE)u0−
∫ t

0

exp(−(t−s)ASCE)P (u(s)·∇)u(s) ds, t> 0.

Observe that we have to show that the application of P and of the semigroup to

the nonlinear term is well-defined in FM�,σ(R
2, X2). This will be confirmed below

after (17).

We will show that H is contractive on Bu0 for suitable M>0. To this end, we

estimate

‖e2ε�tHu(t)‖FM(X2)

≤ ‖exp(−t(ASCE−2ε�))u0‖FM(X2)

+

∫ ∞

0

‖exp(−(t−s)(ASCE−2ε�))Pe2ε�s(u(s)·∇)u(s)‖FM(X2) ds

≤‖u0‖FM(X2)+

∫ ∞

0

‖e2ε�s(u(s)·∇)u(s)‖FM(X2) ds,(16)

where we applied twice Theorem 1.1(i) and then Proposition 3.3. Due to the relation

u(s, x′, · )|∂(0,d)=0 we obtain, for λ>0,

‖u(s, x′, · )‖L∞(0,d)3 ≤
√
2‖u(s, x′, · )‖1/22 ‖∂3u(s, x′, · )‖1/2L2(0,d)3

≤ 1√
2

(

λ‖u(s, x′, · )‖2+
1

λ
‖∂3u(s, x′, · )‖L2(0,d)3

)

=: ‖u(s, x′, · )‖λ.

By the fact that H1
0 (0, d)

3, equipped with ‖ · ‖λ, and L2(0, d)3 enjoy the Radon–

Nikodým property, we can estimate the nonlinear term due to Lemma 2.8(ii) as

‖e2ε�s(u(s)·∇)u(s)‖FM(X2)

≤ e2ε�s
3∑

j=1

‖u(s)j∂ju(s)‖FM(X2)

≤ e2ε�s
3

2
√
2π

(

λ‖u(s)‖FM(L2)+
1

λ
‖∇u(s)‖FM(L2)

)

‖∇u(s)‖FM(X2)

≤ e2ε�s
3

2
√
2π

‖u(s)‖1/2FM(X2)
‖∇u(s)‖3/2FM(X2)

,

where we have set λ=‖∇u(s)‖1/2FM(X2)
/‖u(s)‖1/2FM(X2)

.
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In order to be able to further proceed in a unified way for the two different

cases �=0 and �>0 we let

r :=

⎧
⎪⎨

⎪⎩

√
d, �=0,

1√
�
, �> 0.

By Lemma 3.1 we can then continue the above calculation to the result

(17) ‖e2ε�s(u(s)·∇)u(s)‖FM(X2) ≤
3r

27/4π
‖eε�s∇u(s)‖2FM(X2)

.

Now we confirm that the nonlinear term even belongs to FM�(R
2, X2) so that

application of P and afterwards of the Stokes–Coriolis–Ekman semigroup on the

space FM�,σ(R
2, X2) is well-defined. For, first we write

(u·∇)u=div uuT .

Since supp û⊂F� and F� is a sum-closed frequency set, we have suppFuuT ⊂F�∪{0},
and hence

suppF div uuT ⊂F�.

(Observe that FuuT is well-defined as a convolution, cf. [12, Lemma 2.11]; see also

[11].) In other words, we have indeed (u·∇)u∈FM�(R
2, X2).

Plugging (17) into (16) gives us

sup
t>0

‖e2ε�tHu(t)‖FM(X2) ≤ ‖u0‖FM(X2)+
3r

27/4π
‖eε� ·∇u‖2L2(R+,FM(X2))

≤ ‖u0‖FM(X2)

(

1+M2 3r

27/4π
‖u0‖FM(X2)

)

.(18)

Next, we derive by utilizing Theorem 1.1(ii) and (iii) that

‖eε� ·∇Hu‖L2(R+,FM(X2))

≤‖∇ exp( · (ASCE−ε�))u0‖L2(R+,FM(X2))

+

(∫ ∞

0

∥
∥
∥
∥

∫ t

0

exp(−(t−s)(ASCE−ε�))Peε�s(u(s)·∇)u(s) ds

∥
∥
∥
∥

2

FM(X2)

dt

)1/2

≤ 1
√

ν
(
1−

√
2Re

)

(

‖u0‖FM(X2)+

∫ ∞

0

‖e2ε�s(u(s)·∇)u(s)‖FM(X2) ds

)
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≤ 1
√

ν
(
1−

√
2Re

)

(

‖u0‖FM(X2)+
3r

27/4π
‖eε�s∇u‖2L2(R+,FM(X2))

)

≤ 1
√

ν
(
1−

√
2Re

)‖u0‖FM(X2)

(

1+M2 3r

27/4π
‖u0‖FM(X2)

)

,(19)

where we estimated the nonlinear term again using (17). Collecting (18) and (19)

we arrive at

‖Hu‖E ≤
1

√

ν
(
1−

√
2Re

)‖u0‖FM(X2)

(

1+M2 3r

27/4π
‖u0‖FM(X2)

)

.

Thus, choosing M=2/
√

ν
(
1−

√
2Re

)
and ‖u0‖FM(X2)≤πν

(
1−

√
2Re

)
/21/43r we

see that H(Bu0)⊂Bu0 . Utilizing the expansion

(u·∇)u−(v ·∇)v=((u−v)·∇)u+(v ·∇)(u−v),

in a very similar way it can be shown that H is contractive, if the condition on u0

is strict. The contraction mapping principle then proves Theorem 1.3.
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