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Exact Lagrangian caps and non-uniruled
Lagrangian submanifolds

Georgios Dimitroglou Rizell

Abstract. We make the elementary observation that the Lagrangian submanifolds of Cn,

n≥3, constructed by Ekholm, Eliashberg, Murphy and Smith are non-uniruled and, moreover, have

infinite relative Gromov width. The construction of these submanifolds involve exact Lagrangian

caps, which obviously are non-uniruled in themselves. This property is also used to show that

if a Legendrian submanifold inside a contactisation admits an exact Lagrangian cap, then its

Chekanov–Eliashberg algebra is acyclic.

1. Introduction

1.1. Background

A contact manifold is a smooth (2n+1)-dimensional manifold Y together with

the choice of a maximally non-integrable field of tangent hyperplanes. For us, this

field of hyperplanes will be given as kerλ for a fixed choice of one-form λ, and

we will think of the contact manifold as the pair (Y, λ). It follows that λ∧(dλ)∧n

is a volume form on Y . A Legendrian submanifold Λ⊂(Y, λ) is an n-dimensional

submanifold, which is tangent to kerλ.

A symplectic manifold (X,ω) is a 2n-dimensional manifold X together with a

closed non-degenerate two-form ω. We say that (X,ω) is exact if ω=dα is exact.

The basic example of an exact symplectic manifold is the standard symplectic n-

space (Cn, ω0 :=dα0), where

α0 :=−(y1 dx1+...+yn dxn).

A Lagrangian submanifold L⊂(X,ω) is an n-dimensional submanifold satisfying

ω|TL=0. In the case when ω=dα is exact, we say that an immersion (respectively
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embedding) g : L→(X, dα) of an n-dimensional manifold is an exact Lagrangian

immersion (respectively embedding) if g∗α is exact.

By a Lagrangian cap of a Legendrian submanifold Λ⊂(Y, λ) we mean a properly

embedded Lagrangian submanifold without boundary

LΛ,∅ ⊂ (R×Y, d(etλ))

of the symplectisation of (Y, λ) satisfying the property that LΛ,∅ coincides with the

cylinder (−∞, N)×Λ outside of a compact set. Here t denotes the coordinate of the

R-factor. We say that the cap is exact if the pull-back of the one-form etλ to the

cap is an exact one-form, which, moreover, has a primitive that vanishes outside of

a compact set.

Let (X, dα) be a compact Liouville domain with contact boundary

(Y, λ) := (∂X,α|TY )

and consider its completion (X, dα) obtained by gluing the non-compact cylindrical

end

([0,+∞)×Y, d(etλ)),

i.e. half of the symplectisation, to the boundary of (X, dα). We are also interested

in Lagrangian fillings L∅,Λ⊂(X, dα) of a Legendrian submanifold Λ⊂(Y, λ), by

which we mean a properly embedded Lagrangian submanifold without boundary

that coincides with the cylinder

(N,+∞)×Λ⊂ [0,+∞)×Y

outside of a compact set.

Given a Legendrian submanifold Λ⊂(Y, λ) admitting both a filling L∅,Λ⊂X

and a cap LΛ,∅⊂R×Y , the following construction produces a closed Lagrangian

submanifold in (X, dα). After a translation of LΛ,∅ in the t-direction, which is an

isotopy through exact Lagrangian submanifolds, we may suppose that there is some

N≥1 for which

L∅,Λ∩{(t, x) ; t≥N−1}= [N−1,+∞)×Λ

holds in the cylindrical end of X , while

LΛ,∅∩{(t, x) ; t≤N}=(−∞, N ]×Λ

holds inside the symplectisation. We now define the concatenation of L∅,Λ and

LΛ,∅ to be the closed Lagrangian submanifold

L := (L∅,Λ∩{(t, x) ; t≤N})∪(LΛ,∅∩{(t, x) ; t≥N})⊂ (X, dα),
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where LΛ,∅∩{(t, x);t≥N} has been canonically identified with an exact Lagrangian

submanifold (with boundary) of the cylindrical end of X . The concatenation may

thus be seen as the simultaneous resolution of the conical singularities of R×Y and

LΛ,∅⊂R×Y . Observe that we do not assume the filling to be exact, and hence nor

is the obtained Lagrangian submanifold L in general.

We say that a Lagrangian immersion L⊂(X,ω) is displaceable if there exists

a time-dependent Hamiltonian on X whose induced Hamiltonian flow φs : X→X

satisfies L∩φ1(L)=∅.

1.2. Previous results

Consider a Lagrangian submanifold L⊂(X,ω) of a general symplectic manifold

and let B(X,L, r) be the set of symplectic embeddings of

B2n(r) := {z ; ‖z‖<r}⊂ (Cn, ω0)

into (X,ω) that map the real-part into L, and which otherwise have image disjoint

from L. The following notion was first considered by Barraud and Cornea in [1].

Definition 1.1. The (relative) Gromov width of a Lagrangian submanifold L⊂
(X,ω) is the number

w(L,X) := sup{πr2 ∈ [0,+∞) ;B(X,L, r) �=∅}.

Weinstein’s Lagrangian neighbourhood theorem implies that the Gromov width

always is positive. Furthermore, it is obviously invariant under symplectomor-

phisms.

Definition 1.2. A Lagrangian immersion L⊂(X,ω) whose self-intersections

consist of transverse double-points is said to be uniruled if there is some A>0 for

which, given any compatible almost complex structure J on X and a point x∈L,
there exists a non-constant J -holomorphic disc in X having boundary on L, having

a boundary point mapping to x, and whose ω-area is at most A.

Uniruledness is known to imply finiteness of the Gromov width, see for instance

[2, Corollary 3.10]. It has been expected that every displaceable closed Lagrangian

submanifold is uniruled [1, Conjecture 3.15], given that the symplectic manifold is

either compact or given as the completion of a Liouville domain (or, more generally,

is convex at infinity). The observations in this paper show that this conjecture is

false, since it is not satisfied by the Lagrangian submanifolds of Cn constructed in

[10] by Ekholm, Eliashberg, Murphy and Smith (see Corollary 1.5 below).
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For another source of counterexamples we refer to [28], where Murphy con-

structs exact closed Lagrangian submanifolds inside certain symplectisations (which

hence also are displaceable, but not uniruled). However, in this case the non-

compact symplectic manifolds are not given as the completion of a compact Liouville

domain.

Definition 1.3. Let L⊂(X, dα) be a Lagrangian submanifold of a simply con-

nected exact symplectic manifold having vanishing first Chern class, and fix a prim-

itive α of the symplectic form. Let σ∈H1(L,R) be induced by the pull-back of α to

L, i.e. the so-called symplectic action class, and let μ∈H1(L,Z) denote the Maslov

class of L. We say that L is monotone if

σ=Kμ

holds for some K>0.

Previous results show that uniruledness indeed holds for many classes of closed

displaceable Lagrangian submanifolds. For instance, Biran and Cornea [3] showed

this for certain monotone displaceable Lagrangian submanifolds, a result which in

particular applies to monotone Lagrangian submanifolds of (Cn, dα0). Subsequent

work of Charette [5] moreover proves [1, Conjecture 3.15] for monotone Lagrangian

submanifolds. See also Cornea and Lalonde [7], and Zehmisch [33] for similar results.

Note that Theorem 1.6 below is also in the same spirit.

Finally, Borman and McLean [4] have shown that the Gromov width is fi-

nite for displaceable (not necessarily monotone) closed Lagrangian submanifolds of

completions of Liouville domains (e.g. Cn), given the topological condition that

the Lagrangian submanifold admits a metric of non-positive scalar curvature. More

precisely, it is shown that the Gromov width is bounded from above by four times

the displacement energy in this case.

1.3. Results

1.3.1. Counterexamples to Conjecture 3.15 in [1]

Again, let (X, dα) be the completion of a Liouville domain having a non-

compact cylindrical end

([0,+∞)×Y, d(etλ)).

Proposition 1.4. Let L⊂(X, dα) be a closed Lagrangian submanifold, which

is of the form

L∩{(t, x) ; t∈ [N,N+ε]}= [N,N+ε]×Λ
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for some N≥0 and ε>0. If etλ pulled back to Lcap :=L∩{(t, x);t≥N} is exact and,

moreover, has a primitive that vanishes along the boundary, it follows that :

(1) For any A>0, there exists a compatible almost complex structure JA on

(X, dα) for which every non-trivial connected JA-holomorphic curve whose bound-

ary is contained in L and, moreover, intersects Lcap, has dα-area at least A. In

particular, L is not uniruled ;

(2) L has infinite relative Gromov width.

The assumptions of the above proposition are obviously satisfied for L obtained

as the concatenation of a Lagrangian filling and an exact Lagrangian cap. How-

ever, the construction of displaceable such examples is highly non-trivial. The only

examples in Cn, n≥3, known to the author are the examples in [10], which are

constructed using an h-principle. We give an outline in Section 1.4.

In the case of Cn for n>3 even, the Lagrangian submanifolds produced by the

construction in [10] are all non-orientable (see Remark 1.12). To find orientable

examples in Cn for arbitrary n≥3, we proceed as follows. For each k>0, the

construction in [10] provides a non-monotone Lagrangian embedding of S1×S2k

into C1+2k satisfying the assumptions of Proposition 1.4. Given the existence of

these embeddings, it is now easy to show the following.

Corollary 1.5. Let

S :=Sl1×...×Slm

be an M -dimensional product of spheres of arbitrary dimensions. For each k>0

there exists a Lagrangian embedding of S1×S2k×S into C1+2k+M having infinite

Gromov width.

Proof. The embedding can be constructed using the following technique. The

symplectic manifold

(Cn×T ∗Sl, ω0⊕dθSl) 
 (T ∗Rn×T ∗Sl, dθRn⊕dθSl)


 (T ∗(Rn×Sl), dθRn×Sl)⊂ (T ∗Rn+l, dθRn+l)

symplectically embeds into Cn+l, where θN denotes the tautological one-form on

T ∗N . Given a Lagrangian submanifold L⊂Cn, its product L×0Sl⊂Cn×T ∗Sl with

the zero-section is clearly Lagrangian, and the above inclusion induces a Lagrangian

embedding of L×Sl into Cn+l.

Observe that if L1⊂(X1, ω1) and L2⊂(X2, ω2) both have infinite Gromov

width, then the same is true for their product

L1×L2 ⊂ (X1×X2, ω1⊕ω2).
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The result now follows from the fact that the zero-section inside a cotangent bun-

dle has infinite Gromov width, together with the observation that the Lagrangian

embedding of S1×S2k into C1+2k constructed in [10] satisfies Proposition 1.4, and

hence has infinite Gromov width as well. �

The construction used in the proof of the above corollary is related to the

front-spinning construction due to Ekholm, Etnyre and Sullivan [12, Section 4.4],

which later was generalised by Golovko [21] (see also Remark 1.13 below).

It is interesting to note that the situation is very different for Lagrangian em-

beddings of S1×S2k+1 into C2+2k when k>0. Namely, work by Fukaya and Oh [20,

Proposition 2.10] implies that such a Lagrangian submanifold is monotone. See also

[7, Corollary 4.6] for a proof of the uniruledness of these Lagrangian submanifolds.

Finally, a sufficiently stabilised Legendrian knot inside the standard contact

three-sphere (S3, λ0) (see Section 1.4) admits an exact Lagrangian cap in the sym-

plectisation by a result due to Lin [26]. These caps can be used to construct non-

orientable Lagrangian submanifolds of C2 satisfying the assumptions of Proposi-

tion 1.4. This construction is related to the exact Lagrangian immersions con-

structed explicitly by Sauvaget in [31].

1.3.2. Implications for the Legendrian contact homology of Λ

We will restrict our attention to the case of a contactisation of an exact sym-

plectic manifold (P, dθ), by which we mean a contact manifold of the form

(Y, λ)= (P×R, dz+θ),

where z denotes a coordinate of the R-factor. For technical reasons we will make

the assumption that (P, dθ) is symplectomorphic to the completion of a Liouville

domain. Observe that a Legendrian submanifold of P×R projects to an exact

Lagrangian immersion in (P, dθ) and, conversely, a generic exact Lagrangian im-

mersion lifts to a Legendrian submanifold of P×R.

An important example of a contactisation of the above form is the one-jet space

(J1M =T ∗M×R, dz+θM ),

where θM is the Liouville form on T ∗M , as well as the standard contact (2n+1)-

space

(J1Rn =Cn×R, dz+θRn = dz−α0).

The displaceability of a Lagrangian submanifold L, together with the non-

obstructedness of Floer theories of different kinds associated with L, has in many
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cases been shown to imply uniruledness. For instance, see [7, Corollary 1.18]. We

will here follow a similar path, by considering the Legendrian contact homology

differential graded algebra (DGA for short), also called the Chekanov–Eliashberg

algebra. This is an invariant that can be associated with the Legendrian lift of an

exact Lagrangian immersion. It was introduced in [18] by Eliashberg, Givental, and

Hofer, and in [6] by Chekanov. We will be using the version in [15] by Ekholm,

Etnyre, and Sullivan, which we outline in Section 3.1 below.

By Weinstein’s Lagrangian neighbourhood theorem, the exact Lagrangian im-

mersion of L can be extended to a symplectic immersion of the co-disc bundle

(D∗L, dθL) of some radius. Given a Riemannian metric g on L, there is a natu-

ral construction of a compatible almost complex structure Jg on T ∗L. We use JL

to denote the compatible almost complex structures on (X, dα), which, in some

neighbourhood of L, is obtained by the push-forward of such an almost complex

structure Jg . We refer to [11, Remark 6.1] for more details. The proof of the follow-

ing theorem is obtained by adapting the proof of [11, Theorem 5.5] to the algebraic

setup developed in Section 3.2.

Theorem 1.6. Let R be a unital ring and L⊂(X, dα) be a displaceable exact

Lagrangian immersion of a closed manifold. If 1+1 �=0 in R, then we moreover

make the assumption that L is a spin manifold, and we fix the choice of a spin

structure. Suppose that the Chekanov–Eliashberg algebra with coefficients in R of

the Legendrian lift of L is not acyclic (with or without Novikov coefficients). It

follows that, for any J∈JL and x∈L, there exists a J -holomorphic disc in X having

boundary on L, one positive boundary puncture, possibly several negative boundary

punctures, and a boundary-point passing through x.

Remark 1.7. An augmentation is a unital DGA morphism taking values in the

coefficient ring (considered as a trivial DGA). The existence of an augmentation

should be seen as a certain non-obstructedness of the Legendrian contact homology,

and in particular it implies that the DGA is not acyclic. Under the additional

assumption that the Chekanov–Eliashberg algebra of L admits an augmentation,

the consequence of Theorem 1.6 can be seen to follow from [11, Theorem 5.5].

However, because of the non-commutativity of the DGA under consideration, this

condition is strictly stronger than being non-acyclic. We refer to [17] for examples.

Corollary 1.8. If L⊂(X, dα) is a displaceable exact Lagrangian immersion of

a closed manifold obtained as the concatenation of an immersed exact Lagrangian

filling and an embedded exact Lagrangian cap, then the Chekanov–Eliashberg algebra

of L is acyclic (even when using Novikov coefficients).
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Proof. L can be seen to satisfy the assumptions of Proposition 1.4, with the

only difference that the complement of Lcap is immersed. Part (1) of Proposition 1.4

still applies, producing a compatible almost complex structure JA satisfying the

property that there exists no JA-holomorphic discs in X with boundary on L, one

positive puncture, possibly several negative boundary punctures, and boundary

passing through Lcap. Here we have used the fact that the pseudo-holomorphic discs

of the latter kind have a uniform bound on their symplectic area. Furthermore, it

is readily seen that the almost complex structure JA produced by Proposition 1.4

can be taken to satisfy JA∈JL.

The Chekanov–Eliashberg algebra of L can now be seen to be acyclic, since

we otherwise could apply Theorem 1.6, whose conclusion clearly contradicts the

non-existence of the JA-holomorphic discs established above. �

Assume that Λ⊂(P×R, dz+θ) admits an exact Lagrangian cap in the sym-

plectisation. In Section 3.3 below we construct a displaceable exact Lagrangian

immersion

LΛ ⊂ (P×C, d(θ⊕x dy)),

which can be obtained as the concatenation of an exact immersed Lagrangian filling

with the exact Lagrangian cap. Moreover, the Chekanov–Eliashberg algebra of LΛ

without Novikov coefficients is homotopy equivalent to that of Λ (see Lemma 3.5).

Using the above corollary, we can now make the following conclusion.

Corollary 1.9. Suppose that the closed Legendrian submanifold

Λ⊂ (P×R, dz+θ)

admits an exact Lagrangian cap

LΛ,∅ ⊂ (R×(P×R), d(et(dz+θ))).

Then the Chekanov–Eliashberg algebra of Λ with Z2-coefficients is acyclic when not

using Novikov coefficients.

If LΛ,∅ is a spin cobordism, it follows that the same is true with Z-coefficients,

given that the Chekanov–Eliashberg algebra of Λ is induced by the choice of a spin

structure on the cap.

Remark 1.10. All the exact Lagrangian caps constructed in [19] are caps of so-

called loose Legendrian submanifolds, as defined in [27]. By an explicit computation

(see [12, Section 4.3] and [27, Section 8]) it follows that the Chekanov–Eliashberg

algebra of a loose Legendrian submanifold, with or without Novikov coefficients, is

acyclic.
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It is important to note that a Legendrian submanifold satisfying the assump-

tions of Corollary 1.9 still may have a non-acyclic Chekanov–Eliashberg algebra

when using Novikov coefficients, as the following example shows. In particular,

a Legendrian submanifold admitting an exact Lagrangian cap is not necessarily

loose.

Example 1.11. In [9] the Legendrian torus L1,1⊂J1R2 was constructed, and

it was shown to have a Chekanov–Eliashberg algebra having non-trivial homology

when Novikov coefficients are used, but which becomes acyclic without Novikov

coefficients. We will now argue that L1,1 admits an exact Lagrangian cap inside the

symplectisation

(R×J1R2, d(et(dz+θR2))).

Let Λ0⊂J1R2 denote the loose Legendrian two-sphere (see [27]). Observe that

the loose two-sphere admits an exact Lagrangian cap by [19]. The existence of

an exact Lagrangian cap of L1,1 will be established by showing the existence of a

proper embedded exact Lagrangian cobordism

V ⊂ (R×J1R2, d(et(dz+θR2)))

inside the symplectisation, which, outside of a compact set, is of the form

((−∞,−N)×L1,1)∪((N,+∞)×Λ0)

for some N>0. We will moreover require that the pull-back of etλ to V has a

primitive that vanishes outside of a compact set.

We start by describing the Legendrian torus L1,1⊂J1R2. Let

R/2πZ� θ �−→ (xK(θ), yK(θ), zK(θ))

be a parametrisation of the Legendrian knot K⊂J1R=R2×R shown in Figure 1.

This parametrisation may be supposed to satisfy the relation

(xK(θ+π), yK(θ+π), zK(θ+π))= (−xK(θ),−yK(θ), zK(θ)),

from which it follows that one can rotate this knot to form an embedded Legendrian

torus
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Figure 1. The Legendrian knot K.

Figure 2. The Legendrian knot K′ obtained by a Legendrian ambient surgery on S⊂K.

(R/πZ)×(R/2πZ)−→ J1R2 =R2×R2×R,

(θ1, θ2) �−→

⎛
⎝
(xK(θ2+θ1) cos θ1, xK(θ2+θ1) sin θ1)

(yK(θ2+θ1) cos θ1, yK(θ2+θ1) sin θ1)

zK(θ2+θ1)

⎞
⎠ .

This torus coincides with L1,1 as constructed in [9].

We choose the following representative of the loose two-sphere Λ0⊂J1R2. Let

R/2πZ� θ �−→ (xK′(θ), yK′(θ), zK′(θ))

be a parametrisation of the Legendrian knot K ′⊂J1R=R2×R shown in Figure 2.

This parametrisation may be supposed to satisfy the relation

(xK′(−θ), yK′(−θ), zK′(−θ))= (−xK′(θ),−yK′(θ), zK′(θ)),

from which it follows that the image of
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(R/2πZ)×(R/2πZ)−→J1R2 =R2×R2×R,

(θ1, θ2) �−→

⎛
⎝
(xK′(θ2) cos θ1, xK′(θ2) sin θ1)

(yK′(θ2) cos θ1, yK′(θ2) sin θ1)

zK′(θ2)

⎞
⎠ ,

can be identified with an embedded Legendrian sphere. In this case, the obtained

sphere is the loose Legendrian two-sphere Λ0⊂J1R2.

Legendrian ambient surgery is a construction, which was introduced in [8, Sec-

tion 4] and which roughly can be described as follows. Let Λ⊂(Y, λ) be a Legendrian

embedding. Suppose that we are given a so-called isotropic surgery disc in Y with

boundary S⊂Λ, together with the choice of a Lagrangian frame of its symplectic

normal bundle. This data determines a Legendrian embedding ΛS⊂(Y, λ) of the

manifold obtained from Λ by surgery on the sphere S⊂Λ. Moreover, the construc-

tion provides an exact Lagrangian cobordism from Λ to ΛS , a so-called elementary

exact Lagrangian cobordism.

We claim that one can construct the sought cobordism V as the elementary

exact Lagrangian cobordism associated with a Legendrian ambient surgery on L1,1.

More precisely, the Legendrian plane {(0, 0)}×R2×{0}⊂J1R2 intersects L1,1 in a

circle S, and we use D to denote the Legendrian disc bounded by S in this plane.

The disc D is an isotropic surgery disc with boundary on S⊂L1,1, and it uniquely

determines a Legendrian ambient surgery on S⊂L1,1. The produced Legendrian

embedding (L1,1)S⊂J1R2 is thus a sphere, which, moreover, can be seen to be the

loose two-sphere Λ0. The sought exact Lagrangian cobordism V can now be taken

to be the elementary exact Lagrangian cobordism from L1,1 to Λ0 provided by the

construction.

There is an analogous construction for the Legendrian knot K. Namely, choose

the isotropic surgery disc to be given byD⊂J1R shown in Figure 1, whose boundary

is the 0-sphere S⊂K. The corresponding Legendrian ambient surgery on S produces

an elementary exact Lagrangian cobordism fromK to the Legendrian knotK ′⊂J1R

shown in Figure 2. In this dimension, the cobordism and the surgery construction

was also described in [16].

1.4. Existence of exact Lagrangian caps and constructions

In [27] Murphy introduced the concept of a loose Legendrian n-dimensional

submanifold for n≥2. Moreover, loose Legendrian submanifolds where shown to

satisfy an h-principle.

Assume that we are given a loose Legendrian submanifold Λ⊂(Y, λ). Using

the above h-principle it was shown in [19] by Eliashberg and Murphy that, under
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some homotopy-theoretic assumptions, an exact immersed Lagrangian cap of Λ is

Lagrangian regular homotopic (through exact Lagrangian immersions) to an em-

bedded exact Lagrangian cap. Recall that exact Lagrangian immersions satisfy an

h-principle by Gromov [23] and Lees [25], but that there is no such h-principle for

general Lagrangian embeddings.

Ekholm, Eliashberg, Murphy and Smith [10] used the h-principle for exact

Lagrangian caps of loose Legendrian submanifolds to construct many interesting

examples of Lagrangian embeddings inside Cn when n≥3. These examples are all

constructed as follows. First, consider an embedded exact Lagrangian cap inside

(R×S2n−1, d(etλ0)), λ0 :=
1

2

n∑
j=1

(xj dy
j−yj dx

j),

where λ0 thus restricts to the standard contact one-form on S2n−1⊂Cn. This cap

is then concatenated with a (non-exact) Lagrangian filling inside

(Cn, ω0 = dλ0),

which moreover can be constructed explicitly. Observe that the result is a closed

Lagrangian submanifold of the standard symplectic manifold (Cn, ω0), which hence

is displaceable. These Lagrangian submanifolds have been shown to satisfy many

surprising properties.

We now restrict our attention to the construction inside C3. Starting with

the loose Legendrian two-sphere Λ0⊂(S5, λ0) and given any three-manifold M , it

follows from the theory in [19] that there exists an exact Lagrangian cap

LΛ0,∅ ⊂ (R×S5, d(etλ0))

inside the symplectisation, which is diffeomorphic to M \{pt} and whose Maslov

class vanishes.

A standard construction (see [10]) produces an exact immersed filling L̃∅,Λ0⊂
C3 of Λ0, which is diffeomorphic to a three-ball and which has a single transverse

double-point.

Observe that all fillings of Λ0 indeed must have a double-point, since the con-

catenation of the cap and the filling otherwise would be a closed exact Lagrangian

submanifold of C3, thus contradicting a theorem of Gromov [22]. Finally, it can be

checked that the grading of the double-point of L̃∅,Λ0 , thought of as a generator

in Legendrian contact homology, here must be equal to one (see also Remark 1.12

below). We refer to [13] for the definition of this grading.

The exact Lagrangian immersion of M obtained by concatenating the exact

Lagrangian cap LΛ0,∅ with the exact Lagrangian immersion L̃∅,Λ0 is interesting
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in itself. For instance, its number of double-points is in general strictly less than
1
2 dimH(M ;Z2). By [11, Theorem 1.2], this is a lower bound on the number of

transverse double-points for an exact Lagrangian immersion in Cn whose Legen-

drian lift has a Chekanov–Eliashberg algebra admitting an augmentation.

The double-point of L̃∅,Λ can be removed by a Lagrange surgery, as defined in

[24] and [30]. A suitable choice of such a surgery produces a (non-exact) embedded

Lagrangian filling L∅,Λ0 of Λ0 diffeomorphic to (S2×S1)\{pt}. The fact that the

grading of the double-point is equal to one implies that the Maslov class of L∅,Λ0

vanishes for this choice of Lagrange surgery.

In conclusion, for every three-manifold M , the construction produces a La-

grangian embedding of M#(S2×S1) into C3 with vanishing Maslov class. These

were the first known examples of closed Lagrangian submanifolds of Cn satisfying

this property. Moreover, by construction, these Lagrangian submanifolds satisfy

the assumptions of Proposition 1.4.

In higher dimensions, the same technique gives Lagrangian embeddings of S1×
S2k into C1+2k for each k>0, see [10, Corollary 1.6]. Furthermore, the Maslov

class of these embeddings can be seen to evaluate to 2−2k on the unique generator

γ∈H1(S
1×S2k;Z) of positive symplectic action.

Remark 1.12. A Lagrange surgery on the double-points of an orientable ex-

act Lagrangian immersion L⊂Cn obtained by concatenating an exact immersed

Lagrangian filling and an exact embedded Lagrangian cap always produces a non-

orientable Lagrangian submanifold in the case n=2k. To see this, first observe that

Corollary 1.8 implies that the Chekanov–Eliashberg algebra of L is acyclic. Second,

there must exist a double-point of odd degree, since the differential decreases the

degree by one, and since the unit lives in degree zero. Finally, a Lagrange surgery on

a double-point of odd degree always creates a non-orientable submanifold in these

dimensions.

Remark 1.13. The examples in Cn for n=2k produced by Corollary 1.5 are

constructed by a version of the front-spinning construction. It can be seen that

these examples still are obtained by the concatenation of a Lagrangian filling and

an exact Lagrangian cap. Namely, suppose that we are given an exact Lagrangian

cap

LΛ,∅ ⊂R×J1Rn

and a non-exact Lagrangian filling

L∅,Λ ⊂R×J1Rn.
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The front-spinning construction produces a Legendrian embedding of Λ×Sl inside

J1Rn+l. This spinning extends to the symplectisation by [21], producing an exact

Lagrangian cap

LΛ×Sl,∅ ⊂R×J1Rn+l

and a non-exact Lagrangian filling

L∅,Λ×Sl ⊂R×J1Rn+l

of Λ×Sl, which are diffeomorphic to LΛ,∅×Sl and L∅,Λ×Sl, respectively.

2. Proof of Proposition 1.4

Consider a smooth cut-off function ρ : [0,+∞)→R satisfying ρ′(t)≥0 for all t,

ρ(t)=0 for t≤N , and ρ(t)=1 for t≥N+ε. The flow

φs : [0,+∞)×Y −→ [0,+∞)×Y,

(t, y) �−→ (t+ρ(t)s, y),

defined on the cylindrical end of X satisfies

(φs)∗(etλ)= eρ(t)setλ.

In particular, φs coincides with the so-called Liouville flow on [N+ε,+∞)×Y . We

extend φs to an isotopy defined on all of X by prescribing it to be the identity

outside of the cylindrical end.

The condition that

L∩{(t, x) ; t∈ [N,N+ε]}= [N,N+ε]×Λ⊂ (R×Y, d(etλ))

is a Lagrangian submanifold is equivalent to the pull-back of etλ being closed.

Moreover, the equality

d(etλ)= et dt∧λ+et dλ

shows that the pull-back of λ to this Lagrangian cylinder in fact vanishes. Let

f : Lcap→R be a primitive of etλ pulled back to Lcap that vanishes along the

boundary ∂Lcap and, by the above, on L∩{(t, x);t∈[N,N+ε]} as well. The function
esf can now be seen to be a primitive of (φs)∗(etλ) pulled back to Lcap (which thus

also vanishes along the boundary). Since the isotopy φs fixes L\Lcap, we see that

(φs|L)∗α=(φ0|L)∗α+d((es−1)f)



Exact Lagrangian caps and non-uniruled Lagrangian submanifolds 51

is a path of cohomologous one-forms on L. From this it follows that

Ls :=φs(L)⊂ (X, dα), s≥ 0,

is a path of Lagrangian submanifolds and, moreover, that the isotopy Ls may be

realised by a time-dependent Hamiltonian isotopy.

1. Non-uniruledness. Weinstein’s neighbourhood theorem produces a contact-

form preserving identification of a neighbourhood of Λ⊂Y with a neighbourhood

of the zero-section in (J1Λ, dz+θΛ). Using this map, one constructs a symplectic

identification of a neighbourhood of [N,+∞)×Λ⊂R×Y and

D∗Λ×[logN,+∞)×[−δ, δ]⊂ (D∗Λ×C, dθΛ⊕d(x dy))

for some fixed radius of the co-disc bundle and δ>0, such that moreover

0Λ×[logN,+∞)×{0}⊂D∗Λ×C

is identified with [N,+∞)×Λ (see Section 3.3 for a similar identification). We

choose a compatible almost complex structure J̃ on (X, dα), which, in the above

neighbourhood, is taken to coincide with an almost complex structure on D∗Λ×C

that is invariant under translations of the x-coordinate.

Since etλ pulled back to the set Ls∩{(t, x);t≥N} is exact, any connected J̃ -

holomorphic curve whose boundary is located on Ls and, moreover, intersects Ls∩
{(t, x);t≥N+s}, has the property that its boundary passes through each slice

Ls∩{(t, x) ; t= t0}= {t0}×Λ⊂R×Y, t0 ∈ [N,N+s],

unless the curve is constant.

The monotonicity property for the symplectic area of pseudo-holomorphic

curves with boundary on a Lagrangian submanifold (see [32, Proposition 4.7.2(ii)])

gives a constant C>0 for which the following holds. Any non-constant J̃ -holomor-

phic curve in D∗Λ×[−δ, δ]2 with boundary on

(0Λ×[−δ, δ]×{0})∪∂(D∗Λ×[−δ, δ]2),

whose boundary moreover passes through 0Λ×{(0, 0)}, has symplectic area at least

C>0.

Fix A>0. Using the above monotonicity property, together with the translation

invariance of J̃ and the above behaviour of the J̃ -holomorphic curves with boundary

on Ls, we finally make the following conclusion. For sA>0 sufficiently large, any

non-constant connected J̃ -holomorphic curve whose boundary is located on LsA

and, moreover, intersects LsA∩{(t, x);t≥N+sA}, has symplectic area at least A.
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Finally, we can take JA to be the pull-back of J̃ under a symplectomorphism

that takes L to LsA and L∩{(t, x);t≥N} to LsA∩{(t, x);t≥N+sA}. Here we have
used the fact that LsA is Hamiltonian isotopic to L.

2. The Gromov width. Observe that Weinstein’s Lagrangian neighbourhood the-

orem can be used to symplectically embed the standard symplectic ball of some pos-

itive radius r>0 inside {(t, x);t≥N+ε}⊂X , so that the ball moreover intersects L

precisely in the real part. By composing this embedding with φs, we see that Ls

admits such a symplectic ball of radius esr. Finally, since Ls is Hamiltonian isotopic

to L, it follows that L admits a symplectic ball of radius esr as well. In conclusion,

L has infinite Gromov width.

3. The Chekanov–Eliashberg algebra of a Legendrian submanifold

admitting an exact Lagrangian cap

A smooth one-parameter family of Legendrian embeddings is called a Legen-

drian isotopy. Legendrian contact homology is an algebraic Legendrian isotopy in-

variant introduced in [18] by Eliashberg, Givental and Hofer and in [6] by Chekanov.

Here we will use the version constructed in [14] and [15] by Ekholm, Etnyre and

Sullivan, which is defined in the setting of a contactisation (P×R, dz+θ) equipped

with the standard contact form, given some technical assumptions on (P, dθ). In

particular, the theory is well-defined when (P, dθ) is symplectomorphic to the com-

pletion of a Liouville domain.

3.1. Legendrian contact homology

In the following we let Λ⊂P×R be a closed Legendrian submanifold. We will

use Q(Λ) to denote the set of Reeb chords on Λ, which are the non-trivial integral

curves of ∂z in P×R having both end-points on Λ. Observe that the Reeb chords

correspond bijectively to the double-points of the image of Λ under the canonical

projection

πLag : P×R−→P.

We will now sketch the definition of Legendrian contact homology in this setting,

we refer to [15] for more details.

The Chekanov–Eliashberg algebra (A(Λ;R), ∂) of Λ is a unital DGA induced by

the choice of a compatible almost complex structure J on P . The underlying algebra

is the unital, strictly non-commutative, graded algebra that is freely generated by

Q(Λ) over the ring R. Here we assume that πLag(Λ) is a generic immersion having

transverse double-points, which means that Q(Λ) is a finite set. The grading of



Exact Lagrangian caps and non-uniruled Lagrangian submanifolds 53

each generator is induced by the so-called Conley–Zehnder index associated with

the Reeb chord. Furthermore, to each Reeb chord there is an associated action

�(c) :=

∫

c

dz > 0.

Fix a generic compatible almost complex structure J on (P, dθ). The dif-

ferential ∂ is an R-linear map defined on each generator by counting the rigid

J -holomorphic discs in P having boundary on πLag(Λ) and boundary-punctures

mapping to double-points, of which exactly one is positive. The differential is then

extended to all of A(Λ;R) by the Leibniz rule

∂(ab)= ∂(a)b+(−1)|a|a∂(b),

where a and b denote words of generators. It can be checked that, if the coefficient

in front of the word b1...bm in the expression ∂(a) is non-zero, then necessarily

�(a)>�(b1)+...+�(bm),

as follows from the positivity of the symplectic area of J -holomorphic discs.

We may always use coefficients R=Z2. In the case when Λ is a spin manifold,

we may also use R=Z after fixing a spin structure (see [14]). Hence, in the latter

case, it is possible to define the theory with coefficients in an arbitrary ring R. It is

also possible to define a richer invariant using so-called Novikov coefficients, where

coefficients are chosen in the group ring R[H1(L)].

We have ∂2=0 by [15, Lemma 2.5]. By [15, Theorem 1.1] it follows that the

stable-tame isomorphism type of the Chekanov–Eliashberg algebra is independent of

the choice of a generic J and invariant under Legendrian isotopy of Λ. In particular,

its homology HC
˝
(Λ;R) is a Legendrian isotopy invariant.

3.2. A linear complex over the characteristic algebra

Given a unital DGA morphism to a commutative algebra (viewed as a DGA

with trivial differential), i.e. an augmentation, one obtains an induced complex

with coefficients in the latter algebra by a so-called linearisation of the DGA [6].

The construction in this section can be seen as a straightforward generalisation of

this construction to the case when the algebra is non-commutative (in particular,

we will be considering the so-called characteristic algebra of the DGA). The non-

commutativity implies that the obtained complex is a bimodule over the algebra.

Given a decomposition Λ=Λ1�Λ2 of a disconnected Legendrian submanifold,

where Λj is closed but not necessarily connected, we will use Q(Λ1,Λ2) to denote

the set of Reeb chords starting on Λ1 and ending on Λ2.
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Consider the R-submodule

A(Λ1,Λ2;R) :=
⊕

c∈Q(Λ1,Λ2)

A(Λ1;R)cA(Λ2;R)⊂A(Λ1∪Λ2;R),

which naturally carries the structure of a free left A(Λ2;R)⊗A(Λ1;R)op-module

(note the order!). The module multiplication is here induced by

(a2⊗a1)·a1ca2 =a1a1ca2a2, c∈Q(Λ1,Λ2),

where aj∈Q(Λj) are generators, and aj∈A(Λj ;R) are words of generators. Observe

that A(Λ1,Λ2;R) can be identified with the canonical free A(Λ2;R)⊗A(Λ1;R)op-

module generated by Q(Λ1,Λ2) via

Ψ: A(Λ1,Λ2;R)−→
⊕

c∈Q(Λ1,Λ2)

(A(Λ2;R)⊗A(Λ1;R)op)c,

a1ca2 �−→ (a2⊗a1)c.

There is a filtration

A(Λ1∪Λ2;R)=:A0 ⊃A1 ⊃A2 ⊃ ...,

where Ak is spanned by words in which at least k generators come from Q(Λ1,Λ2).

By the topological properties of the boundary condition of the pseudo-holomorphic

discs used in the definition of the differential, ∂ preserves this filtration. In other

words, ∂ induces a differential ∂1 on A0/A2. Using the natural inclusion

A(Λ1,Λ2;R)⊂A0/A2,

∂1 can moreover be seen to induce an R-linear differential on A(Λ1,Λ2;R). Obvi-

ously, ∂1 is not A(Λ2;R)⊗A(Λ1;R)op-linear in general. We will amend this problem

by taking a suitable quotient of this algebra.

In the following we will work under the assumption that there is an isomorphism

A(Λ1;R)
A(Λ2;R) of unital DGAs. This is for example true if Λ2 is a translation

of Λ1 in the z-coordinate, followed by a sufficiently small perturbation. We use

CΛj ;R :=A(Λj ;R)/A(Λj ;R) Im(∂)A(Λj ;R), j=1, 2,

to denote the so-called characteristic algebra of A(Λj ;R), which is the quotient by

the two-sided ideal generated by the boundaries. This invariant was introduced by

Ng and studied in [29]. Observe that, since we are working with unital algebras, we

have the following characterisation.

Lemma 3.1. The DGA A(Λj ;R) is acyclic if and only if CΛj ;R=0.
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Since CΛ1;R
CΛ2;R holds by assumption, we will use CR to denote either of

them. The free left CR-module

C(Λ1,Λ2;R) :=
⊕

c∈Q(Λ1,Λ2)

CRc

has a natural structure as a non-free left CR⊗RCop
R -module (i.e. its natural bimodule

structure). Furthermore, we have the canonical projection

π :
⊕

c∈Q(Λ1,Λ2)

(CR⊗RCop
R )c−→ C(Λ1,Λ2;R),

([a]⊗[b])c �−→ [ab]c,

of CR⊗RCop
R -modules, where the domain is free.

Also, consider the surjective unital R-algebra morphism

φ : A(Λ2;R)⊗RA(Λ1;R)op −→ CR⊗RCop
R

induced by the quotient projection, which for generators aj∈Q(Λj), j=1, 2, takes

the form

φ(a2⊗1)= [a2]⊗[1] and φ(1⊗a1)= (−1)|a1|[1]⊗[a1].

There is an induced R-module morphism

Φ:
⊕

c∈Q(Λ1,Λ2)

(A(Λ2;R)⊗RA(Λ1;R)op)c−→
⊕

c∈Q(Λ1,Λ2)

(CR⊗RCop
R )c.

Observe that, since ∂ is of degree −1, the kernel of φ is the same as the kernel of

the canonical projection A(Λ2;R)⊗RA(Λ1;R)op→CR⊗RCop
R . The Leibniz rule now

implies that ∂1 preserves the kernel of the R-module morphism

π◦Φ◦Ψ: A(Λ1,Λ2;R)−→ C(Λ1,Λ2;R),

and hence descends to an R-linear differential

∂C : C(Λ1,Λ2;R)−→ C(Λ1,Λ2;R).

Finally, the Leibniz rule can also be seen to imply the following result.

Lemma 3.2. The R-linear differential ∂C is CR⊗RCop
R -linear.
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In other words, we have produced a complex (C(Λ1,Λ2;R), ∂C), which is finitely

generated by the Reeb chords from Λ1 to Λ2, and which has coefficients in CR⊗RCop
R .

We will now see that the invariance proof of the Chekanov–Eliashberg algebra

implies an invariance result for this complex as well. However, there is one caveat—

the coefficients CR⊗RCop
R are constructed using the characteristic algebra CR of

Λj , and it is not true that the characteristic algebra is invariant under Legendrian

isotopy. Namely, it changes by a stabilisation under the birth/death of a pair of

Reeb chords (see [29, Theorem 3.4] for more details). However, for us it will be

sufficient to restrict our attention to Legendrian isotopies of a special form.

Theorem 3.3. ([15, Theorem 1.1]) The homotopy type of (C(Λ1,Λ2;R), ∂C)

is independent of the choice of a regular compatible almost complex structure and

invariant under Legendrian isotopies of Λ1∪Λ2, given that the Legendrian isotopy

restricted to either of Λj , j=1, 2, induces no births or deaths of Reeb chords.

Proof. This result is an algebraic consequence of the invariance result [15, The-

orem 1.1], which, in turn, depends on [14, Section 4.3]. We let Λs
j , s∈[0, 1], be the

isotopy restricted to Λj , where Λ0
j=Λj .

Observe that the isomorphism class of the Chekanov–Eliashberg algebra does

not depend on the choice of a generic almost complex structure by [14, Lemma 4.13].

The same result also shows that, since there are no births or deaths of Reeb chords

in the one-parameter family Λs
j by assumption, the Chekanov–Eliashberg algebras

of Λs
j are all isomorphic (for generic s∈[0, 1]). In particular, we may identify the

coefficient ring of the complex (C(Λs
1,Λ

s
2;R), ∂C,s) with CR⊗RCop

R for generic s∈
[0, 1].

The proof of invariance for the Chekanov–Eliashberg algebra provides a so-

called stable tame isomorphism

Φ: (A(Λ0
1∪Λ0

2;R), ∂0)−→ (A(Λ1
1∪Λ1

2;R), ∂1)

of DGAs. Considering the topology of the boundary condition used for the pseudo-

holomorphic discs that appear in the construction of Φ, we see that Φ preserves the

filtration considered above, and hence that it descends to an R-module chain map

Φ1 : (A(Λ0
1,Λ

0
2;R), ∂1

0)−→ (A(Λ1
1,Λ

1
2;R), ∂1

1).

To establish the sought homotopy equivalence, there are two basic cases that

one now needs to consider: First, the case when Φ1 is an isomorphism is immediate.

Second, the case when Φ1 is an inclusion into a stabilisation follows by an explicit

construction of a chain homotopy. �
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3.3. Construction of the exact Lagrangian immersion LΛ

In the following we assume that the Legendrian submanifold Λ⊂(P×R, dz+θ)

admits an exact Lagrangian cap LΛ,∅ inside the symplectisation

(R×(P×R), d(et(dz+θ))).

Let φt : P→P denote the time-t flow of the Liouville vector field ζ associated

with θ, which is uniquely defined by the requirement that ιζ dθ=θ. Observe that

(φt)∗θ=etθ. Endow R>0×R⊂R2=C with the standard symplectic form ω0=dx∧
dy, and consider the exact symplectomorphism

F : (R×(P×R), d(et(dz+θ)))−→ (P×(R>0×R), d(θ⊕x dy)),

(t, (p, z)) �−→ (φt(p), (et, z)).

Let (g, h) : Λ→(P×R, dz+θ) be the Legendrian embedding under considera-

tion, which thus satisfies g∗θ+dh=0. We construct the immersion

G : R×Λ−→ (P×R2, d(θ⊕x dy)),

(t, q) �−→ (φlog ρ(t)◦g, (t, ρ′(t)h(q))),

which is an exact Lagrangian immersion, as follows by the identity

G∗(θ⊕x dy)= d((tρ′(t)−ρ)h).

We will choose ρ : R→R>0 to be a Morse function satisfying
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρ(t)=ρ(−t), t∈R,

ρ(t)=|t|, |t|≥2,

ρ(t)=1+t2/2, |t|≤ε,

ρ′(t) �=0, t �=0,

for some 0<ε<1. In particular, it follows that G|{t=0}=(g, (0, 0)), while

G(R×Λ)∩{(t, x) ; 2≤x≤ eN}=F (LΛ,∅)∩{(t, x) ; 2≤x≤ eN}

is an embedding. Here, we have translated the cap so that

LΛ,∅∩{(t, x) ; t≤N}=(−∞, N ]×Λ

is satisfied for some N>1. See [13, Section 10.2] and [14, Section 4.3.2] for a

similar construction of an exact Lagrangian immersion of a cylinder R×Λ using a

Legendrian embedding Λ.
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Consider the exact symplectomorphism

τ : (P×R2, d(θ⊕x dy))−→ (P×R2, d(θ⊕x dy)),

(p, (x, y)) �−→ (p, (−x,−y)),

which maps the Lagrangian immersion G(R×Λ) to itself. Defining LΛ⊂P×R2 to

be the union

(τ(F (LΛ,∅))∩{(t, x) ;x≤−eN})∪(G(R×Λ)∩{(t, x) ;−eN ≤x≤ eN})

∪(F (LΛ,∅)∩{(t, x) ;x≥ eN}),

it follows that this is an exact Lagrangian immersion of the closed manifold formed

by taking two copies of the cap LΛ,∅∩{(t, x);t≥0} and gluing them along the bound-

ary using the canonical identification. Observe that all double-points of LΛ are

contained inside

LΛ∩{(t, x) ;x=0}=πLag(Λ)×{(0, 0)}.

Lemma 3.4. ([14, Lemmata 4.14 and 4.15]) For a compatible almost complex

structure J on (P, dθ), every non-constant J⊕i-holomorphic curve in P×C with

boundary on LΛ which has compact image is contained inside P×{(0, 0)}.

Proof. Use u : C→P×C to denote the pseudo-holomorphic curve. Observe

that the projection πC◦u to the C-factor is holomorphic, and that the boundary is

contained inside the projection πC(LΛ).

Using the exactness of the boundary condition, it follows that the pseudo-

holomorphic curve must have a positive boundary puncture that is mapped to a

double point of LΛ. In particular, πC◦u has the origin in its image. By the argument

in [14, Lemmata 4.14 and 4.15], which we now outline, it follows that πC◦u in fact

must vanish constantly.

By construction, the projection πC(LΛ) satisfies

πC(LΛ)∩{(t, x) ;−ε≤x≤ ε} = πC◦G(R×Λ)∩{(t, x) ;−ε≤x≤ ε}

⊂ V :=
{
x+iy ; y ∈

[
xmin

Λ
h, xmax

Λ
h
]
and x∈ [−ε, ε]

}

for some sufficiently small ε>0. The open mapping principle can be seen to imply

that

πC◦u(C)∩{(t, x) ;−ε≤x≤ ε}⊂V.

However, unless πC◦u vanishes constantly, this contradicts the behaviour of the

asymptotics of the positive boundary-puncture of u. �
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Lemma 3.5. The Chekanov–Eliashberg algebras of LΛ and Λ with Z2-coeffi-

cients are homotopy equivalent when not using Novikov coefficients. If LΛ,∅ is a

spin cobordism and if the DGA of Λ is induced by a spin structure on the cap, then

the same is true with Z-coefficients.

Proof. First, observe that there is a canonical identification of the generators,

which preserves the grading. What remains is to show that the differentials agree.

By the above lemma we know that every J⊕i-holomorphic disc with boundary

on LΛ lies in P×{(0, 0)} and, hence, has boundary on πLag(Λ)×{(0, 0)}.
In particular, we have established a bijective correspondence between the J⊕i-

holomorphic discs in P×C with boundary on LΛ that contribute to the differential

of the Chekanov–Eliashberg algebra of LΛ, and the J -holomorphic discs in P with

boundary on πLag(Λ) that contribute to the differential of the Chekanov–Eliashberg

algebra of Λ. For these choices of almost complex structure, this shows that the

Chekanov–Eliashberg algebras of Λ and LΛ are equal. �

3.4. Proof of Theorem 1.6

The proof is an adaptation of the proof of [11, Theorem 5.5] to the current

algebraic setup.

We start by describing the two-copy lift as constructed in [11, Section 3.1].

In a Weinstein neighbourhood of L1 :=L⊂(X, dα) given as the image of a co-disc

bundle D∗L under a symplectic immersion, we let L2 be given as the section df for

a sufficiently C1-small Morse function f : L→R.

We choose a Legendrian lift of L1∪L2 to the contactisation (X×R, dz+α) for

which the z-coordinate satisfies

min
L2

(z)>max
L1

(z),

max
L2

(z)=max
L1

(z)+N,

for some large number N>0. In particular, this implies that a Reeb chord on L1∪L2

either has both endpoints of one of Lj , j=1, 2, or starts on L1 and ends on L2. In

other words, there is a decomposition

Q(L1∪L2)=Q(L1)�Q(L2)�Q(L1, L2)

of the set of Reeb chords.
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Recall that Reeb chords correspond to double-points of L1∪L2⊂X . First, we

choose f so that L1 and L2 are uniformly C1-close, after which we can assume that

there is a natural bijective correspondence between Q(L1) and Q(L2). We may

also assume that a Reeb chord in Q(L1, L2) either corresponds to a critical point

Crit(f) of f , or corresponds to a double-point, which is contained in an arbitrarily

small neighbourhood of a double-point in Q(L). Furthermore, for each Reeb chord

c∈Q(L), there are precisely two Reeb chords pc and qc of the latter kind, where the

action of pc is strictly smaller than the action of qc. Using these identifications, we

write

P := {pc ; c∈Q(L)} and Q := {qc ; c∈Q(L)}.

We thus have a decomposition

Q(L1, L2)=P�Crit(f)�Q,

where the actions of the different Reeb chords satisfy

�(P)<�(Crit(f))<�(Q).

Recall that CR :=CL;R is the characteristic algebra of the Chekanov–Eliashberg

algebra of L=L1, which, in the current situation, may be assumed to be naturally

isomorphic to that of L2. We will consider the complex

(C(L1, L2;R), ∂ := ∂C),

defined in Section 3.2 above, which is the free CR-module generated by Q(L1, L2),

but considered as a non-free CR⊗RCop
R -module. Since L is displaceable by assump-

tion, Theorem 3.3 implies that this complex is acyclic. Also, since HC
˝
(L;R) �=0

holds by assumption, which is equivalent to the fact that CR �=0 (see Lemma 3.5),

it moreover follows that the complex (C(L1, L2;R), ∂) is non-trivial.

By simply considering the actions of the different kinds of generators, and using

the fact that the differential is action-decreasing, ∂ is seen to be of the form

C(L1, L2;R)=Q⊕C⊕P, ∂=

⎛
⎝
∂Q 0 0

ρ −∂C 0

η σ ∂P

⎞
⎠ ,

where Q, C and P are the submodules generated by the Reeb chords in Q, Crit(f)

and P , respectively.

Fix a point x∈L and an almost complex structure J∈JL induced by a metric

on L as in [11, Remark 6.1]. By the Gromov-type compactness for the pseudo-
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holomorphic discs under consideration, which was established in [13], it suffices to

show the claim of the theorem after choosing both x and J∈JL to be generic.

By the disc count in [11, Proposition 3.7(2)] it follows that, for a generic J∈JL,

we have an isomorphism

(C
˝
, ∂C)
 (CMorse

˝+1 (f)⊗RCR, ∂f ),

where the latter is the Morse complex with coefficients in CR (with shifted grading).

Let cL∈C denote a CR-fundamental class of L, which is a linear combination

of the maxima of f . Observe that, in the case when 1+1 �=0 holds in CR (and hence

in R as well) the closed manifold L is a spin manifold by assumption. In particu-

lar, L is orientable in the latter case, and there always exists such a fundamental

class.

We begin by arguing that ∂(cL)=0. First, ∂C(cL)=0 holds by the defini-

tion of being an R-fundamental class. It remains to show that σ(cL)=0. This

follows by the count of discs analogous to the count conducted in the proof of

[11, Theorem 5.5]. For a Reeb chord c∈Q(L) we let cj∈Q(Lj) denote the cor-

responding Reeb chord on Lj (i.e. c1=c), and pc the corresponding Reeb chord

in P . Let cM∈Crit(f) be any local maximum of f . By [11, Theorem 3.6(3)], the

J -holomorphic discs in the definition of σ(cM ) that contribute to the coefficient

in front of pc correspond bijectively to rigid generalised pseudo-holomorphic discs

consisting of

• a J -holomorphic disc u : (D2, ∂D2)→(X,L) with boundary on L, one posi-

tive puncture, and negative punctures of which at least one is mapped to c; together

with

• an oriented flow-line of −∇f on L connecting cM to the boundary of u.

Formula (3.11) in [11] implies that u must live in a moduli space of expected di-

mension −1, and must hence have constant image in c. In particular, all boundary

punctures of u must map to c.

In addition, we now claim that the above generalised pseudo-holomorphic discs

that contribute to σ must satisfy the property that u has exactly one negative punc-

ture. This holds by the correspondence given by [11, Theorem 3.6(3)] together with

the fact that a J -holomorphic disc with boundary on L1∪L2 having one positive

boundary puncture at cM , and negative boundary punctures at either {pc, c1} or

{pc, c2}, cannot have any additional negative boundary punctures at cj . Namely,

such a disc would have negative symplectic area, as follows from the action consid-

erations

�(cM )≈N, �(pc)≈N−�(c) and �(c1)≈ �(c2).
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For each c∈Q(L), and for a generic f , the above analysis shows that there are

exactly two J -holomorphic discs with boundary on L1∪L2 that contribute to σ(cM );

one having negative punctures at pc and c1, and one having negative punctures at

c2 and pc, where the punctures moreover come in this order with respect to the

boundary orientation. We thus compute

σ(cM )=
∑

c∈Q(L)

π◦Φ((c2⊗1+(−1)|c1|+11⊗c1)pc)=
∑

c∈Q(L)

(c−c)pc =0.

In order to obtain the sign (−1)|c1|+1 in the above formula, one must employ the

convention that the orientations of L1 and L2 agree (respectively, differ) in the case

when dimLj is even (respectively, odd). Namely, in this case, the capping operators

associated with the negative punctures both have index one (respectively, zero) in

the case when |c1| is even (respectively, |c1| odd), as can be seen by the results

in [14, Section 3.3.6]. To that end, one can use [14, Lemma 4.3] together with the

formula |cj |=−|pc|+dimLj−2 in [11, (3.3)]. See [11, Remark 5.6] for the analogous

cancellation with signs in the proof of [11, Theorem 5.5].

We have thus shown that any fundamental class cL∈C(L1, L2) has the property

that ∂(cL)=0. Since the complex is acyclic, cL must be a boundary. As it is not

in the image of the Morse differential ∂C , the only possibility is for cL to be in the

image of ρ. We now consider the case when cL is represented by a single maximum

of f , which is taken to be situated exactly at x∈L.
Let qc∈Q be a generator. By [11, Theorem 3.6(3)], the J -holomorphic discs in

the definition of ρ(qc) that contribute to the coefficient in front of cL correspond to

rigid generalised pseudo-holomorphic discs consisting of

• a J -holomorphic disc u : (D2, ∂D2)→(X,L) with boundary on L, one posi-

tive puncture at c, and possibly several negative punctures; together with

• an oriented flow-line of −∇f on L connecting the boundary of u to cL=x.

Rigidity of the configuration means that the flow-line must be trivial, and hence

that the boundary of u actually must pass through x. This gives the existence of

the sought disc.
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16. Ekholm, T., Honda, K. and Kálmán, T., Legendrian knots and exact Lagrangian
cobordisms, Preprint, 2012. arXiv:1212.1519.

17. Ekholm, T. and Kálmán, T., Isotopies of Legendrian 1-knots and Legendrian 2-tori,
J. Symplectic Geom. 6 (2008), 407–460.

18. Eliashberg, Y., Givental, A. and Hofer, H., Introduction to symplectic field the-
ory, Geom. Funct. Anal., Special Volume, Part II (2000), 560–673.

19. Eliashberg, Y. and Murphy, E., Lagrangian caps, Geom. Funct. Anal. 23 (2013),
1483–1514.

20. Fukaya, K., Application of Floer homology of Lagrangian submanifolds to symplectic
topology, in Morse Theoretic Methods in Nonlinear Analysis and in Symplectic

http://arxiv.org/abs/arXiv:math/0508345
http://arxiv.org/abs/arXiv:math/0508345
http://arxiv.org/abs/arXiv:1205.5544
http://arxiv.org/abs/arXiv:1212.1519


64 Georgios Dimitroglou Rizell:
Exact Lagrangian caps and non-uniruled Lagrangian submanifolds

Topology, NATO Sci. Ser. II Math. Phys. Chem. 217, pp. 231–276, Springer,
Dordrecht, 2006.

21. Golovko, R., A note on the front spinning construction, Bull. Lond. Math. Soc. 46
(2014), 258–268.

22. Gromov, M., Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82
(1985), 307–347.

23. Gromov, M., Partial Differential Relations, Ergebnisse der Mathematik und ihrer
Grenzgebiete 9, Springer, Berlin, 1986.

24. Lalonde, F. and Sikorav, J.-C., Sous-variétés lagrangiennes et lagrangiennes exactes
des fibrés cotangents, Comment. Math. Helv. 66 (1991), 18–33.

25. Lees, J. A., On the classification of Lagrange immersions, Duke Math. J. 43 (1976),
217–224.

26. Lin, F., Exact Lagrangian caps of Legendrian knots, Preprint, 2013. arXiv:

1309.5101.
27. Murphy, E., Loose Legendrian embeddings in high dimensional contact manifolds,

Preprint, 2012. arXiv:1201.2245.
28. Murphy, E., Closed exact Lagrangians in the symplectization of contact manifolds,

Preprint, 2013. arXiv:1304.6620.
29. Ng, L., Computable Legendrian invariants, Topology 42 (2003), 55–82.
30. Polterovich, L., The surgery of Lagrange submanifolds,Geom. Funct.Anal. 1 (1991),

198–210.
31. Sauvaget, D., Curiosités lagrangiennes en dimension 4, Ann. Inst. Fourier (Grenoble)

54 (2004), 1997–2020.
32. Sikorav, J.-C., Some properties of holomorphic curves in almost complex manifolds,

in Holomorphic Curves in Symplectic Geometry, Progr. Math. 117, pp. 165–
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Département de Mathématiques
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