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Reiteration theorems with extreme values
of parameters

Pedro Fernández-Mart́ınez and Teresa Signes

Abstract. We consider real interpolation methods defined by means of slowly varying

functions b and symmetric spaces E, for which we present extreme reiteration theorems. As an

application we identify, for all possible values of θ∈[0, 1], the interpolation spaces (L1, L logL)θ,b,E
and (Lexp, L∞)θ,b,E .

1. Introduction

Many important results in analysis are based on the action of certain linear

operators between Lp spaces. Quite often, optimal versions of these results require

some knowledge about these operators in spaces close to L1 or L∞. The associated

extremal spaces are not always part of the classical families, and more general

Orlicz or Lorentz classes enter into play, see e.g. [3], [7], [9], [24], [32], [35] and [37].

Interpolation theory is a useful tool in all these problems, but it becomes necessary

to extend the classical methods to include also these extreme situations (see e.g.

[22] and [28]).

The real interpolation method admits not only numerical parameters, but also

functional parameters, which fit better to these general situations, see [21] and [31].

A quite general family of functional parameters is given by tθb(t), where 0≤θ≤1 and

b(t), t>0, is in the family of slowly varying functions (see Definition 2.1 below).

A further extension is possible by allowing the secondary parameter in the real

interpolation method, an Lq space, to be any rearrangement-invariant space E.

The theory of real interpolation, which considers simultaneously these two

extensions was developed in [15] and [17]. There, we considered spaces of the form

(X0, X1)θ,b,E
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with 0≤θ≤1, a slowly varying function b(t) and a general rearrangement-invariant

space E. For this method we proved a number of reiteration theorems, by appro-

priately using Hardy-type inequalities, integral estimates and norm equivalences of

slowly varying functions. Although these results cover and extend many known

reiteration theorems, there are some extreme cases, which have not been studied,

namely, the interpolation spaces

(1) (X0, (X0, X1)0,a,F )θ,b,E and ((X0, X1)1,a,F , X1)θ,b,E ,

where a and b are slowly varying functions, E and F are rearrangement-invariant

spaces, and θ∈[0, 1].
These extreme reiteration spaces are typically difficult to handle, and are only

known in the literature in some special cases. In [20], Gómez and Milman studied

(1) for the classical interpolation parameters (i.e. a≡b≡1, and E and F within the

Lq spaces), but only in the simpler case of ordered couples X1⊆X0. More recently,

Cobos, Fernández-Cabrera, Kühn and Ullrich considered in [10] some particular

cases of slowly varying functions a and b, still for ordered couples, and E and F

within the Lq spaces. More general results are due to Evans, Opic and Pick [13]

who obtained reiteration theorems for general Banach couples (X0, X1) when a and

b are broken-logarithmic functions. See [1] and [11] for other recent results.

One of the difficulties of these extreme interpolation cases is the need of lim-

iting Hardy-type inequalities, which in infinite-measure spaces must hold in the

whole interval (0,∞). As explained in [13], such global inequalities cannot hold for

functions like b(t)=1+|log t|, which have the same behavior near 0 and near ∞. In

[13] this problem is overcome for the case of broken logarithms by requiring powers

of different signs at 0 and ∞.

For a general slowly varying function b(t), t>0, explicit formulas are not avail-

able, but we develop a procedure to prove such inequalities when certain “indices”,

related with the behavior of b(t) near 0 and ∞, have different signs. More precisely,

we assume that b(t2)∼b(t), and define the related functions B0 and B∞ by

B0(u)= b(e1−1/u) and B∞(u)= b(e1/u−1) for 0<u< 1.

Then, under appropriate conditions in the extension indices of B0 and B∞ we prove

limiting Hardy-type inequalities in the whole line (0,∞); see Lemma 3.6. Moreover,

these Hardy inequalities hold not only for Lq norms, but also in the richer family

of rearrangement-invariant spaces E.

Suitable conditions on the extension indices of B0, B∞ and ϕE (the fundamen-

tal function of E) will lead to explicit equivalences of the form

‖b(s)‖
eE(0,t) ∼ b(t)ϕE(�(t)) and ‖b(s)‖

eE(t,∞) ∼ b(t)ϕE(�(t)), t > 0,
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where �(t)=1+|log t|, t>0, as well as to additional limiting estimates (see Lem-

mas 3.2 and 3.5). These simple formulas will play a crucial role in proving the main

results of the paper, namely explicit identities for the extreme reiteration spaces in

(1) for all possible values of θ∈[0, 1]; see Theorems 5.5 and 5.6.

As in our previous papers [15] and [17], we shall use a direct approach, which

follows the classical methods to establish reiteration results. First, we obtain general

Holmstedt-type formulas for the couples (X0, (X0, X1)0,a,F ) and ((X0, X1)1,a,F , X1).

The second step in this process consists of establishing a formula of change of vari-

ables (see Lemma 5.1).

Putting together all the previous ingredients we shall see that the resulting

spaces in the reiteration formulas (1) lie outside the original scale, and to describe

them new interpolation functors are needed (see Definitions 5.2 and 5.3).

Finally, to illustrate our results, we include some applications to spaces of

Lorentz–Karamata type L∞,b,E and L(1,b,E). For example, if we work on a finite

measure space, our results applied to the ordered Banach couple (L1, L∞) enable

us to identify the interpolation spaces (L1, L logL)θ,b,E and (Lexp, L∞)θ,b,E for all

possible values of θ∈[0, 1], which seems to be a new result in the literature. We can

also identify the interpolation spaces between the Schatten ideals S1 and S∞, and

the Macaev ideals Sw and SM.

The paper is organized as follows. In Section 2 we review basic concepts

about rearrangement-invariant spaces and slowly varying functions. In Section 3

we provide the essential lemmas (equivalence lemma, limiting estimates and limit-

ing Hardy-type inequality). The description of the interpolation method Xθ,b,E

and general Holmstedt-type formulas for the K-functional of the couples (X0,

(X0, X1)0,b,E) and ((X0, X1)1,b,E , X1) can be found in Section 4. The extreme re-

iteration results appear in Section 5, and applications to interpolation of Lorentz–

Karamata type spaces are presented in Section 6. Finally, in Section 7 we show

interpolation formulas for the couples (L1, L logL) and (Lexp, L∞), and also for

(S∞, Sw) and (SM, S1).

Throughout the paper we shall write f�g instead of f≤Cg for some constant

C>0. The functions f and g are equivalents, f∼g, if f�g and g�f . We also say

that a function f is almost increasing (almost decreasing) if it is equivalent to an

increasing (decreasing) function.

2. Preliminaries

We refer to the monographs [4] and [14] for the main definitions and properties

concerning rearrangement-invariant spaces and interpolation theory. Recall that a

Banach function space E on (0,∞) is rearrangement-invariant (r.i.) if, for any two



230 Pedro Fernández-Mart́ınez and Teresa Signes

measurable functions f and g,

g ∈E and f∗ ≤ g∗ =⇒ f ∈E and ‖f‖E ≤‖g‖E ,

where f∗ and g∗ stand for the decreasing rearrangements of f and g. Following

the approach of [4], we assume the Fatou property in Banach function spaces; then

every r.i. space E is obtained by applying an exact interpolation method to the

couple (L1, L∞).

2.1. Measures

Throughout this paper we will handle three different measures on (0,∞).

The usual Lebesgue measure dt, the homogeneous measure dt/t and the measure

dt/t�(t), where �(t):=(1+|log t|), t>0. Following [12], we use letters with a tilde for

spaces with the measure dt/t and with a hat for the measure dt/t�(t). For example,

the spaces L̃1 and L̂1 are defined by the norms

‖f‖L̃1
=

∫ ∞

0

|f(t)|dt
t

and ‖f‖L̂1
=

∫ ∞

0

|f(t)| dt

t�(t)
,

respectively, while L̃∞ and L̂∞ coincide with L∞. More precisely, if the space

E=E((0,∞), dt) is obtained by the interpolation functor F from the basic couple

(L1, L∞) as E=F(L1, L∞), then

Ẽ=F(L̃1, L∞) and Ê=F(L̂1, L∞).

Sometimes we need to restrict the space to some partial interval (a, b)⊂(0,∞).

Then we use the notation E(a, b), Ẽ(a, b) and Ê(a, b). Such spaces can be obtained

by applying the functor F to the couples (L1(a, b), L∞(a, b)), (L̃1(a, b), L∞(a, b))

and (L̂1(a, b), L∞(a, b)), respectively. Moreover the norms in E and E(a, b) can be

related in the following way: ‖f‖E(a,b)=‖f(t)χ(a,b)(t)‖E . Using this notation, we

can write

‖f‖E ∼‖f‖E(0,t)+‖f‖E(t,∞) for all t> 0.

The same is true for Ẽ and Ê.

Since f(s)∈Ẽ(t,∞) if and only if f(1/s)∈Ẽ(0, 1/t), t>0, we shall often prove

our assertions only for f in the space Ẽ(0, t), extending them to Ẽ(t,∞) through

the operator s �→f(1/s). We also observe that ‖f(s)‖
eE=‖f(1/s)‖

eE for all f∈Ẽ.

The norms of the spaces E, Ẽ and Ê can also be directly connected without

the use of interpolation functors. For measurable functions f : (0,∞)→(0,∞) we

have

‖f‖
eE(0,t) = ‖f(e−u)‖E(log t,∞), if t≤ 1,

‖f‖
eE(1,t) = ‖f(eu)‖E(0,log t), if t> 1,
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while

‖f‖
bE(0,t) = ‖f(e1−eu)‖E(log �(t),∞), if t≤ 1,

‖f‖
bE(1,t) = ‖f(ee

u−1)‖E(0,log �(t)), if t> 1.

2.2. Extension indices

Given an everywhere positive finite function ϕ on (0, a), 0<a≤∞, we denote

its associated dilation function by

mϕ(t)= sup
0<s<min{a,a/t}

ϕ(ts)

ϕ(s)
, 0<t<∞.

If mϕ(t) is finite everywhere then the lower and upper extension indices of ϕ exist

and they are defined as

πϕ = lim
t→0

logmϕ(t)

log t
and ρϕ = lim

t→∞

logmϕ(t)

log t
.

In general, −∞<πϕ≤ρϕ<∞, but if ϕ is increasing we have 0≤πϕ≤ρϕ<∞, and if

ϕ is quasi-concave then 0≤πϕ≤ρϕ≤1. Moreover, if 0<πϕ≤ρϕ<∞, then

ϕ(t)∼
∫ t

0

ϕ(s)
ds

s

and if −∞<πϕ≤ρϕ<0 the function ϕ(t) is equivalent to
∫ ∞
t

ϕ(s) ds/s. Note also

that both indices remain the same after replacing ϕ(t) by arbitrary equivalent func-

tion. As an example, ϕ(t)=tα�(t)β , α, β∈R, has πϕ=ρϕ=α.

The following properties of extension indices can be easily proved:

(i) If ϕ(t)=tσψ(t), for all σ∈R, then πϕ=σ+πψ and ρϕ=σ+ρψ .

(ii) If ϕ(t)=α(t)ψ(t) then πϕ≥πα+πψ and ρϕ≤ρα+ρψ .

(iii) If ϕ(t)=ψ(t−1) then πϕ=−ρψ and ρϕ=−πψ .

(iv) If ϕ(t)=1/ψ(t) then πϕ=−ρψ and ρϕ=−πψ .

(v) If ϕ(t)=θ(ψ(t)) then πϕ≥πθπψ and ρϕ≤ρθρψ .

From (i) it follows that the ratio ϕ(t)/tσ is almost increasing for any σ<πϕ and

almost decreasing for any σ>ρϕ.

An important function in any r.i. space E is its fundamental function ϕE(λ)=

‖χ(0,λ)‖E , which is continuous and quasi-concave. Moreover, the space E always

admits an equivalent renorming such that ϕE becomes concave and the derivative

ϕ′
E exists a.e. and is decreasing. In particular, 0≤πϕE

≤ρϕE
≤1.
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2.3. Slowly varying functions

Following [18] we give the definition of slowly varying functions.

Definition 2.1. A positive and Lebesgue measurable function b is slowly varying

on (0,∞) (notation b∈SV) if, for every ε>0, the function tεb(t) is almost increasing

on (0,∞) while the function t−εb(t) is almost decreasing on (0,∞).

Powers of logarithms, �α(t)=(1+|log t|)α, α∈R, are slowly varying in (0,∞).

More generally, broken logarithmic functions, defined as

(2) �(α,β)(t)=

{
�α(t), 0<t≤1,

�β(t), t>1,

with (α, β)∈R2 are also in SV. Two further examples are the iterated logarithms

b(t)= (�◦...◦�)α(t), α∈R, t > 0,

and the family of functions

b(t)= exp(|log t|α), α∈ (0, 1), t > 0.

The latter have the special property of growing faster to infinity than any positive

power of a logarithm.

For equivalent definitions and further examples of slowly varying functions see

[6] or [25]. Some basic properties are summarized in the following lemma.

Lemma 2.2. Assume b, b1, b2∈SV. Then the following are true:

(i) b1b2∈SV, b(1/t)∈SV and br∈SV for all r∈R.
(ii) b(tαb1(t))∈SV for any α>0.

(iii) If ε and s are positive numbers, then there are positive constants cε and

Cε such that

cε min{s−ε, sε}b(t)≤ b(st)≤Cε max{sε, s−ε}b(t).

In particular, πb=ρb=0.

(iv) b◦f∼b◦g if f and g are positive finite equivalent functions on (0,∞).

(v) Let E be an r.i. space and α>0. Then, for t>0,

‖sαb(s)‖
eE(0,t) ∼ tαb(t) and ‖s−αb(s)‖

eE(t,∞) ∼ t−αb(t).

(vi) The functions

Φ0(t) := ‖b(s)‖
eE(0,t) and Φ∞(t) := ‖b(s)‖

eE(t,∞), t > 0,
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are slowly varying functions, for all r.i. spaces E.

(vii) For any t>0 and any r.i. space E,

b(t)� ‖b(s)‖
eE(0,t) and b(t)� ‖b(s)‖

eE(t,∞).

We refer to [18] for the proof of (i)–(iv). Properties (v)–(vii) are proved in [15].

Remark 2.3. The property (iii) above implies that if b∈SV is such that b(t0)=0

(b(t0)=∞) for some t0>0, then b≡0 (b≡∞). In particular, if ‖b‖
eE(0,1)<∞ then

‖b‖
eE(0,t)<∞ for all t>0 and if ‖b‖

eE(1,∞)<∞ then ‖b‖
eE(t,∞)<∞ for all t>0. These

facts appear implicitly in the theorems of Section 4.

3. Equivalences of norms and Hardy-type inequalities

In this section we consider slowly varying functions b such that b(t2)∼b(t).

All previous examples, except b(t)=exp(|log t|α), satisfy this condition. For every

b∈SV as above, we define new functions B0 and B∞ by

B0(u)= b(e1−1/u) and B∞(u)= b(e1/u−1), for 0<u≤ 1,

or equivalently by the formula

(3) b(t)=

{
B0(1/�(t)), if t∈(0, 1],
B∞(1/�(t)), if t∈(1,∞).

For example, if b(t)=�(α,β)(t) then B0(u)=1/uα and B∞(u)=1/uβ , u∈(0, 1). The

condition b(t2)∼b(t) implies that B0 and B∞ satisfy the Δ2 condition, that is

B0(t)∼B0(2t) and B∞(t)∼B∞(2t). Hence the extension indices of B0 and B∞
exist and are both finite.

3.1. Equivalences of norms

Next we study the counterparts of the equivalences in Lemma 2.2(v),

(4) ‖sαb(s)‖
eE(0,t) ∼ tαb(t) and ‖s−αb(s)‖

eE(t,∞) ∼ t−αb(t)

in the limit case α=0. First we study the simple case ‖�(s)−σ‖
eE(1,t), t>e, and

deduce afterwards the general case.
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Lemma 3.1. Let E be an r.i. space and choose σ<πϕE
, then

‖�(s)−σ‖
eE(1,t) ∼‖�(s)−σ‖

eE(
√
t,t) ∼ �(t)−σϕE(�(t))

for all t∈(e,∞).

Proof. We shall distinguish two different cases: σ≤0 and 0<σ<πϕE
. Assume

first σ≤0, then for all t>1,

‖�(s)−σ‖
eE(1,t) = ‖�(s)−σχ(1,t)(s)‖ eE(1,∞) ≤ �(t)−σ‖χ(1,t)(e

u)‖E

= �(t)−σ‖χ(0,log t)(u)‖E = �(t)−σϕE(log t)≤ �(t)−σϕE(�(t)).

On the other hand

‖�(s)−σ‖
eE(1,t) ≥

∥∥�(s)−σ
∥∥
eE(

√
t,t)

≥ �
(√

t
)−σ‖χ(

√
t,t)(e

u)‖E

= �
(√

t
)−σ‖χ( 1

2 log t,log t)(u)‖E � �(t)−σϕE(�(t)),(5)

where the last inequality uses the quasi-concavity of ϕE and the fact t>e. This

proves the equivalence for σ≤0.

For the case 0<σ<πϕE
, we may assume without loss of generality that the

function ϕE is concave. Then the Lorentz space ΛϕE
is included in E (see [14,

p. 118]) and ϕ′
E(s)≤ϕE(s)/s. So,

‖�(s)−σ‖
eE(1,t) = ‖(1+u)−σ‖E(0,log t) = ‖u−σ‖E(1,�(t)) ≤‖u−σ‖ΛϕE

(1,�(t))

=

∫ �(t)

1

u−σϕ′
E(u) du≤

∫ �(t)

1

u−σϕE(u)
du

u
.

The condition πϕE
>σ implies that

∫ �(t)

1
u−σϕE(u) du/u��(t)−σϕE(�(t)), which

gives the estimate from above. The estimate from below is similar to (5),

(6) ‖�(s)−σ‖
eE(1,t) ≥‖�(s)−σ‖

eE(
√
t,t) ≥ �(t)−σ‖χ(

√
t,t)(e

u)‖E � �(t)−σϕE(�(t)). �

We now establish the limiting case of (4) for α=0, generalizing to slowly varying

functions on r.i. spaces the results from Lemma 6.1 from [13].

Lemma 3.2. Let E be an r.i. space, b∈SV be such that b(t2)∼b(t) and let B0

and B∞ be its associated functions defined by (3).

(i) If ρB∞<πϕE
≤ρϕE

<πB0 , then

‖b(s)‖
eE(0,t) ∼ b(t)ϕE(�(t)), t > 0.
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(ii) If ρB0<πϕE
≤ρϕE

<πB∞ , then the equivalence is

‖b(s)‖
eE(t,∞) ∼ b(t)ϕE(�(t)), t > 0.

Proof. We split (0,∞)=(0, 1)∪[1, e]∪(e,∞) and we shall establish (i) on each

interval. For the first interval we may quote Lemma 2.1 of [33], which under the

conditions b(t2)∼b(t) and ρϕE
<πB0 , gives that

‖b(tτ)‖
eE(0,1) = ‖b(te−u)‖E ∼ b(t)ϕE(�(t)) for all t∈ (0, 1).

Then the change of variables s=tτ yields (i) on the interval (0, 1).

When t∈[1, e], the monotonicity of the functions b(t)/t and ϕE(�(t)) implies

that

‖b(s)‖
eE(0,t) ∼ 1∼ b(t)ϕE(�(t)).

Finally let t∈(e,∞). Observe that

‖b(s)‖
eE(0,t) ∼‖b(s)‖

eE(0,1)+‖b(s)‖
eE(1,t) ∼ 1+‖b(s)‖

eE(1,t).

Then to establish (i) on the interval (e,∞) it suffices to show that for all t>e,

(7) 1� b(t)ϕE(�(t))

and

(8) ‖b(s)‖
eE(1,t) ∼ b(t)ϕE(�(t)).

Consider the function f(t)=B∞(1/t)ϕE(t), t>0, whose indices satisfy

0<−ρB∞+πϕE
≤πf ≤ ρf ≤−πB∞+ρϕE

<∞.

Then f is almost increasing and therefore f(�(t))=b(t)ϕE(�(t)), for t>e, is almost

increasing too. In particular we have (7) for all t∈(e,∞).

Take now ρB∞<σ<πϕE
so that the function t−σB∞(t), t>0, is almost de-

creasing. Then, for all t∈(e,∞), we have

‖b(s)‖
eE(1,t) =

∥∥∥∥B∞

(
1

�(s)

)∥∥∥∥
eE(1,t)

�B∞

(
1

�(t)

)
�(t)σ‖�(s)−σ‖

eE(1,t) ∼ b(t)ϕE(�(t)),

where last inequality uses Lemma 3.1. A similar argument yields the reverse in-

equality

‖b(s)‖
eE(1,t) � ‖b(s)‖

eE(
√
t,t) �B∞

(
1

�
(√

t
)
)
�
(√

t
)σ‖�(s)−σ‖

eE(
√
t,t) ∼ b(t)ϕE(�(t)).

This establishes (8) and concludes the proof of (i).
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Finally, (ii) follows from (i) by using the function b̄(t)=b(1/t), t>0, and recall-

ing that ‖g(t)‖
eE=‖g(1/t)‖

eE for all g∈Ẽ. �

Below, we shall also use the following lemmas.

Lemma 3.3. Let b∈SV be such that b(t2)∼b(t). If the associated function B0

satisfies that πB0>0, then∫ t

0

b(s)
ds

s�(s)
∼ b(t) for all t∈ (0, 1).

Proof. Changing variables �(s)=1/u we obtain
∫ t

0

b(s)
ds

s�(s)
=

∫ t

0

B0

(
1

�(s)

)
ds

s�(s)
=

∫ 1/�(t)

0

B0(u)
du

u
.

Since πB0>0, we have (see [14, p. 57])
∫ 1/�(t)

0

B0(u)
du

u
∼B0

(
1

�(t)

)
= b(t). �

Lemma 3.4. Let b∈SV be such that b(t2)∼b(t). Then∫ t

√
t

b(s)
ds

s�(s)
� b(t) for all t∈ (e,∞).

Proof. Since �(t) is increasing in (1,∞), we get∫ t

√
t

b(s)
ds

s�(s)
≥ 1

�(t)

∫ t

√
t

b(s)
ds

s
.

Hence it is enough to estimate the second integral from below by b(t)�(t). Take

α∈R such that ρB∞<α. Then the function t−αB∞(t), t>0, is almost decreasing

and we have, for all t∈(e,∞),∫ t

√
t

b(s)
ds

s
=

∫ t

√
t

B∞

(
1

�(s)

)
�(s)α�(s)−α ds

s

�B∞

(
1

�
(√

t
)
)
�
(√

t
)α ∫ t

√
t

�(s)−α ds

s
.

Arguing as in (5) and (6) and using that b(t)∼b
(√

t
)
, one obtains that

∫ t

√
t

b(s)
ds

s
� b(t)�(t)

for all t∈(e,∞). �



Reiteration theorems with extreme values of parameters 237

3.2. Limiting estimates

Let E be an r.i. space, b∈SV and α∈R. Lemma 2.4 from [15] asserts that

‖sαb(s)ϕ(s)‖
eE(0,t) �

∫ t

0

sαb(s)ϕ(s)
ds

s

and

‖sαb(s)ϕ(s)‖
eE(t,∞) �

∫ ∞

t

sαb(s)ϕ(s)
ds

s
,

for any quasi-concave function ϕ and any t∈(0,∞). Next we state better estimates,

when α∈{−1, 0}, which will play a crucial role later on.

Lemma 3.5. Let E be an r.i. space, ϕ be a quasi-concave function and let

b∈SV be such that b(t2)∼b(t).

(i) If the associated function B0 satisfies πB0>0, then

‖s−1b(s)ϕ(s)‖
eE(0,t) �

∫ t

0

s−1b(s)ϕ(s)ϕE(�(s))
ds

s�(s)

for any t∈(0,∞).

(ii) If B∞ satisfies πB∞>0, then

‖b(s)ϕ(s)‖
eE(t,∞) �

∫ ∞

t

b(s)ϕ(s)ϕE(�(s))
ds

s�(s)

for any t∈(0,∞).

Proof. First we prove (i) for t∈(0, 1). Using Lemma 3.3 and that the function

s �→ϕ(s)/s is almost decreasing, one get

s−1b(s)ϕ(s)∼ s−1ϕ(s)

∫ s

0

b(τ)
dτ

τ�(τ)
�

∫ s

0

τ−1b(τ)ϕ(τ)
dτ

τ�(τ)

for all s∈(0, 1). Hence

‖s−1b(s)ϕ(s)‖
eE(0,t) �

∥∥∥∥
∫ s

0

τ−1b(τ)ϕ(τ)
dτ

τ�(τ)

∥∥∥∥
eE(0,t)

for all 0<t<1. Therefore, in order to obtain (i) for t∈(0, 1), it is sufficient to verify

that ∥∥∥∥
∫ s

0

τ−1b(τ)ϕ(τ)
dτ

τ�(τ)

∥∥∥∥
eE(0,t)

�
∫ t

0

τ−1b(τ)ϕ(τ)ϕE(�(τ))
dτ

τ�(τ)
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for all 0<t<1. Observe that
∥∥∥∥
∫ s

0

τ−1b(τ)ϕ(τ)
dτ

τ�(τ)

∥∥∥∥
eE(0,t)

≤
∥∥∥∥
∫ t

0

χ(0,s)(τ)τ
−1b(τ)ϕ(τ)

dτ

τ�(τ)

∥∥∥∥
eE(0,1)

=

∥∥∥∥
∫ t

0

χ(0,e−u)(τ)τ
−1b(τ)ϕ(τ)

dτ

τ�(τ)

∥∥∥∥
E

for all 0<t<1. Then, using the general Minkowski inequality, see [14, p. 45], and the

relation ‖χ(0,e−u)(τ)‖E=‖χ(0,log(1/τ))(u)‖E=ϕE(log(1/τ))≤ϕE(�(τ)), for all τ>0,

we obtain the result.

If t lays in the interval [1, e] it is easy to check that

‖s−1b(s)ϕ(s)‖
eE(0,t) ∼ 1∼

∫ t

0

s−1b(s)ϕ(s)ϕE(�(s))
ds

s�(s)
.

Finally, if t∈(e,∞) then

‖s−1b(s)ϕ(s)‖
eE(0,t) ∼‖s−1b(s)ϕ(s)‖

eE(0,e)+‖s−1b(s)ϕ(s)‖
eE(e,t)

∼
∫ e

0

s−1b(s)ϕ(s)ϕE(�(s))
ds

s�(s)
+‖s−1b(s)ϕ(s)‖

eE(e,t).

Hence to finish the proof it is enough to verify that

(9) ‖s−1b(s)ϕ(s)‖
eE(e,t) ≤

∫ t

e

τ−1b(τ)ϕ(τ)ϕE(�(τ))
dτ

τ�(τ)

for all t∈(e,∞). Lemma 3.4 and the fact that ϕ(s)/s is almost decreasing yield the

inequalities

s−1b(s)ϕ(s)� s−1ϕ(s)

∫ s

√
s

b(τ)
dτ

τ�(τ)
�

∫ s

√
s

τ−1b(τ)ϕ(τ)
dτ

τ�(τ)

for all s∈(e,∞). Now taking norms on Ẽ(e, t), for all t>e, and using the connection

between the norms of the spaces, we get

‖s−1b(s)ϕ(s)‖
eE(e,t) �

∥∥∥∥
∫ s

√
s

τ−1b(τ)ϕ(τ)
dτ

τ�(τ)

∥∥∥∥
eE(e,t)

≤
∥∥∥∥
∫ t

e

τ−1b(τ)ϕ(τ)χ(
√
s,s)(τ)

dτ

τ�(τ)

∥∥∥∥
eE(1,∞)

=

∥∥∥∥
∫ t

e

τ−1b(τ)ϕ(τ)χ(eu/2,eu)(τ)
dτ

τ�(τ)

∥∥∥∥
E
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for all t>e. Using now the general Minkowski inequality, see [14, p. 45], and the

estimate ‖χ(eu/2,eu)(τ)‖E=‖χ(log τ,2 log τ)(u)‖E=ϕE(log τ)≤ϕE(�(τ)), for all τ>e,

we establish (9) for all t>e.

In order to prove (ii), we consider the slowly varying function b̄(t)=b(1/t), t>0,

and the quasi-concave function ϕ(s)=sϕ(1/s). We observe that

‖b(s)ϕ(s)‖
eE(t,∞) =

∥∥∥∥sb̄
(
1

s

)
ϕ

(
1

s

)∥∥∥∥
eE(t,∞)

= ‖s−1b̄(s)ϕ(s)‖
eE(0,1/t).

Then, by (i) and the change of variables s=1/τ , we obtain (ii). In fact,

‖b(s)ϕ(s)‖
eE(t,∞) �

∫ 1/t

0

s−1b̄(s)ϕ(s)ϕE(�(s))
ds

s�(s)

=

∫ ∞

t

b(τ)ϕ(τ)ϕE(�(τ))
dτ

τ�(τ)
. �

3.3. Limiting Hardy-type inequalities

When α>0, general Hardy-type inequalities, involving b∈SV and an r.i. space E,

were obtained in [15]. Namely

∥∥∥∥t−αb(t)

∫ t

0

f(s) ds

∥∥∥∥
eE

� ‖t1−αb(t)f(t)‖
eE ,

∥∥∥∥tαb(t)
∫ ∞

t

f(s) ds

∥∥∥∥
eE

� ‖t1+αb(t)f(t)‖
eE

hold for each measurable positive function f on (0,∞). These inequalities were a

cornerstone for the reiteration results of [15] and [17]. Now we focus on the limit

case α=0 in which the power function disappears; then an additional logarithmic

term comes out and the measure used is dt/t�(t). Recall that Ê=E(dt/t�(t)).

Lemma 3.6. Let E be an r.i. space, b∈SV be such that b(t2)∼b(t), and let B0

and B∞ be its associated functions.

(i) If ρB0<0<πB∞ , then

∥∥∥∥b(t)
∫ t

0

f(s) ds

∥∥∥∥
bE

� ‖tb(t)f(t)�(t)‖
bE

for any positive measurable function f on (0,∞).
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(ii) If ρB∞<0<πB0 , then

∥∥∥∥b(t)
∫ ∞

t

f(s) ds

∥∥∥∥
bE

� ‖tb(t)f(t)�(t)‖
bE

for any positive measurable function f on (0,∞).

Proof. In order to prove (i) we consider the operator

Tg(t)= b(t)

∫ t

0

g(s)

b(s)�(s)

ds

s
.

We claim that T is bounded from L̂1 into L̂1, and from L∞ into L∞. Actually, let

g∈L̂1, then

‖Tg‖L̂1
=

∫ ∞

0

∣∣∣∣b(t)
∫ t

0

g(s)

b(s)�(s)

ds

s

∣∣∣∣ dt

t�(t)

≤
∫ ∞

0

|g(s)|
b(s)

(∫ ∞

s

b(t)

�(t)

dt

t

)
ds

s�(s)
∼

∫ ∞

0

|g(s)| ds

s�(s)
= ‖g‖L̂1

,

where last inequality follows from Lemma 3.2(ii) applied to the r.i. space E=L1

and to the slowly varying function b̄(t)=b(t)/�(t). Observe that ρB0
=1+ρB0 and

πB∞
=1+πB∞ .

Let us estimate the norm ‖T : L∞→L∞‖. Choose g∈L∞. Then

‖Tg‖L∞ =sup
t>0

∣∣∣∣b(t)
∫ t

0

g(s)

b(s)�(s)

ds

s

∣∣∣∣≤‖g‖L∞ sup
t>0

b(t)

∫ t

0

1

b(s)�(s)

ds

s
∼‖g‖L∞ .

In order to prove last inequality take the slowly varying function b̃(t)=1/b(t)�(t). Its

associated functions are B̃0(t)=t/B0(t) and B̃∞(t)=t/B∞(t), with indices π
eB0
=

1−ρB0 , ρ eB∞
=1−πB∞ . Then, we can apply Lemma 3.2(i) with b̃ and E=L1 to

obtain ∫ t

0

1

b(s)�(s)

ds

s
∼ 1

b(t)
.

Now, since Ê is an interpolation space for the couple (L̂1, L∞) we have that

the operator

T : Ê−→ Ê

is bounded. It suffices to choose g(t)=tb(t)f(t)�(t), t>0, to complete the proof

of (i).
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In order to show (ii) we proceed similarly. First we prove that the operator

Tg(t)= b(t)

∫ ∞

t

g(s)

b(s)�(s)

ds

s

is bounded from L̂1 to L̂1 and also bounded from L∞ to L∞. As a matter of fact,

‖Tg‖L̂1
≤

∫ ∞

0

|g(s)|
b(s)

(∫ s

0

b(t)

�(t)

dt

t

)
ds

s�(s)
∼

∫ ∞

0

|g(s)| ds

s�(s)
= ‖g‖L̂1

.

The last inequality follows from Lemma 3.2(i) applied to the slowly varying function

b̄ and to the r.i. space E=L1. Similarly using Lemma 3.2(ii), with b̃ and E=L1,

we get

‖Tg‖L∞ ≤‖g‖L∞ sup
t>0

b(t)

∫ ∞

t

1

b(s)�(s)

ds

s
∼‖g‖L∞ .

Now the same interpolation argument as above yield that

T : Ê−→ Ê

is a bounded operator and taking g(t)=tb(t)f(t)�(t), t>0, we establish (ii). �

Remark 3.7. As a special case we recover various results stated in [13,

Lemma 4.2], corresponding to a broken logarithm b and E=Lq . See also [30].

Remark 3.8. See [26] and [27] for Hardy-type inequalities in weighted r.i. spaces.

4. Interpolation methods and generalized Holmstedt-type formulas

Let X=(X0, X1) be a compatible couple of Banach spaces, that is, X0 and X1

are Banach spaces continuously embedded in some common Hausdorff topological

vector space. We equip X0+X1 with the norm K(1, · ), where

K(t, f)=K(t, f ;X0, X1)= inf{‖f0‖X0+t‖f1‖X1 : f = f0+f1, fi ∈Xi, i=0, 1}

is the Peetre K-functional. We refer to the well known texts [4], [5], [8] and [14] for

basic concepts on interpolation theory.

The following interpolation methods were introduced in [15] and constitute an

extension of the well known real interpolation method with a functional parameter

(see, e.g. [21] and [31]).
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Definition 4.1. Let X=(X0, X1) be a compatible Banach couple, E be an r.i.

space, b∈SV and 0≤θ≤1. The real interpolation space Xθ,b,E≡(X0, X1)θ,b,E con-

sists of all f in X0+X1 for which

‖f‖θ,b,E = ‖t−θb(t)K(t, f)‖
eE <∞.

The space Xθ,b,E is a Banach space. It is also an interpolation space provided

that

0<θ< 1, or θ=0 and ‖b‖
eE(1,∞) <∞, or θ=1 and ‖b‖

eE(0,1) <∞.

Moreover, if none of the previous conditions hold, then Xθ,b,E={0}.
In [15] and [17] we identified the reiteration spaces

(Xθ0,b0,E0 , Xθ1,b1,E1)θ,b,E

for almost all possible values of θ0, θ1 and θ in [0, 1]. Our interest now is to study

the extreme cases

(X0, X0,b1,E1)θ,b,E and (X1,b0,E0 , X1)θ,b,E ,

that were not covered in [15] and [17]; notice that both spaces of the couple are

now very close to X0 or to X1, respectively. In order to identify these interpolation

spaces we relate the K-functional of the underlying couples through generalized

Holmstedt-type formulas collected in the following theorems.

Theorem 4.2. Let X=(X0, X1) be a compatible Banach couple and E be an

r.i. space. Let b∈SV be such that ‖b‖
eE(1,∞)<∞ and choose ρ(t)=‖b‖−1

eE(t,∞)
, t>0.

Then

K(ρ(t), f ;X0, X0,b,E)∼ ρ(t)‖b(s)K(s, f)‖
eE(t,∞)

for all f∈X0+X0,b,E and t∈(0,∞).

Proof. Given f∈X0+X1 define

(Pf)(t)= ‖b(s)K(s, f)‖
eE(0,t), t > 0,

(Qf)(t)= ‖b(s)K(s, f)‖
eE(t,∞), t > 0.

In the first stage we prove the inequality

(10) K(ρ(t), f ;X0, X0,b,E)� ρ(t)(Qf)(t).
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Let f∈X0+X0,b,E and t>0. Choose a decomposition f=g+h in X0+X1 such that

‖g‖X0+t‖h‖X1 ≤ 2K(t, f).

It is easy to check that for all s∈(0,∞),

(11) K(s, g)≤ 2K(t, f) and
K(s, h)

s
≤ 2

K(t, f)

t
.

Then

(12) ‖g‖X0 ≤ 2K(t, f)∼K(t, f)ρ(t)‖b‖
eE(t,∞) � ρ(t)(Qf)(t).

Besides, for the term ‖h‖X0,b,E
we have the estimate

‖h‖X0,b,E
≤ (Ph)(t)+(Qf)(t)+(Qg)(t).

Here (Ph)(t) can be estimated by (Qf)(t) using (11), Lemma 2.2(v) and (vii), and

the monotonicity of K(t, f),

(Ph)(t)= ‖b(s)K(s, h)‖
eE(0,t) ≤ t−1K(t, f)‖sb(s)‖

eE(0,t)

∼K(t, f)b(t)�K(t, f)‖b‖
eE(t,∞) � (Qf)(t).

Using the monotonicity of the K-functional it is easy to prove that (Qg)(t)�(Qf)(t)

and so ‖h‖X0,b,E
�(Qf)(t). This, combined with (12), proves (10).

The second part of the proof deals with the reverse inequality

(13) ρ(t)(Qf(t))�K(ρ(t), f ;X0, X0,b,E).

Fix t>0 and let f=g+h be any decomposition of f in X0+X0,b,E . Then

(Qf)(t)≤ (Qg)(t)+(Qh)(t)≤ (Qg)(t)+‖h‖X0,b,E
.

Since

(Qg)(t)= ‖b(s)K(s, g)‖
eE(t,∞) ≤‖b‖

eE(t,∞)‖g‖X0 = ρ(t)−1‖g‖X0 ,

we have that ρ(t)(Qf)(t)≤‖g‖X0+ρ(t)‖h‖X0,b,E
. Taking infimum over all possible

representations of f we establish (13). �

Next we take care of the K-functional for the couple ((X0, X1)1,b,E , X1). Al-

though it can be proved in a similar way as Theorem 4.2, we shall use a symmetry

argument.
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Theorem 4.3. Let X=(X0, X1) be a compatible Banach couple and E be an

r.i. space. Let b∈SV be such that ‖b‖
eE(0,1)<∞ and consider the function ρ(t)=

‖b‖
eE(0,t), t>0. Then

(14) K(ρ(t), f ;X1,b,E , X1)∼‖s−1b(s)K(s, f)‖
eE(0,t)

for all f∈X1,b,E+X1 and t∈(0,∞).

Proof. Consider the function b̄(t)=b(1/t). Then ρ(t)=‖b̄(s)‖
eE(1/t,∞). Using

the equalities (see [4, Proposition 5.1.2] and [15, Lemma 3.4])

K(t, f ;X0, X1)= tK(t−1, f ;X1, X0) and (X0, X1)1,b,E =(X1, X0)0,b̄,E ,

together with Theorem 4.2 we have

K(ρ(t), f ; (X0, X1)1,b,E , X1) = ρ(t)K

(
1

ρ(t)
, f ;X1, (X1, X0)0,b̄,E

)

∼ ‖b̄(s)K(s, f ;X1, X0)‖
eE(1/t,∞).

Hence (14) follows using that ‖f(s)‖
eE(0,t)=‖f(1/s)‖

eE(1/t,∞) and the relation be-

tween the K-functionals again. �

Remark 4.4. The Holmstedt-type formulas in Theorems 4.2 and 4.3 hold for

more general parameters b than slowly varying functions. In fact it is only needed

that

‖sb(s)‖
eE(0,t) � t‖b(s)‖

eE(t,∞) for all t> 0.

5. Reiteration theorems

In the present section we identify the interpolation spaces

(X0, X0,b1,E1)θ,b,E and (X1,b0,E0 , X1)θ,b,E

for all possible values of θ∈[0, 1]. To do so we will need a formula for a change of

variables, which is stated in the next lemma. Recall again that Ê=E(dt/t�(t)).

We say that a function f belongs to the family F if it has the following property:

if ϕ∼ψ, then f ◦ϕ∼ f ◦ψ.

For example, potential functions, slowly varying functions and the K-functional

belong to F . In particular, if b∈SV and 0≤θ≤1, then f(t)=t−θb(t)K(t, · ) belongs
to F .
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Lemma 5.1. Let E be an r.i. space, b∈SV be such that b(t2)∼b(t) with asso-

ciated functions B0 and B∞.

(i) If ρB0 <πϕE
≤ρϕE

<πB∞ and ρ(t)=1/b(t)ϕE(�(t)), t>0, then

‖f ◦ρ‖
bE ∼‖f‖

eE

for all f∈Ẽ belonging to F , with equivalence constant independent of f .

(ii) If ρB∞<πϕE
≤ρϕE

<πB0 and ρ(t)=b(t)ϕE(�(t)), t>0, then

‖f ◦ρ‖
bE ∼‖f‖

eE

for all f∈Ẽ belonging to F , with equivalence constant independent of f .

Proof. We prove (i). A similar argument proves (ii). We observe that by an

interpolation argument, it suffices to show the equivalence of the norm for E=L1

and E=L∞.

Let Φ0(u)=(B0(u)ϕE(1/u))
−1, 0<u≤1. By properties of the indices

0<πϕE
−ρB0 ≤πΦ0 ≤ ρΦ0 ≤ ρϕE

−πB0 <∞.

Then there exists a smooth function Ψ0∼Φ0 such that uΨ′
0(u)∼Ψ0(u) for all 0<

u≤1, Ψ0(1)=Φ0(1) and limu→0 Ψ0(u)=0 (see [34, Lemma 2.1]). Hence,

∫ Ψ0(1)

0

|f(s)|ds
s

=

∫ 1

0

|f(Ψ0(u))|
Ψ′

0(u)

Ψ0(u)
du∼

∫ 1

0

|f(Ψ0(u))|
du

u
.

Since f∈F , ∫ Ψ0(1)

0

|f(s)|ds
s

∼
∫ 1

0

|f(Φ0(u))|
du

u
.

Now using the change of variables u=1/�(t) and the fact that Φ0(1/�(t))=ρ(t), for

all 0<t≤1, we obtain that

(15)

∫ Ψ0(1)

0

|f(s)|ds
s

∼
∫ 1

0

|f(Φ0(u))|
du

u
=

∫ 1

0

|f(ρ(t))| dt

t�(t)
.

On the other hand, we consider the function Φ∞(u)=(B∞(1/u)ϕE(u))
−1 for

1≤u<∞. By hypothesis

0<πB∞−ρϕE
≤πΦ∞ ≤ ρΦ∞ ≤ ρB∞−πϕE

<∞.

As before, there exists a smooth function Ψ∞∼Φ∞ such that uΨ′
∞(u)∼Ψ∞(u) for

all 1≤u<∞, Ψ∞(1)=Φ∞(1) and limu→∞ Ψ∞(u)=∞. Then
∫ ∞

Ψ∞(1)

|f(s)|ds
s

=

∫ ∞

1

|f(Ψ∞(u))|Ψ
′
∞(u)

Ψ∞(u)
du∼

∫ ∞

1

|f(Ψ∞(u))|du
u
.
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Using that f∈F , the change of variables u=�(t), 1≤t<∞, and that Φ∞(�(t))=ρ(t),

for all 1≤t<∞, we have

(16)

∫ ∞

Ψ∞(1)

|f(s)|ds
s

∼
∫ ∞

1

|f(Φ∞(u))|du
u

=

∫ ∞

1

|f(ρ(t))| dt

t�(t)
.

Summing up (15) and (16) we get

‖f‖L̃1
∼‖f ◦ρ‖L̂1

(observe that Ψ0(1)=Ψ∞(1)). The same is true in the case E=L∞, that is ‖f‖L∞∼
‖f ◦ρ‖L∞ . Hence, using the interpolation properties of the space E, we obtain the

inequality

‖f ◦ρ‖
bE � ‖f‖

eE .

The reverse inequality can be proved using the same techniques with inverse

functions. �

We can now consider the extreme reiteration problem. To this end, we need

to introduce the space Xθ,b, bE and the spaces L and R with respect to the measure

dt/t�(t).

Definition 5.2. Let X=(X0, X1) be a compatible Banach couple, E be an r.i.

space, b∈SV and 0≤θ≤1. The space Xθ,b, bE consists of all f in X0+X1 for which

the norm

‖f‖θ,b, bE = ‖t−θb(t)K(t, f)‖
bE

is finite.

When E=Lq , 1≤q<∞, the space Xθ,b, bE coincides with the interpolation space

Xθ,b(t)/�1/q(t),E while Xθ,b,L̂∞
=Xθ,b,L∞ .

Definition 5.3. Given a compatible Banach couple X=(X0, X1), a real para-

meter 0≤θ≤1, two r.i. spaces E and F , and a, b∈SV, we define the space X
L
θ,b, bE,a,F

as the collection of all those elements f∈X0+X1 for which

‖f‖L;θ,b, bE,a,F =
∥∥b(t)‖s−θa(s)K(s, f)‖

eF (0,t)

∥∥
bE
<∞.

Analogously, the space X
R
θ,b, bE,a,F consists of all those elements in X0+X1 for which

the norm

‖f‖R;θ,b, bE,a,F =
∥∥b(t)‖s−θa(s)K(s, f)‖

eF (t,∞)

∥∥
bE

is finite.
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These spaces can also be identified when E=F=Lq .

Lemma 5.4. Let X=(X0, X1) be a compatible Banach couple, a, b∈SV, 1≤
q≤∞ and 0≤θ≤1. Then

X
L
θ,b,L̂q,a,Lq

=Xθ,aΦ∞,Lq and X
R
θ,b,L̂q,a,Lq

=Xθ,aΦ0,Lq ,

where Φ0(t)=‖b(s)/�1/q(s)‖L̃q(0,t)
and Φ∞(t)=‖b(s)/�1/q(s)‖L̃q(t,∞).

The proof is omitted since it is an easy consequence of Fubini’s theorem (see [15,

Lemma 6.7]).

The first reiteration result is described in the following theorem.

Theorem 5.5. Let X=(X0, X1) be a compatible couple, E and E1 be r.i.

spaces, and b, b1∈SV with b1 satisfying b1(t)∼b1(t
2). Assume that E1 and the as-

sociated functions of b1, B1,0 and B1,∞ satisfy

ρB1,0 <πϕE1
≤ ρϕE1

<πB1,∞ .

Then, for any 0≤θ<1, we have the equality

(17) (X0, X0,b1,E1)θ,b,E =X0,b̃, bE ,

where b̃(t)=(b1(t)ϕE1(�(t)))
θb(1/b1(t)ϕE1(�(t))), t>0. In case θ=1, we have that

(18) (X0, X0,b1,E1)1,b,E =X
R
0,b◦ρ, bE,b1,E1

,

where ρ(t)=(b1(t)ϕE1(�(t)))
−1, t>0.

Proof. By Lemma 3.2(ii) we know that ‖b1‖
eE1(t,∞)∼b1(t)ϕE1(�(t)), t>0. Hence

we take

ρ(t)=
1

b1(t)ϕE1(�(t))
, t > 0.

Choose f∈(X0, X0,b1,E1)θ,b,E . Then by the generalized Holmstedt-type formula,

Theorem 4.2, we know that

K(ρ(t), f) :=K(ρ(t), f ;X0, X0,b1,E1)∼ ρ(t)‖b1(s)K(s, f)‖
eE1(t,∞).

Thus, using Lemma 5.1(i) with F (t)=tθb(t)K(t, f)∈F , we establish the equivalence

‖f‖(X0,X0,b1,E1
)θ,b,E

= ‖s−θb(s)K(s, f)‖
eE ∼‖ρ(t)−θb(ρ(t))K(ρ(t), f)‖

bE

∼‖ρ(t)1−θb(ρ(t))‖b1(s)K(s, f)‖
eE1(t,∞)‖ bE .
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Consequently, for θ=1 we obtain (18). On the other hand, to get (17) for 0≤θ<1

it suffices to prove that

I := ‖ρ(t)1−θb(ρ(t))‖b1(s)K(s, f)‖
eE1(t,∞)‖ bE ∼‖b̃(t)K(t, f)‖

bE .

First we prove the inequality �. Observe that the function Θ(t)=ρ(t)1−θb(ρ(t)),

t>0, satisfies Θ(t)∼Θ(t2), and has as associated functions

BΘ,0(u) = Θ(e1−1/u)= (B1,0(u)ϕE1(1/u))
θ−1b(ρ(e1−1/u)),

BΘ,∞(u) = Θ(e1/u−1)= (B1,∞(u)ϕE1(1/u))
θ−1b(ρ(e1/u−1)),

for 0<u<1. Moreover, the indices of BΘ,0 and BΘ,∞ satisfy

ρBΘ,∞ ≤ (θ−1)(πB1,∞−ρϕE1
)< 0< (θ−1)(ρB1,0−πϕE1

)≤πBΘ,0 .

Hence Lemma 3.5(ii) and the Hardy-type Lemma 3.6(ii) yield

I �
∥∥∥∥ρ(t)1−θb(ρ(t))

∫ ∞

t

b1(s)
ϕE1(�(s))

�(s)
K(s, f)

ds

s

∥∥∥∥
bE

� ‖ρ(t)−θb(ρ(t))K(t, f)‖
bE = ‖b̃(t)K(t, f)‖

bE .

For the reverse inequality we use the monotonicity of the K-functional and the

equivalence ‖b1‖
eE1(t,∞)∼ρ(t)−1, t>0, to get

I �
∥∥ρ(t)1−θb(ρ(t))K(t, f)‖b1(u)‖

eE1(t,∞)

∥∥
bE
∼‖b̃(t)K(t, f)‖

bE . �

The remaining case is studied in the following theorem. Although it can be

proved using a symmetry argument, we shall follow similar techniques to those used

in Theorem 5.5.

Theorem 5.6. Let X=(X0, X1) be a compatible couple, E and E0 be r.i.

spaces, and b, b0∈SV with b0 satisfying b0(t)∼b0(t
2). Assume that E0 and the as-

sociated functions of b0, B0,0 and B0,∞, satisfy

ρB0,∞ <πϕE0
≤ ρϕE0

<πB0,0 .

Then, for any 0<θ≤1, we have the equality

(19) (X1,b0,E0 , X1)θ,b,E =X1,b̃, bE ,

where b̃(t)=(b0(t)ϕE0(�(t)))
1−θb(b0(t)ϕE0(�(t))), t>0. In the case θ=0 we have

(20) (X1,b0,E0 , X1)0,b,E =X
L
1,b◦ρ, bE,b0,E0

,

where ρ(t)=b0(t)ϕE0(�(t)), t>0.
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Proof. Let ρ(t)=b0(t)ϕE0(�(t)), t>0, and choose f∈(X1,b0,E0 , X1)θ,b,E . Since

ρ(t)∼‖b0‖
eE(0,t) (Lemma 3.2(i)), the generalized Holmstedt-type formula, Theo-

rem 4.3, assures that

K(ρ(t), f) :=K(ρ(t), f ;X1,b0,E0 , X1)∼‖s−1b0(s)K(s, f)‖
eE0(0,t)

.

Now, using Lemma 5.1(ii) with F (t)=tθb(t)K(t, f)∈F , we obtain the equivalence

‖f‖(X1,b0,E0
,X1)θ,b,E

= ‖s−θb(s)K(s, f)‖
eE ∼‖ρ(t)−θb(ρ(t))K(ρ(t), f)‖

bE

∼
∥∥ρ(t)−θb(ρ(t))‖s−1b0(s)K(s, f)‖

eE0(0,t)

∥∥
bE
.

This establishes (20). In other to prove (19) for 0≤θ<1, it suffices to show that

I :=
∥∥ρ(t)−θb(ρ(t))‖s−1b0(s)K(s, f)‖

eE0(0,t)

∥∥
bE
∼‖b̃(t)K(t, f)‖

bE .

The proof of the inequality � follows easily from the monotonicity of the K-

functional and the equivalence ‖b0‖
eE0(0,t)

∼ρ(t), t>0,

I �
∥∥t−1ρ(t)−θb(ρ(t))K(s, f)‖b0(s)‖

eE0(0,t)

∥∥
bE
∼‖t−1b̃(t)K(t, f)‖

bE .

For the reverse inequality we take the function Θ(t)=ρ(t)−θb(ρ(t)), t>0, which

satisfies Θ(t)∼Θ(t2), and has as associated functions

BΘ,0(u) = Θ(e1−1/u)=

(
B0,0(u)ϕE0

(
1

u

))−θ

b(ρ(e1−1/u)),

BΘ,∞(u) = Θ(e1/u−1)=

(
B0,∞(u)ϕE0

(
1

u

))−θ

b(ρ(e1/u−1)),

for 0<u<1. These functions satisfy the inequalities

ρBΘ,0 ≤−θ(πB0,0−ρϕE0
)< 0<−θ(ρB0,∞−πϕE0

)≤πBΘ,∞ .

We are now in a position to apply Lemma 3.5(i) and the Hardy-type inequality,

Lemma 3.6(i), to get

I �
∥∥∥∥ρ(t)−θb(ρ(t))

∫ t

0

s−1b0(s)
ϕE0(�(s))

�(s)
K(s, f)

ds

s

∥∥∥∥
bE

� ‖t−1ρ(t)1−θb(ρ(t))K(t, f)‖
bE = ‖t−1b̃(t)K(t, f)‖

bE ,

and the proof is complete. �

Remark 5.7. If we choose b, b0 and b1 to be broken logarithmic functions, E,

E0 and E1 to be Lq-spaces and 0<θ<1 in (17) and (19) we recover Theorems 7.6

and 7.9 of [13].
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6. Applications to spaces of Lorentz–Karamata type

Let (Ω, μ) denote a σ-finite measure space with a non-atomic measure μ. Let E

be an r.i. space and b∈SV. We introduce the Lorentz–Karamata type space L∞,b,E ,

as the set of all measurable functions such that

‖f‖L∞,b,E
= ‖b(t)f∗(t)‖

eE <∞.

The space L∞,b,E is non-trivial if and only if ‖b‖
eE(0,1)<∞. See [16] for more

information. Similarly, the Lorentz–Karamata type space L(1,b,E) consists of all

μ-measurable functions such that the norm

‖f‖L(1,b,E)
= ‖tb(t)f∗∗(t)‖

eE

is finite. See e.g. [17]. In this case the condition ‖b‖
eE(1,∞)<∞ assures that the

space is non-trivial.

Since

K(t, f ;L1, L∞)=

∫ t

0

f∗(s) ds= tf∗∗(t), t > 0,

and

‖b(t)f∗∗(t)‖
eE ∼‖b(t)f∗(t)‖

eE , t > 0,

(see e.g., [12, Lemma 2.16]), we have the equalities

(L1, L∞)1,b,E =L∞,b,E and (L1, L∞)0,b,E =L(1,b,E).

Therefore, we may use the reiteration theorems of the previous section to es-

tablish interpolation formulas for Lorentz–Karamata type spaces.

Corollary 6.1. Let E and E1 be r.i. spaces, and b, b1∈SV with b1 satisfying

b1(t)∼b1(t
2). Assume that E1 and the associated functions of b1, B1,0 and B1,∞

satisfy

ρB1,0 <πϕE1
≤ ρϕE1

<πB1,∞ .

Then, for any 0≤θ<1,

(L1, L(1,b1,E1))θ,b,E =(L1, L∞)0,b̃, bE ,

where b̃(t)=(b1(t)ϕE1(�(t)))
θb(1/b1(t)ϕE1(�(t))), t>0.

For the limit case θ=1 we have the equality

(L1, L(1,b1,E1))1,b,E =(L1, L∞)R
0,b◦ρ, bE,b1,E1

,

where ρ(t)=(b1(t)ϕE1(�(t)))
−1, t>0.
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When the r.i. space E is equal to a Lebesgue space Lq , 1≤q≤∞, and under the

conditions of Corollary 6.1, for any 0≤θ<1, one obtains the following interpolation

equality for classical Lorentz–Karamata spaces L(1,q;b) :=L(1,b,Lq) (see [18] and [29])

(L1, L(1,b1,E1))θ,b,Lq =L(1,q;b#),

where b#(t)=(b1(t)ϕE1(�(t)))
θb(1/b1(t)ϕE1(�(t)))�

−1/q(t), t>0. And if θ=1 and

E1=Lq , then

(L1, L(1,q;b1))1,b,Lq =L(1,q;b1Φ0),

where Φ0(t)=‖b(1/b1(t)�1/q(t))/�1/q(t)‖L̃q(0,t)
, t>0.

Corollary 6.2. Let E and E0 be r.i. spaces, and b, b0∈SV with b0 satisfying

b0(t)∼b0(t
2). Assume that E0 and the associated functions of b0, B0,0 and B0,∞

satisfy

ρB0,∞ <πϕE0
≤ ρϕE0

<πB0,0 .

Then, for any 0<θ≤1,

(L∞,b0,E0 , L∞)θ,b,E =(L1, L∞)1,b̃, bE ,

where b̃(t)=(b0(t)ϕE0(�(t)))
1−θb(b0(t)ϕE0(�(t))), t>0.

For the limit case θ=0 we have the equality

(L∞,b0,E0 , L∞)0,b,E =(L1, L∞)L
1,b◦ρ, bE,b0,E0

,

where ρ(t)=b0(t)ϕE0(�(t)), t>0.

Again if we consider the Lebesgue space Lq , 1≤q≤∞, under the conditions

of Corollary 6.2, for any 0<θ≤1, we have the following interpolation equality for

classical Lorentz–Karamata spaces L∞,q;b :=L∞,b,Lq in the extreme cases

(L∞,b0,E0 , L∞)θ,b,Lq =L∞,q;b# ,

where b#(t)=(b0(t)ϕE0(�(t)))
1−θb(b0(t)ϕE0(�(t)))�

−1/q(t), t>0. If θ=0 and E0=

Lq , then we have the equality

(L∞,q;b0 , L∞)0,b,Lq =L∞,q;b0Φ∞ ,

where Φ∞(t)=‖b(b0(t)�1/q(t))/�1/q(t)‖L̃q(t,∞), t>0.
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7. Ordered couples

In this section we assume additionally that the couple X=(X0, X1) is ordered

in the sense that X1 ↪→X0. A typical example is X0=L1(Ω) and X1=L∞(Ω), where

(Ω, μ) is a finite measure space.

Following [17, Section 7], we define the space (X0, X1)θ,b,E in this case.

Definition 7.1. Let X=(X0, X1) be a compatible couple with X1 ↪→X0, E be

an r.i. space, b be a slowly varying function on (0, 1), and 0≤θ≤1. The real inter-

polation space Xθ,b,E consists of all f in X0 for which the norm

‖f‖θ,b,E = ‖t−θb(t)K(t, f)‖
eE(0,1)

is finite.

Similarly, replacing the interval (0,∞) by (0, 1), one defines the spaces Xθ,b, bE ,

X
L
θ,b, bE,a,F and X

R
θ,b, bE,a,F as in Definitions 5.2 and 5.3, respectively.

For the definition of slowly varying functions on (0, 1) it is enough to replace

the interval (0,∞) by (0, 1) in Definition 2.1. We will use the notation SV(0, 1).

Observe that if we take b∈SV(0, 1), a space E(0, 1) and an ordered couple

(X0, X1), X1 ↪→X0, it is possible to show that all the previous results of this article

remain true if we omit all assumptions concerning the interval (1,∞).

Let X0=L1(Ω, μ), X1=L∞(Ω, μ) and let (Ω, μ) be a finite measure space with

μ(Ω)=1. Then,

(L1, L∞)0,1,L1 =L logL and (L1, L∞)1,�(t)−1,L∞ =Lexp.

Remember that L∞ ↪→Lexp ↪→Lp ↪→L logL↪→L1. Thus the couples (L1, L logL) and

(Lexp, L∞) are also ordered couples. Moreover, the function b1(t)≡1, t∈(0, 1), and
the space L1 satisfy the conditions of Theorem 5.5, and the function b0(t)=�(t)−1,

t∈(0, 1), and the space L∞ fulfill the hypotheses of Theorem 5.6. So, we can apply

the previous extreme reiteration results to get the following corollaries.

Corollary 7.2. Let E be an r.i. space and let b∈SV(0, 1). Then, for 0≤θ<1,

we have the equality

(L1, L logL)θ,b,E =(L1, L∞)0,b̃, bE ,

where b̃(t)=�θ(t)b(1/�(t)), 0<t<1. Moreover, in the limiting case θ=1, we have

(L1, L logL)1,b,E =(L1, L∞)R
0,b̃, bE,1,L1

,

where b̃(t)=b(1/�(t)), 0<t<1.
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In particular, for 0≤θ<1 and 1≤q≤∞, we get the classical Lorentz–Karamata

spaces

(L1, L logL)θ,b,Lq =L(1,q;b#),

where b#(t)=�θ−1/q(t)b(1/�(t)), 0<t<1, and

(L1, L logL)1,b,L1 =L(1,1;Φ0)

for Φ0(t)=‖b(1/�(s))/�(s)‖L̃1(0,t)
, 0<t<1.

The intermediate space (L1, L logL)θ,1,Lq , when 0<θ<1 and 1≤q≤∞, was

identified by Bennett in [2].

Corollary 7.3. Let E be an r.i. space and let b∈SV(0, 1). Then, for 0<θ≤1,

we have the equality

(Lexp, L∞)θ,b,E =(L1, L∞)1,b̃, bE ,

where b̃(t)=�θ−1(t)b(1/�(t)), 0<t<1. Moreover, in the limit case θ=0, we have

(Lexp, L∞)0,b,E =(L1, L∞)L
1,b̃, bE,�(t)−1,L∞

,

where b̃(t)=b(1/�(t)), 0<t<1.

Again, for 0≤θ<1 and 1≤q≤∞, we obtain the classical Lorentz–Karamata

spaces

(Lexp, L∞)θ,b,Lq =L∞,q;b# ,

where b#(t)=�θ−1−1/q(t)b(1/�(t)), 0<t<1, and

(Lexp, L∞)0,b,L∞ =L∞,∞;�(t)−1Φ∞ ,

where Φ∞(t)=‖b(1/�(s))‖L̃∞(t,1), 0<t<1.

Another classical example of an ordered couple is that formed by the operator

ideals S∞ and S1. Let H be a Hilbert space and let S∞ be the Banach space of all

bounded linear operators acting from H into H . For T∈S∞, the singular numbers

of T are

sn(T )= inf{‖T−R‖H :R∈S∞ with rank R<n},

n∈N. For 1≤q≤∞, the Schatten ideal Sq is formed by all those T∈S∞ having

finite norm

‖T‖Sq =

( ∞∑
n=1

sn(T )
q

)1/q

.
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See [19] and [23]. Other ideals that appear in the literature as suitable end point

ideals for the scale of Schatten ideals Sp are the Macaev ideals defined as (see [19]

and [28])

Sw =

{
T ∈S∞(H) : ‖T‖Sw =

∞∑
n=1

sn(T )

n
<∞

}

and

SM =

{
T ∈S∞(H) : ‖T‖SM = sup

n∈N

{
�(n)−1

n∑
k=1

sk(T )

}
<∞

}
.

It is well known that

K(t, T ;S1, S∞)∼
[t]∑

n=1

sn(T ),

where [t] is the integer part of t, see [23]. Therefore

(S∞, S1)0,1,L1 =Sw and (S∞, S1)1,�(t)−1,L∞ =SM,

see [28, p. 68] and [36]. Thus, the Macaev ideals Sw and SM play the role in

the theory of ideals of the spaces L logL and Lexp. The following corollaries are

consequences of the previous results.

Corollary 7.4. Let E be an r.i. space and let b∈SV(0, 1). Then, for 0≤θ<1,

we have the equality

(S∞, Sw)θ,b,E =(S∞, S1)0,b̃, bE ,

where b̃(t)=�θ(t)b(1/�(t)), 0<t<1. Moreover, in the limit case θ=1, we have

(S∞, Sw)1,b,E =(S∞, S1)
R
0,b̃, bE,1,L1

,

where b̃(t)=b(1/�(t)), 0<t<1.

Corollary 7.5. Let E be an r.i. space and let b∈SV(0, 1). Then, for 0<θ≤1,

we have the equality

(SM, S1)θ,b,E =(S∞, S1)1,b̃, bE ,

where b̃(t)=�θ−1(t)b(1/�(t)), 0<t<1. Moreover, in the limit case θ=0, we have

(SM, S1)0,b,E =(S∞, S1)
L
1,b̃, bE,�(t)−1,L∞

,

where b̃(t)=b(1/�(t)), 0<t<1.
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