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Regularity of the local fractional maximal
function

Toni Heikkinen, Juha Kinnunen, Janne Korvenpää and Heli Tuominen

Abstract. This paper studies smoothing properties of the local fractional maximal oper-

ator, which is defined in a proper subdomain of the Euclidean space. We prove new pointwise

estimates for the weak gradient of the maximal function, which imply norm estimates in Sobolev

spaces. An unexpected feature is that these estimates contain extra terms involving spherical and

fractional maximal functions. Moreover, we construct several explicit examples, which show that

our results are essentially optimal. Extensions to metric measure spaces are also discussed.

1. Introduction

Fractional maximal operators are standard tools in partial differential equa-

tions, potential theory and harmonic analysis. In the Euclidean setting, they have

been studied in [3], [4], [5], [28], [30], [32] and [37]. It has been observed in [28] that

the global fractional maximal operator Mα, defined by

(1.1) Mαu(x)= sup
r>0

rα
∫
B(x,r)

|u(y)| dy,

has similar smoothing properties as the Riesz potential. More precisely, there is a

constant C, depending only on n and α, such that

(1.2) |DMαu(x)| ≤CMα−1u(x)

for almost every x∈Rn. This implies that the fractional maximal operator maps

Lp(Rn) to a certain Sobolev space. If the function itself is a Sobolev function, then

the fractional maximal function belongs to a Sobolev space with a higher exponent.

This follows quite easily from the Sobolev theorem using the facts that Mα is

sublinear and commutes with translations, see [28, Theorem 2.1]. The regularity
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properties of the Hardy–Littlewood maximal function, that is (1.1) with α=0, have

been studied in [6], [10], [18], [19], [25], [29], [31], [33], [35] and [47].

This paper studies smoothness of the local fractional maximal function

Mα,Ωu(x)= sup rα
∫
B(x,r)

|u(y)| dy,

where the supremum is taken over all radii r satisfying 0<r<dist(x,Rn\Ω). In this

case, the family of balls in the definition of the maximal function depends on the

point x∈Ω and the same arguments as in the global case do not apply. For the

Hardy–Littlewood maximal function, the question has been studied in [26] and [19],

see also [34]. For the local Hardy–Littlewood maximal operator MΩ with α=0 we

have

(1.3) |DMΩu(x)| ≤ 2MΩ|Du|(x)

for almost every x∈Ω. In particular, this implies that the maximal function is

bounded in Sobolev space W 1,p(Ω) when 1<p≤∞.

The situation is more delicate for the local fractional maximal operator Mα,Ω

with α>0. One might expect that pointwise estimates (1.2) and (1.3) would also

hold in that case. However, this is not true as such. Instead of (1.2), we have

|DMα,Ωu(x)| ≤C(Mα−1,Ωu(x)+Sα−1,Ωu(x))

for almost every x∈Ω, where C depends only on n. The local spherical fractional

maximal function is defined as

Sα−1,Ωu(x)= sup rα−1

∫
∂B(x,r)

|u(y)| dHn−1(y),

where the supremum is taken over all radii r for which 0<r<dist(x,Rn\Ω). Norm
estimates for the spherical maximal operator are much more delicate than the cor-

responding estimates for the standard maximal operator, but they can be obtained

along the lines of [40] and [42]. These estimates are of independent interest and

they are discussed in Section 2. Consequently, the local fractional maximal function

belongs locally to a certain Sobolev space.

We also show that

|DMα,Ωu(x)| ≤ 2Mα,Ω|Du|(x)+αMα−1,Ωu(x)

for almost every x∈Ω. This is an extension of (1.3), but again there is an extra term

on the right-hand side. Because of this the local fractional maximal function of a

Sobolev function is not necessarily smoother than the fractional maximal function

of an arbitrary function in Lp(Ω). This is in a strict contrast with the smoothing
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properties in the global case discussed in [28]. Moreover, we show that Mα,Ωu has

zero boundary values in the Sobolev sense and hence it can be potentially used

as a test function in the theory of partial differential equations. In Section 4, we

construct several explicit examples, which complement our study and show that our

results are essentially optimal. Another delicate feature is that the local fractional

maximal operator over cubes has worse smoothing properties than Mα,Ω defined

over balls.

In the last section, we extend the regularity results of the local fractional max-

imal operator in metric measure spaces. As in the nonfractional case [2], we use a

discrete version of the maximal operator, because the standard maximal operators

do not have the required regularity properties without any additional assumptions

on the metric and measure. In the metric setting, fractional maximal operators

have been studied for example in [13], [14], [15], [20], [22], [38], [39] and [48].

2. Notation and preliminaries

Throughout the paper, the characteristic function of a set E is denoted by χE .

In general, C is a positive constant whose value is not necessarily the same at each

occurrence.

Let Ω⊂R
n be an open set such that Rn\Ω �=∅ and let α≥0. The local fractional

maximal function of a locally integrable function u is

Mα,Ωu(x)= sup rα
∫
B(x,r)

|u(y)| dy,

where the supremum is taken over all radii r satisfying 0<r<dist(x,Rn\Ω). Here
∫
B

u(y) dy=
1

|B|

∫
B

u(y) dy

denotes the integral average of u over B. If α=0, we have the local Hardy–Littlewood

maximal function

MΩu(x)= sup

∫
B(x,r)

|u(y)| dy.

When Ω=R
n, the supremum is taken over all r>0 and we obtain the fractional max-

imal function Mαu and the Hardy–Littlewood maximal function Mu. A Sobolev-

type theorem for the fractional maximal operator follows easily from the Hardy–

Littlewood maximal function theorem.
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Theorem 2.1. Let p>1 and 0<α<n/p. There is a constant C>0, indepen-

dent of u, such that
‖Mαu‖Lp∗(Rn) ≤C‖u‖Lp(Rn),

for every u∈Lp(Rn) with p∗=np/(n−αp).

Now the corresponding boundedness result for the local fractional maximal

function follows easily because for each u∈Lp(Ω), p>1, we have

(2.1) ‖Mα,Ωu‖Lp∗(Ω) ≤‖Mα(uχΩ)‖Lp∗(Rn) ≤C‖uχΩ‖Lp(Rn) =C‖u‖Lp(Ω).

The local spherical fractional maximal function of u is

Sα,Ωu(x)= sup rα
∫
∂B(x,r)

|u(y)| dHn−1(y),

where the supremum is taken over all radii r for which 0<r<dist(x,Rn\Ω). Observe

that the barred integral denotes the integral average with respect to the Hausdorff

measure Hn−1. When Ω=R
n, the supremum is taken over all r>0 and we obtain

the global spherical fractional maximal function Sαu.

The following norm estimate for the spherical fractional maximal operator will

be useful for us.

Theorem 2.2. Let n≥2, p>n/(n−1) and

0≤α<min

{
n−1

p
, n− 2n

(n−1)p

}
.

Then

(2.2) ‖Sαu‖Lp∗(Rn) ≤C‖u‖Lp(Rn),

where p∗=np/(n−αp) and the constant C depends only on n, p and α.

For α=0, this was proved by Stein [46] in the case n≥3 and by Bourgain [9]

in the case n=2. For α>0, the result is due to Schlag [40, Theorem 1.3] when n=2

and Schlag and Sogge [42, Theorem 4.1] when n≥3. In [40] and [42] the result is

stated for the operator

S̃u(x)= sup
1<r<2

∫
∂B(x,r)

|u(y)| dHn−1(y),

but the corresponding result for Sα follows by the Littlewood–Paley theory as in

[9, pp. 71–73], [45, Section 2.4] and [41, Section 3.1]. In particular, Theorem 2.2

implies that the local spherical fractional maximal operator satisfies

(2.3) ‖Sα,Ωu‖Lp∗(Ω) ≤C‖u‖Lp(Ω).
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We recall the definition of the Sobolev space

W 1,p(Ω)= {u∈Lp(Ω) : |Du| ∈Lp(Ω)},

where Du=(D1u, ..., Dnu) is the weak gradient of u. The weak partial derivatives of

u, denoted by Diu, i=1, ..., n, are defined as such functions vi∈L1
loc(Ω) that satisfy∫

Ω

u
∂ϕ

∂xi
dx=−

∫
Ω

viϕdx

for every ϕ∈C∞
0 (Ω). The Sobolev space with zero boundary values W 1,p

0 (Ω) is the

completion of C∞
0 (Ω) with respect to the norm

‖u‖W 1,p(Ω) =

(∫
Ω

|u|p dx+
∫
Ω

|Du|p dx
)1/p

.

3. Derivative of the local fractional maximal function

In this section, we prove pointwise estimates for the weak gradient of the local

fractional maximal function. By integrating the pointwise estimates we also get the

corresponding norm estimates.

We define the fractional average functions uα
t : Ω→[−∞,∞], 0<t<1, 0≤α<∞,

of a locally integrable function u as

(3.1) uα
t (x)= (tδ(x))α

∫
B(x,tδ(x))

u(y) dy,

where δ(x)=dist(x,Rn\Ω). We start by deriving an estimate for the weak gradient

of the fractional average function of an Lp-function.

Lemma 3.1. Let n≥2, p>n/(n−1), 0<t<1 and

1≤α<min

{
n−1

p
, n− 2n

(n−1)p

}
+1.

If u∈Lp(Ω), then |Duα
t |∈Lq(Ω) with q=np/(n−(α−1)p). Moreover,

(3.2) |Duα
t (x)| ≤C(Mα−1,Ωu(x)+Sα−1,Ωu(x))

for almost every x∈Ω, where the constant C depends only on n.

Proof. Suppose first that u∈Lp(Ω)∩C∞(Ω). According to Rademacher’s the-

orem, as a Lipschitz function, δ is differentiable almost everywhere in Ω. Moreover,
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|Dδ(x)|=1 for almost every x∈Ω. Writing ωn=|B(0, 1)|, the Leibniz rule gives

Diu
α
t (x) =Di(ω

−1
n (tδ(x))α−n)

∫
B(x,tδ(x))

u(y) dy

+ω−1
n (tδ(x))α−nDi

(∫
B(x,tδ(x))

u(y) dy

)
, i=1, ..., n,

for almost every x∈Ω, and by the chain rule

Di

(∫
B(x,tδ(x))

u(y) dy

)
=

∫
B(x,tδ(x))

Diu(y) dy

+tDiδ(x)

∫
∂B(x,tδ(x))

u(y) dHn−1(y), i=1, ..., n,

for almost every x∈Ω. Here we also used the fact that

∂

∂r

∫
B(x,r)

u(y) dy=

∫
∂B(x,r)

u(y) dHn−1(y).

Collecting the terms in a vector form, we obtain

Duα
t (x) = ω−1

n tα−n(α−n)δ(x)α−n−1Dδ(x)

∫
B(x,tδ(x))

u(y) dy

+ω−1
n (tδ(x))α−n

∫
B(x,tδ(x))

Du(y) dy

+ω−1
n (tδ(x))α−ntDδ(x)

∫
∂B(x,tδ(x))

u(y) dHn−1(y)(3.3)

for almost every x∈Ω. Applying Gauss’ theorem to the integral in the second term

we have ∫
B(x,tδ(x))

Du(y) dy=

∫
∂B(x,tδ(x))

u(y)ν(y) dHn−1(y),

where ν(y)=(y−x)/tδ(x) is the unit outer normal of B(x, tδ(x)).

Modifying the integrals into their average forms, we obtain

Duα
t (x) = (α−n)(tδ(x))α

Dδ(x)

δ(x)

∫
B(x,tδ(x))

u(y) dy

+n(tδ(x))α−1

∫
∂B(x,tδ(x))

u(y)ν(y) dHn−1(y)

+n(tδ(x))α
Dδ(x)

δ(x)

∫
∂B(x,tδ(x))

u(y) dHn−1(y)(3.4)
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for almost every x∈Ω. For the boundary integral terms, we have used the relation

between the Lebesgue measure of a ball and the Hausdorff measure of its boundary

Hn−1(∂B(x, r))=nωnr
n−1.

Taking the vector norms in the identity of the derivative and recalling that

0<t<1 and |Dδ(x)|=1 for almost every x∈Ω, we obtain

|Duα
t (x)| ≤ |α−n|(tδ(x))α |Dδ(x)|

δ(x)

∫
B(x,tδ(x))

|u(y)| dy

+n(tδ(x))α−1

∫
∂B(x,tδ(x))

|u(y)| |ν(y)| dHn−1(y)

+n(tδ(x))α
|Dδ(x)|
δ(x)

∫
∂B(x,tδ(x))

|u(y)| dHn−1(y)

≤ n(tδ(x))α−1

∫
B(x,tδ(x))

|u(y)| dy

+n(tδ(x))α−1

∫
∂B(x,tδ(x))

|u(y)| dHn−1(y)

+n(tδ(x))α−1

∫
∂B(x,tδ(x))

|u(y)| dHn−1(y)

≤ C(Mα−1,Ωu(x)+Sα−1,Ωu(x))

for almost every x∈Ω. Thus, (3.2) holds for smooth functions.

The case u∈Lp(Ω) follows from an approximation argument. For u∈Lp(Ω),

there is a sequence {ϕj}∞j=1 of functions in Lp(Ω)∩C∞(Ω) such that ϕj→u in Lp(Ω)

as j→∞. Definition (3.1) implies that

uα
t (x)= lim

j→∞
(ϕj)

α
t (x),

when x∈Ω. By the proved case for the smooth functions, we have

(3.5) |D(ϕj)
α
t (x)| ≤C(Mα−1,Ωϕj(x)+Sα−1,Ωϕj(x)), j=1, 2, ...,

for almost every x∈Ω. This inequality and the boundedness results (2.1) and (2.3)

imply that

‖D(ϕj)
α
t ‖Lq(Ω) ≤ C(‖Mα−1,Ωϕj‖Lq(Ω)+‖Sα−1,Ωϕj‖Lq(Ω))

≤ C‖ϕj‖Lp(Ω), j=1, 2, ...,
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where q=np/(n−(α−1)p) and C depends only on n, p and α. Thus, {|D(ϕj)
α
t |}∞j=1

is a bounded sequence in Lq(Ω) and hence has a weakly converging subsequence

{|D(ϕjk)
α
t |}∞k=1 in Lq(Ω). Since (ϕj)

α
t converges pointwise to uα

t , we conclude that

the weak gradient Duα
t exists and that |D(ϕjk)

α
t | converges weakly to |Duα

t | in
Lq(Ω) as k→∞. This follows from the definitions of weak convergence and weak

derivatives.

To establish (3.2), we want to proceed to the limit in (3.5) as j→∞. By the

sublinearity of the maximal operator and (2.1), we obtain

‖Mα−1,Ωϕj−Mα−1,Ωu‖Lq(Ω) ≤ ‖Mα−1,Ω(ϕj−u)‖Lq(Ω)

≤ C‖ϕj−u‖Lp(Ω), j=1, 2, ... .

Analogously, by (2.3), we get

‖Sα−1,Ωϕj−Sα−1,Ωu‖Lq(Ω) ≤C‖ϕj−u‖Lp(Ω), j=1, 2, ... .

Hence Mα−1,Ωϕj+Sα−1,Ωϕj converges to Mα−1,Ωu+Sα−1,Ωu in Lq(Ω) as j→∞.

To complete the proof, we need the following simple property of weak conver-

gence: If fk→f and gk→g weakly in Lq(Ω) and fk≤gk, k=1, 2, ..., almost every-

where in Ω, then f≤g almost everywhere in Ω. Applying the property to (3.5) with

fk = |D(ϕjk)
α
t | and gk =C(Mα−1,Ωϕjk+Sα−1,Ωϕjk),

we obtain (3.2). This completes the proof. �

The weak gradient of the local fractional maximal function of an Lp-function

satisfies a pointwise estimate in terms of a local fractional maximal function and

a local spherical fractional maximal function of the function itself. The following is

the main result of this section.

Theorem 3.2. Let n≥2, p>n/(n−1) and let

1≤α<min

{
n−1

p
, n− 2n

(n−1)p

}
+1.

If u∈Lp(Ω), then |DMα,Ωu|∈Lq(Ω) with q=np/(n−(α−1)p). Moreover,

(3.6) |DMα,Ωu(x)| ≤C(Mα−1,Ωu(x)+Sα−1,Ωu(x))

for almost every x∈Ω, where the constant C depends only on n.

Proof. Let tj , j=1, 2, ..., be an enumeration of the rationals between 0 and 1

and let
uj = |u|αtj , j=1, 2, ... .
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By Lemma 3.1, we see that |Duj |∈Lq(Ω) for every j=1, 2, ... and (3.2) gives us the

estimate

|Duj(x)| ≤C(Mα−1,Ωu(x)+Sα−1,Ωu(x)), j=1, 2, ...,

for almost every x∈Ω. We define vk : Ω→[−∞,∞] as the pointwise maximum

vk(x)= max
1≤j≤k

uj(x), k=1, 2, ... .

Then {vk}∞k=1 is an increasing sequence of functions converging pointwise toMα,Ωu.

Moreover, the weak gradients Dvk, k=1, 2, ..., exist since Duj exists for each j=

1, 2, ..., and we can estimate

|Dvk(x)| =
∣∣∣D max

1≤j≤k
uj(x)

∣∣∣≤ max
1≤j≤k

|Duj(x)|

≤ C(Mα−1,Ωu(x)+Sα−1,Ωu(x)), k=1, 2, ...,(3.7)

for almost every x∈Ω.
The rest of the proof goes along the lines of the final part of the proof for

Lemma 3.1. By (3.7), (2.1) and (2.3), we obtain

‖Dvk‖Lq(Ω) ≤C(‖Mα−1,Ωu‖Lq(Ω)+‖Sα−1,Ωu‖Lq(Ω))≤C‖u‖Lp(Ω), k=1, 2, ... .

Hence {|Dvk|}∞k=1 is a bounded sequence in Lq(Ω) with vk→Mα,Ωu pointwise in

Ω as k→∞. Thus, there is a weakly converging subsequence {|Dvkj |}∞j=1 that has

to converge weakly to |DMα,Ωu| in Lq(Ω) as j→∞. We may proceed to the weak

limit in (3.7), using the same argument as in the end of the proof of Lemma 3.1,

and claim (3.6) follows. �

Corollary 3.3. Let n≥2, p>n/(n−1) and 1≤α<n/p. If Ω⊂R
n is an open

set with |Ω|<∞ and u∈Lp(Ω), then Mα,Ωu∈W 1,q(Ω) with q=np/(n−(α−1)p).

Proof. By (2.1) we have Mα,Ωu∈Lp∗
(Ω) and moreover |DMα,Ωu|∈Lq(Ω) by

Theorem 3.2 because

n

p
≤min

{
n−1

p
, n− 2n

(n−1)p

}
+1.

Since q<p∗, we have

‖Mα,Ωu‖Lq(Ω) ≤ |Ω|1/q−1/p∗
‖Mα,Ωu‖Lp∗(Ω) <∞

by Hölder’s inequality. Hence Mα,Ωu∈W 1,q(Ω). �
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Next we will show that the local fractional maximal operator actually maps

Lp(Ω) to the Sobolev space with zero boundary values. For this we need the fol-

lowing Hardy-type result proved in [27, Theorem 3.13].

Theorem 3.4. Let Ω⊂R
n, Ω �=R

n, be an open set. If u∈W 1,p(Ω) and

∫
Ω

(
u(x)

dist(x,Rn\Ω)

)p

dx<∞,

then u∈W 1,p
0 (Ω).

Corollary 3.5. Let n≥2 and Ω⊂R
n be an open set with |Ω|<∞. Further-

more, let p>n/(n−1) and 1≤α<n/p. If u∈Lp(Ω), then Mα,Ωu∈W 1,q
0 (Ω) with

q=np/(n−(α−1)p).

Proof. By Corollary 3.3, Mα,Ωu∈W 1,q(Ω). It suffices to show that

(3.8)

∫
Ω

(
Mα,Ωu(x)

dist(x,Rn\Ω)

)q

dx<∞.

The claim then follows from Theorem 3.4. Since

Mα,Ωu(x)≤dist(x,Rn\Ω)Mα−1,Ωu(x)

for every x∈Ω, inequality (3.8) follows from (2.1). Hence Mα,Ωu∈W 1,q
0 (Ω). �

Next we derive estimates for Sobolev functions. In general, Sobolev functions

do satisfy neither any better inequality for weak gradients nor better embedding

than Lp-functions, but since no spherical maximal function is needed in the Sobolev

setting, the estimate holds also when 1<p≤n/(n−1). The following is a variant of

Lemma 3.1.

Lemma 3.6. Let n≥2, 1<p<n, 1≤α<n/p and 0<t<1. If |Ω|<∞ and u∈
W 1,p(Ω), then |Duα

t |∈Lq(Ω) with q=np/(n−(α−1)p). Moreover,

(3.9) |Duα
t (x)| ≤ 2Mα,Ω|Du|(x)+αMα−1,Ωu(x)

for almost every x∈Ω.

Proof. Suppose first that u∈W 1,p(Ω)∩C∞(Ω). Equation (3.3) in the proof of

Lemma 3.1 holds in this case, as well, and modifying the integrals into average

forms we obtain
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Duα
t (x) = α(tδ(x))α

Dδ(x)

δ(x)

∫
B(x,tδ(x))

u(y) dy

+n(tδ(x))α
Dδ(x)

δ(x)

(∫
∂B(x,tδ(x))

u(y) dHn−1(y)−
∫
B(x,tδ(x))

u(y) dy

)

+(tδ(x))α
∫
B(x,tδ(x))

Du(y) dy

for almost every x∈Ω.
In order to estimate the difference of the two integrals in the parenthesis, we

use Green’s first identity∫
∂B(x,r)

u(y)
∂v

∂ν
(y) dHn−1(y)=

∫
B(x,r)

(u(y)Δv(y)+Du(y)·Dv(y)) dy,

where ν(y)=(y−x)/r is the unit outer normal of B(x, r). We choose r=tδ(x) and

v(y)=|y−x|2/2. With these choices

Dv(y)= y−x,
∂v

∂ν
(y)= r, Δv(y)=n

and Green’s formula reads∫
∂B(x,tδ(x))

u(y) dHn−1(y)−
∫
B(x,tδ(x))

u(y) dy=
1

n

∫
B(x,tδ(x))

Du(y)·(y−x) dy.

Taking the vector norms in the identity of the derivative and recalling that

|Dδ(x)|=1 almost everywhere and 0<t<1, we obtain

|Duα
t (x)| ≤ α(tδ(x))α

|Dδ(x)|
δ(x)

∫
B(x,tδ(x))

|u(y)| dy

+n(tδ(x))α
|Dδ(x)|
δ(x)

1

n

∫
B(x,tδ(x))

|Du(y)| |y−x| dy

+(tδ(x))α
∫
B(x,tδ(x))

|Du(y)| dy

≤ α(tδ(x))α−1

∫
B(x,tδ(x))

|u(y)| dy

+(tδ(x))α
∫
B(x,tδ(x))

|Du(y)| dy+(tδ(x))α
∫
B(x,tδ(x))

|Du(y)| dy

≤ αMα−1,Ωu(x)+2Mα,Ω|Du|(x)

for almost every x∈Ω. Thus, (3.9) holds for smooth functions.
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The case u∈W 1,p(Ω) follows from an approximation argument. For u∈W 1,p(Ω),

there is a sequence {ϕj}∞j=1 of functions in W 1,p(Ω)∩C∞(Ω) such that ϕj→u in

W 1,p(Ω) as j→∞. By definition (3.1) we see that

uα
t (x)= lim

j→∞
(ϕj)

α
t (x),

when x∈Ω. By the proved case for smooth functions we have

|D(ϕj)
α
t (x)| ≤ 2Mα,Ω|Dϕj |(x)+αMα−1,Ωϕj(x), j=1, 2, ...,(3.10)

for almost every x∈Ω. Let next p∗=np/(n−αp) and q=np/(n−(α−1)p). Then

‖f‖Lq(Ω)<C‖f‖Lp∗(Ω) for any f∈Lp∗
(Ω) since q<p∗ and |Ω|<∞. The estimate

(3.10) and the boundedness result (2.1) imply that

‖D(ϕj)
α
t ‖Lq(Ω) ≤ 2

∥∥Mα,Ω|Dϕj |
∥∥
Lq(Ω)

+α‖Mα−1,Ωϕj‖Lq(Ω)

≤ C
∥∥Mα,Ω|Dϕj |

∥∥
Lp∗(Ω)

+α‖Mα−1,Ωϕj‖Lq(Ω)

≤ C‖Dϕj‖Lp(Ω)+C‖ϕj‖Lp(Ω)

≤ C‖ϕj‖W 1,p(Ω), j=1, 2, ...,

where C depends only on n, p, α and |Ω|. Thus, {D(ϕj)
α
t }∞j=1 is a bounded sequence

in Lq(Ω) and has a weakly converging subsequence {D(ϕjk)
α
t }∞k=1. Since (ϕj)

α
t

converges to uα
t pointwise, we conclude that the Sobolev derivative Duα

t exists and

that D(ϕjk)
α
t →Duα

t weakly in Lq(Ω) as k→∞.

To establish (3.9), we want to proceed to the limit in (3.10) as j→∞. This

goes as in the proof of Lemma 3.1, and we obtain the claim. �

The following is a variant of Theorem 3.2 for Sobolev functions.

Theorem 3.7. Let n≥2, 1<p<n and 1≤α<n/p. If |Ω|<∞ and u∈W 1,p(Ω),

then Mα,Ωu∈W 1,q(Ω) with q=np/(n−(α−1)p). Moreover,

|DMα,Ωu(x)| ≤ 2Mα,Ω|Du|(x)+αMα−1,Ωu(x)

for almost every x∈Ω.

The proof is analogous to the proofs of Theorem 3.2 and Corollary 3.3, but

using Lemma 3.6 instead of Lemma 3.1.

Remark 3.8. If Ω is bounded with a C1-boundary, then Theorem 3.7 holds

with the better exponent p∗=np/(n−αp) instead of q. Indeed, in this setting we

have the Sobolev inequality

‖u‖Lr(Ω) ≤C‖u‖W 1,p(Ω),
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where r=np/(n−p) is the Sobolev conjugate of p, and we can estimate

‖DMα,Ωu‖Lp∗(Ω) ≤ 2
∥∥Mα,Ω|Du|

∥∥
Lp∗(Ω)

+α‖Mα−1,Ωu‖Lp∗(Ω)

≤ C‖Du‖Lp(Ω)+C‖u‖Lr(Ω)

≤ C‖Du‖Lp(Ω)+C‖u‖W 1,p(Ω)

≤ C‖u‖W 1,p(Ω).

In the second inequality, we used (2.1) and the fact that p∗ can be written as

p∗=nr/(n−(α−1)r).

4. Examples

Our first example shows that the inequality

(4.1) |DMα,Ωu(x)| ≤CMα−1,Ωu(x),

for almost every x∈Ω, cannot hold in general. Hence, the term containing the

spherical maximal function in (3.6) cannot be dismissed.

Example 4.1. Let n≥2 and Ω=B(0, 1)⊂R
n. Let 1<p<∞, α≥1 and let 0<

β<1. Then the function

u(x)= (1−|x|)−β/p

belongs to Lp(Ω)∩L1(Ω). When 0<|x|<ρ and ρ is small enough, the maximizing

radius for the maximal functions Mα,Ωu(x) and Mα−1,Ωu(x) is the largest possi-

ble, i.e. 1−|x|. To see this, it suffices to consider MΩu and averages without the

fractional coefficient. Let f : {(x, r):r≥0 and |x|+r<1}→R be given by

f(x, r)=

∫
∂B(x,r)

u(y) dHn−1(y)−
∫
B(x,r)

u(y) dy,

which is continuous because u is continuous. Since f(x, r)→∞ as x→0 and r→1,

there exists ρ1>0 such that f(x, r)>1 whenever |x|<ρ1 and 1−2ρ1<r<1−|x|.
Then let g : B(0, ρ1)→R be given by

g(x)=MΩu(x)− max
0≤r≤1−2ρ1

∫
B(x,r)

u(y) dy,

which is continuous as u is continuous. Since g(0)>0, there exists ρ2>0 such that

g(x)>0 when |x|<ρ2. This implies that

MΩu(x)>

∫
B(x,r)

u(y) dy

for every 0≤r<1−|x| whenever |x|<min{ρ1, ρ2}=ρ.
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Thus, by (3.4) in the proof of Lemma 3.1,

DMα,Ωu(x) = (n−α)
x

|x| (1−|x|)α−1

∫
B(x,1−|x|)

u(y) dy

+n(1−|x|)α−1

∫
∂B(x,1−|x|)

u(y)ν(y) dHn−1(y)

−n
x

|x| (1−|x|)α−1

∫
∂B(x,1−|x|)

u(y) dHn−1(y)

for almost every x with |x|<ρ. By symmetry, the contribution from the integral in

the second term has the same direction x/|x| as the first term, whereas the direction

of the last term is opposite. Thus, all the terms lie in the same line of Rn and it

is sufficient to compare the vector norm of the first term and the sum of the latter

terms. For the first term,∣∣∣∣(n−α)
x

|x| (1−|x|)α−1

∫
B(x,1−|x|)

u(y) dy

∣∣∣∣= |n−α|Mα−1,Ωu(x)≤M,

where M depends only on n, p, α, β and ρ. For the latter terms,∣∣∣∣
∫
∂B(x,1−|x|)

u(y)

(
ν(y)− x

|x|

)
dHn−1(y)

∣∣∣∣≥ 1

2

∫
S(x)

u(y) dHn−1(y),

where S(x) is the half sphere S(x)={y∈∂B(x, 1−|x|):(y−x)·x<0}. Further, when
|x|<ε,

n(1−|x|)α−1 1

2

∫
S(x)

u(y) dHn−1(y)≥ n(1−ε)α−1

2(2ε)β/p
,

which goes to ∞ as ε→0. We conclude that for small values of |x|, the boundary

integral terms dominate, and thus (4.1) cannot hold.

The next example shows that Theorem 3.7 is sharp. There are domains Ω⊂R
n,

n≥2, for which Mα,Ω(W
1,p(Ω)) �⊂W 1,q̂(Ω) when q̂>q=np/(n−(α−1)p). This is

in strict contrast with the global case, where Mα : W
1,p(Rn)↪→W 1,p∗

(Rn) with

p∗=np/(n−αp), see [28, Theorem 2.1].

Example 4.2. Let n≥2, α≥1 and (α−1)p<n. Let

Ω= int

( ∞⋃
k=1

Qk∪Ck

)
,

where

Qk = [k, k+2−k]×[0, 2−k]n−1 and Ck = [k+2−k, k+1]×[0, 2−3k]n−1
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is a corridor connecting Qk to Qk+1. We will show that for every

q̂ > q=
np

n−(α−1)p
,

there exists u∈W 1,p(Ω) such that

|DMα,Ωu| /∈Lq̂(Ω).

Let q̂>q and let p̂=nq̂/(n+(α−1)q̂). Then p̂>p. Define u such that u=2kn/p̂ on

Qk and u increases linearly from 2kn/p̂ to 2(k+1)n/p̂ on Ck. Then it is easy to see

that u∈W 1,p(Ω).

If x∈ 1
2Qk, where

1
2Qk is a cube with the same center as Qk and with side

length half the side length of Qk, we have that

Mα,Ωu(x)=dist(x,Rn\Qk)
α2kn/p̂.

Hence, for almost every x∈ 1
2Qk,

|DMα,Ωu(x)|=α dist(x,Rn\Qk)
α−12kn/p̂ ≥C2k(n/p̂−α+1) =C2kn/q̂,

which implies that

∫
Ω

|DMα,Ωu(x)|q̂ dx≥C
∞∑
k=1

∫
1
2Qk

2nk dx=∞.

Define the local fractional maximal function over cubes by setting

M̃α,Ωu(x)= sup
Q(x,r)⊂Ω

rα
∫
Q(x,r)

|u(y)| dy,

where

Q(x, r)= (x1−r, x1+r)×...×(xn−r, xn+r)

is the cube with center x=(x1, ..., xn) and of side length 2r. As noted in [28], in

the global case the maximal operator over cubes behaves similarly as the maximal

operator over balls. Somewhat surprisingly, in the local case, the smoothing prop-

erties of the maximal operator over cubes are much worse. Indeed, we show that

there are domains Ω⊂R
n such that M̃α,Ω(L

p(Ω)) �⊂W 1,p̂(Ω) when p̂>p.

Example 4.3. Let Ω=(0, 2)×(−1, 2)n−1 and let u : Ω→R be of the form u(x)=

v(x1), where v is non-negative and continuous. If Q(x, r)⊂Ω, then

rα
∫
Q(x,r)

|u(y)| dy= 1

2
rα−1

∫ x1+r

x1−r

v(t) dt.
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Hence, for α>1 and x∈(0, 1)n, we have

M̃α,Ωu(x)=
1

2
xα−1
1

∫ 2x1

0

v(t) dt

and

D1M̃α,Ωu(x)=
1

2
(α−1)xα−2

1

∫ 2x1

0

v(t)dt+xα−1
1 v(2x1).

It follows that

D1M̃α,Ωu(x)≥Cv(2x1),

for x∈
(
1
2 , 1

)
×(0, 1)n−1, which shows that D1M̃α,Ωu cannot belong to a higher

Lp-space than u.

In all our results in Section 3 we assumed that α≥1. Our final example shows

that, in the case 0<α<1, Mα,Ωu can be very irregular, even when u is a constant

function. Indeed, we show that for any r>0, there exists a domain Ω such that the

weak gradient of the fractional maximal function of a constant function does not

belong to Lr(Ω).

Example 4.4. Let n≥1, 0<α<1 and r>0. We will construct a bounded open

set Ω⊂R
n such that, for u≡1, we have

Mα,Ωu=dist( · ,Rn\Ω)α

and the weak gradient of Mα,Ωu does not belong to Lr(Ω). Let β be an integer

satisfying β≥n/(1−α)r, and let

Ω=B(0, 2)\
⋃
k≥1

Sk,

where

Sk = {2−k+j2−(1+β)k : j=1, ..., 2βk}n.

If x∈Sk and y∈Sl with x �=y, then the balls B(x, 2−(1+β)k−1) and B(y, 2−(1+β)l−1)

are disjoint. For each y∈B(x, 2−(1+β)k−1)\{x}, we have Mα,Ωu(y)=|y−x|α, which
implies that

|DMα,Ωu(y)|=α|y−x|α−1 ≥C2−(1+β)(α−1)k.

It follows that
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∫
Ω

|DMα,Ωu(y)|r dy ≥
∑
k≥1

∑
x∈Sk

∫
B(x,2−(1+β)k−1)

|DMα,Ωu(y)|r dy

≥ C
∑
k≥1

2βkn2−(1+β)kn2−(1+β)(α−1)rk

= C
∑
k≥1

2((1+β)(1−α)r−n)k

=∞,

and hence the weak gradient of Mα,Ωu does not belong to Lr(Ω).

5. The local discrete fractional maximal function in metric space

In this section, we study the smoothing properties of the local discrete fractional

maximal function in a metric space, which is equipped with a doubling measure.

We begin by recalling some definitions.

5.1. Sobolev spaces on metric spaces

Let X=(X, d, μ) be a locally compact metric measure space equipped with a

metric d and a Borel regular, doubling outer measure μ. The doubling property

means that there is a fixed constant cd>0, called a doubling constant of μ, such

that

μ(B(x, 2r))≤ cdμ(B(x, r))

for each ball B(x, r)={y∈X :d(y, x)<r}. We also assume that nonempty open sets

have positive measure and bounded sets have finite measure. We say that the

measure μ satisfies a measure lower bound condition if there exist constants Q≥1

and cl>0 such that

(5.1) μ(B(x, r))≥ clr
Q

for all x∈X and r>0. This assumption is needed for the boundedness of the

fractional maximal operator in Lp.

General metric spaces lack the notion of smooth functions, but there exists

a natural counterpart of Sobolev spaces, defined by Shanmugalingam in [43] and

based on upper gradients. A Borel function g≥0 is an upper gradient of a function

u on an open set Ω⊂X , if for all curves γ joining points x and y in Ω,

(5.2) |u(x)−u(y)| ≤
∫
γ

g ds,
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whenever both u(x) and u(y) are finite, and
∫
γ
g ds=∞ otherwise. By a curve, we

mean a nonconstant, rectifiable, continuous mapping from a compact interval to X .

If g≥0 is a measurable function and (5.2) only fails for a curve family with

zero p-modulus, then g is a p-weak upper gradient of u on Ω. For the p-modulus on

metric measure spaces and the properties of upper gradients, see for example [7],

[16], [23], [43] and [44]. If 1≤p<∞ and u∈Lp(Ω), let

‖u‖N1,p(Ω) =

(∫
Ω

|u|p dμ+inf
g

∫
Ω

gp dμ

)1/p

,

where the infimum is taken over all p-weak upper gradients of u. The Sobolev space

on Ω is the quotient space

N1,p(Ω)= {u : ‖u‖N1,p(Ω) <∞}/∼,

where u∼v if and only if ‖u−v‖N1,p(Ω)=0.

For a measurable set E⊂X , the Sobolev space with zero boundary values is

N1,p
0 (E)= {u|E :u∈N1,p(X) and u=0 in X\E}.

By [44, Theorem 4.4], also the space N1,p
0 (E), equipped with the norm inherited

from N1,p(X), is a Banach space. Note that we obtain the same class of functions

as above if we require u to vanish p-quasi everywhere in X\E in the sense of p-

capacity, since Sobolev functions are defined pointwise outside sets of zero capacity,

see [43] and [8].

In Theorems 5.1 and 5.8, we assume, in addition to the doubling condition,

that X supports a (weak) (1, p)-Poincaré inequality, which means that there exist

constants cP>0 and λ≥1 such that for all balls B, all locally integrable functions

u and for all p-weak upper gradients gu of u, we have

∫
B

|u−uB| dμ≤ cP r

(∫
λB

gpu dμ

)1/p

,

where

uB =

∫
B

u dμ=
1

μ(B)

∫
B

u dμ

is the integral average of u over B.

In the Euclidean space with the Lebesgue measure, N1,p(Ω)=W 1,p(Ω) for all

domains Ω⊂R
n and gu=|Du| is a minimal p-weak upper gradient of u, see [43],

[44] and [16]. Standard examples of doubling metric spaces supporting Poincaré

inequalities include (weighted) Euclidean spaces, compact Riemannian manifolds,

metric graphs, and Carnot–Carathéodory spaces. See for instance [17] and [16], and

the references therein, for more extensive lists of examples and applications.
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The following Hardy-type condition for functions in Sobolev spaces with zero

boundary values has been proved in [1] and in [24].

Theorem 5.1. Assume that X supports a (1, p)-Poincaré inequality with 1<

p<∞. Let Ω⊂X be an open set. If u∈N1,p(Ω) and

∫
Ω

(
u(x)

dist(x,X\Ω)

)p

dμ(x)<∞,

then u∈N1,p
0 (Ω).

5.2. The fractional maximal function

Let Ω⊂X be an open set such that X\Ω �=∅ and let α≥0. The local fractional

maximal function of a locally integrable function u is

Mα,Ωu(x)= sup rα
∫
B(x,r)

|u| dμ,

where the supremum is taken over all radii r satisfying 0<r<dist(x,X\Ω). If α=0,

we have the local Hardy–Littlewood maximal function

MΩu(x)= sup

∫
B(x,r)

|u| dμ.

When Ω=X , the supremum is taken over all r>0 and we obtain the fractional

maximal function Mαu and the Hardy–Littlewood maximal function Mu.

A Sobolev-type theorem for the fractional maximal operator follows easily

from the Hardy–Littlewood maximal function theorem. For the proof, see [12],

[13] or [20].

Theorem 5.2. Assume that measure lower bound condition (5.1) holds. If

p>1 and 0<α<Q/p, then there is a constant C>0, independent of u, such that

‖Mαu‖Lp∗(X) ≤C‖u‖Lp(X)

for every u∈Lp(X) with p∗=Qp/(Q−αp). If p=1 and 0<α<Q, then

μ({x∈Ω :Mαu(x)>λ})≤C(λ−1‖u‖L1(X))
Q/(Q−α)

for every u∈L1(X). The constant C>0 depends only on the doubling constant, the

constant in the measure lower bound and α.
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Now the corresponding boundedness results for the local fractional maximal

function follow easily because for each open set Ω⊂X and for each u∈Lp(Ω), p>1,

we have

(5.3) ‖Mα,Ωu‖Lp∗(Ω) ≤‖Mα(uχΩ)‖Lp∗(X) ≤C‖uχΩ‖Lp(X) =C‖u‖Lp(Ω).

Similarly, we obtain a weak-type estimate when p=1,

(5.4) μ({x∈Ω :Mα,Ωu(x)>λ})≤C(λ−1‖u‖L1(Ω))
Q/(Q−α).

The weak-type estimate implies that the fractional maximal operator maps L1 lo-

cally to Ls whenever 1<s<Q/(Q−α).

Corollary 5.3. Assume that measure lower bound condition (5.1) holds. Let

0<α<Q and 1≤s<Q/(Q−α). If Ω⊂X , μ(Ω)<∞ and u∈L1(Ω), then Mα,Ωu∈
Ls(Ω) and

(5.5) ‖Mα,Ωu‖Ls(Ω) ≤C‖u‖L1(Ω),

where the constant C depends only on the doubling constant, the constant in the

measure lower bound, s, α and μ(Ω).

Proof. Let a>0. Now

∫
Ω

(Mα,Ωu)
s dμ= s

∫ ∞

0

ts−1μ({x∈Ω :Mα,Ωu(x)>t}) dt= s

(∫ a

0

+

∫ ∞

a

)
,

where ∫ a

0

ts−1μ({x∈Ω :Mα,Ωu(x)>t}) dt≤ asμ(Ω).

For the second term, (5.4) together with the assumption 1≤s<Q/(Q−α) implies

that

∫ ∞

a

ts−1μ({x∈Ω :Mα,Ωu(x)>t}) dt ≤ C‖u‖Q/(Q−α)
L1(Ω)

∫ ∞

a

ts−1−Q/(Q−α) dt

= C‖u‖Q/(Q−α)
L1(Ω) as−Q/(Q−α).

Now the norm estimate (5.5) follows by choosing a=‖u‖L1(Ω). �
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5.3. The discrete fractional maximal function

We begin the construction of the local discrete fractional maximal function

in the metric setting with a Whitney covering as in [2, Lemma 4.1], see also the

classical references [11] and [36]. Let Ω⊂X be an open set such that X\Ω �=∅, let

0≤α≤Q and let 0<t<1 be a scaling parameter. There exist balls Bi=B(xi, ri),

i=1, 2, ..., with ri=
1
18 t dist(xi, X\Ω), for which

Ω=

∞⋃
i=1

Bi and

∞∑
i=1

χ
6Bi(x)≤N <∞ for all x∈Ω.

The constant N depends only on the doubling constant. Moreover, for all x∈6Bi,

(5.6) 12ri ≤ t dist(x,X\Ω)≤ 24ri.

Using the definition of ri, it is easy to show that if x∈Bi and Bi∩6Bj �=∅, then

(5.7) ri ≤ 24
17rj ≤

3
2rj and rj ≤ 19

12ri ≤
5
3ri.

Related to the Whitney covering {Bi}∞i=1, there is a sequence of Lipschitz functions

{ϕi}∞i=1, called a partition of unity, for which

∞∑
i=1

ϕi(x)= 1

for all x∈Ω. Moreover, for each i, the function ϕi satisfies the following properties:

0≤ϕi≤1, ϕi=0 in X\6Bi, ϕi≥ν in 3Bi and ϕi is Lipschitz with constant L/ri,

where ν>0 and L>0 depend only on the doubling constant.

Now the discrete fractional convolution of a locally integrable function u at the

scale t is uα
t ,

uα
t (x)=

∞∑
i=1

ϕi(x)r
α
i u3Bi , x∈X.

Let tj , j=1, 2, ..., be an enumeration of the positive rationals of the interval (0, 1).

For every scale tj , choose a covering of Ω and a partition of unity as above. The

local discrete fractional maximal function of u in Ω is M∗
α,Ωu,

M∗
α,Ωu(x)= sup

j
|u|αtj (x), x∈X.

For α=0, we obtain the local discrete maximal function studied in [2]. The construc-

tion depends on the choice of the coverings, but the estimates below are independent

of them.
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The local discrete fractional maximal function is comparable to the standard

local fractional maximal function. The proof of the following lemma is similar

to the corresponding proofs for the local discrete maximal function and the local

Hardy–Littlewood maximal function in [2, Lemma 4.2].

Lemma 5.4. There is a constant C≥1, depending only on the doubling con-

stant of μ, such that

C−1M24
α,Ωu(x)≤M∗

α,Ωu(x)≤CMα,Ωu(x)

for every x∈X and for each locally integrable function u.

Above, 24 is the constant from (5.6) and

Mβ
α,Ωu(x)= sup rα

∫
B(x,r)

|u| dμ,

where the supremum is taken over all radii r for which 0<βr<dist(x,X\Ω), is the
restricted local fractional maximal function.

Since the discrete and the standard fractional maximal functions are com-

parable, the integrability estimates hold for the local discrete fractional maximal

function as well, see Theorem 5.2 and (5.3).

5.4. Sobolev boundary values

In the metric setting, smoothing properties of the discrete fractional maximal

operator in the global case have been studied in [20] and of the standard fractional

maximal operator Mα in [21]. In the local case, by [2, Theorem 5.6], the local

discrete maximal operator preserves the boundary values in the Newtonian sense,

that is, |u|−M∗
Ωu∈N

1,p
0 (Ω) whenever u∈N1,p(Ω), p>1. Intuitively, the definition

of the fractional maximal function says that it has to be small near the boundary.

In Theorem 5.8, we will show that if Ω has finite measure, then the local discrete

fractional maximal operator maps Lp(Ω)-functions to Sobolev functions with zero

boundary values.

The next theorem, a local version of [20, Theorem 6.1], shows that the local

discrete fractional maximal function of an Lp-function has a weak upper gradient

and both M∗
α,Ωu and the weak upper gradient belong to a higher Lebesgue space

than u.

We use the following simple fact in the proof: Assume that ui, i=1, 2, ..., are

functions and gi, i=1, 2, ..., are p-weak upper gradients of ui, respectively. Let

u=supi ui and g=supi gi. If u is finite almost everywhere, then g is a p-weak upper

gradient of u. For the proof, we refer to [7].
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Theorem 5.5. Assume that the measure lower bound condition (5.1) holds.

Let Ω⊂X be an open set and let u∈Lp(Ω) with 1<p<Q. Also let 1≤α<Q/p, p∗=

Qp/(Q−αp) and q=Qp/(Q−(α−1)p). Then CMα−1,Ωu is a p-weak upper gradient

of M∗
α,Ωu. Moreover,

‖M∗
α,Ωu‖Lp∗(Ω) ≤C‖u‖Lp(Ω) and ‖Mα−1,Ωu‖Lq(Ω) ≤C‖u‖Lp(Ω).

The constants C>0 depend only on the doubling constant, the constant in the mea-

sure lower bound, p and α.

Proof. We begin by showing that CMα−1,Ωu is a p-weak upper gradient of

|u|αt . Let t∈(0, 1)∩Q be a scale and let {Bi}∞i=1 be a Whitney covering of Ω. Since

|u|αt (x)=
∞∑
j=1

ϕj(x)r
α
j |u|3Bj ,

each ϕj is L/rj-Lipschitz continuous and has a support in 6Bj , the function

gt(x)=L

∞∑
j=1

rα−1
j |u|3Bj

χ
6Bj (x)

is a p-weak upper gradient of |u|αt . We want to find an upper bound for gt. Let

x∈Ω and let i be such that x∈Bi. Then, by (5.7), 3Bj⊂B(x, 4ri)⊂15Bj whenever

Bi∩6Bj �=∅ and hence

|u|3Bj ≤C

∫
B(x,4ri)

|u| dμ.

The bounded overlap property of the balls 6Bj together with estimate (5.7) implies

that

gt(x)≤Crα−1
i

∫
B(x,4ri)

|u| dμ≤CMα−1,Ωu(x).

Consequently, CMα−1,Ωu is a p-weak upper gradient of |u|αt .
By (5.3), the function M∗

α,Ω u belongs to Lp∗
(Ω) and hence it is finite almost

everywhere. As

M∗
α,Ωu(x)= sup

j
|u|αtj (x),

and because CMα−1,Ωu is a p-weak upper gradient of |u|αtj for every t=1, 2, ..., we

conclude that it is a p-weak upper gradient of M∗
α,Ωu as well. The norm bounds

follow from Lemma 5.4 and (5.3). �
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Remark 5.6. With the assumptions of Theorem 5.5, M∗
α,Ωu∈N

1,q
loc (Ω) and

‖M∗
α,Ωu‖N1,q(A) ≤Cμ(A)1/q−1/p∗

‖u‖Lp(A)

for all open sets A⊂Ω with μ(A)<∞.

Remark 5.7. Similar arguments as in the proof of Theorem 5.5 together with

Corollary 5.3 show that if the measure lower bound condition holds, Ω⊂X is an

open set, u∈L1(Ω), μ(Ω)<∞, and 1≤s′≤s<Q/(Q−(α−1)), then CMα−1,Ωu is an

s′-weak upper gradient of M∗
α,Ωu,

‖M∗
α,Ωu‖Ls(Ω) ≤C‖u‖L1(Ω) and ‖Mα−1,Ωu‖Ls′(Ω) ≤C‖u‖L1(Ω).

In particular, we have that M∗
α,Ωu∈N1,s′(Ω) and

‖M∗
α,Ωu‖N1,s′(Ω) ≤Cμ(Ω)1/s

′−1/s‖u‖L1(Ω).

The next result shows that the local discrete fractional maximal operator ac-

tually maps Lp(Ω) to the Sobolev space with zero boundary values.

Theorem 5.8. Assume that measure lower bound condition (5.1) holds and

that X supports a (1, p)-Poincaré inequality with 1<p<Q. Let Ω⊂X be an open set

with μ(Ω)<∞ and let u∈Lp(Ω). Let 1≤α<Q/p and q=Qp/(Q−(α−1)p). Then

M∗
α,Ωu∈N

1,q
0 (Ω).

Proof. Let u∈Lp(Ω). By Remark 5.6, M∗
α,Ωu∈N1,q(Ω) and therefore, by The-

orem 5.1, it suffices to show that

(5.8)

∫
Ω

( M∗
α,Ωu(x)

dist(x,X\Ω)

)q

dμ(x)<∞.

We begin by considering |u|αt . Let t∈(0, 1)∩Q be a scale and let {Bi}∞i=1 be a

Whitney covering of Ω. Let x∈Ω and let i be such that x∈Bi. Now

|u|αt (x)=
∑
j

ϕj(x)r
α
j |u|3Bj ,

where the sum is over those indices j for which Bi∩6Bj �=∅. As in the proof of

Theorem 5.5, we use (5.7), the doubling property, the bounded overlap of the balls
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Bj and (5.6) to obtain that

|u|3Bj ≤C

∫
B(x,4ri)

|u| dμ

for all such j, and that

|u|αt (x)≤Crαi

∫
B(x,4ri)

|u| dμ≤C dist(x,X\Ω)Mα−1,Ωu(x).

By taking the supremum on the left-hand side we have

M∗
α,Ωu(x)≤C dist(x,X\Ω)Mα−1,Ωu(x).

This together with (5.3) implies that

∫
Ω

( M∗
α,Ωu(x)

dist(x,X\Ω)

)q

dμ(x)≤C

∫
Ω

(Mα−1,Ωu)
q dμ≤C‖u‖qLp(Ω).

Hence (5.8) holds and the claim follows. �

Remark 5.9. The same proof using Remark 5.7 and norm estimate (5.5) gives

a corresponding result for p=1. Namely, if u∈L1(Ω), μ(Ω)<∞, 1<α<Q, and

1<s′<Q/(Q−(α−1)), then M∗
α,Ωu∈N

1,s′

0 (Ω).
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