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Hausdorff dimension of wiggly metric spaces

Jonas Azzam

Abstract. For a compact connected set X⊆�∞, we define a quantity β′(x, r) that measures

how close X may be approximated in a ball B(x, r) by a geodesic curve. We then show that there

is c>0 so that if β′(x, r)>β>0 for all x∈X and r<r0, then dimX>1+cβ2. This generalizes a

theorem of Bishop and Jones and answers a question posed by Bishop and Tyson.

1. Introduction

1.1. Background and main results

Our starting point is a theorem of Bishop and Jones, stated below, which

roughly says that a connected subset of R2 that is uniformly non-flat in every ball

centered upon it (or in other words, is very “wiggly”) must have large dimension.

We measure flatness with Jones’ β-numbers: if K is a subset of a Hilbert space H ,

x∈K, and r>0, we define

(1.1) β(x, r)=βK(x, r)=
1

r
inf
L

sup{dist(y, L) : y ∈K∩B(x, r)},

where the infimum is taken over all lines L⊆H .

Theorem 1.1. ([1, Theorem 1.1]) There is a constant c>0 such that the fol-

lowing holds. Let K⊆R
2 be a compact connected set and suppose that there is

r0>0 such that for all r∈(0, r0) and all x∈K, βK(x, r)>β0. Then the Hausdorff

dimension(1) of K satisfies dimK≥1+cβ2
0 .

(1) See Section 2 for the definition of Hausdorff dimension and other definitions and notation.
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There are also analogues of Theorem 1.1 for surfaces of higher topological

dimension, see for example [5].

Our main theorem extends this result to the metric space setting using an

alternative definition of β. Before stating our results, however, we discuss the

techniques and steps involved in proving Theorem 1.1 to elucidate why the original

methods do not immediately carry over, and to discuss how they must be altered

for the metric space setting.

The main tool in proving Theorem 1.1 is the analyst’s traveling salesman the-

orem, which we state below. First recall that for a metric space (X, d), a maximal

ε-net is a maximal collection of points X ′⊆X such that d(x, y)≥ε for all x, y∈X ′.

Theorem 1.2. ([16, Theorem 1.1]) Let A>1, K be a compact subset of a

Hilbert space H , and Xn⊇Xn+1 be a nested sequence of maximal 2−n-nets in K.

For A>1, define

(1.2) βA(K) :=diamK+
∑

n∈Z

∑

x∈Xn

β2
K(x,A2−n)2−n.

There is A0 such that for A>A0 there is CA>0 (depending only on A) so that for

any K, βA(K)<∞ implies there is a connected set Γ such that K⊆Γ and

H 1(Γ)≤CAβA(K).

Conversely, if Γ is connected and H 1(Γ)<∞, then for any A>1,

(1.3) βA(Γ)≤CAH 1(Γ).

At the time of [1], this was only known for the case H =R
2, due to Jones [9].

Okikiolu generalized this to R
n in [13] and Schul to Hilbert space in [16].

The proof of Theorem 1.1 goes roughly as follows: one constructs a Frostman

measure μ supported on K satisfying

(1.4) μ(B(x, r))≤Crs

for some C>0, s=1+cβ2
0 , and for all x∈K and r>0. This easily implies that the

Hausdorff dimension of K is at least s (see [12, Theorem 8.8] and that section for

a discussion on Frostman measures). One builds such a measure on K inductively

by deciding the values μ(Qn)/μ(Q) for each dyadic cube Q intersecting K and for

each nth generation descendant Qn intersecting K, where n is some large number

that will depend on β0. If the number of such nth generation descendants is large

enough, we can choose the ratios and hence disseminate the mass μ(Q) amongst the

descendants Qn in such a way that the ratios will be very small and (1.4) will be

satisfied. To show that there are enough descendants, one looks at the skeletons of
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the nth generation descendants ofQ and uses the second half of Theorem 1.2 coupled

with the non-flatness condition in the statement of Theorem 1.1 to guarantee that

the total length of this skeleton (and hence the number of cubes) will be large.

In the metric space setting, however, no such complete analogue of Theorem 1.2

exists, and it is not even clear what the appropriate analogue of a β-number should

be. Note, for example, that it does not make sense to estimate the length of a metric

curve Γ using the original β-number, even if we consider Γ as lying in some Banach

space. A simple counterexample is if Γ⊆L1([0, 1]) is the image of s : [0, 1]→L1([0, 1])

defined by t 	→1[0,t]. This a geodesic, so in particular, it is a rectifiable curve of finite

length. However, βΓ(x, r) (i.e. the width of the smallest tube containing Γ∩B(x, r)

in L1, rescaled by a factor r) is uniformly bounded away from zero, and in particular,

βA(Γ)=∞.

In [6], Hahlomaa gives a good candidate for a β-number for a general metric

space X using Menger curvature and uses it to show that if the sum in (1.2) is finite

for K=X (using his definition of βX), then it can be contained in the Lipschitz

image of a subset of the real line (analogous to the first half of Theorem 1.2). An

example of Schul [15], however, shows that the converse of Theorem 1.2 is false

in general: (1.3) with Hahlomaa’s βX does not hold with the same constant for

all curves in �1. We refer to [15] for a good summary on the analyst’s traveling

salesman problem.

To generalize Theorem 1.1, we use a β-type quantity that differs from both

Jones’ and Hahlomaa’s definitions. It is inspired by one defined by Bishop and

Tyson in [2] that measures the deviation of a set from a geodesic in a metric space:

if X is a metric space, BX(x, r)={y∈X :d(x, y)<r)}, and y0, ..., yn∈BX(x, r) is an

ordered sequence, define

(1.5) ∂(y0, ..., yn)=

n−1∑

i=0

d(yi, yi+1)−d(y0, yn)+ sup
z∈BX(x,r)

min
i=1,...,n

d(z, yi)

and define

(1.6) β̂X(x, r)= inf
{yi}n

i=0⊆BX(x,r)

∂(y0, ..., yn)

d(y0, yn)
,

where the infimum is over all finite ordered sequences in BX(x, r) of any length n.

In [2], Bishop and Tyson ask whether, for a compact connected metric space X ,

(1.6) being uniformly larger than zero is enough to guarantee that dimX>1. We

answer this in the affirmative.

Theorem 1.3. There is θ>0 such that the following holds: If X is a compact

connected metric space and β̂X(x, r)>β>0 for all x∈X and r∈(0, r0) for some

r0>0, then dimX≥1+θβ4.
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Instead of β̂, however, we work with a different quantity, which we define here

for a general compact metric space X . First, by Kuratowski’s embedding theorem,

we may assume that X is a subset of �∞, whose norm we denote by | · |. Let

B(x, r)=B�∞(x, r) and define

(1.7) β′
X(x, r)= inf

s

�(s)−|s(0)−s(1)|+supz∈X∩B(x,r) dist(z, s([0, 1]))

|s(0)−s(1)| ,

where the infimum is over all curves s : [0, 1]→B(x, r)⊆�∞ and

�(s)= sup
{ti}n

i=0

n−1∑

i=0

|s(ti)−s(ti+1)|

is the length of s, where the supremum is over all partitions 0=t0<t1<...<tn=1.

In general, if s is defined on a union of disjoint open intervals {Ij}∞j=1, we set

�(s|S∞
j=1 Ij )=

∞∑

j=1

�(s|Ij ).

The case in which s is just a straight line segment through the center of the ball

with length 2r gives the estimate β′
X(x, r)≤ 1

2 .

The quantity β′(x, r) measures how well X∩B(x, r) may be approximated by a

geodesic. To see this, note that if the 1
2β

′(x, r)|s(0)−s(1)|-neighborhood of s([0, 1])

contains X∩B(x, r), for some s : [0, 1]→�∞, then the length of s must be at least(
1+ 1

2β
′(x, r)

)
|s(0)−s(1)|, which is 1

2β
′(x, r)|s(0)−s(1)| more than the length of

any geodesic connecting s(0) and s(1). The quantity β̂ similarly measures how well

the portion of X∩B(x, r) may be approximated by a geodesic polygonal path with

vertices in X . In Figure 1, we compare the meanings of β, β̂, and β′.

We will refer to the quantities �(s) and ∂(y0, ..., yn) as the geodesic deviation of

s and {y0, ..., yn} respectively. We will also say that β̂X(x, r) and β′
X(x, r) measure

the geodesic deviation of X inside the ball B(x, r).

Note that for the image of t 	→1[0,t]∈L1([0, 1]) described earlier, it is easy

to check that β̂(x, r)=β′(x, r)=0 for all x∈X and r>0, even though βX(x, r) is

bounded away from zero. This, of course, makes the terminology “wiggly” rather

misleading in metric spaces, since there are certainly non-flat or highly “wiggly”

geodesics in L1; we use this terminology only to be consistent with the literature.

Later on in Proposition 5.2, however, we will show that in a Hilbert space we have

for some C>0,

(1.8) β′(x, r)≤β(x, r)≤Cβ′(x, r)1/2.
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Figure 1. In each of the three figures above there is a ball B=B(x, r) containing a
portion of a curve X . In the first picture, β(x, r)2r is the width of the smallest tube

containing X∩B(x, r). In the second picture, we see that β̂(x, r) is such that for

β>β̂(x, r), there are y0, ..., yn∈X with vertices in X∩B so that balls centered on the
yi of radius β|y0−yn| cover X∩B, and so that the geodesic deviation (that is, its length
minus |y0−yn|) is at most β|y0−yn|. In the last picture, we show that if β′(x, r)<β,
there is s : [0, 1]→�∞ whose geodesic deviation and whose distance from any point in
X∩B are both at most β|s(0)−s(1)|.

That the two should be correlated in this setting seems natural as β(x, r) is mea-

suring how far X is deviating from a straight line, which are the only geodesics in

Hilbert space.

In Lemma 5.1 below, we will also show that for some C>0,

β′(x, r)≤ β̂(x, r)≤Cβ′(x, r)1/2

so that Theorem 1.3 follows from the following theorem, which is our main result.
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Theorem 1.4. There is c0>0 such that the following holds: If X is a compact

connected metric space and β′
X(x, r)>β>0 for all x∈X and r∈(0, r0) for some

r0>0, then dimX≥1+c0β
2.

We warn the reader, however, that the quadratic dependence on β appears in

Theorems 1.4 and 1.1 for completely different reasons. In Theorem 1.1, it comes

from using Theorem 1.2, or ultimately from the Pythagorean theorem, which of

course does no hold in general metric spaces; in Theorem 1.4, it seems to be an

artifact of the construction and can perhaps be improved.

Our approach to proving Theorem 1.4 follows the original proof of Theorem 1.1

described earlier: to show that a metric curve X has large dimension, we approxi-

mate it by a polygonal curve, estimate its length from below, and use this estimate

to construct a Frostman measure, but in lieu of a traveling salesman theorem. (In

fact, taking β′(x,A2−n) instead of β(x,A2−n)2 in Theorem 1.2 does not lead to a

metric version of Theorem 1.2 for a similar reason that Hahlomaa’s β-number does

not work; one need only consider Schul’s example [15, Section 3.3.1].)

1.2. An application to conformal dimension

The original context of Bishop and Tyson’s conjecture, and the motivation

for Theorem 1.4, concerned conformal dimension. Recall that a quasisymmetric

map f : X→Y between two metric spaces is a map for which there is an increasing

homeomorphism η : (0,∞)→(0,∞) such that for any distinct x, y, z∈X ,

|f(x)−f(y)|
|f(z)−f(y)| ≤ η

(
|x−y|
|z−y|

)
.

The conformal dimension of a metric space X is

C-dimX = inf
f

dim f(X),

where the infimum ranges over all quasisymmetric maps f : X→f(X). For more

information about recent work on conformal dimension, see for example [11].

In [2], it is shown that the antenna set has conformal dimension one, yet every

quasisymmetric image of it into any metric space has dimension strictly larger than

one. The antenna set is a self-similar fractal lying in C whose similarities are

f1(z)=
z

2
, f2(z)=

z+1

2
, f3(z)= iαz+

1

2
, and f4(z)=−iαz+

1

2
+iα,

where α∈
(
0, 1

2

)
is some fixed angle (see Figure 2).
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Figure 2. The antenna set with α= 1
4
.

To show that the conformal dimension 1 is never attained under any quasisym-

metric image of the antenna set, the authors show by hand that any quasisymmetric

map of the antenna set naturally induces a Frostman measure of dimension larger

than one. At the end of the paper, however, the authors suggested another way of

showing the same result by proving an analogue of Theorem 1.1 for a β-number,

which is uniformly large for the antenna set as well as any quasisymmetric image

of it.

Theorem 1.4 does not just give a much longer proof of Bishop and Tyson’s

result, but it lends itself to more general sets lacking any self-similar structure.

Definition 1.5. Let c>0 and Y =[0, e1]∪[0, e2]∪[0, e3]⊆R
3, where ej is the jth

standard basis vector in R
3, and let X be a compact connected metric space. For

x∈X , r>0, we say that BX(x, r) has a c-antenna if there is a homeomorphism

h : Y →h(Y )⊆BX(x, r) such that the distance between h(ei) and h([0, ej ]∪[0, ek])
is at least cr for all permutations (i, j, k) of (1, 2, 3). We say that X is c-antenna-like

if BX(x, r) has a c-antenna for every x∈X and r< 1
2 diamX .

Clearly, the classical antenna set in R
2 is antenna-like.

Theorem 1.6. Let X be a compact connected metric space in �∞.

(1) If BX(x, r) has a c-antenna, then β′(x, r)>c/7. Hence, if X is c-antenna-

like, we have dimX≥1+c0/49c
2.

(2) Any quasisymmetric image of an antenna-like set into any metric space is

also antenna-like and hence has dimension strictly larger than one.

Note that this result does not say that the conformal dimension of an antenna-

like set is larger than one, only that no quasisymmetric image of it has dimension

equal to one. However, see [10], where Mackay bounds the conformal dimension of

a set from below using a different quantity.



8 Jonas Azzam

1.3. Outline

In Section 2, we go over some necessary notation and tools before proceeding

to the proof of Theorem 1.4 in Section 3. In Section 4, we prove Theorem 1.6, and

in Section 5 we compare β′, β̂, and β.
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2. Preliminaries

2.1. Basic notation

Since we are only dealing with compact metric spaces, by the Kuratowski em-

bedding theorem, we will implicitly assume that all our metric spaces are contained

in �∞, whose norm we will denote by | · |.
For x∈�∞ and r>0, we will write

B(x, r)= {y ∈ �∞ : |x−y|<r}⊆ �∞.

If B=B(x, r) and λ>0, we write λB for B(x, λr). For a set A⊆�∞ and δ>0, define

Aδ = {x∈ �∞ : dist(x,A)<δ} and diamA=sup{|x−y| :x, y ∈A},

where

dist(A,B)= inf{|x−y| :x∈A and y ∈B} and dist(x,A)=dist({x}, A).

For a set E⊆R, let |E| denote its Lebesgue measure. For an interval I⊆R, we will

write aI and bI for its left and right endpoints respectively. For s>0, δ∈(0,∞] and

A⊆�∞, define

H s
δ (A)= inf

{ ∞∑

j=1

diamAj :A⊆
∞⋃

j=1

Aj , diamAj <δ

}
and H s(A)= lim

δ→0
H 1

δ (A).

The Hausdorff dimension of a set A is dimA:=inf{s:H s(A)=0}.



Hausdorff dimension of wiggly metric spaces 9

2.2. Cubes

In this section, we construct a family of subsets of �∞, tailored to a metric

space X , that have properties similar to dyadic cubes in Euclidean space. These

cubes appeared in [16] (where they were alternatively called “cores”) and are similar

to the so-called Christ–David cubes [3], [4] in some respects, although they are not

derived from them.

Fix M>0 and c∈
(
0, 1

8

)
. Let Xn⊆X be a nested sequence of maximal M−n-

nets in X . Let

Bn = {B(x,M−n) :x∈Xn} and B =

∞⋃

n=1

Bn.

For B=B(x,M−n)∈Bn, define

Q0
B = cB,

Qj
B =Qj−1

B ∪
⋃{

cB :B ∈
∞⋃

n=m

Bm and cB∩
∞⋂

n=m

Qj−1
B �=∅

}
, j=1, 2, ...,

QB =

∞⋃

j=0

Qj
B.

Basically, QB is the union of all balls B′ that may be connected to B by a chain

{cBj}nj=1 with Bj∈B, diamBj≤diamB, and cBj∩cBj+1 �=∅ for all j.

For such a cube Q constructed from B(x,M−n), we let xQ=x and BQ=

B(x, cM−n).

Let

Δn = {QB :B ∈Bn} and Δ=

∞⋃

n=0

Δn.

Note that, for Q∈Δn, xQ∈Xn.

Lemma 2.1. If c< 1
8 , then for X and Δ as above, the family of cubes Δ satisfy

the following properties:

(1) If Q,R∈Δ and Q∩R �=∅, then Q⊆R or R⊆Q;

(2) For Q∈Δ,

(2.1) BQ ⊆Q⊆ (1+8M−1)BQ.
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The proof is essentially in [14], but with slightly different parameters. So that

the reader need not perform the needed modifications, we provide a proof here.

Proof. Part 1 follows from the definition of the cubes Q. To prove Part 2,

we first claim that if {Bj}nj=0 is a chain of balls with centers xj for which

cBj∩cBj+1 �=∅, then for C=1/(1−2M−1),

(2.2)

n∑

j=0

diam cBj ≤C max
j=0,...,n

diam cBj .

We prove (2.2) by induction. Let xj denote the center of Bj . If n=1, diamB0≤
diamB1, and x0 and x1 are the centers of B0 and B1 respectively, then diamB0≤
M−1 diamB1 since otherwise B0, B1∈BN for some N and

M−n ≤ |x0−x1| ≤ 1
2 diam cB0+

1
2 diam cB1 =2cM−n <M−n

as c< 1
8 , which is a contradiction. Hence,

diam cB0+diam cB1 ≤ (1+2M−1) diam cB1 ≤C diam cB1.

Now suppose n>1. Let j0∈{1, ..., n} and N be an integer so that

(2.3) diamBj0 = max
j=1,...,n

diamBj =2M−N .

Recall that all balls in B have radii that are powers of M−1, so there exists an N

so that the above happens.

Note that Bj0−1 and Bj0 cannot have the same diameter (which follows from

the n=1 case we proved earlier). Since Bj0 has the maximum diameter of all the Bj ,

we in fact know that diamBj0−1≤M−1Bj0 (again, recall that all balls have radii

that are powers of M−1).

Let i0≤j0 be the minimal integer for which diamBi0≤M−1 diamBj0 (which

exists by the previous discussion) and let k0≥j0 be the maximal integer such that

Bk0≤M−1 diamBj0 . By the induction hypothesis

k0∑

j=j0+1

diam cBj ≤C max
j0<j≤k0

diam cBj ≤CM−1 diam cBj0

and

(2.4)

j0−1∑

j=i0

diam cBj ≤C max
i0≤j<j0

diam cBj ≤CM−1 diam cBj0
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so that

(2.5)

k0∑

j=i0

diamBj ≤ (1+2CM−1) diam cBj0 =C diam cBj0 .

Claim. i0=0.

Note that if i0>0, then

|xi0−1−xj0 | ≤
j0∑

i=i0−1

diam cBi

≤diam cBi0−1+diam cBj0+

j0−1∑

i=i0

2cBj0

(2.3)
(2.4)

≤ 2 diam cBj0+CM−1 diam cBj0

=(2c+cCM−1) diamBj0

=(2c+cCM−1)2M−N

<M−N

for c< 1
4 and M>4 (this makes C<2). Since xj0∈XN and points in XN are M−N -

separated, we must have xi0−1 /∈XN , and hence Bi0−1 /∈BN . Thus

diamBi0−1 ≤M−1 diamBj0 ,

which contradicts the minimality of i0, and hence i0=0. We can prove similarly

that k0=n, and this with (2.4) proves (2.2). This in turn implies that for any N∈N,
if Q∈ΔN , then diamQ≤C diam cBQ. Hence

Q ⊆ B(xQ, cM
−N+(C−1) diam cBQ)

= B

(
xQ, c

(
1+

4M−1

1−2M−1

)
M−N

)
⊆ (1+8M−1)BQ. �

For N large enough, this means we can pick our cubes so that they do not

differ much from balls. We will set 8M−1=εβ for some ε∈(0, 1) to be determined

later, so that

(2.6) BQ ⊆Q⊆ (1+εβ)BQ.
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Remark 2.2. There are a few different constructions of families of metric sub-

sets with properties similar to dyadic cubes, see [3], [4], and [8] for example, and

the references therein. Readers familiar with any of these references will see that

the Schul’s “cores” we have just constructed are very different from the cubes con-

structed in the aforementioned references. In particular, each Δn does not partition

any metric space in the same way that dyadic cubes (half-open or otherwise) would

partition Euclidean space, not even up to a set of measure zero). However, for each

n we do have

(2.7) X ⊆
⋃

{c−1Q :Q∈Δn},

and we still have the familiar intersection properties in Lemma 2.1. The reason for

the ad hoc construction is the crucial “roundness” property (2.6).

Lemma 2.3. Let γ : [0, 1]→�∞ be a continuous piecewise linear function whose

image is a finite union of line segments, set Γ=γ([0, 1]) and let Δ be the family

of cubes from Lemma 2.1 tailored to X . Then for any Q∈Δ, H 1(∂Q)=0 and

|γ−1(∂Q)|=0.

Proof. Note that since Γ is a finite polynomial curve, μ=H 1|Γ is doubling

on Γ, meaning that there is a constant C so that μ(B(x,Mr))≤Cμ(B(x, r)) for

all x∈Γ and r>0. If x∈∂Q for some Q∈Δ, then there is a sequence xn∈Xn such

that |xn−x|<M−n since the Xn are maximal M−n-nets. To each xn corresponds

a ball Bn=B(xn,M
−n)∈Bn. Let N be such that Q∈ΔN . As cBn⊆QBn∈Δn,

we have by Lemma 2.1 that either cBn⊆Q (if QBn∩Q �=∅) or cBn⊆R for some

R∈ΔN with Q∩R=∅. In either case, since cubes do not contain their bound-

aries (since they are open), we have that cBn∩∂Q=∅. This implies that Q is

porous, and it is well known that the zero measure is the only doubling mea-

sure on such a set. More precisely, the doubling condition on μ guarantees that

limn→∞ μ(∂Q∩B(x,M−n))/μ(B(x,M−n))=1 μ-a.e. x∈Γ (see [7, Theorem 1.8]),

but if x∈∂Q and Bn is as above, then one can show using the doubling property of

μ that

lim sup
n→∞

μ(∂Q∩B(x,M−n))

μ(B(x,M−n))
≤ lim sup

n→∞

μ(B(x,M−n)\Bn)

μ(B(x,M−n))
< 1,

and thus μ(∂Q)=0. The last part of the theorem follows since γ is piecewise

affine. �

The following lemma will be used frequently.
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Lemma 2.4. Let I⊆R be an interval, s : I→�∞ be continuous, and I ′⊆I be

a subinterval. Then

(2.8) �(s|I′)−|s(aI′)−s(bI′)| ≤ �(s|I)−|s(aI)−s(bI)|.

Proof. We may assume �(sI)<∞, otherwise (2.8) is trivial. We estimate

�(s|I′)−|s(aI′)−s(bI′)| = �(s|I)−�(s|I\I′)−|s(aI′)−s(bI′)|

≤ �(s|I)−(|s(aI)−s(aI′)|+|s(bI)−s(bI′)|)−|s(aI′)−s(bI′)|

≤ �(s|I)−|s(aI)−s(bI)|. �

3. Proof of Theorem 1.4

3.1. Setup

For this section, we fix a compact connected set X satisfying the conditions of

Theorem 1.4. The main tool is the following lemma, which can be seen as a weak

substitute for Theorem 1.2.

Lemma 3.1. Let c′< 1
8 . We can pick M large enough (by picking ε>0 small

enough) and pick β0, θ>0 such that, for any X satisfying the conditions of The-

orem 1.4 for some β∈(0, β0), the following holds. If Xn is any nested sequence

of M−n-nets in X , then there is n0=n0(β) such that for x0∈Xn with M−n<

min
{
r0,

1
2 diamX

}
,

(3.1) #Xn+n0∩B(x0, c
′M−n)≥M (1+θβ2)n0 .

We will prove this in Section 3.2, but first, we will show why this proves The-

orem 1.4.

Proof of Theorem 1.4. Without loss of generality, we may assume r0>2 by

scaling X if necessary. We first consider the case when β<β0. Let Δ be the family

of cubes from Lemma 2.1 tailored to the metric space X with c=c′ and define

inductively,

Δ′
0 =Δ0 and Δ′

n+1 = {R∈Δ(n+1)n0
:R⊆Q for some Q∈Δn}.

By Lemma 3.1, for any Q∈Δ′
n, if BQ=B(xQ, cM

−N ), then

(3.2) #{R∈Δ′
n+1, R⊆Q}≥#XN+n0∩Q≥#Xn0∩c′BQ ≥M (1+θβ2)n0
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and moreover, since c′< 1
8 ,

(3.3) 2BQ∩2BR =∅ for Q,R∈Δn.

Define a probability measure μ inductively by pickingQ0∈Δ′
0, setting μ(Q0)=1,

and for Q∈Δ′
n and R∈Δ′

n+1, with R⊆Q, setting

(3.4)
μ(R)

μ(Q)
=

1

#{S ∈Δ′
n+1 :S⊆Q}

(3.2)

≤ M−(1+θβ2)n0 .

Let x∈X , r∈(0, r0/M). Pick n so that

(3.5) M−n0(n+1) ≤ r <M−n0n.

Claim. There is at most one y∈X(n−1)n0
such that

(3.6) B(y, c′M−(n−1)n0)∩B(x, r) �=∅ and Q=QB(y,c′M−(n−1)n0 ) ∈Δ′
n−1.

Indeed, if there were another such y′∈X(n−1)n0
with B(y′, c′M−(n−1)n0)∩

B(x, r) �=∅, then

M−(n−1)n0 ≤ |y′−y|

≤ c′M−(n−1)n0+dist(B(y, c′M−(n−1)n0), B(y′, c′M−(n−1)n0))

+c′M−(n−1)n0

≤ 2c′M−(n−1)n0+diamB(x, r)

≤ 2c′M−(n−1)n0+2r

(3.5)

≤ 2M−(n−1)n0(c′+M−n0)

< 4c′M−(n−1)n0

<M−(n−1)n0

since c′< 1
8 and we can pick ε<c′/8 so that M−n0≤M−1<c′, which gives a contra-

diction and proves the claim.

Now, assuming we have y∈X(n−1)n0
satisfying (3.6),

B(x, r) ⊆ B(y, c′M−(n−1)n0+2r)
(3.5)

⊆ B(y, c′M−(n−1)n0+2M−nn0)

⊆ B(y, 2c′M−(n−1)n0)= 2BQ
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for M large enough (that is, for 2M−1<c′, which is possible by picking ε<c′/16).

If Q/∈Δ′
n−1, then (3.3) implies 2BQ∩2BR=∅ for all R∈Δ′

n−1, and so

μ(B(x, r))≤μ(2BQ)= 0.

Otherwise, if Q∈Δ′
n−1, then Q⊆Q0, so that

μ(B(x, r))≤μ(2BQ)
(3.3)
= μ(Q)

(3.4)
= M−(1+θβ2)n0(n−1)μ(Q0)

(3.5)

≤ M2(1+θβ2)r−(1+θβ2).

Thus μ is a (1+θβ2)-Frostman measure supported onX , which implies that dimX≥
1+θβ2 (cf. [12, Theorem 8.8]).

Now we consider the case when β≥β0. Trivially, β′(x, r)≥β≥β0 for all x∈X
and r<r0, and our previous work gives dimX≥1+θt2 for all t<β0. Hence dimX≥
1+θβ2

0 . Since β′≤ 1
2 , we must have β, β0≤ 1

2 , and so

dimX ≥ 1+θβ2
0 ≥ 1+4θβ2

0β
2

and the theorem follows with c0=4θβ2
0 . �

To show Lemma 3.1, we will approximate X by a tree containing a sufficiently

dense net in X and estimate its length from below. The following lemma relates

the length of this tree to the number of net points in X .

Lemma 3.2. Let Xn0 be a maximal M−n0 -net for a connected metric space X ,

where n0 is so that 4M−n0< 1
4 diamX . Then we may embed X into �∞ so that there

is a connected union of finitely many line segments Γn0⊆�∞ containing Xn0 such

that for any x∈Xn0 and r∈
(
4M−n0 , 1

4 diamX
)
,

(3.7) H 1
(
Γn0∩B

(
x,

r

2

))
≤ 8M−n0#(Xn0∩B(x, r)).

Proof. Embed X isometrically into �∞(N) so that for any x∈X , the first #Xn0

coordinates are all zero. Construct a sequence of trees Tj as follows. Enumerate

the elements of Xn0={x1, ..., x#Xn0
}. For two points x and y, let

Axy,i = {tx+(1−t)y+max{t, 1−t}|x−y|ei : t∈ [0, 1]},

where ei is the ith standard basis vector in �∞(N) (i.e. it is equal to 1 in the ith

coordinate and zero in every other coordinate).

Now construct a sequence of trees Tj in �∞(N) inductively by setting T0={x0}
and Tj+1 equal to Tj united with Sj+1 :=Axj+1x′

j+1,j+1, where x
′
j+1∈{x1, ..., xj} and

xj+1∈Xn0\{x1, ..., xj} are such that

|xj+1−x′
j+1|=dist(Xn0\{x1, ..., xj}, {x1, ..., xj}).
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Since X is connected, |xj+1−x′
j+1|≤2M−n0 , so that

H 1(Sj)=H 1(Axjx′
j ,j

)≤ 2|xj−x′
j | ≤ 4·2M−n0 =8M−n0 .

Then Γn0 :=T#Xn0
is a tree contained in �∞(N) containing Xn0 (the reason we made

the arcs Sj reach into an alternate dimension is to guarantee that the branches of

the tree do not intersect except at the points Xn0).

To prove (3.7), note that since r/2>2M−n0 and xj∈Sj⊆B(xj , 2M
−n0), we

have

H 1
(
Γn0∩B

(
x,

r

2

))
≤

∑

Sj∩B(x,r/2) �=∅

H 1(Sj)

≤
∑

xj∈B(x,r/2+2M−n0 )

8M−n0 ≤ 8#(Xn0∩B(x, r)). �

3.2. Proof of Lemma 3.1

We now dedicate ourselves to the proof of Lemma 3.1. Again, let X be a

connected metric space satisfying the conditions of Theorem 1.4. Without loss of

generality, n=0, so that diamX>2. Embed X into �∞ as in Lemma 3.2. Fix n0∈N.
Let Γn0 be the tree from Lemma 3.2 containing the M−n0 -net Xn0⊆X .

Since Γn0 is a tree of finite length that is a union of finitely many line segments,

it is not hard to show that there is a piecewise-linear arc-length-parametrized path

γ : [0, 2H 1(Γn0)]→Γn0 that traverses almost every point in Γn0 at most twice (ex-

cept at the discrete set of points Xn0). The proof is similar to that of its graph-

theoretic analogue.

Let Δ be the family of cubes from Lemma 2.1 tailored to Γn0 and fix Q0∈Δ0.

We will adjust the value of c>0 in Lemma 2.1 and the value ε>0 in the definition

of M as we go along the proof. Note that diamX>2 implies diamΓn0>1>(1+εβ)c

if c< 1
8 , and so Γn0�Q0. For Q,R∈Δ, write R1=Q if R is a maximal cube in Δ

properly contained in Q. For n≥0 and Q∈Δ, define L0(Q)={Q} and

L1(Q) = {R∈Δ:R1 =Q}, Ln(Q)=
⋃

R∈Ln−1(Q)

L1(R),

L̃ n(Q) = Ln(Q)∩
n0−1⋃

j=0

Δj , L̃ (Q)=

∞⋃

n=0

L̃ n(Q),

L̃ n = L̃ n(Q0), L̃ = L̃ (Q0).
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Figure 3. In (a), we have a typical cube Q∈Δn and some of its children in L1(Q).
Note that their sizes can be radically different. In (b) are the components γ|γ−1(Q),

where in this case γ−1(Q) consists of two intervals, and we have pointed at a particular
component γ|I for some I∈λ(Q). In (c), the dashed lines represent the components of
γn|γ−1(Q), which is affine in the cubes in Δn and hence is affine in Q, and the solid

piecewise-affine curves represent the components of γn+1|γ−1(Q), which are affine in

the children of Q (since they are in Δn+1).

For Q∈Δ let

λ(Q)= {[a, b] : (a, b) is a connected component of γ−1(Q)},

and for n≤n0 define γn to be the continuous function such that for all Q∈Ln(Q0)

and [a, b]∈λ(Q),

γn|[a,b](at+(1−t)b)= tγ(a)+(1−t)γ(b) for t∈ [0, 1],

that is, γn is linear in all cubes in Δn and agrees with γ on the boundaries of the

cubes (see Figure 3).

Lemma 3.1 will follow from the following two lemmas.

Lemma 3.3. There is K∈(0, 1) and β0>0 (independent of n0 above) such

that if β∈(0, β0), n<n0, and Q∈L̃ n, either

(3.8)
∑

I∈λ(Q)

(�(γn+1|I)−�(γn|I))≥
εβ

4
diamQ
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or Q∈ΔBad, where

(3.9) ΔBad = {R∈ L̃ :H 1
∞(Γn0∩R)≥ (1+Kβ) diamR}.

Lemma 3.4. With ΔBad defined as above, we have

(3.10)
∑

Q∈ΔBad

β diamQ≤ 2

K
H 1(Γn0).

We will prove these lemmas in Sections 3.3 and 3.4 respectively, but first let

us finish the proof of Lemma 3.1.

For Q∈L̃ , let n(Q) be such that Q∈Ln and define

d(Q)=
∑

I∈λ(Q)

(�(γn(Q)+1|I)−�(γn(Q)|I)).

By telescoping sums and Lemma 2.3, we have

∑

Q∈ fL

d(Q) =

n0−1∑

n=0

∑

Q∈ fLn

∑

I∈λ(Q)

(�(γn+1|I)−�(γn|I))

=

n0−1∑

n=0

(�(γn+1|γ−1(Q0))−�(γn|γ−1(Q0)))

≤ �(γ|γ−1(Q0))

= 2H 1(Γn0∩Q0).(3.11)

Note that diam(Γn0∩Q0)≥1 since Q0∈Δ0, diamΓn0>1, and Γn0 is connected. This

and Lemmas 3.3 and 3.4 imply that

10

Kε
H 1(Γn0∩Q0) ≥ 2

Kε
H 1(Γn0∩Q0)+

8

ε
H 1(Γn0∩Q0)

(3.9)
(3.11)

≥
∑

Q∈ΔBad

β diamQ+
4

ε

∑

Q∈ fL \ΔBad

d(Q)

(3.8)

≥
∑

Q∈ΔBad

β diamQ+
∑

Q∈ fL \ΔBad

β diamQ

=
∑

Q∈ fL

β diamQ
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=

n0−1∑

n=0

∑

Q∈Δn

β diamQ

≥
n0−1∑

n=0

∑

Q∈Δn

β diamBQ

=

n0−1∑

n=0

c
∑

Q∈Δn

β diam
1

c
BQ

(2.7)

≥ cn0β diam(Γn0∩Q0)

≥ cn0β

so that
Kcn0βε

10
≤H 1(Γn0∩Q0).

By Lemma 3.2, and since BQ0 has radius c,

H 1(Γn0∩Q0) ≤ H 1(Γn0∩(1+εβ)BQ0)≤H 1(Γn0∩B(x, 2c))

≤ 8#(Xn0∩B(x, 4c))M−n0 .

Combining these two estimates we have for c<c′/4 that

δn0M
n0β≤#(Xn0∩B(x0, c

′)), where δ=
Kcε

80
.

Pick n0=�8/δβ2ε
. Since 8/εβ=M , we get

#(Xn0∩B(x0, c
′)) ≥ δn0M

n0β=n0

(
δεβ2

8

)
Mn0

8

εβ
≥Mn0+1

=Mn0(1+1/n0) ≥Mn0(1+1/(8/δβ2−1)) ≥Mn0(1+δβ2/16)

since 8/δβ2≥2, and this proves Lemma 3.1 with θ=δ/16.

Remark 3.5. By inspecting the proof of Lemma 3.3 below, one can solve for

explicit values of ε, c, β0, and K. In particular, one can choose ε< 1
12288 , K< 1

4096 ,

c< 1
64 , and β0=

1
356 , so that the supremum of permissible values of θ is at least 2−41,

and is by no means tight.

In the next two subsections, we prove Lemmas 3.3 and 3.4.
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3.3. Proof of Lemma 3.3

Fix Q as in the statement of the lemma. For any I∈λ(Q),

�(γn+1|I)−�(γn|I) ≥ �(γn+1|I)−|γn(aI)−γn(bI)|

= �(γn+1|I)−|γn+1(aI)−γn+1(bI)| ≥ 0.

Hence, to prove the lemma, it suffices to show that either Q∈ΔBad or there is an

interval I∈λ(Q) for which

�(γn+1|I)−�(γn|I)≥
εβ

4
diamQ.

Fix N so that Q∈ΔN . Let Q̃∈ΔN+1 be such that

xQ ∈ Q̃⊂ Q̃1 =Q

and pick I∈λ(Q) such that γn+1(I)∩Q̃ �=∅. Note that γn|I⊆Q is a segment with

the same endpoints as γn+1|I . Hence

�(γn|I) = H 1(γn(I))=diam γn(I)= |γn(aI)−γn(bI)|

= |γn+1(aI)−γn+1(bI)| ≤diamQ.(3.12)

Before proceeding, we will give a rough idea of how the proof will go. We will

consider a few cases, which are illustrated in Figure 4.

In the first case, we assume the diameter of γn(I) is small with respect to

Q; since γn+1|I has the same endpoints as γn|I and intersects the center cube Q̃,

there must be a large difference in length between γn+1(I) and γn(I) as the former

must enter Q, hit Q̃, and then exit Q, and so (3.8) will hold. For the next two

cases, we assume that γn(I) has large diameter. The case 2a assumes that γn+1(I)

contributes more length than γn(I), again implying (3.8) trivially. (It is possible

to combine this case with (1), but we found this split to be somewhat convenient.)

In the final case 2b we assume that the difference in length between γn+1(I) and

γn(I) is small. Since βX(BQ)>β, we can show that this implies the existence of

z∈X far away from γn+1(I) (as γn+1|I has small geodesic deviation, so it cannot

approximate all of X in BQ). Since Γn0 approximates X , we can find a large curve

ρ⊆Γn0 entering BQ, approaching z, and then leaving BQ. The presence of both

γ(I) and ρ inside Q implies that the total length of Γn0∩Q must be large, which

means that Q∈ΔBad.

Now we proceed with the actual proof.
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Figure 4. Illustrations of cases 1, 2a, and 2b.

Case 1. Suppose �(γn(I))<
1
4 diamQ. Since γn+1|I is a path entering Q, hit-

ting Q̃, and then leaving Q, we can estimate

�(γn+1|I)≥ 2 dist(Q̃,Qc)

(2.6)

≥ 2 dist((1+εβ)B
eQ, BQ)

= 2(cM−N−(1+εβ)cM−N−1)

= 2cM−N (1−(1+εβ)M−1)

≥diamBQ

(
1− εβ

8
− ε2β2

8

)

> (1−εβ) diamBQ

(2.6)

≥ 1−εβ

1+εβ
diamQ
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=

(
1+εβ

1+εβ
− 2εβ

1+εβ

)
diamQ

≥ (1−2εβ) diamQ.(3.13)

Thus,

�(γn+1|I)−�(γn|I)
(3.13)

≥ (1−2εβ) diamQ− 1
4 diamQ≥ 1

8 diamQ

if ε< 1
16 , which implies the lemma in this case.

Case 2. Suppose

(3.14) �(γn|I)≥ 1
4 diamQ.

We again split into two cases.

Case 2a. Suppose

�(γn+1|I)≥ (1+εβ)�(γn|I).

Then

�(γn+1|I)−�(γn|I)≥ εβ�(γn|I)
(3.14)

≥ εβ

4
diamQ.

Case 2b. Now suppose

(3.15) �(γn+1|I)< (1+εβ)�(γn(I)).

Note that in this case, we have a better lower bound on �(γn|I), namely,

(3.16) �(γn|I)
(3.15)

≥ �(γn+1|I)
1+εβ

(3.13)

≥ 1−2εβ

1+εβ
diamQ≥ (1−3εβ) diamQ.

Let C∈(0, 1) (we will pick its value later).

Lemma 3.6. Assuming the conditions in case 2b, let I ′⊆I be the smallest

interval with

γn+1(aI′), γn+1(bI′)∈ ∂((1−Cβ)BQ) and γn+1(I
′)∩Q̃ �=∅.

Then

(3.17) �(γn+1|I′)−|γn+1(aI′)−γn+1(bI′)| ≤ 2εβ|γn+1(aI′)−γn+1(bI′)|.
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Proof. Since γn+1 enters (1−Cβ)BQ, hits Q̃, and then leaves (1+Cβ)BQ, we

have

�(γn+1|I′)≥ 2 dist(Q̃, (1−Cβ)Bc
Q)

(2.6)

≥ 2 dist((1+εβ)B
eQ, (1−Cβ)Bc

Q)

= 2((1−Cβ)cM−N−(1+εβ)cM−N−1)

= 2cM−N (1−Cβ−(1+εβ)M−1)

> (1−Cβ−2M−1) diamBQ

=

(
1−Cβ− εβ

4

)
diamBQ

(2.6)

≥
1−Cβ− 1

4εβ

1+εβ
diamQ

=

(
1+εβ

1+εβ
−
Cβ+ 5

4εβ

1+εβ

)
diamQ

> (1−Cβ−2εβ) diamQ.(3.18)

Hence,

|γn+1(aI)−γn+1(bI)|−|γn+1(aI′)−γn+1(bI′)|

≤ |γn+1(aI)−γn+1(aI′)|+|γn+1(bI)−γn+1(bI′)|

≤ �(γn+1|I\I′)

= �(γn+1|I)−�(γn+1|I′)

(3.15)
(3.18)

≤ (1+εβ)�(γn(I))−(1−Cβ−2εβ) diamQ

(3.13)

≤ (1+εβ) diamQ−(1−Cβ−2εβ) diamQ

=(3εβ+Cβ) diamQ

(3.12)
(3.14)

≤ 4(3εβ+Cβ)|γn+1(aI)−γn+1(bI)|.(3.19)

Thus,

(3.20) |γn+1(aI)−γn+1(bI)| ≤
|γn+1(aI′)−γn+1(bI′)|

1−4(3εβ+Cβ)
≤ 2|γn+1(aI′)−γn+1(bI′)|
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if we pick ε< 1
24 and β< 1

8 (recall that C∈(0, 1)). By Lemma 2.4,

�(γn+1|I′)−|γn+1(aI′)−γn+1(bI′)|
(2.8)

≤ �(γn+1|I)−|γn+1(aI)−γn+1(bI)|
(3.15)
< εβ|γn+1(aI)−γn+1(bI)|

(3.20)

≤ 2εβ|γn+1(aI′)−γn+1(bI′)|,

which proves (3.17). �

By the main assumption in Theorem 1.4, and because we are assuming n=0

so that M−n=1<r0,

β <β′
X(xQ, (1−Cβ)cM−N )

≤
�(γn+1|I′)−|γn+1(aI′)−γn+1(bI′)|+supz∈(1−Cβ)BQ∩X dist(z, γn+1(I

′))

|γn+1(aI′)−γn+1(bI′)|
(3.17)

≤
2εβ|γn+1(aI′)−γn+1(bI′)|+supz∈(1−Cβ)BQ∩X dist(z, γn+1(I

′))

|γn+1(aI′)−γn+1(bI′)|

=2εβ+
supz∈(1−Cβ)BQ∩X dist(z, γn+1(I

′))

|γn+1(aI′)−γn+1(bI′)|

so there is z∈X∩(1−Cβ)BQ with

dist(z, γn+1(I
′))≥ (β−2εβ)|γn+1(aI′)−γn+1(bI′)|

(3.20)

≥ β−2εβ

2
|γn+1(aI)−γn+1(bI)|

(3.14)

≥ β−2εβ

8
diamQ

≥ β

16
diamQ(3.21)

if ε< 1
4 .

Since γn+1([0, 1]) hits every cube in L1(Q), which all have diameter at most

2(1+εβ)cM−N−1 by (2.6) (recall that N was chosen so that Q∈ΔN ),

Γn0∩Q⊆ γn+1([0, 1])2(1+εβ)cM−N−1 ⊆ γn+1([0, 1])4cM−N−1 .

Note that since Q∈L̃ n, we have N<n0. Since Xn0⊆Γn0∩X and N<n0,

X∩(1−Cβ)BQ ⊆X∩Q

⊆ (Γn0∩Q)2M−n0
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⊆ γn+1([0, 1])4cM−N−1+2M−n0

⊆ γn+1([0, 1])4cM−N−1+2M−N−1

= γn+1([0, 1])(2+1/c)M−12cM−N

= γn+1([0, 1])(2+1/c)M−1 diamBQ

⊆ γn+1([0, 1])(2/Mc) diamBQ

since c< 1
8 . Since z∈X∩(1−Cβ)BQ, there is t∈[0, 1] such that

(3.22) |γn+1(t)−z|< 2

c
M−1 diamBQ =

εβ

4c
diamQ

and so

dist(γn+1(t), γn+1(I
′))≥dist(z, γn+1(I

′))−|γn+1(t)−z|
(3.21)
(3.22)

≥
(

β

16
− εβ

4c

)
diamQ

≥ β

32
diamQ(3.23)

for ε<c/8. Also, since z∈(1−Cβ)BQ, we know that

BQ ⊇B

(
z,

Cβ

2
diamBQ

)
(2.6)

⊇ B

(
z,

Cβ

2(1+εβ)
diamQ

)
⊇B

(
z,

Cβ

4
diamQ

)

(3.22)

⊇ B

(
γn+1(t),

(
Cβ

4
− εβ

4c

)
diamQ

)
⊇B

(
γn+1(t),

Cβ

8
diamQ

)
(3.24)

for ε<Cc/2. In particular, t∈γ−1
n+1(BQ). Note that

dist(γn+1(t), γn+1(I))≥dist(γn+1(t), γn+1(I
′))

−max{diam γ([aI , a
′
I ]), diam γ([b′I , bI ])}

≥dist(γn+1(t), γn+1(I
′))−�(γ|I/I′)

(3.19)
(3.23)

≥
(

β

32
−(3εβ+Cβ)

)
diamQ

≥ β

64
diamQ

for ε< 1
384 and C< 1

128 . Thus, since of course C/8< 1
128 , we have

B

(
γn+1(t),

Cβ

8
diamQ

)
⊆Q\γn+1(I)(β/128) diamQ.
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In particular, γn+1(t)∈Q, and so by construction, t∈[a, b] for some [a, b]∈λ(Q),

where γn+1(a) and γn+1(b) are both in Γn0 . In particular, γn+1((a, b)) is a line

segment in a cube R∈L̃ 1(Q). If ζ :=γn+1(a)∈Γn0 , then

|ζ−γn+1(t)| ≤ diamR
(2.6)

≤ (1+εβ) diamBR =2(1+εβ)cM−N−1

≤ (1+εβ)M−1 diamQ=(1+εβ)
εβ

8
diamQ≤ εβ

4
diamQ≤ Cβ

16
diamQ(3.25)

for ε< C
4 , and so

(3.26) B

(
ζ,

Cβ

16
diamQ

)
⊆B

(
γn+1(t),

Cβ

8
diamQ

)
⊆ Q

γn+1(I)(β/128) diamQ
.

Thus, since Γn0 is connected and diamΓn0>diamQ0>(Cβ/16) diamQ, we know

there is a curve

ρ⊆Γn0∩B
(
ζ,

Cβ

16
diamQ

)

connecting ζ to B(ζ, (Cβ/16) diamQ)c, and therefore the curve has diameter at

least 1
16Cβ diamQ. Hence,

H 1
∞(ρ)≥diam ρ≥ Cβ

16
diamQ.

Moreover,

H 1
∞(γ(I))≥diam γ(I)≥ |γ(aI)−γ(bI)|

(3.12)
= |γn(aI)−γn(bI)|

(3.16)

≥ (1−3εβ) diamQ.

Thus, since any cube in L 1(Q) intersecting ρ has diameter at most (εβ/4) diamQ<

β/128 by (3.25), they are disjoint from those intersecting γ(I) by (3.26) if we choose

ε< 1
128 (as if they intersect γ(I), they also intersect γn+1(I) by the definition of

γn+1). Hence, we have

H 1
∞(Q)≥ Cβ

16
diamQ+(1−3εβ) diamQ≥

(
1+

Cβ

32

)
diamQ

for ε<C/96. Picking K=C/32 gives that Q∈ΔBad, which finishes the proof of

Lemma 3.3.
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3.4. Geometric martingales and the proof of Lemma 3.4

For Q∈Δ, let k(Q) be the number of cubes in ΔBad that properly contain Q,

and set

ΔBad,j = {Q∈ΔBad : k(Q)= j},

Badj(Q) = {R⊆Q : k(R)= k(Q)+j},

G(Q) =
Γn0∩Q⋃

R∈Bad1(Q) R
.

We will soon define, for each Q∈Δbad, a non-negative weight function wQ :

Γn0→[0,∞) H 1|Γn0
-a.e. in a martingale fashion by defining it as a limit of a se-

quence wj
Q. Each wj

Q will be constant on various subsets of Γn0 that partition Γ0.

We will actually decide the value of wj
Q on an element A of the partition, say, by

declaring the value of

wj
Q(A) :=

∫

Γn0∩A

wj
Q dH 1.

Then we will define wj+1
Q to be constant on sets in a partition subordinate to

the previous partition so that, on sets A in the jth partition, wj+1
Q (A)=wj

Q(A),

and so forth. We do this in such a way that we disseminate the mass of the

weight function wQ so that wQ is supported in Q, has integral diamQ, and so

that wQ(x)≤1/(1+Kβ)k(x)−k(Q), where k(x) is the total number of bad cubes

containing x. By geometric series, this will mean that
∑

Q∈ΔBad
wQ1Q is a bounded

function, so that its total integral is at most a constant times H 1(Γ0). However,

the integral of each of these functions wQ is diamQ, and so the integral is also equal

to
∑

Q∈ΔBad
diamQ, which gives us (3.9). This method appears in [16]. Now we

proceed with the proof.

First set

(3.27) w0
Q(Q)=diamQ and w0

Q|Qc ≡ 0,

and construct wj+1
Q from wj

Q as follows:

1. If R∈Badj(Q) for some j and S∈Bad1(R), set wj+1
Q to be constant in S so

that

(3.28) wj+1
Q (S)=wj

Q(R)
diamS∑

T∈Bad1(R) diamT+H 1(G(R))
.
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2. Set wj+1
Q to be constant in G(R) so that

(3.29) wj+1
Q (G(R))=wj

Q(R)−
∑

S∈Bad1(R)

wj+1
Q (S).

3. For points x not in any R∈Badj(Q), set wj+1
Q (x)=wj

Q(x).

Like a martingale, we have by our construction that, if R∈Badj(Q), then wi
Q(R)=

wj
Q(R) for all i≥j, and in particular, wj

Q(Q)=diamQ for all j≥0.

We will need the inequality

(3.30)
∑

T∈Bad1(R)

diamT+H 1(G(R))≥H 1
∞(R∩Γn0)≥ (1+Kβ) diamR.

The first inequality comes from the fact that if δ>0 and Ai is a cover of G(R) by

sets so that
∑∞

i=1 diamAi<H 1(G(R))+δ, then {Ai}i∪Bad1(R) is a cover of R (up

to a set of H 1-measure zero by Lemma 2.3), and so

∑

T∈Bad1(R)

diamT+H 1(G(R))+δ >

∞∑

i=1

diamAi+
∑

T∈Bad1(R)

diamT ≥H 1
∞(R∩Γn0),

which gives the first inequality in (3.30) by taking δ→0. The last inequality in

(3.30) is from the definition of ΔBad.

For S∈Bad1(R) and R∈Badj(Q), by induction we have

wj+1
Q (S)

diamS

(3.28)
=

wj
Q(R)

∑
T∈Bad1(R) diamT+H 1(G(R))

(3.30)

≤
wj

Q(R)

diamR

1

1+Kβ

≤
w0

Q(Q)

diamQ

1

(1+Kβ)j+1

(3.27)
=

1

(1+Kβ)j+1
.(3.31)

Hence, since wj+1
Q is constant in S, for x∈S∩Γn0 ,

wj+1
Q (x)

(3.28)
= wj

Q(R)
diamS∑

T∈Bad1(R) diamT+H 1(G(R))

1

H 1(S∩Γn0)

(3.30)

≤
wj

Q(R)
∑

T∈Bad1(R) diamT+H 1(G(R))

1

1+Kβ

(3.30)

≤
wj

Q(R)

diamR

1

(1+Kβ)2
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(3.31)

≤
w0

Q(Q)

diamQ

1

(1+Kβ)j+2

=
1

(1+Kβ)j+2
.(3.32)

Moreover, if x∈G(R),

wj+1
Q (x)=

wj+1
Q (G(R))

H 1(G(R))

(3.29)
=

wj
Q(R)−

∑
S∈Bad1(R) w

j+1
Q (S)

H 1(G(R))

(3.28)
=

wj
Q(R)

H 1(G(R))

(
1−

∑

S∈Bad1(R)

diamS∑
T∈Bad1(R) diamT+H 1(G(R))

)

=
wj

Q(R)

H 1(G(R))

H 1(G(R))∑
T∈Bad1(R) diamT+H 1(G(R))

=
wj

Q(R)
∑

T∈Bad1(R) diamT+H 1(G(R))

(3.30)
<

wj
Q(R)

diamR

1

1+Kβ

(3.31)

≤ 1

(1+Kβ)j+1
.(3.33)

Since ΔBad⊆
⋃n0

j=0 Δj , and H 1
(⋃

Q∈Δ ∂Q
)
=0, almost every point x∈Q0∩Γn0

is contained in at most finitely many cubes in ΔBad, and hence the value of wj+1
Q (x)

changes only finitely many times in j. Thus the limit wQ=limj→∞ wj
Q is well defined

almost everywhere. For x∈Q∩Γn0 , set k(x)=k(R), where R⊆Q is the smallest cube

in ΔBad containing x. Then (3.32) and (3.33) imply that

wQ(x)≤
1

(1+Kβ)k(x)−k(Q)
,

and so

∑

x∈Q∈ΔBad

wQ(x)≤
k(x)∑

j=0

1

(1+Kβ)j
≤

∞∑

j=0

1

(1+Kβ)j
=

1+Kβ

Kβ
≤ 2

Kβ
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since Kβ<1. Hence,

∑

Q∈ΔBad

diamQ =
∑

Q∈ΔBad

∫

Q

wQ(x) dH
1(x)=

∫

Γn0

( ∑

x∈Q∈ΔBad

wQ(x)

)
dH 1(x)

≤ 2

Kβ
H 1(Γn0),

which finishes the proof of Lemma 3.4.

4. Antenna-like sets

This section is devoted to the proof of Theorem 1.6.

It is easy to verify using the definitions that being antenna-like is a quasisym-

metric invariant quantitatively, so by Theorem 1.4, it suffices to verify that, if X is c-

antenna-like, then any ball B(x, r) with x∈X and 0<r< 1
2 diamX has β′(x, r)>c/7.

Fix such a ball, so there is a homeomorphism h :
⋃3

i=1[0, ei]→X∩B(x, r) so

that

(4.1) dist(h(ei), h([0, ej ]∪[0, ek]))≥ cr

for all permutations (i, j, k) of (1, 2, 3) (see Figure 5).

Let s : [0, 1]→B(x, r) satisfy

�(s|[0,1])−|s(0)−s(1)|+ sup
z∈X∩B(x,r)

dist(z, s([0, 1]))< 2β′(x, r)|s0−s1|=:β.

Set xi=h(ei) for i=1, 2, 3 and let

t1 = inf s−1

( 3⋃

i=1

B(xi, β)

)
.

This always exists since X∩B(x, r)⊆s([0, 1])β . Without loss of generality, assume

that s(t1)∈B(x1, β). Similarly, let

(4.2) t2 = inf s−1

( 3⋃

i=2

B(xi, β)

)

and again, without loss of generality, assume that s(t2)∈B(x2, β).

Note that h([0, e1]∪[0, e3]) is a path connecting x1 to x3, where the latter point

is not contained in s([t1, t2])β by our choices of t1 and t2, although the former point

is; otherwise, there would be t∈[t1, t2] such that s(t)∈B(x3, β), contradicting the

minimality of t2. Since h([0, e1]∪[0, e3]) is connected and s([t1, t2])β contains x1 but
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Figure 5.

not x3, we can pick a point z∈h([0, e1]∪[0, e3]) so that dist(z, s([t1, t2]))=β. Pick

ζ1∈[t1, t2] and ζ2∈(t2, 1] so that

(4.3) |s(ζ1)−z|=dist(z, s([t1, t2]))=β and |s(ζ2)−z|<β.

Then by Lemma 2.4,

2β′(x, r)|s0−s1|>�(s|[0,1])−|s(0)−s(1)|

≥ �(s|[ζ1,ζ2])−|s(ζ1)−s(ζ2)|

≥ �(s|[ζ1,t2])+�(s|[t2,ζ2])−|s(ζ1)−z|−|z−s(ζ2)|
(4.3)
> |s(ζ1)−s(t2)|+|s(t2)−s(ζ2)|−β−β

≥ |z−x2|−|s(ζ1)−z|−|x2−s(t2)|

+|x2−z|−|s(t2)−x|−|s(ζ2)−z|−2β

(4.1)
(4.3)

≥ cr−β−β+cr−β−β−2β

=2cr−6β

≥ c|s(0)−s(1)|−12β(x, r)|s(0)−s(1)|,

which yields β′(x, r)≥c/7 and completes the proof of Theorem 1.6.
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5. Comparison of the β-numbers

For quantities A and B, we will write A�B if there is a universal constant C

so that A≤CB, and A∼B if A�B�A.

Lemma 5.1. Let X⊆�∞ be a compact connected set. Also let x∈X and

0<r< 1
2 diamX . Then

(5.1) β′(x, r)≤ β̂(x, r)�β′(x, r)1/2.

Proof. The first inequality follows trivially from the definitions, since each se-

quence y0, ..., yn∈X induces a finite polygonal Lipschitz path s in �∞ for which

�(s)−|s(0)−s(1)|=
n−1∑

i=0

|yi−yi+1|−|y0−yn|.

For the opposite inequality, let s : [0, 1]→�∞ be such that

(5.2)
�(s)−|s(0)−s(1)|+supz∈B(x,r)∩X dist(z, s([0, 1]))

|s(0)−s(1)| ≤ 2β′(x, r)=:β.

Let

A= s−1(s([0, 1])2β|s0−s1|),

which is a relatively open subset of [0, 1]. Let a=inf A and define a=t0<t1<...<

tn≤1 inductively by setting

ti+1 = inf{t∈A∩(ti, b] : dist(s(t), s([t0, ti]))>β1/2|s(0)−s(1)|}.

We claim that

(5.3) n∼β−1/2|s(0)−s(1)|.

To see this, note that since |s(ti)−s(ti+1)|≥β1/2|s(0)−s(1)|, the sets

B
(
s(ti),

1
2β

1/2|s(0)−s(1)|
)

are disjoint, so that

1
2nβ

1/2|s(0)−s(1)| ≤ �(s)≤ (1+β)|s(0)−s(1)| ≤ 2|s(0)−s(1)|,

which gives n≤4β−1/2. On the other hand, the balls B(s(ti), 2β
1/2|s(0)−s(1)|)

cover s([0, 1]), and so
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|s(0)−s(1)| ≤ �(s)≤
n∑

i=0

diamB(s(ti), 2β
1/2|s(0)−s(1)|)

≤ (n+1)4β1/2|s(0)−s(1)| ≤ 8nβ1/2|s(0)−s(1)|,

which gives n≥1/8β, and this proves (5.3).

By the definition of A, there are

yi ∈B(s(ti), 2β|s(0)−s(1)|).

Then

n−1∑

i=0

|yi−yi+1|−|y0−y1| ≤
n−1∑

i=0

|s(ti)−s(ti+1)|+4nβ|s(0)−s(1)|−|s(t0)−s(tn)|

(5.3)

≤ �(s|[t0,tn])−|s(t0)−s(tn)|+Cβ1/2|s(0)−s(1)|
(5.2)

≤ β|s0−s1|+Cβ1/2|s(0)−s(1)|

�β1/2|s(0)−s(1)|.

Claim. |s(0)−s(1)|�|s(t0)−s(tn)|.

Since X is connected and r< 1
2 diamX , there is a path connecting x to B(x, r)c,

which naturally must be of diameter at least r. Hence

|s(0)−s(1)| ≤ 2r≤ 2(�(s|[t0,tn])−4β|s0−s1|)≤ 2|s(t0)−s(tn)|+Cβ1/2|s(0)−s(1)|,

which, if β1/2 is small enough, implies

|s(0)−s(1)| ≤ 4|s(t0)−s(tn)|=4|y0−yn|

so that the above estimates imply that

(5.4)

n−1∑

i=0

|yi−yi+1|−|y0−yn|�β1/2|s(0)−s(1)| ≤ 4β1/2|y0−yn|.

Moreover,

X∩B(x, r) ⊆ s([0, 1])β|s(0)−s(1)|

⊆
n⋃

i=0

B(s(ti), (2β
1/2+β)|s(0)−s(1)|)
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⊆
n⋃

i=0

B(yi, (2β
1/2+β+2β)|s(0)−s(1)|)

⊆
n⋃

i=0

B(yi, 5β
1/2|s(0)−s(1)|)

⊆
n⋃

i=0

B(yi, 20β
1/2|y0−yn|).(5.5)

Thus (5.4) and (5.5) imply that β̂(x, r)≤20β1/2=20
√
2β′(x, r)1/2. �

Proposition 5.2. For a compact connected subset X of some Hilbert space,

β′′(x, r)≤β(x, r)�β′′(x, r) for x∈Γ and r < 1
2 diamX,

where

β′′(x, r)= inf
s

((
�(s)−|s(0)−s(1)|

|s(0)−s(1)|

)1/2

+
supz∈B(x,r)∩X dist(z, s([0, 1]))

|s(0)−s(1)|

)
.

In particular,

(5.6) β′(x, r)≤β(x, r)�β′(x, r)1/2.

Note that (5.6) is tight in the sense that if X⊆C, 0∈X , and B(0, 1)∩Γ=
[−1, 1]∪[0, iε], then by Theorem 1.6 and (5.6), for all ε>0,

β(0, 1)≤ ε≤ 7β′(0, 1)≤ 7β(0, 1)≤ 7ε.

However, if X∩B(x, r)=[−1, 0]∪[0, eiε], then for all ε>0, again by (5.6) (and esti-

mating β′′(0, 1) by letting s be the path traversing the segments [−1, 0]∪[0, eiε]),

β(0, 1)2 ∼ ε2 �β′(0, 1)�β(0, 1)2.

Proof. For the first inequality, simply let s : [0, 1]→H be the line segment

spanning L∩B(x, r), where L is some line passing through B(x, r/2). Then �(s)=

H 1(L∩B(x, r))≥r and hence

β′′(x, r)≤
supz∈B(x,r)∩X dist(z, s([0, 1]))

|s(0)−s(1)| ≤
supz∈B(x,r)∩X dist(z, L)

r
.

Since x∈X , the range of admissible lines in the infimum in (1.1) can be taken to

be lines intersecting B(x, r/2). Using this fact and infimizing the above inequality

over all such lines proves the first inequality in (5.6).
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For the opposite inequality, let s satisfy

(
�(s)−|s(0)−s(1)|

|s(0)−s(1)|

)1/2

+
supz∈B(x,r)∩X dist(z, s([0, 1]))

|s(0)−s(1)| ≤ 2β′′(B(x, r))=:β.

Let

β(s) := sup
t∈[0,1]

dist(s(t), [s(0), s(1)]).

Then by the Pythagorean theorem, there is c>0 so that

(1+cβ(s)2)|s(0)−s(1)| ≤ �(s)≤ (1+β2)|s(0)−s(1)|

and thus β(s)≤c−1β. Hence, if L is the line passing through s(0) and s(1),

β(x, r) ≤ sup
z∈B(x,r)∩X

dist(z, L)≤ sup
z∈B(x,r)∩X

dist(z, [s(0), s(1)])

≤ β(s)+ sup
z∈B(x,r)∩X

dist(z, s([0, 1]))≤ c−1β+β �β. �
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