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The Alexander polynomial as quantum
invariant of links

Antonio Sartori

Abstract. In these notes we collect some results about finite-dimensional representations of

Uq(gl(1|1)) and related invariants of framed tangles, which are well-known to experts but difficult

to find in the literature. In particular, we give an explicit description of the ribbon structure

on the category of finite-dimensional Uq(gl(1|1))-representations and we use it to construct the

corresponding quantum invariant of framed tangles. We explain in detail why this invariant

vanishes on closed links and how one can modify the construction to get a non-zero invariant of

framed closed links. Finally we show how to obtain the Alexander polynomial by considering the

vector representation of Uq(gl(1|1)).

1. Introduction

The Alexander polynomial is a classical invariant of links in R
3, defined first in

the 1920s by Alexander [1]. Constructed originally in combinatorial terms, it can

be defined also in modern language using the homology of a cyclic covering of the

link complement (see for example [16]).

The Alexander polynomial can also be defined using the Burau representation

of the braid group (see for example [13, Chapter 3]). As is well-known to experts,

this representation can be constructed using a solution of the Yang–Baxter equation,

which comes from the action of the R-matrix of Uq(gl(1|1)) [14] (or alternatively of

Uq(sl2) for a root of unity q; see [22] for the parallel between gl(1|1) and sl2).

In other words, the key point of the construction is the braided structure of

the monoidal category of finite-dimensional representations of Uq(gl(1|1)), that is,
there is an action of an R-matrix satisfying the braid relation. This can obviously

be used to construct representations of the braid group. Considering tensor pow-

ers of the vector representation of Uq(gl(1|1)), one obtains in this way the Burau
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representation of the braid group. Given a representation of the braid group, one

can extend it to an invariant of links considered as closures of braids by defining a

Markov trace.

In these notes, we exploit this construction a bit further, proving that the

category of finite-dimensional Uq(gl(1|1))-representations is not only braided, but

actually ribbon. A ribbon category is exactly what one needs to use the Reshetikhin–

Turaev construction [19] to get invariants of oriented framed tangles. The advantage

of the ribbon structure is that one can consider arbitrary diagrams of links, and not

just braid diagrams.

To construct a ribbon structure on the category of modules over some algebra,

a possible strategy is to prove that the algebra is actually a ribbon Hopf algebra.

Unfortunately, similarly to the case of a classical semisimple Lie algebra, the Hopf

algebra Uq(gl(1|1)) is not ribbon. We hence consider another version of the quantum

enveloping algebra, which we call U�(gl(1|1)), and which is a topological algebra

over C���. Roughly speaking, the relation between Uq(gl(1|1)) and U�(gl(1|1)) is

given by setting q=e�. The price for working with power series pays off, since

U�(gl(1|1)) is in fact a ribbon Hopf algebra. By a standard argument, we see that

the R-matrix and the ribbon element of U�(gl(1|1)) act on finite-dimensional rep-

resentations of Uq(gl(1|1)) and hence deduce the ribbon structure of this category.

Given an oriented framed tangle T and a labeling � of the strands of T by

finite-dimensional irreducible Uq(gl(1|1))-representations, we then get an invariant

Q�(T ), which is a certain Uq(gl(1|1))-equivariant map. In particular, restricting to

oriented framed links (viewed as special cases of tangles), we obtain a C(q)-valued

invariant.

If we label all the strands by the vector representation of Uq(gl(1|1)), an easy

calculation shows that the corresponding invariant of oriented framed tangles is

actually independent of the framing and hence is an invariant of oriented tangles

(as is well-known, the same happens for the ordinary sln-invariant).

Unfortunately, when considering invariants of closed links, there is a little prob-

lem we have to take care of. Namely, it follows from the fact that the category of

finite-dimensional Uq(gl(1|1))-modules is not semisimple (this is true even in the

non-quantized case and well-known, see for example [4] where the blocks of the cat-

egory of finite-dimensional gl(m|n)-representations are studied in detail) that the

invariant Q�(L) is zero for all closed links L (see Proposition 4.4). The work-around

to avoid this problem is to choose a strand of the link L, cut it and consider the

invariant of the framed 1-tangle that is obtained in this way (Theorem 4.6). The

resulting invariant will be an element of the endomorphism ring of an irreducible

representation (the one that labels the strand being cut); since this ring can be

naturally identified with C(q), the invariant that we obtain in this way is actu-
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ally a rational function. The construction does not depend on the strand we cut,

but rather on the representation labeling the strand. In particular for a constant

labeling � of all the components of L we get a true invariant of framed links.

Applying this construction to the constant labeling by the vector representa-

tion, one obtains as before an invariant of links. In fact, it is easy to prove that this

coincides with the Alexander polynomial (see Theorem 4.10).

The structure of these notes is the following. In Section 2 we define the quantum

enveloping superalgebras Uq and U� and explicitly describe the ribbon structure

of the latter. In Section 3 we study in detail the category of finite-dimensional

representations of Uq . In Section 4 we construct the invariants of framed tangles

and of links and finally recover the Alexander polynomial as a consequence of the

construction. In the appendix we collect two technical results about U�.

We want to stress that the content of this short note is well-known to experts.

Relations between Uq(gl(1|1)), or more generally Uq(gl(n|n)), and the Alexander

polynomial have been noticed, studied and generalized by lots of authors (see for

example [7]–[11], [14] and [20]). In particular, almost everything we write here is a

special case of what is analyzed in [22], where quantum gl(1|1)- and sl2-invariants

associated with arbitrary coloring of tangles are studied in detail. Our aim is to

provide, from a purely representation theoretical point of view, a short but complete

and self-contained explanation of how the Alexander polynomial arises as quantum

invariant corresponding to the vector representation of Uq(gl(1|1), including a full

proof of the ribbon structure of Uq(gl(1|1)).
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2. The quantum enveloping superalgebras Uq and U�

We recall the definition of the quantum enveloping algebra Uq=Uq(gl(1|1)) and
of its Hopf superalgebra structure. We then define the �-version U�=U�(gl(1|1))
and prove that it is a ribbon Hopf superalgebra.

In the following, as usual, by a superobject (for example vector space, algebra,

Lie algebra, module) we will mean a Z/2Z-graded object. If X is such a superobject

we will use the notation |x| to indicate the degree of a homogeneous element x∈X .

Elements of degree 0 are called even, while elements of degree 1 are called odd. We

stress that whenever we write |x| we will always be assuming x to be homogeneous.
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Throughout the section we will use some standard facts about Hopf superalge-

bras. The analogous statements in the non-super setting can be found for example

in [5], [12] or [18]. The proofs carry directly over to the super case.

2.1. The Lie superalgebra gl(1|1)

Let C1|1 be the 2-dimensional complex vector space with basis {u0, u1} viewed

as a super vector space by setting |u0|=0 and |u1|=1. The space of linear endomor-

phisms of C1|1 inherits a Z/2Z-grading and turns into a Lie superalgebra gl(1|1)
with the supercommutator

(2.1) [a, b] = ab−(−1)|a| |b|ba.

As a Lie superalgebra, gl(1|1) is four-dimensional and generated by the ele-

ments

(2.2) h1 =

(
1 0

0 0

)
, h2 =

(
0 0

0 1

)
, e=

(
0 1

0 0

)
and f =

(
0 0

1 0

)

with |h1|=|h2|=0 and |e|=|f |=1, subject to the defining relations

(2.3)
[h1, e] = e, [h1, f ] = −f, [h1, h2] = 0, [e, e] = 0,

[h2, e] = −e, [h2, f ] = f, [e, f ] = h1+h2, [f, f ] = 0.

Let h⊂gl(1|1) be the Cartan subalgebra consisting of all diagonal matrices.

In h∗ let {e1, e2} be the basis dual to {h1, h2}. On h∗ we define a non-degenerate

symmetric bilinear form by setting on the basis

(2.4) (εi, εj)=

⎧⎪⎨
⎪⎩
1, if i=j=1,

−1, if i=j=2,

0, if i �=j.

The roots of gl(1|1) are α=ε1−ε2 and −α; we choose α to be the positive simple

root. Denote by P=Zε1⊕Zε2⊂h∗ the weight lattice and by P∗=Zh1⊕Zh2⊂h its

dual.
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2.2. The quantum enveloping superalgebra

The quantum enveloping superalgebra Uq=Uq(gl(1|1)) is defined to be the uni-

tal superalgebra over C(q) with generators E, F and qh (h∈P∗) in degrees |qh|=0

and |E|=|F |=1 subject to the relations for h, h′∈P∗,

(2.5)
q0 =1, qhE= q〈h,α〉Eqh, EF+FE=

K−K−1

q−q−1
,

qhqh′
=qh+h′

, qhF = q−〈h,α〉Fqh, E2 =F 2 =0,

where K=qh1+h2 . The elements qh, which for the moment are formal symbols, can

be interpreted in terms of exponentials in U�(gl(1|1)) (see below). Notice that all

elements qh for h∈P∗ are linear combination of qh1 and qh2 , so that Uq is finitely

generated. Note also that K is a central element of Uq , very much in contrast to

Uq(sl2).

2.3. Hopf superalgebras

We recall that if A is a superalgebra then A⊗A can be given a superal-

gebra structure by declaring (a⊗b)(c⊗d)=(−1)|b| |c|ac⊗bd. If M and N are A-

supermodules, then M⊗N becomes an A⊗A-supermodule with action

(a⊗b)·(m⊗n)= (−1)|b| |m|am⊗bn for a, b∈A, m∈M and n∈N.

A superbialgebra B over a field K is then a unital superalgebra, which is also

a coalgebra, such that the counit u : B→K and the comultiplication Δ: B→B⊗B

are homomorphisms of superalgebras (and are homogeneous of degree 0). A Hopf

superalgebra H is a superbialgebra equipped with a K-linear antipode S : H→H

(homogeneous of degree 0) such that the usual diagram

(2.6)

H⊗H H H⊗H

K

H⊗H H H⊗H

Δ Δ

∇ ∇

S⊗id id⊗S

u

1

commutes, where ∇ : H⊗H→H and 1 : K→H are the multiplication and unit of

the algebra structure.
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IfH is a Hopf superalgebra andM andN are (finite-dimensional)H-supermod-

ules, then the comultiplication Δ makes it possible to give M⊗N an H-module

structure by letting

(2.7) x·(m⊗n)=Δ(x)(m⊗n)=
∑
(x)

(−1)|x(2)| |m|x(1)m⊗x(2)n

for x∈H and m⊗n∈M⊗N , where we use Sweedler notation Δ(x)=
∑

(x) x(1)⊗x(2).

Notice in particular that signs appear. The antipode S, moreover, allows us to turn

M∗=HomK(M,K) into an H-module via

(2.8) (xϕ)(v)= (−1)|ϕ| |x|ϕ(S(x)v)

for x∈H and ϕ∈M∗. Again, notice that a sign appears. A good rule to keep in

mind is that a sign appears whenever an odd element steps over some other odd

element. A good reference for sign issues is [17, Chapter 3].

2.4. The Hopf superalgebra structure on Uq

Let us now go back to Uq . We define a comultiplication Δ: Uq→Uq⊗Uq ,

a counit u : Uq→C(q) and an antipode S : Uq→Uq by setting on the generators

(2.9)

Δ(E)=E⊗K−1+1⊗E, Δ(F )=F⊗1+K⊗F,

S(E)=−EK, S(F )=−K−1F,

Δ(qh)=qh⊗qh, S(qh)=q−h,

u(E)=u(F )= 0, u(qh)= 1,

and extending Δ and u to algebra homomorphisms and S to an algebra anti-

homomorphism. We have the following result.

Proposition 2.1. The maps Δ, u and S turn Uq into a Hopf superalgebra.

Proof. This is a straightforward calculation. �

Notice that from the centrality of K it follows that S2=id; this is a special

property of Uq , which for instance does not hold in Uq(gl(m|n)) for general m and

n (see [2] for a definition of the general linear quantum supergroup).

We define a bar involution on Uq by setting

(2.10) E=E, F =F, qh =q−h and q̄= q−1.

Note that Δ̄=(¯⊗¯)◦Δ◦¯ defines another comultiplication on Uq , and by definition

Δ̄(x̄)=Δ(x) for all x∈Uq .
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2.5. The Hopf superalgebra U�

Our goal is to construct a ribbon category of representations of Uq , so that

we can define link invariants. The main ingredient is the R-matrix. Unfortunately,

as usual, it is not possible to construct a universal R-matrix for Uq ; instead, we

need to consider the �-version of the quantum enveloping superalgebra, which we

will denote by U�, and which is a C���-superalgebra completed with respect to

the �-adical topology. We will prove that U� is a ribbon algebra. Then, using a

standard argument of Tanisaki [21], we obtain a ribbon structure on the category of

finite-dimensional Uq-representations. For details about topological C���-algebras

we refer to [12, Chapter XVI]. We will denote by the symbol ⊗̂ the completed tensor

product of topological C���-algebras.

We define U� to be the unital C���-algebra topologically generated by the

elements E, F , H1 and H2 in degrees |H1|=|H2|=0 and |E|=|F |=1 subject to the

relations

(2.11)

H1H2 =H2H1,

HiE−EHi = 〈Hi, α〉E, HiF−FHi =−〈Hi, α〉F,

EF+FE=
e�(H1+H2)−e−�(H1+H2)

e�−e−�
, E2 =F 2 =0.

Note that although e�−e−� is not invertible, it is the product of � with an invertible

element of C���, and hence the fourth relation makes sense.

Although the relation between Uq and U� is technically not easy to formalize

(see [5] for details), one should keep in mind the picture

(2.12)
q←→ e�,

qhi ←→ e�Hi .

This also explains why we use the symbols qh as generators for Uq . In the following,

we set q=e� as an element of C��� and K=e�(H1+H2) as an element of U�.

As before, we define a comultiplication Δ: U�→U� ⊗̂U�, a counit u : U�→C���

and an antipode S : U�→U� by setting for the generators

(2.13)

Δ(E)=E⊗K−1+1⊗E, Δ(F )=F⊗1+K⊗F,

S(E)=−EK, S(F )=−K−1F,

Δ(Hi)=Hi⊗1+1⊗Hi, S(Hi)=−Hi,

u(E)=u(F )= 0, u(Hi)= 0,

and extending Δ and u to algebra homomorphisms and S to an algebra anti-

homomorphism. We have the following result.
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Proposition 2.2. The maps Δ, u and S turn U� into a Hopf superalgebra.

The proof requires precisely the same calculations as the proof of Proposition 2.1.

As for Uq , we define a bar involution on U� by setting

(2.14) E=E, F =F, Hi =Hi and �̄=−�.

As before, Δ̄=(¯⊗¯)◦Δ◦¯ defines another comultiplication on U�, and by defini-

tion Δ̄(x̄)=Δ(x) for all x∈U�.

2.6. The braided structure

We are going to recall the braided Hopf superalgebra structure (cf. [18] and [23])

of U�. The main ingredient is the universal R-matrix, which has been explicitly

computed by Khoroshkin and Tolstoy (cf. [15]). We adapt their definition to our

notation.(1)

We define R=ΘΥ∈U� ⊗̂U�, where

Υ= e�(H1⊗H1−H2⊗H2),(2.15)

Θ=1+(q−q−1)F⊗E.(2.16)

Notice that the expression for Υ makes sense as an element of the completed tensor

product U� ⊗̂U�. Recall that a vector w in some representation W of U� is said

to be a weight vector of weight μ if Hiw=〈Hi, μ〉w for i=1, 2. The element Υ

is then characterized by the property that it acts on a weight vector w1⊗w2 by

q(μ1,μ2)=e�(μ1,μ2), if w1 and w2 have weights μ1 and μ2 respectively.

The element Θ is called the quasi R-matrix ; it is easy to check that it satisfies

(2.17) Θ˙Θ=˙ΘΘ=1⊗1.

It follows in particular that R is invertible with inverse R−1=Υ−1Θ−1=Υ−1
˙Θ.

Recall that a bialgebra B is called quasi-cocommutative [12, Definition VIII.2.1]

if there exists an invertible element R∈B⊗B such that for all x∈B we have Δop(x)=

RΔ(x)R−1, where Δop is the opposite comultiplication Δop=σ◦Δ with σ(a⊗b)=

(−1)|a| |b|(b⊗a).

Lemma 2.3. For all x∈U� we have

(2.18) RΔ(x)=Δop(x)R.

Hence the Hopf algebra U� is quasi-cocommutative.

(1) Our comultiplication is the opposite of [15], and hence we have to take the opposite
R-matrix, cf. also [12, Chapter 8].
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Proof. Using Lemma A.1 we compute

RΔ(x)=ΘΥΔ(x)=ΘΔ̄op(x)Υ=Δop(x)ΘΥ=Δop(x)R. �

A quasi-cocommutative Hopf algebra is braided or quasi-triangular if the fol-

lowing quasi-triangularity identities hold:

(2.19) (Δ⊗id)(R)=R13R23 and (id⊗Δ)(R)=R13R12.

In this case, the element R is a universal R-matrix.

Proposition 2.4. The Hopf superalgebra U� is braided.

Proof. Since

(Δ⊗id)(Υ)= e�(H1⊗1⊗H1+1⊗H1⊗H1−H2⊗1⊗H2−1⊗H2⊗H2) =Υ13Υ23

we can compute using Lemma A.2,

(Δ⊗id)(R)= (Δ⊗id)(Θ)(Δ⊗id)(Υ)=Θ13Υ13Θ23Υ
−1
13 Υ13Υ23 =R13R23.

Similarly we get (id⊗Δ)(R)=R13R12. �

As an easy consequence of the braided structure, the following Yang–Baxter

equation holds (see [12, Theorem VIII.2.4] or [5, Proposition 4.2.7]):

(2.20) R12R13R23 =R23R13R12.

2.7. The ribbon structure

Write R=
∑

r ar⊗br and define

(2.21) u=
∑
r

(−1)|ar| |br|S(br)ar ∈U�.

Then (cf. [5, Proposition 4.2.3]) u is invertible and

(2.22) S2(x)=uxu−1 for all x∈U�.

In our case, in particular, since S2=id, the element u is central. By an easy explicit

computation, we have

(2.23) u=(1+(q−q−1)EKF )e�(H
2
2−H2

1 )
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and

(2.24) S(u)= e�(H
2
2−H2

1 )(1−(q−q−1)FK−1E).

We recall that a braided Hopf superalgebra A is ribbon (cf. [18, Chapter 4] or

[5, Section 4.2.C]) if there is an even central element v∈A such that

(2.25) v2 =uS(u), u(v)= 1, S(v)= v and Δ(v)= (R21R12)
−1(v⊗v).

In U� let

(2.26) v=K−1u=uK−1 =(K−1+(q−q−1)EF )e�(H
2
2−H2

1 ).

Then we have the following result.

Proposition 2.5. With v as above, U� is a ribbon Hopf superalgebra.

Proof. Since both u and K−1 are central, so is v. Let us check that S(u)=

uK−2. Indeed we have

(2.27)

u=(1+(q−q−1)EFK)e�(H
2
2−H2

1 )

= e�(H
2
2−H2

1 )(1+(q−q−1)EFK)

= e�(H
2
2−H2

1 )(1+(K−K−1)K−(q−q−1)FEK)

= e�(H
2
2−H2

1 )(K2−(q−q−1)FEK)

=S(u)K2.

It then follows immediately that v2=u2K−2=uS(u) and that S(v)=S(u)K=

uK−1=v.

The relations Δ(v)=(R21R12)
−1(v⊗v) and u(v)=1 follow from analogous re-

lations for u, which hold for every quasi-triangular Hopf superalgebra (see [18,

Proposition 4.3]). �

3. Representations

We define a parity function | · | : P→Z/2Z on the weight lattice by setting

|ε1|=0 and |ε2|=1 and extending additively. By a representation of Uq we mean

from now on a finite-dimensional Uq-supermodule with a decomposition into weight

spaces M=
⊕

λ∈P Mλ with integral weights λ∈P, such that qh acts as q〈h,λ〉 on

Mλ. We suppose further that M is Z/2Z-graded, and that the grading is uniquely

determined by the requirement that Mλ is in degree |λ|.
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3.1. Irreducible representations

It is not difficult to find all simple representations: up to isomorphism they are

indexed by their highest weight λ∈P. If λ∈Ann(h1+h2), then the simple represen-

tation with highest weight λ is one-dimensional, generated by a vector vλ in degree

|vλ|=|λ| with

Evλ =0, Fvλ =0, qhvλ = q〈h,λ〉vλ and Kvλ = vλ.(3.1)

We will denote this representation by C(q)λ, to emphasize that it is just a copy of

C(q) on which the action is twisted by the weight λ. In particular for λ=0 we have

the trivial representation C(q)0, that we will simply denote by C(q) below.

If λ /∈Ann(h1+h2) then the simple representation L(λ) with highest weight λ

is two-dimensional; we denote by vλ0 its highest weight vector. Let us also introduce

the following notation that will be useful later:

(3.2) qλ = q〈h1+h2,λ〉 and [λ] = [〈h1+h2, λ〉],

where, as usual, [k] is the quantum number defined by

(3.3) [k] =
qk−q−k

q−q−1
= q−k+1+q−k+3+...+qk−3+qk−1.

Even though the second equality holds only for k>0, we define [k] for all integers

k using the first equality; in particular we have [−k]=−[k].

Then L(λ)=C(q)〈vλ0 〉⊕C(q)〈vλ1 〉 with |vλ0 |=|λ|, |vλ1 |=|λ|+1 and

(3.4)
Evλ0 =0, Fvλ0 = [λ]vλ1 , qhvλ0 = q〈h,λ〉vλ0 , Kvλ0 = qλvλ0 ,

Evλ1 = vλ0 , Fvλ1 =0, qhvλ1 = q〈h,λ−α〉vλ1 , Kvλ1 = qλvλ1 .

Remark 3.1. As a remarkable property of Uq , we notice that since E2=F 2=0

all simple Uq-modules (even the ones with non-integral weights) are finite-dimen-

sional. In fact, formulas (3.4) define two-dimensional simple Uq-modules for all

complex weights λ∈Cε1⊕Cε2 such that 〈h1+h2, λ〉�=0.

From now on, we set

(3.5) P′ = {λ∈P |λ /∈Ann(h1+h2)}

and we will mostly consider two-dimensional simple representations L(λ) for λ∈P′.

Also, P±={λ∈P|〈h1+h2, λ〉≷0} will be the set of positive/negative weights and

P′=P+�P−.
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Remark 3.2. Note that in analogy with the classical Lie algebra situation, we

can set α∨=h1+h2. Then e, f and α∨ generate the Lie superalgebra sl(1|1) inside
gl(1|1). We work with gl(1|1) and not with sl(1|1) since the latter is not reductive,
but nilpotent.

3.2. Decomposition of tensor products

The following lemma is the first step to decompose a tensor product of Uq-

representations.

Lemma 3.3. Let λ, μ∈P′, and suppose also λ+μ∈P′. Then

(3.6) L(λ)⊗L(μ)∼=L(λ+μ)⊕L(λ+μ−α).

Proof. Under our assumptions, the vectors

E(vλ1 ⊗vμ1 )= vλ0 ⊗q−μvμ1 +(−1)|λ|+1vλ1 ⊗vμ0 ,(3.7)

F (vλ0 ⊗vμ0 )= [λ]vλ1 ⊗vμ0 +(−1)|λ|qλvλ0 ⊗[μ]vμ1(3.8)

are linearly independent. One can easily verify that vλ1 ⊗vμ1 and E(vλ1 ⊗vμ1 ) span

a module isomorphic to L(λ+μ−α), while vλ0 ⊗vμ0 and F (vλ0 ⊗vμ0 ) span a module

isomorphic to L(λ+μ). �

On the other hand, we have the following result.

Lemma 3.4. Let λ, μ∈P′ and suppose that λ+μ∈Ann(h1+h2). Then the

representation M=L(λ)⊗L(μ) is indecomposable and has a filtration

(3.9) 0=M0 ⊂M1 ⊂M2 ⊂M

with successive quotients

(3.10) M1
∼=C(q)ν , M2/M1

∼=C(q)ν−α⊕C(q)ν+α and M/M2
∼=C(q)ν ,

where ν=λ+μ−α.

Moreover, L(λ′)⊗L(μ′)∼=L(λ)⊗L(μ) for any λ′, μ′∈P′ such that λ′+μ′=λ+μ.

Proof. Since λ+μ∈Ann(h1+h2) we have qλ=q−μ and [λ]=−[μ]. Using (3.7)

and (3.8) we get that

(3.11) F (vλ0 ⊗vμ0 )= (−1)|λ|+1[λ]E(vλ1 ⊗vμ1 ).
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In particular, since E2=F 2=0, the vector F (vλ0 ⊗vμ0 ) generates a one-dimensional

submodule M1
∼=C(q)λ+μ−α of M . It then follows that the images of vλ0 ⊗vμ0 and

vλ1 ⊗vμ1 in M/M1 generate two one-dimensional submodules isomorphic to C(q)λ+μ

and C(q)λ+μ−2α respectively. Let therefore M2 be the submodule of M generated

by vλ0 ⊗vμ0 and vλ1 ⊗vμ1 . Then M/M2 is a one-dimensional representation isomorphic

to C(q)ν .

The last assertion follows easily since both L(λ)⊗L(μ) and L(λ′)⊗L(μ′) are

isomorphic, as left Uq-modules, to Uq/I , where I is the left ideal generated by the

elements qh−q〈h,ν〉 for h∈P. �

3.3. The dual of a representation

Let us now consider the dual L(λ)∗ of the representation L(λ), and let {(vλ0 )∗,
(vλ1 )

∗} be the basis dual to the standard basis {vλ0 , vλ1 }, with |(vλ0 )∗|=|v0|=|λ| and
|(vλ1 )∗|=|v1|=|λ|+1. By explicit computation, the action of Uq on L(λ)∗ is given

by

(3.12)

E(vλ0 )
∗ =−(−1)|λ|qλ(vλ1 )

∗, E(vλ1 )
∗ =0,

F (vλ0 )
∗ =0, F (vλ1 )

∗ =(−1)|λ|[λ]q−λ(vλ0 )
∗,

qh(vλ0 )
∗ = q−〈h,λ〉(vλ0 )

∗, qh(vλ1 )
∗ = q−〈h,λ−α〉(vλ1 )

∗.

The assignment

(3.13)

L(α−λ)−→L(λ)∗,

vα−λ
0 
−→−(−1)|λ|qλ(vλ1 )

∗,

vα−λ
1 
−→ (vλ0 )

∗,

defines a Q(q)-linear map, which is in fact an isomorphism of Uq-modules

(3.14) L(λ)∗ ∼=L(α−λ).

Remark 3.5. Together with Lemma 3.4 it follows that L(λ)⊗L(λ)∗ is an inde-

composable representation. In the filtration (3.9), the submodule M1 is the image

of the coevaluation map C(q)→L(λ)⊗L(λ)∗ while the submodule M2 is the kernel

of the evaluation map L(λ)⊗L(λ)∗→C(q), see (4.1) and (4.2) below.

Remark 3.6. At this point it is probably useful to recall that the natural iso-

morphism V ∼=V ∗∗ for a super vector space is given by x 
→(ϕ 
→(−1)|x| |ϕ|ϕ(x)).
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3.4. The vector representation

The vector representation of Uq is isomorphic to L(ε1) with its standard basis

{vε10 , vε11 }, and grading given by |vε10 |=0 and |vε11 |=1, and the action of Uq is given

by

(3.15)
Evε10 =0, Fvε10 = vε11 , qhvε10 = q〈h,ε1〉vε10 , Kvε10 = qvε10 ,

Evε11 = vε10 , Fvε11 =0, qhvε11 = q〈h,ε2〉vε11 , Kvε11 = qvε11 .

For L(ε1)
⊗n we obtain directly from Lemma 3.3 the following decomposition.

Proposition 3.7. ([3, Theorem 6.4]) The tensor powers of L(ε1) decompose

as

(3.16) L(ε1)
⊗m ∼=

m−1⊕
l=0

(
m−1

l

)
L(mε1−lα).

Let us now consider mixed tensor products, involving also the dual L(ε1)
∗.

By (3.14) we have that L(ε1)
∗ is isomorphic to L(−ε2). The following generalizes

Proposition 3.7.

Theorem 3.8. Suppose m �=n. Then we have the decomposition

(3.17) L(ε1)
⊗m⊗L(ε1)

∗⊗n ∼=
m+n−1⊕

l=0

(
m+n−1

l

)
L(mε1−nε2−lα).

On the other hand, we have

(3.18) L(ε1)
⊗n⊗L(ε1)

∗⊗n ∼=
2n−2⊕
l=0

(
2n−2

l

)
L((n−l)α+ε2)⊗L(−ε2)

and each summand L((n−l)α+ε2)⊗L(−ε2) is indecomposable but not irreducible.

Proof. The decomposition (3.17) follows from Lemma 3.3 by induction. To

obtain (3.18) write

L(ε1)
⊗n⊗L(ε1)

∗⊗n =(L(ε1)
⊗n⊗L(ε1)

∗⊗n−1)⊗L(ε1)
∗

and use (3.17) together with Lemma 3.4. �

In particular, notice that L(ε1)
⊗m⊗L(ε1)

∗⊗n is semisimple as long as m �=n.
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4. Invariants of links

In this section we define the ribbon structure on the category of representations

of Uq and derive the corresponding invariants of oriented framed tangles and links.

Recall that if W is an n-dimensional complex super vector space the evaluation

maps are defined by

(4.1)
evW : W ∗⊗W −→C(q), êvW : W⊗W ∗ −→C(q),

ϕ⊗w 
−→ϕ(w), w⊗ϕ 
−→ (−1)|ϕ| |w|ϕ(w),

and the coevaluation maps are defined by

(4.2)

coevW : C(q)−→W⊗W ∗, ĉoevW : C(q)−→W ∗⊗W,

1 
−→
n∑

i=1

wi⊗w∗
i , 1 
−→

n∑
i=1

(−1)|wi|w∗
i ⊗wi,

where {wi}ni=1 is a basis of W and {w∗
i }ni=1 is the corresponding dual basis of W ∗.

Note that if σV,W denotes the map

(4.3)
σV,W : V ⊗W −→W⊗V,

v⊗w 
−→ (−1)|v| |w|w⊗v,

then êvW =evW ◦σW∗,W and ĉoevW =σW,W∗ ◦coevW .

4.1. Ribbon structure on Uq-representations

Following the arguments of Tanisaki [21] (see also [5, Section 10.1.D]), we can

construct a ribbon structure on the category of Uq-representations using the ribbon

superalgebra structure on U�. We now indicate the main steps of those arguments.

The key observation is that, although Υ does not make sense as an element

of Uq⊗Uq , it acts on every tensor product V ⊗W of two finite-dimensional Uq-

modules. In other words, there is a well-defined operator ΥV,W ∈EndC(q)(V ⊗W )

determined by setting ΥV,W (vλ⊗wμ)=q(λ,μ)(vλ⊗wμ) if vλ and wμ have weights λ

and μ respectively. Note however that ΥV,W is not Uq-equivariant, since Υ satisfies

ΥΔ(x)=Δ̄
op
(x)Υ (see Lemma A.1).

On the other hand, notice that the definition (2.16) of Θ makes sense also

in Uq , and (A.1) holds in Uq . Moreover, one has the following counterpart of

equations (A.3) and (A.4):

(Δ⊗id)(Θ)=Θ13(ΥV,Z)13Θ23(Υ
−1
V,Z)13,(4.4)

(id⊗Δ)(Θ)=Θ13(ΥV,Z)13Θ12(Υ
−1
V,Z)13.(4.5)
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This is now an equality of linear endomorphisms of V ⊗W⊗Z for all finite-dimen-

sional Uq-representations V , W and Z. Setting

(4.6) RV,W =ΘΥV,W ∈EndC(q)(V ⊗W )

one gets an operator that satisfies the Yang–Baxter equation. Note that RV,W is

invertible, since Θ and ΥV,W both are. Because of (2.18), if we define “RV,W =

σ◦RV,W , where σ : V ⊗W→W⊗V is defined by σ(v⊗w)=(−1)|v| |w|w⊗v, then we

get an Uq-equivariant isomorphism “RV,W ∈HomUq (V ⊗W,W⊗V ).

Analogously, although the elements u and v do not make sense in Uq , they

act on each finite-dimensional Uq-representation V as operators uV , vV ∈EndUq (V )

(they are Uq-equivariant because u and v are central in U�). Below, we will forget

the subscripts of the operators “R, u and v.

For convenience, we give explicit formulas for the (inverse of the) operator
“RL(λ),L(μ) for λ, μ∈P′,

(4.7)

“R−1(vλ1 ⊗vμ1 )= (−1)(|λ|+1)(|μ|+1)q−(μ−α,λ−α)vμ1 ⊗vλ1 ,

“R−1(vλ1 ⊗vμ0 )= (−1)(|λ|+1)|μ|

×(q−(μ,λ−α)vμ0 ⊗vλ1 +(−1)|μ|q−(μ−α,λ)(q−1−q)[μ]vμ1 ⊗vλ0 ),

“R−1(vλ0 ⊗vμ1 )= (−1)|λ|(|μ|+1)q−(μ−α,λ)vμ1 ⊗vλ0 ,

“R−1(vλ0 ⊗vμ0 )= (−1)|λ| |μ|q−(μ,λ)vμ0 ⊗vλ0 .

4.2. Invariants of tangles

Let D be an oriented framed tangle diagram. We will not draw the framing

because we will always suppose that it is the blackboard framing. (Recall that

a framing is a trivialization of the normal bundle: since the tangle is oriented,

such a trivialization is uniquely determined by a section of the normal bundle; the

blackboard framing is the trivialization determined by the unit vector orthogonal

to the plane—or to the blackboard—pointing outwards.)

We assume that D⊂R×[0, 1] and we let s(D)=D∩(R×{0})={sD1 , ..., sDa } with

sD1 <...<sDa be the source points of D and t(D)=D∩(R×{1})={tD1 , ..., tDb } with

tD1 <...<tDb be the target points of D. Let also � be a labeling of the strands of

D by simple two-dimensional representations of Uq (that is, a map from the set

of strands of D to P′). We indicate by �s1, ..., �
s
a the labeling of the strands at the

source points of D and by �t1, ..., �
t
b the labeling at the target points. Moreover,

we let γs
1 , ..., γ

s
a and γt

1, ..., γ
t
b be the signs corresponding to the orientations of the
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strands at the source and target points (where +1 corresponds to a strand oriented

upwards and −1 to a strand oriented downwards).

Given these data, one can define a Uq-equivariant map

(4.8) Q�(D) : L(�s1)
γs
1 ⊗...⊗L(�sa)

γs
a −→L(�t1)

γt
1⊗...⊗L(�tb)

γt
b ,

where L(λ)−1=L(λ)∗, by decomposing D into elementary pieces as shown below

and assigning the corresponding morphisms as follows:

Q

(
V

)
=

V

id

V

, Q

(
V

)
=

V ∗

id

V ∗

,

Q

⎛
⎜⎜⎜⎜⎝

WV

⎞
⎟⎟⎟⎟⎠=

V ⊗W

“R

W⊗V

, Q

⎛
⎜⎜⎜⎜⎝

V W

⎞
⎟⎟⎟⎟⎠=

V ⊗W

“R−1

W⊗V

,

Q

(
V

)
=

V ⊗V ∗

êv◦(uv−1⊗id)

C

, Q

(
V

)
=

V ∗⊗V

ev

C

,

Q

(
V

)
=

C

(id⊗vu−1)◦ĉoev

V ∗⊗V

, Q

(
V

)
=

C

coev

V ⊗V ∗

.

As already mentioned, although Uq itself is not a ribbon superalgebra, its

representation category is a ribbon category. As in [18, Theorem 4.7] one can prove

the following result.

Theorem 4.1. The map Q�(D) just defined is an isotopy invariant of oriented

framed tangles.

The proof, for which we refer to [18, Theorem 4.7], is a direct check of the

Reidemeister moves (or, more precisely, of the analogues of the Reidemeister moves

for framed tangles). In fact, the axioms of a ribbon category are equivalent to the

validity of these moves.
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If all strands are labeled by the same simple representation L(λ) (i.e. � is the

constant map with value λ), then we write Qλ(D) instead of Q�(D).

Let us indicate a full +1 twist by the symbol

(4.9) 1 = .

Then we have (cf. [18, Section 4.2])

Q

⎛
⎜⎜⎝

V

1

⎞
⎟⎟⎠=

V

v

V

.

Lemma 4.2. The element v acts by the identity on the vector representation

L(ε1) and on its dual L(ε1)
∗.

Proof. Recall that we denote by {vε10 , vε11 } the standard basis of L(ε1). We

have

(4.10)

vvε10 =(K−1+(q−q−1)EF )q−(h1+h2)(h1−h2)vε10

=(K−1+(q−q−1)EF )q−〈h1+h2,ε1〉〈h1−h2,ε1〉vε10

=(q−1+q−q−1)q−1vε10

= vε10 .

As L(ε1) is irreducible and v acts in an Uq-equivariant way, it follows that v acts

by the identity on L(ε1). Since S(v)=v, the element v acts by the identity also on

L(ε1)
∗. �

As a consequence, if we label all strands of our tangles by the vector represen-

tation then we need not worry about the framing any more.

Corollary 4.3. The assignment D 
→Qε1(D) is an invariant of oriented tan-

gles.
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4.3. Invariants of links

Since links are in particular tangles, we obtain from Q� an invariant of oriented

framed links; unfortunately, this invariant is always zero.

Proposition 4.4. Let L be a closed link diagram and � be a labeling of its

strands. Then Q�(L)=0.

Proof. The invariant associated with L is some endomorphism ϕ of the trivial

representation C(q). Up to isotopy, we can assume that there is some level at which

the link diagram L has only two strands, one oriented upwards and the other one

downwards, labeled by the same weight λ. Without loss of generality suppose that

the leftmost is oriented upwards. Slice the diagram at this level, so that we can write

ϕ as the composition ϕ2◦ϕ1 of two Uq-equivariant maps ϕ1 : C(q)→L(λ)⊗L(λ)∗

and ϕ2 : L(λ)⊗L(λ)∗→C(q). If ϕ=ϕ2◦ϕ1 is not zero, then we have an inclusion

ϕ1 of C(q) inside L(λ)⊗L(λ)∗ and a projection ϕ2 of the latter onto C(q), so that

C(q) would be a direct summand of L(λ)⊗L(λ)∗. But this is not possible, since

L(λ)⊗L(λ)∗ is indecomposable (by Lemma 3.4). Hence ϕ=0. �

To get nontrivial invariants of closed links we need to cut the links, as we are

going to explain now. First, we need the following result.

Proposition 4.5. Let D be an oriented tangle diagram with two source points

and two target points. Let � be a labeling of the strands of D such that �s1=�s2=�t1=�t2.

Then

(4.11) Q�

⎛
⎜⎜⎝ D

⎞
⎟⎟⎠=Q�

⎛
⎜⎜⎝ D

⎞
⎟⎟⎠ .

Proof. Let �s1=λ. Then Q�(D)=ϕ, where ϕ : L(λ)⊗L(λ)→L(λ)⊗L(λ). By

Lemma 3.3 the representation L(λ)⊗L(λ) is isomorphic to the direct sum L(2λ)⊕
L(2λ−α). Let e1 and e2 be the two orthogonal idempotents corresponding to this

decomposition.

We consider formal C(q)-linear combinations of tangle diagrams, and we extend

Q� to them. Since EndUq (L(λ)⊗L(λ)) is a two-dimensional C(q)-vector space and
“Rλ,λ is not a multiple of the identity by (4.7), there are some C(q)-linear combina-

tions of tangle diagrams E1 and E2 such that Q�(E1)=e1 and Q�(E2)=e2. Hence
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we can write

(4.12) Q�

⎛
⎜⎝ E1

⎞
⎟⎠+Q�

⎛
⎜⎝ E2

⎞
⎟⎠=Q�

⎛
⎜⎝

⎞
⎟⎠ .

Now we have

(4.13)

Q�

⎛
⎜⎜⎝ D

⎞
⎟⎟⎠=Q�

⎛
⎜⎜⎝ D

E1

⎞
⎟⎟⎠+Q�

⎛
⎜⎜⎝ D

E2

⎞
⎟⎟⎠

=Q�

⎛
⎜⎜⎜⎜⎜⎜⎝

D

E1

⎞
⎟⎟⎟⎟⎟⎟⎠
+Q�

⎛
⎜⎜⎜⎜⎜⎜⎝

D

E2

⎞
⎟⎟⎟⎟⎟⎟⎠

=Q�

⎛
⎜⎜⎝ D

E1

⎞
⎟⎟⎠+Q�

⎛
⎜⎜⎝ D

E2

⎞
⎟⎟⎠

=Q�

⎛
⎜⎜⎝ D

⎞
⎟⎟⎠ .

Here the second equality follows because we must have

(4.14) “Re1 = e1 “R= a1e1 and “Re2 = e2 “R= a2e2

for some a1, a2∈C(q), since e1 and e2 project onto one-dimensional subspaces of

EndUq (L(λ)⊗L(λ)). The penultimate equality follows by isotopy invariance. �

Let now D be an oriented framed link diagram, � be a labeling of its strands

and λ∈P′ be some weight, which labels some strand of D. By cutting one of the

strands labeled by λ, we can suppose that D is the closure of a tangle D̃ with one

source and one target point, as in the picture

(4.15) D =
L(λ)

D̃ .
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Then we define Q̂�,λ(D)=c∈C(q), where

(4.16) Q�

⎛
⎜⎜⎝

L(λ)

D̃

⎞
⎟⎟⎠= c idL(λ) .

We have the following result.

Theorem 4.6. The assignment D 
→Q̂�,λ(D)∈C(q) is an invariant of oriented

framed links.

Proof. Since Q�(D̃) is an invariant of oriented framed tangles, we need only

show that Q̂�,λ is independent of how we cut D to get D̃. If D̃′ is obtained by

some different cutting, but always along some strand labeled by λ, then after some

isotopy we must have

(4.17)

L(λ)

D̃ = D(2) and

L(λ)

D̃′ = D(2)

for some tangle D(2). By Proposition 4.5 we then have Q�(D̃)=Q�(D̃′). �

If � is the constant labeling by the weight λ, we write Q̂λ instead of Q̂�,λ. For

λ=ε1 we simply write Q̂. As a consequence of Corollary 4.3 and Theorem 4.6 we

obtain the following result.

Corollary 4.7. The assignment D 
→Q̂(D)∈C(q) is an invariant of oriented

links.

4.4. Recovering the Alexander polynomial

If we compute the action of the R-matrix on L(ε1)⊗L(ε1), we get by (4.7),

setting v1=vε11 and v0=vε10 ,

(4.18)
“R−1(v1⊗v1)=−qv1⊗v1, “R−1(v1⊗v0)= v0⊗v1+(q−1−q)v1⊗v0,

“R−1(v0⊗v1)= v1⊗v0, “R−1(v0⊗v0)= q−1v0⊗v0.

On can easily check that

(4.19) ( “R−1)2 =(q−1−q) “R−1+id
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and hence

(4.20) “R= “R−1+(q−q−1)id.

Proposition 4.8. The invariant of links Q̂ satisfies the following skein relation

(4.21) Q̂

⎛
⎜⎝

⎞
⎟⎠−Q̂

⎛
⎜⎝

⎞
⎟⎠=(q−q−1)Q̂

⎛
⎜⎝

⎞
⎟⎠ ,

where the pictures represent three links that differ only inside a small neighborhood

of a crossing.

We recall one of the equivalent definitions of the Alexander–Conway polynomial

[1], [6].

Definition 4.9. The Alexander–Conway polynomial is the value of the assign-

ment

(4.22) Δ: Links−→Z[t1/2, t−1/2]

defined by the skein relations

Δ
( )

=1,(4.23)

Δ

( )
−Δ

( )
=(t1/2−t−1/2)Δ

( )
.(4.24)

Notice that obviously Q̂
( )

=1, since Qε1
( )

=id. As a consequence, we have

that Q is essentially the Alexander–Conway polynomial.

Theorem 4.10. For all oriented links L in R
3 we have

(4.25) Δ(L)= Q̂(L)|q=t1/2 .

In particular, Q̂(L)∈Z[q, q−1] is a Laurent polynomial in q.
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Appendix A

We collect here two technical lemmas, which were used in Section 2 to construct

the ribbon structure on U�. Both results follow from the explicit construction of

the R-matrix (cf. [15]); we include the two proofs for completeness, although they

are easy calculations.

Lemma A.1. The following properties hold for all x∈U�,

ΘΔ̄op(x)=Δop(x)Θ,(A.1)

ΥΔ(x)= Δ̄op(x)Υ.(A.2)

Proof. It is enough to check (A.1) and (A.2) on the generators. We have

ΘΔ̄op(E)=Θ(K⊗E+E⊗1)

=K⊗E+E⊗1+(q−q−1)FK⊗E2−(q−q−1)FE⊗E

=K⊗E+E⊗1+(q−q−1)EF⊗E−(K−K−1)⊗E

=K−1⊗E+E⊗1+(q−q−1)EF⊗E

=(K−1⊗E+E⊗1)Θ

=Δop(E)Θ

and

ΘΔ̄op(F )=Θ(1⊗F+F⊗K−1)

= 1⊗F+F⊗K−1+(q−q−1)F⊗EF−(q−q−1)F 2⊗EK−1

=1⊗F+F⊗K−1−(q−q−1)F⊗FE+F⊗(K−K−1)

= 1⊗F+F⊗K−(q−q−1)F⊗FE

=(1⊗F+F⊗K)Θ

=Δop(F )Θ

and for i=1, 2,

ΘΔ̄op(Hi)=Θ(1⊗Hi+Hi⊗1)

=1⊗Hi+Hi⊗1+(q−q−1)F⊗EHi+(q−q−1)FHi⊗E

=1⊗Hi+Hi⊗1−(q−q−1)〈Hi, α〉F⊗E+(q−q−1)F⊗HiE

+(q−q−1)〈Hi, α〉F⊗E+(q−q−1)HiF⊗E
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=1⊗Hi+Hi⊗1+(q−q−1)F⊗HiE+(q−q−1)HiF⊗E

=(1⊗Hi+Hi⊗1)Θ

=Δop(Hi)Θ.

Moreover,

ΥΔ(E)= e�(H1⊗H1−H2⊗H2)(E⊗K−1+1⊗E)

= (E⊗K−1)e�((H1+1)⊗H1−(H2−1)⊗H2)+(1⊗E)e�(H1⊗(H1+1)−H2⊗(H2−1))

=(E⊗1+K⊗E)e�(H1⊗H1−H2⊗H2)

=Δ̄op(E)Υ

and

ΥΔ(F )= e�(H1⊗H1−H2⊗H2)(F⊗1+K⊗F )

= (F⊗1)e�((H1−1)⊗H1−(H2+1)⊗H2)+(K⊗F )e�(H1⊗(H1−1)−H2⊗(H2+1))

=(F⊗K−1+1⊗F )e�(H1⊗H1−H2⊗H2)

=Δ̄op(F )Υ.

Finally, for i=1, 2 we have ΥΔ(Hi)=Δ(Hi)Υ since the elements H1 and H2 com-

mute with each other. As Δ̄op(Hi)=Δ(Hi) we get ΥΔ(Hi)=Δ̄op(Hi)Υ and we are

done. �

Lemma A.2. In U� the following identities hold :

(Δ⊗id)(Θ)=Θ13Υ13Θ23Υ
−1
13 ,(A.3)

(id⊗Δ)(Θ)=Θ13Υ13Θ12Υ
−1
13 .(A.4)

Proof. The two computations are similar, so let us check (A.3) and leave (A.4)

to the reader. The left-hand side is simply

(A.5) (Δ⊗id)(Θ)=1+(q−q)−1F⊗1⊗E+(q−q−1)K⊗F⊗E.

We will now compute the right-hand side. First we have

(A.6)

Υ13(1⊗F⊗E)Υ−1
13 =Υ13(1⊗F⊗E)e−�(H1⊗1⊗H1)e�(H2⊗1⊗H2)

=Υ13e
−�(H1⊗1⊗(H1−1))(1⊗F⊗E)e�(H2⊗1⊗H2)

=Υ13e
−�(H1⊗1⊗(H1−1))e�(H2⊗1⊗(H2+1))(1⊗F⊗E)

=K⊗F⊗E.
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Therefore

(A.7) Θ13Υ13Θ23Υ
−1
13 =(1+(q−q)−1F⊗1⊗E)(1+(q−q)−1K⊗F⊗E)

coincides with (A.5) since E2=0. �

References

1. Alexander, J. W., Topological invariants of knots and links, Trans. Amer. Math.
Soc. 30 (1928), 275–306.

2. Benkart, G., Kang, S.-J. and Kashiwara, M., Crystal bases for the quantum su-
peralgebra Uq(gl(m,n)), J. Amer. Math. Soc. 13 (2000), 295–331.

3. Benkart, G. and Moon, D., Planar Rook Algebras and Tensor Representations of
gl(1|1), Comm. Algebra 41 (2013), 2405–2416.

4. Brundan, J. and Stroppel, C., Highest weight categories arising from Khovanov’s
diagram algebra IV: the general linear supergroup, J. Eur. Math. Soc. (JEMS )
14 (2012), 373–419.

5. Chari, V. and Pressley, A., A Guide to Quantum Groups, Cambridge University
Press, Cambridge, 1994.

6. Conway, J. H., An enumeration of knots and links, and some of their algebraic prop-
erties, in Computational Problems in Abstract Algebra (Oxford, 1967 ), pp. 329–
358, Pergamon, Oxford, 1970.

7. De Wit, D., Ishii, A. and Links, J., Infinitely many two-variable generalisations of
the Alexander–Conway polynomial, Algebr. Geom. Topol. 5 (2005), 405–418.

8. Deguchi, T., Braid group representations and link polynomials derived from general-
ized SU(n) vertex models, J. Phys. Soc. Japan 58 (1989), 3441–3444.

9. Geer, N. and Patureau-Mirand, B., Multivariable link invariants arising from sl(2|
1) and the Alexander polynomial, J. Pure Appl. Algebra 210 (2007), 283–298.

10. Geer, N. and Patureau-Mirand, B., Multivariable link invariants arising from Lie
superalgebras of type I, J. Knot Theory Ramifications 19 (2010), 93–115.

11. Gould, M. D., Links, J. R. and Zhang, Y.-Z., Type-I quantum superalgebras, q-
supertrace, and two-variable link polynomials, J. Math. Phys. 37 (1996), 987–
1003.

12. Kassel, C., Quantum Groups, Graduate Texts in Mathematics 155, Springer, New
York, 1995.

13. Kassel, C. and Turaev, V., Braid Groups, Graduate Texts in Mathematics 247,
Springer, New York, 2008.

14. Kauffman, L. H. and Saleur, H., Free fermions and the Alexander–Conway poly-
nomial, Comm. Math. Phys. 141 (1991), 293–327.

15. Khoroshkin, S. M. and Tolstoy, V. N., Universal R-matrix for quantized (su-
per)algebras, Comm. Math. Phys. 141 (1991), 599–617.

16. Lickorish, W. B. R., An Introduction to Knot Theory, Graduate Texts in Mathemat-
ics 175, Springer, New York, 1997.

17. Manin, Y. I., Gauge Field Theory and Complex Geometry, Nauka, Moskow, 1984
(Russian). English transl.: 2nd ed., Grundlehren der Mathematischen Wis-
senschaften 289, Springer, Berlin, 1997.



202 Antonio Sartori: The Alexander polynomial as quantum invariant of links

18. Ohtsuki, T., Quantum Invariants, Series on Knots and Everything 29, World Scien-
tific, River Edge, NJ, 2002.

19. Reshetikhin, N. Y. and Turaev, V. G., Ribbon graphs and their invariants derived
from quantum groups, Comm. Math. Phys. 127 (1990), 1–26.

20. Saleur, H., Symmetries of the XX chain and applications, in Recent Developments
in Conformal Field Theories (Trieste, 1989 ), pp. 160–164, World Scientific,
River Edge, NJ, 1990.

21. Tanisaki, T., Killing forms, Harish-Chandra isomorphisms, and universal R-matrices
for quantum algebras, in Infinite Analysis (Kyoto, 1991 ), Adv. Ser. Math.
Phys. 16, Part B, pp. 941–961, World Scientific, River Edge, NJ, 1992.

22. Viro, O. Y., Quantum relatives of the Alexander polynomial, Algebra i Analiz 18
(2006), 63–157. English transl.: St. Petersburg. Math. J. 18 (2007), 391–457.

23. Zhang, R. B., Quantum enveloping superalgebras and link invariants, J. Math. Phys.
43 (2002), 2029–2048.

Antonio Sartori
Mathematisches Institut
Universität Bonn
Bonn
Germany
sartori@math.uni-bonn.de

Received August 9, 2013
in revised form December 20, 2013
published online March 20, 2014

mailto:sartori@math.uni-bonn.de

	The Alexander polynomial as quantum invariant of links
	Abstract
	Introduction
	The quantum enveloping superalgebras Uq and Uh
	The Lie superalgebra gl(1|1)
	The quantum enveloping superalgebra
	Hopf superalgebras
	The Hopf superalgebra structure on Uq
	The Hopf superalgebra Uh
	The braided structure
	The ribbon structure

	Representations
	Irreducible representations
	Decomposition of tensor products
	The dual of a representation
	The vector representation

	Invariants of links
	Ribbon structure on Uq-representations
	Invariants of tangles
	Invariants of links
	Recovering the Alexander polynomial

	Appendix A
	References


