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On the order map for hypersurface coamoebas

Jens Forsg̊ard and Petter Johansson

In memory of Mikael Passare, who continues to inspire.

Abstract. Given a hypersurface coamoeba of a Laurent polynomial f , it is an open problem

to describe the structure of the set of connected components of its complement. In this paper we

approach this problem by introducing the lopsided coamoeba. We show that the closed lopsided

coamoeba comes naturally equipped with an order map, i.e. a map from the set of connected

components of its complement to a translated lattice inside the zonotope of a Gale dual of the

point configuration supp(f). Under a natural assumption, this map is a bijection. Finally we use

this map to obtain new results concerning coamoebas of polynomials of small codimension.

1. Introduction

The amoeba A(f) of a Laurent polynomial

(1) f(z)=
∑

α∈A

cαz
α ∈C[z±1

1 , ..., z±1
n ]

is defined as the image of the zero locus V (f)⊂(C∗)n under the componentwise

logarithm mapping, i.e. A(f)=Log(V (f)), where Log : (C∗)n→R
n is given by z �→

(log |z1|, ..., log |zn|). An important step in the study of amoebas was taken in [3]

with the introduction of the so-called order map. This is an injective map, here

denoted by ord, from the set of connected components of the complement of the

amoeba A(f), to the set of integer points in the Newton polytope Δf=Conv(A). If

E denotes a connected component of the amoeba complement A(f)c, then the jth

component of ord(E) is given by the integral

ord(E)j =
1

(2πi)n

∫

Log−1(x)

zjf
′
j(z)

f(z)

dz1...dzn
z1...zn

, x∈E.
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Evaluating ord(E) in the univariate case amounts to counting zeros of f by the

argument principle, yielding an analogous interpretation of ord for multivariate

polynomials. With this in mind, it is not hard to see that the vertex set vert(Δf )

is always contained in the image of ord, and furthermore it was shown in [17] that

any subset of Z
n∩Δf that contains vert(Δf ) appears as the image of the order

map for some polynomial with the given Newton polytope. Thus, even though the

image of ord is non-trivial to determine, this map gives a good understanding of

the structure of the set of connected components of the complement of the amoeba

A(f). In particular, we have the sharp lower and upper bounds on the cardinality

of this set given by |vert(Δf )| and |Zn∩Δf | respectively. See [9] and [15] for an

overview of amoeba theory.

The coamoeba A′(f) of f is defined as the image of V (f) under the componen-

twise argument mapping, i.e. A′(f)=Arg(V (f)), where Arg : (C∗)n→Tn is given

by Arg(z)=(arg(z1), ..., arg(zn)). It is sometimes useful to consider the multivalued

Arg-mapping, which yields the coamoeba as a multiple periodic subset of Rn. The

starting point of this paper is the problem of describing the structure of the set of

connected components of the complement of the closed coamoeba. The progress

so far is restricted to the upper bound on the cardinality of this set given by the

normalized volume n! Vol(Δf ), see [11]. However, there is no known analogy of the

order map for amoebas. Our approach to this problem is to introduce the lopsided

coamoeba. As the name is chosen to emphasize the analogy with amoebas, let us

briefly recall the notion of lopsided amoeba as introduced in [16].

For a point x∈Rn, consider the list of the moduli of the monomials of f at x,

f{x}= [elog |cα1 |+〈α1,x〉, ..., elog |cαN
|+〈αN ,x〉],

where N=|A|. This list is said to be lopsided if one component is greater than the

sum of the others. If f{x} is lopsided, then x /∈A(f). The lopsided amoeba LA(f)

is defined as the set of points x∈Rn such that f{x} is not lopsided. There is an

inclusion A(f)⊂LA(f), and in particular each connected component of LA(f)c is

contained in a unique connected component of A(f)c. Let us consider the relation

between the lopsided amoeba and the order map. If the list f{x} is dominated in the

sense of lopsidedness by the monomial with exponent α, then it follows by Rouché’s

theorem that ord(E)=α. Hence, while ord can map connected components of the

complement of A(f) to elements in the set (Zn∩Δf )\A, when restricted to the

set of connected components of LA(f)c it becomes an injective map into the point

configuration A. In this sense, the structure of the set of connected components of

the complement of the lopsided amoeba is better captured by A than by its Newton

polytope Δf .
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We always assume that a half-space H⊂C is open and contains the origin in

its boundary, that is H=Hφ={z∈C|Re(eiφz)>0} for some φ∈R. For each point

θ∈Tn, consider the list

f〈θ〉= [ei(arg(cα1 )+〈α1,θ〉), ..., ei(arg(cαN
)+〈αN ,θ〉)],

which we by abuse of notation also view as a set f〈θ〉⊂S1⊂C. We say that the list

f〈θ〉 is lopsided if there exist a half-space H⊂C such that, as a set, f〈θ〉⊂H but

f〈θ〉�⊂∂H .

Definition 1.1. The lopsided coamoeba LA′(f) is the set of points θ∈Tn such

that f〈θ〉 is not lopsided.

When necessary we will consider LA′(f) as a subset of Rn.

The main result of this paper is that we provide an order map for lopsided

coamoebas. That is, we provide a map from the set of connected components of the

complement of the closed lopsided coamoeba, to a translated lattice inside a certain

zonotope, related to a Gale dual of A, see Theorem 4.3.

As noted above, the image of the order map of the (lopsided) amoeba depends

in an intricate manner on the coefficients of the polynomial f . The order map,

which we provide for the lopsided coamoeba will, under a natural assumption, be

a bijection. That is, the dependency on the coefficients of f lies only in the trans-

lation of the lattice, and this dependency is explicitly given in Theorem 4.3. As

a consequence, we are able to use this map to obtain new results concerning the

geometry of coamoebas. In particular, we give an affirmative answer to a special

case of a conjecture by Passare, see Corollary 5.3.

Let us give a brief outline of the paper. Section 2 contains fundamental results

in coamoeba theory, most of which are previously known. In Section 3 we will

turn to lopsided coamoebas, considering their fundamental properties and their

relation to ordinary coamoebas. In Section 4 we provide the order map for the

lopsided coamoeba. In the last section we consider coamoebas of polynomials of

codimension one and two, using the results of the previous sections.

1.1. Notation

We will use CC(S) to denote the set of connected components of the com-

plement of a set S, in its natural ambient space. That is, CC(A(f)) denotes the

set of connected components of the complement of the amoeba, which always are

subsets of R
n, while CC(A′(f)) denotes the set of connected components of the

complement of the coamoeba viewed on the real n-torus Tn. The transpose of a
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matrix M is denoted by M t. By gM we denote the greatest common divisor of

the maximal minors of M . We use ej for the jth vector of the standard basis

in any vector space, and 〈 · , · 〉 for the standard scalar product. Im denotes the

unit matrix of size m×m. We use the convention that X⊂Y includes the case

X=Y .
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bas. We would like to thank August Tsikh, whose comments greatly improved
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manuscript. We would like to thank Ralf Fröberg for his comments and sugges-
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to thank the referee, whose suggestions and remarks led to substantial improve-
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2. Preliminaries

As implicitly stated in the introduction, the coamoeba of a hypersurface is in

general not closed. Let Γ be a (not necessarily proper) subface of Δf . The truncated

polynomial with respect to Γ is defined as

fΓ(z)=
∑

α∈A∩Γ

cαz
α.

It was shown in [7] and [12] that the closure of a coamoeba is the union of all the

coamoebas of its truncated polynomials, that is

(2) A′(f)=
⋃

Γ⊂Δf

A′(fΓ).

We will refer to A′(fΓ) as the coamoeba of the face Γ. If the above union is taken

only over the proper subfaces Γ of Δf one obtains the phase limit set P∞(f) (see

[12]), and similarly if the union is taken only over the edges of Δf one obtains the

shell H(f) of A′(f) (see [6] and [11]). For the latter we note that the coamoeba

of an edge Γ⊂Δf consists of a family of parallel hyperplanes, whose normal is in

turn parallel to Γ. It is natural to focus on A′(f) rather than A′(f), the main

reason being that the components of the complement of A′(f), when viewed in

Rn, are convex. To see this, we give the following argument due to Passare. If

Θ⊂R
n is a connected component of the complement of A′(f), then the function

g(w)=1/f(eiw) is holomorphic on the tubular domain Θ+iRn. As it cannot be
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extended to a holomorphic function on any larger tubular domain, the convexity

follows from Bochner’s tube theorem [2].

By abuse of notation one identifies the index set A with the matrix

(3) A=

(
1 1 ... 1

α1 α2 ... αN

)
.

We will restrict the term integer affine transformation of A to refer to a matrix

T∈GLn(Q) such that (
1 0

0 T

)
A∈Z

(n+1)×N .

The transformation T induces a function CA→CTA by the monomial change of

variables

zj �−→ zTj ,

where Tj denotes the jth row of T . With the notation ex+iθ=(ex1+iθ1 , ..., exn+iθn)

we find that

T (fj)(e
(x+iθ)T−1

)= 〈cj , e(x+iθ)T−1TAj 〉= 〈cj , e(x+iθ)Aj 〉= fj(e
x+iθ).

Thus, a point θ∈Rn belongs to A′(fj) if and only if (T−1)tθ belongs to A′(T (fj)).

We conclude the following relation previously described in [13].

Proposition 2.1. As subsets of R
n, we have that A′(T (f)) is the image of

A′(f) under the linear transformation (T−1)t.

Corollary 2.2. As subsets of Tn, the coamoeba A′(T (f)) consists of |det(T )|
linearly transformed copies of A′(f).

Proof. The transformation (T−1)t acts with a scaling factor 1/|det(T )| on R
n.

Now consider a fundamental domain. �

Any point configuration A can be shrunk, by means of an integer affine trans-

formation, to a point configuration whose maximal minors are relatively prime [5].

The polynomial f , and the point configuration A, is called maximally sparse

if A=vert(Δf ). If in addition Δf is a simplex, then V (f) is known as a simple

hypersurface, and we will say that f is a simple polynomial. Let us describe the

coamoeba of a simple hypersurface. Consider first when Δf is the standard 2-

simplex. After a dilation of the variables, which corresponds to a translation of

the coamoeba, we can assume that f(z1, z2)=1+z1+z2. If the coamoebas of the



84 Jens Forsg̊ard and Petter Johansson

Figure 1. The coamoeba of f(z1, z2)=1+z1+z2 in the domain [−π, π]2.

truncated polynomials of the edges of Δf are drawn, with orientations given by the

outward normal vectors of Δf , then A′(f) consists of the interiors of the oriented

regions, together with all intersection points. An arbitrary simple trinomial differs

from the standard 2-simplex only by an integer affine transformation. Hence the

coamoeba of any simple trinomial consists of a certain number of copies of A′(f),

and is given by the same recipe as for the standard 2-simplex.

Consider now when Δf is the standard n-simplex, that is f(z)=1+z1+...+zn.

Let Tri(f) denote the set of all trinomials one can construct from the set of mono-

mials of f , which we still consider as polynomials in the n variables z1, ..., zn. It

was shown in [6] that we have the identity

(4) A′(f)=
⋃

g∈Tri(f)

A′(g),

which also holds without taking closures if n �=3. Again, an arbitrary simple polyno-

mial is only an integer affine transformation away, and hence the identity (4) holds

for all simple hypersurfaces.

The complement of the closed coamoeba of f(z)=1+z1+...+zn, in the fun-

damental domain [−π, π)n in R
n, consists of the convex hull of the open cubes

(0, π)n and (π, 0)n. In particular A′(f)c has exactly one connected component in

Tn. Thus, the number of connected components of A′(f)c equals the normalized

volume n! Vol(Δf )=1 in this case. For each integer affine transformation T we have

that Vol(ΔT (f))=|det(T )|Vol(Δf ). It follows that for any simple hypersurface, the

number of connected components of the complement of its coamoeba will be equal

to the normalized volume of its Newton polytope.

Let us end this section with a fundamental property of the shell H(f), which

we have not seen a proof of elsewhere.
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Lemma 2.3. Let l⊂R
n be a line segment with endpoints in A′(f)c that inter-

sect A′(f). Then l intersect A′(fΓ) for some edge Γ⊂Δf . In particular, each cell

of the hyperplane arrangement H(f) contains at most one connected component of

A′(f)c.

Proof. We have divided this rather technical proof into three parts.

Part 1. Let us first present a slight modification of an argument given in [6,

Lemma 2.10], when proving the inclusion A′(f)⊂
⋃

Γ⊂Δf
A′(fΓ). Assume that Δf

has full dimension and that the sequence {z(j)}∞j=1⊂V (f) is such that

lim
j→∞

z(j) /∈ (C∗)n and lim
j→∞

Arg(z(j))= θ∈Tn.

We claim that θ∈A′(fΓ) for some strict subface Γ⊂Δf . As V (f) is invariant under

multiplication of f with a Laurent monomial, we can assume that the constant 1 is

a monomial of f . We can also choose a subsequence of {z(j)}∞j=1 such that, after

possibly reordering A,

|z(j)α1 | ≥ ...≥ |z(j)αN |, j=1, 2, ...,

and in addition

lim
j→∞

|z(j)αk |
|z(j)α1 | = dk

for some dk∈[0, 1]. It is shown in the proof of [6, Lemma 2.10] that Γ={αk |dk>0}
is a face of Δf , and furthermore that θ∈A′(fΓ). With the above ordering of A,

assume that the constant 1 is the pth monomial. We need to show that Γ is a strict

subface of Δf . Assuming the contrary, we find that dk>0 for each k, and hence

lim
j→∞

|z(j)αk |= lim
j→∞

|z(j)αk |
|z(j)α1 | |z(j)

α1 |= dk
dp

,

which in particular is finite and non-zero. As Δf has full dimension, this implies that

limj→∞ |z(j)m| is finite and non-zero for each m=1, ..., n. As Arg(z(j))→θ when

j→∞, we find that limj→∞ z(j)∈(C∗)n, which contradicts our initial assumptions.

Hence, dN=0, and Γ is a strict subface of Δf .

Part 2. We now claim that if n≥2, then the set

P = {z ∈V (f) |Arg(z)∈N(l)∩A′(f)},

where N(l) is an arbitrarily small neighborhood of l in R
n, is such that Log(P )

is unbounded. To see this, consider the function g(w)=f(ew), where wk=xk+iθk.
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Notice that the w-space C
n is identified with the image of the z-space (C∗)n under

the multivalued complex logarithm. That is, the coamoeba A′(f) and the line l are

considered as subsets of Rn, which is the image of the w-space C
n under taking

coordinatewise imaginary parts.

We can assume that l is parallel to the θ1-axis and, by a translation of the

coamoeba, that there are ρ1, ..., ρn>0 such that the set

S= [−ρ1, ρ1]×...×[−ρn, ρn]

fulfills l⊂S⊂N(l). Furthermore we can choose 0<r<ρ1 such that, with

S̃= [−r, r]×[−ρ2, ρ2]×...×[−ρn, ρn],

the set S\S̃ consists of two n-cells that are neighborhoods of the endpoints of l.

Hence, we can assume that S\S̃⊂A′(f)c. If we assume that Log(P ) is bounded,

then there exists a sufficiently large R∈R such that if

D= {x∈R
n | |x|>R},

then g(w) has no zeros in D+iS⊂C
n. Let w′ denote the vector (w2, ..., wn), and

let (D+iS)′ be the projection of D+iS onto the last n−1 components. Then in

particular, g(w) has no zeros when w′∈(D+iS)′ and w1 lies in the domain given

by {w1 |r<|Im(w1)|<ρ1}∪({w1 | |Re(w1)|>R}∩{w1 | |Im(w1)|<ρ1}), see Figure 2.

Consider a curve γ as in Figure 2, and the integral

k(w′)=
1

2πi

∫

γ

g′1(w1, w
′)

g(w1, w′)
dw1, w′ ∈ (D+iS)′.

By the argument principle, for a fixed w′ this counts the number of roots of g(w)

inside the box in Figure 2. As it depends continuously on w′ in the domain (D+iS)′

it is constant, and by considering w′ with |x′|>R (here it is essential that n≥2) we

conclude that it is zero. However, this contradicts the assumption that l intersects

A′(f). Hence, Log(P ) is unbounded.

Part 3. We will now prove the lemma using induction on the dimension d of

Δf . If d=1, then there is nothing to prove. Consider the case of a fixed d>1,

assuming that the statement is proven for each smaller dimension. Notice that

f has n−d homogeneities, and hence it is essentially a polynomial in d variables.

Dehomogenizing f corresponds to projecting Tn onto Td such that the coamoeba

A′(f)⊂Tn consists precisely of the fibers over the coamoeba of the dehomogenized

polynomial. The image of l under this projection will intersects the coamoeba of an

edge of Δf in Td if and only if l intersects the coamoeba of an edge of Δf in Tn.



On the order map for hypersurface coamoebas 87

Figure 2. The curve γ⊂C.

Hence, it is enough to prove the statement under the assumption that d=n. In

particular, n≥2.

Choose a decreasing sequence {ε(k)}∞k=1 of positive real numbers such that

limk→∞ ε(k)=0, and consider the family of neighborhoods of l given by

N(l, k)=
{
θ∈R

n
∣∣∣inf
x∈l

|θ−x|<ε(k)
}
,

where | · | denotes the Euclidean norm on R
n. Define

P (k)= {z ∈V (f)
∣∣Arg(z)∈N(l, k)∩A′(f)}.

Since n≥2, part 2 shows that for each k, the set Log(P (k)) is unbounded. That is,

for each k, we can find a sequence {z(k,m)}∞m=1 such that z(k,m)∈V (f), with

Arg(z(k,m))∈N(l, k)∩A′(f)⊂N(l, k)∩A′(f),

but limm→∞ z(k,m) /∈(C∗)n. As N(l, k)∩A′(f) is compact, we can choose a subse-

quence such that Arg(z(k,m)) converges to some θ(k)∈N(l, k)∩A′(f) when m→∞.

Then, part 1 gives a strict subface Γ(k) of Δf such that θ(k)∈A′(fΓ(k)). Since Δf

has only finitely many strict subfaces, we can choose a subsequence of {θ(k)}∞k=1

such that Γ=Γ(k) does not depend on k. As {θ(k)}∞k=1⊂N(l, 1), which is compact,

we can also choose this subsequence such that θ(k) converges to some θ∈N(l, 1)

when k→∞. On the one hand, we have that θ∈l by construction of the sets N(l, k).

On the other hand, θ(k)∈A′(fΓ) implies that θ∈A′(fΓ). In particular, l and A′(fΓ)

intersect at θ.

The identity (2) shows that the endpoints of l is contained in the complement

of A′(fΓ). As the dimension of Γ is strictly less than the dimension of Δf , the

induction hypothesis shows that l intersects the coamoeba of an edge of Γ. As each

edge of Γ is an edge of Δf , the lemma is proven. �
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3. Lopsided coamoebas

In this section we will investigate the basic properties of (closed) lopsided

coamoebas. The formulation of Definition 1.1 was partly chosen to stress the anal-

ogy with the lopsided amoeba. A more natural description is perhaps the following;

denote the components of f〈θ〉 by t1, ..., tN , and consider the convex cone

R+f〈θ〉= {r1t1+...+rN tN | r1, ..., rN ∈R+}.

Lemma 3.1. We have that θ∈LA′(f) if and only if 0∈R+f〈θ〉.

Proof. If θ∈LA′(f)c, then R+f〈θ〉⊂int(H), where H⊂C is a half-space such

that f〈θ〉⊂H but f〈θ〉�⊂∂H . Conversely, if R+f〈θ〉 does not contain the origin,

then it follows from the convexity of R+f〈θ〉 that there exist a half-space H such

that R+f〈θ〉⊂int(H). �

Corollary 3.2. We have the inclusion A′(f)⊂LA′(f).

Proof. If f(reiθ)=0 then 0∈R+f〈θ〉. �

Corollary 3.3. If A is simple, then A′(f)=LA′(f).

Proof. By considering integer affine transformations, we see that it is enough to

prove this for the standard n-simplex f(z)=1+z1+...+zn. We have that 0∈R+f〈θ〉
if and only if we can find r0, ..., rn∈R+ such that r0+r1e

iθ1+...+rne
iθn=0, and this

is equivalent to θ∈A′(f). �

Simple hypersurfaces are not the only ones for which the identity A′(f)=

LA′(f) holds. It will be the case as soon as A′(f)=Tn, and such examples are easy

to construct by considering products of polynomials. An example of a non-simple

polynomial f such that A′(f)=LA′(f)�Tn is given by f(z1, z2)=1+z1+z2−rz1z2
for any r∈R+.

Consider the polynomial

F (c, z)=
∑

α∈A

cαz
α,

obtained by viewing the coefficients c as variables. This polynomial has a coamoeba

A′(F )⊂TN+n which, as F is simple, coincides with its lopsided coamoeba LA′(F ).

As the convex cone R+f〈θ〉 coincides with the cone R+F 〈arg(c), θ〉, we see that

LA′(f) is nothing but the intersection of A′(F ) with the sub n-torus of TN+n given

by fixing Arg(c). In this manner, the lopsided coamoeba inherits some properties

of simple coamoebas.
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Proposition 3.4. Let Tri(f) denote the set of all trinomials g one can con-

struct from the set of monomials of f . Then

LA′(f)=
⋃

g∈Tri(f)

A′(g).

Proof. By the previous discussion we can view LA′(f) as the intersection of

A′
F with the sub n-torus of TN+n given by fixing Arg(c). This is of course also

the case for each trinomial g∈Tri(f), and hence the identity follows from (4). �

As was the case in (4), this identity holds also without taking closures if N �=4.

Lopsided coamoebas first appeared under this disguise in [6]. This proposition

gives a naive algorithm for determining lopsided coamoebas, by determining the

coamoebas of each trinomial in Tri(f).

Definition 3.5. Let Bin(f) denote the set of all binomials that can be obtained

by removing all but two monomials of f . The shell LH(f) of the lopsided coamoeba

LA′(f) is defined as the union

LH(f)=
⋃

g∈Bin(f)

A′(g).

In the case n≥2, Proposition 3.4 states that LA′(f) is the closure of the coamoeba

of the polynomial
∏

g∈Tri(f) g(z). Recall that the ordinary shell of a coamoeba is

defined as the union of all coamoebas of the edges of its Newton polytope. As the

Newton polytope of each binomial in Bin(f) is an edge of the Newton polytope of

some trinomial in Tri(f), we find that LH(f) is a subset of the ordinary shell of

this product, which motivates the choice of name.

Proposition 3.6. The boundary of LA′(f) is contained in LH(f).

Proof. The boundary of LA′(f) consists of points θ for which f〈θ〉 contains

(at least) two antipodal points, which implies that θ belongs to the coamoeba of

the corresponding binomial. �

The focus on A′(f) rather than A′(f) leads us naturally to consider LA′(f) in

more detail. Its complement has the following characterization.

Proposition 3.7. We have that θ∈LA′(f)c if and only if there is an open

half-space H⊂C with f〈θ〉⊂H .
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Proof. The “if” part is clear. To show “only if”, note that if θ∈LA′(f)c,

then there is an open half-space H with f〈θ〉⊂H . If there is no open half-space

H with f〈θ〉⊂H , then f〈θ〉 contains two antipodal points. Then we can find a

simple trinomial g∈Tri(f) such that θ∈A′(g), and by the description of simple

trinomials in the previous section there is a sequence {θk}∞k=1⊂int(A′(g)) such that

limk→∞ θk=θ. As g is simple we have that A′(g)=LA′(g), and hence for each θk
the list g〈θk〉 is not lopsided. Then neither is f〈θk〉, showing that {θk}∞k=1⊂LA′(f),

and as a consequence that θ∈LA′(f). �

Let us end this section by describing the relation between the sets CC(A′(f))

and CC(LA′(f)), beginning with yet another characterization of LA′(f).

Lemma 3.8. Let fr(z) denote the polynomial
∑

α∈A rαcαz
α, where we have

varied the moduli of the coefficients of f by r={rα}α∈A∈RN
+ . Then

LA′(f)=
⋃

r∈R
N
+

A′(fr).

Proof. The statement follows from Lemma 3.1. If θ∈A′(fr), then 0∈R+fr〈θ〉.
Conversely, if 0∈R+f〈θ〉, then there exists an r∈RN

+ such that fr(e
iθ)=0. �

Proposition 3.9. Each connected component of A′(f)c contains at most one

connected component of LA′(f)c.

Proof. It is clear that each connected component of LA′(f)c is included in

some connected component of A′(f)c, we only have to show that no two connected

components of LA′(f)c are contained in the same connected component of A′(f)c.

We will show this by proving that any line segment l with endpoints in LA′(f)c

that intersect LA′(f), also intersect A′(f).

Consider first the case when f(z) is a univariate polynomial. Let θ1, θ2∈
LA′(f)c be the endpoints of a line segment l, i.e. l=[θ1, θ2], and assume that there

exist a θ∈(θ1, θ2) with θ∈LA′(f). Then Lemma 3.8 gives an r∈RN
+ such that

θ∈A′(fr). Let γ be the path from c to rc in the coefficient space (C∗)A given by

γ(t)α = r1−t
α cα, t∈ [0, 1],

and let ft denote the polynomial with coefficients γ(t). Applying Lemma 3.8 once

more, we find that for each t∈[0, 1] it holds that A′(ft)⊂LA′(f). In particular,

for each t, we have that θ1, θ2 /∈A′(ft). Let z∈C∗ denote a root of f0(z)=fr(z)

such that arg(z)=θ. It is well known that the roots of ft in C
∗ vary continuously
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with r. That is, we can find a continuous path t �→z(t) in C
∗ such that z(0)=z,

and furthermore for each t∈[0, 1] we have that z(t) is a root of the polynomial

ft(z). Notice that if ft(z) has a root of higher multiplicity at z(t), then the path

t �→z(t) is neither smooth nor unique, however we need only that it is continuous.

Indeed, the continuity of the path t �→z(t) in C
∗ implies continuity of the path

t �→arg(z(t)). Finally, the continuity of the path t �→arg(z(t)), together with the

facts that θ1, θ2 /∈A′(ft) for each t∈[0, 1] and that arg(z(0))=θ∈(θ1, θ2), implies

that arg(z(t))∈(θ1, θ2) for each t. In particular, arg(z(1))∈(θ1, θ2), which proves

the proposition in this case.

Consider now the case when Δf is one-dimensional. Then f(z) has n−1 quasi-

homogeneities, and the coamoeba A′(f) consists of a family of parallel hyperplanes,

each orthogonal to Δf . Dehomogenizing f(z) corresponds to a projection Rn→R

such that the hyperplanes in A′(f) are precisely the fibers over the points in the

coamoeba of the dehomogenization f̃ of f(z). This projection will map a line

segment in R
n with endpoints in LA′(f)c that intersect LA′(f) to a line segment in

R with endpoints in LA′(f̃)c that intersect LA′(f̃). Hence, this case follows from

the univariate case.

Now consider an arbitrary multivariate polynomial f(z), and let l be a line seg-

ment in R
n with endpoints in LA′(f)c that intersect LA′(f). By Lemma 3.8 there

exists an r∈RN
+ such that l intersect A′(fr). Referring to Lemma 3.8 again, we find

that A′(fr)⊂LA′(f), and hence the endpoints of l are contained in A′(fr)
c. Apply-

ing Lemma 2.3 to the polynomial fr, we find an edge Γ⊂Δfr=Δf such that l inter-

sect A′((fr)Γ). This implies, by Lemma 3.8, that l intersect LA′((fr)Γ)=LA′(fΓ).

As the identity (2) implies that LA′(fΓ)⊂LA′(f), we find that the endpoints of l are

contained in LA′(fΓ)
c. Since Γ is one-dimensional, we can conclude by the previous

case that l intersects A′(fΓ). The identity (2) yields that l intersects A′(f). �

4. The order map for the lopsided coamoeba

The aim of this section is to provide an order map for the lopsided coamoeba.

The role played by the point configuration A⊂Z
n for the order map of the lopsided

amoeba, is here given to a so-called dual matrix B. Recall that |A|=N , that we are

under the assumption that Δf is of full dimension, and that the integerm=N−n−1

is the codimension of A. A dual matrix of A is by definition an integer N×m-matrix

of full rank such that AB=0. If in addition the columns of B span the Z-kernel of A,

then B is known as a Gale dual of A. We denote by Z[B]⊂Z
m the lattice generated

by the rows of B, and note that B is a Gale dual of A if and only if Z[B]=Zm. In this

manner, assuming that B is a Gale dual will make our statements more streamlined,

however it is not a necessary assumption in order to develop the theory. We will
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label the rows of B as b0, ..., bn+m. The zonotope ZB is defined as the set

(5) ZB =

{m+n∑

j=0

π

2
μjbj

∣∣∣∣|μj | ≤ 1, j=0, ...,m+n

}
,

see also [1] and [10].

Fix a polynomial f∈(C∗)A, i.e. with notation as in (1) and (3) we fix a set of

coefficients cα1 , ..., cαN
. Let us denote by argπ : C

∗→(−π, π] the principal branch

of the arg-mapping, while Argπ denotes the map acting on vectors componentwise

by argπ .

Lemma 4.1. For a fixed polynomial f , and a fixed point α∈A (that is, with

the above notation α=αj for some j), consider the function pkα(θ), with domain R
n,

given by

pkα(θ)= argπ

(
cαk

ei〈αk,θ〉

cαei〈α,θ〉

)
−argπ(cαk

)+argπ(cα)−〈αk−α, θ〉.

Then pkα maps R
n into 2πZ, and furthermore it is locally constant off the coamoeba

of the binomial cαz
α+cαk

zαk , as viewed in R
n.

Proof. For each θ we have that

argπ

(
cαk

ei〈αk,θ〉

cαei〈α,θ〉

)
=argπ(cαk

)−argπ(cα)+〈αk−α, θ〉+2πj(θ),

where j(θ)∈Z. We see that pkα(θ)=2πj(θ), and therefore pkα maps R
n into 2πZ.

It is clear that j(θ) is locally constant, as a function of θ, off the set, where

argπ(cαk
ei〈αk,θ〉/cαe

i〈α,θ〉)=π. This set is precisely the coamoeba of the binomial

cαz
α+cαk

zαk , as viewed in Rn, which proves the second statement. �

In particular the vector-valued function

pα(θ)= (p1α(θ), ..., p
N
α (θ))

is constant on each cell of the hyperplane arrangement LH(f), considered as subsets

of Rn.

Lemma 4.2. With notation as in the previous lemma, define vα : R
n→R

m by

(6) vα(θ)= (Argπ(c)+pα(θ))B,

where the multiplication with B is usual matrix multiplication. Then vα is well-

defined on Tn (i.e. it is periodic in each θj with period 2π), it is invariant under
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multiplication of f by a Laurent monomial, and furthermore if θ∈LA′(f)c, then

vα(θ)∈int(ZB).

Proof. For any θ∈Rn we have that Argπ(c)+pα(θ) equals the vector

(
argπ

(
cα1e

i〈α1,θ〉

cαei〈α,θ〉

)
, ..., argπ

(
cαN

ei〈αN ,θ〉

cαei〈α,θ〉

))
+(argπ(cα)〈α, θ〉, θ1, ..., θn)A,

where A denotes the matrix (3). It follows that

(7) (Argπ(c)+pα(θ))B=

(
argπ

(
cα1e

i〈α1,θ〉

cαei〈α,θ〉

)
, ..., argπ

(
cαN

ei〈αN ,θ〉

cαei〈α,θ〉

))
B.

We conclude that vα is well-defined on Tn, and that it is invariant under multipli-

cation of f by a Laurent monomial.

Let us now turn to the last claim. Given a θ∈LA′(f)c, the components of f〈θ〉
are contained in one half-space H⊂C. As vα is invariant under multiplication of f

with a Laurent monomial, we can assume that α=0 and that H=H0 is the right

half space. That is

argπ(cαk
ei〈αk,θ〉)=

π

2
μk

for some μk∈(−1, 1). Since argπ(x1x2)=argπ(x1)+argπ(x2) for any two elements

x1, x2∈H0, we find that

pk0(θ)= argπ(cαk
ei〈αk,θ〉)−argπ(cαk

)−〈αk, θ〉.

Thus, the following identities hold

(8)

⎧
⎪⎨

⎪⎩

argπ(cα1)+〈α1, θ〉+p10(θ)=
π
2μ1,

...

argπ(cαN
)+〈αN , θ〉+pN0 (θ)= π

2μN .

Hence,

(Argπ(c)+pα(θ))B=
(π
2
μ−(0, θ1, ..., θn)A

)
B=

π

2
μB ∈ int(ZB). �

Theorem 4.3. There is a well-defined map

co-ord: CC(LA′(f))−→ int(ZB)∩(Argπ(c)B+2πZ[B]),

which for Θ∈CC(LA′(f)) is given by

(9) co-ord(Θ)= vα(θ), θ∈Θ, α∈A.
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Proof. Note first that by Lemma 4.1 we have that vα(θ)∈Argπ(c)B+2πZ[B],

and by Lemma 4.2 we have that θ∈LA′(f)c implies that vα(θ)∈int(ZB). Hence we

only need to show that the right-hand side of (9) is independent of θ∈Θ and α∈A,

so that the given map is well-defined.

The first claim of Lemma 4.2 says that vα is well-defined on Tn. As the function

pα is constant on the cells of the hyperplane arrangement Hf , Proposition 3.6 tells

us that vα is constant on the connected components of the complement of the

lopsided coamoeba of f . That is, vα(θ) is independent of the choice of θ∈Θ.

Finally, to see that vα(θ) is independent of the choice of α, we note again that

vα(θ) is invariant under multiplication of f with a Laurent monomial. Hence we

can assume that f contains the monomial α=0, and that H=H0. Then

pk0(θ)−pkα(θ)= argπ(cαe
i〈α,θ〉)−argπ(cα)−〈α, θ〉

is independent of k, and hence (p0(θ)−pα(θ))B=0, which shows that v0(θ)=vα(θ)

for each α. �

Definition 4.4. The map co-ord from Theorem 4.3 is called the order map of

the lopsided coamoeba LA′(f).

In order to show the statements on surjectivity and injectivity of co-ord, we

have to use a more detailed notation. After multiplication with a Laurent monomial,

which neither affects the map co-ord nor the lopsided coamoeba LA′(f), we can

assume that A is of the form

A=

(
1 1 1

0 A1 A2

)
,

where A1 is a non-singular n×n matrix. We can also assume that c0=1, i.e. that

the constant 1 is a monomial of f .

The columns of any Gale dual of A is a basis for its Z-kernel. Hence, if we

fix a Gale dual B̃, then any dual matrix can be presented in the form B=B̃T , for

some T∈GLm(Q). This implies that any dual matrix B of A can be presented in

the form

(10) B=

⎛

⎜⎜⎝

a0

−A−1
1 A2

Im

⎞

⎟⎟⎠T,

where a0∈Qm is defined by the property that each column of B should sum to zero,

and T∈GLm(Q).
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Lemma 4.5. Let A be under the assumptions imposed above. Let c1 and c2
denote the vectors (c1, ..., cn) and (cn+1, ..., cn+m) respectively, and similarly for

l∈ZN and μ∈RN . Consider the system

(11)

⎧
⎪⎨

⎪⎩

Argπ(c1)+θA1+2πl1 =
π

2
μ1,

Argπ(c2)+θA2+2πl2 =
π

2
μ2.

Then θ∈LA′(f)c if and only if θ solves (11) for some integers l and some numbers

μ0, ..., μn+m such that μ0, μ1+μ0, ..., μn+m+μ0∈(−1, 1).

Proof. If θ∈LA′(f)c, then there is a half plane Hφ such that f〈θ〉⊂Hφ. As

the constant 1 is a term of f , we can choose φ∈(−π/2, π/2). Considering the

polynomial e−iφf(z), we find that this is lopsided at θ for H0. Thus, there are

numbers λ1, ..., λn+m∈(−1, 1) and integers l1, ..., ln+m such that

argπ(ck)+〈θ, αk〉+2πlk =
π

2
λk+φ, k=1, ..., n+m.

This shows that θ fulfills (11) with l as above, μ0=−2φ/π and μk=λk+2φ/π for

k=1, ..., n+m. Conversely, if θ fulfills (11) for such l and μ, then f〈θ〉⊂Hφ, where

φ=−πμ0/2. �

Proposition 4.6. The order map co-ord is a surjection.

Proof. Let A be under the assumptions imposed above. Formally solving the

first equation of (11) for θ by multiplication with A−1
1 and eliminating θ in the

second equation, also applying the transformation T , one arrives at the equivalent

system

(12)

⎧
⎪⎨

⎪⎩

θ=
π

2
μ1A

−1
1 −Arg(c1)A

−1
1 −2πl1A

−1
1 ,

Argπ(c)B+2π(0, l1, l2)B=
π

2
(0, μ1, μ2)B.

To see that co-ord is surjective, consider a point Argπ(c)B+2πlB=πλB/2∈int(ZB),

and note that we can assume that l0=0. Define μ by μk=λk−λ0 for k=0, ..., n+m.

It follows that the pair (l, μ) fulfills the second equation of (12). Let θ∈Rn be

defined by the first equation of (12), it then follows that the triple (θ, l, μ) fulfills

(11), and thus by Lemma 4.5 we have that θ∈LA′(f)c. By tracing backwards we

find that the order of the component of LA′(f)c containing θ is Argπ(c)B+2πlB,

and hence the map co-ord is surjective. �
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Proposition 4.7. If gA=1, i.e. if the maximal minors of A are relatively

prime, then co-ord is an injection.

Proof. For any point p∈int(ZB), the set of all μ∈RN such that 2πμB=p, is an

affine space, and hence convex. It follows that the set of all μ∈(−1, 1)N such that

2πμB=p, being the intersection of two convex sets, is also convex. This implies that

for fixed integers l, the set of θ∈Rn such that (11) is fulfilled with μ0, μ1−μ0, ...,

μN−μ0∈(−1, 1) is in turn also convex, as it is the image of a convex set under an

affine transformation. Since the right-hand side of (6) is constant on each cell of

LH(f), this set is exactly one connected component of LA′(f)c in R
n. Thus, if we

consider two points θ and θ̃ in R
n, which both maps to Arg(c)B+2πlB, then we

can assume that θ and θ̃ fulfills (11) for the same numbers μ, however possibly for

different integers l. Under this assumption there are integers s1, ..., sN such that

〈αk, θ〉= 〈αk, θ̃〉+2πsk, k=1, ..., N.

The sublattice of Zn+1 generated by the columns of A has n+1 generators, and its

index is given by the absolute value of their determinant. As the determinant is

multilinear, this is a linear combination of the determinants of the maximal minors

of A. It follows that the assumption that gA=1 is equivalent to the fact that

the columns of A span Z
n+1 over Z. Thus, for each vector ej there are integers

rj=(rj1, ..., rjN ) such that ej=
∑N

k=1 rjkαk. Hence,

θj = 〈ej , θ〉=
N∑

k=1

rjk〈αk, θ〉=
N∑

k=1

rjk〈αk, θ̃〉+2πrjksk = θ̃j+2π〈rj , s〉,

which shows that θ and θ̃ correspond to the same point in Tn. �

Remark 4.8. In general, the map co-ord will be gA-to-one. Thus, if one con-

siders co-ord as a map from CC(LA′(f)) into the full translated lattice int(ZB)∩
(Argπ(c)B+2πZm), then injectivity is measured in terms of gA, while surjectivity

is measured in terms of gB . In view of Corollary 2.2, if one is interested in the struc-

ture of the set of connected components of the complement of the closed coamoeba,

it is natural to assume that co-ord is a bijection.

Remark 4.9. The order of a component Θ of the complement of LA′(f) is most

easily determined using the right-hand side of (7). In particular, if the constant 1

is a monomial of f , then

co-ord(Θ)= v0(θ)= (argπ(cα1e
i〈α1,θ〉), ..., argπ(cαN

ei〈αN ,θ〉))B, θ∈Θ.
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Figure 3. Above: the coamoeba and lopsided coamoeba of f(z1, z2)=z31+z2+z22−z1z2.
Below : the coamoeba and lopsided coamoeba of f(z1, z2)=1+z1+z2+iz1z2.

Example 4.10. Let us determine the map co-ord explicitly in the first example

shown in Figure 3, that is we consider the polynomial f(z1, z2)=z31+z2+z22−z1z2.

The point configuration is

A=

⎛

⎝
1 1 1 1

3 0 0 1

0 1 2 1

⎞

⎠ ,

and a Gale dual of A is given by

B=(−1,−1,−1, 3)t.

The corresponding zonotope is the interval ZB=[−3π, 3π]. As the translation

Argπ(c)B=3argπ(−1)=3π, the image of the map co-ord will be the doubleton

{−π, π}. To determine co-ord, it is enough to evaluate vα for some α and one point

in each of the two connected components of LA′(f)c, and we see from the picture

in Figure 3 that a natural choice of points is θ1=(−2π/3, 0) and θ2=(2π/3, 0). We
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Figure 4. LA′(f) in the fundamental domain [−π, π].

find that

vα1(θ1)= (0,−2π,−2π,−π)B=π,

vα1(θ2)= (0, 2π, 2π, π)B=−π.

Example 4.11. Let us also consider a univariate case of codimension 1, namely

f(z)= 1+z3+iz5.

A Gale dual of A is given by B=(2,−5, 3)t, and hence the zonotope is the interval

ZB=[−5π, 5π]. As the translation term is (0, 0, π/2)B=3π/2, the image of co-ord

is {−9π/2,−5π/2,−π/2, 3π/2, 7π/2}. The lopsided coamoeba LA′(f) can be seen

in Figure 4. We choose one point from each connected component, namely

θ1 =−7π

8
, θ2 =−π

2
, θ3 =0, θ4 =

5π

16
and θ5 =

3π

4
,

and find that

v0(θ1)=

(
0,−5π

8
,
π

8

)
B=

7π

2
,

v0(θ2)=
(
0,

π

2
, 0
)
B=−5π

2
,

v0(θ3)=
(
0, 0,

π

2

)
B=

3π

2
,

v0(θ4)=

(
0,

15π

16
,
π

16

)
B=−9π

2
,

v0(θ5)=
(
0,

π

4
,
π

4

)
B=−π

2
.

It is notable that the orders do not reflect the positions of the connected components

of the complement on T.

Let us make a short sidestep and consider the non-closed lopsided coamoeba

LA′(f). The map co-ord extends to a map on CC(LA′(f)) if one allows the image

to contain points on the boundary of ZB . However, the vertices of ZB will not lie

in the image of this map.
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Theorem 4.12. Let f be a Laurent polynomial, and let B be a dual matrix

of A. Then the map co-ord can be extended to a surjective map

co-ord: CC(LA′(f))−→ (ZB\vert(ZB))∩(Arg(c)B+2πZ[B]),

where vert(ZB) denotes the set of vertices of ZB . If gA=1 then this map is an

injection.

Proof. The proof is by following the same steps as in the proofs of Theorem 4.3,

and Propositions 4.6 and 4.7, with the only difference that we allow for |μj |≤1. We

only note that p is a vertex of ZB if and only if any μ∈[−1, 1]N such that p=πμB/2

has |μk|=1 for each k. This implies that f〈θ〉 is contained in one line (but not in

an open half-space), and hence that θ∈LA′(f). �

Hence we also have a description of the set CC(LA′(f)), where we note espe-

cially that the bound n! Vol(Δf ) does not hold for |CC(LA′(f))|, as shown in the

following example.

Example 4.13. Considering the point configuration A, with Gale dual B, given

by

A=

⎛

⎝
1 1 1 1 1

0 1 0 2 3

0 0 1 1 0

⎞

⎠ and B=

⎛

⎜⎜⎜⎜⎝

2 2

−2 −3

−1 0

1 0

0 1

⎞

⎟⎟⎟⎟⎠
.

It is straightforward to check that the coefficients c=(1, 1, 1, 1,−1) yield that the

set (ZB\vert(ZB))∩(Arg(c)B+2πZ2) contains 6 elements, while 2! Vol(Δf )=5.

However, we should remark that the result corresponding to Proposition 3.9 also

fails, leaving the question of whether the normalized volume of the Newton polytope

is the correct bound also for |CC(A′(f))| as an open problem.

5. Coamoebas of polynomials of small codimension

When A is simple the coamoeba A′(f) is well known, and as noted earlier

A′(f)=LA′(f). Let us now consider coamoebas of polynomials of codimension one

and two.
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5.1. Circuits

Consider the case of codimension one, imposing also the assumption that all

maximal minors of A are non-vanishing. In particular A is a circuit, an important

special case treated exhaustively in [5, Chapter 7.1.B]. As before, we can write A

in the form

A=

(
1 1 1

0 A1 αn+1

)
,

where det(A1) �=0.

Lemma 5.1. If A is a circuit, then a dual matrix of A is given by the column

vector

B=(det(A0̂),−det(A1̂), ..., (−1)n det(A
bn), (−1)n+1 det(A

dn+1))
t,

where Aĵ denotes the (n+1)×(n+1)-matrix obtained by removing the j-th column

from A.

Proof. Let us use the notation

det(Â)= (det(A0̂),−det(A1̂), ..., (−1)n det(A
bn), (−1)n+1 det(A

dn+1))
t.

We can write A=TM , where

T =

(
1 0

0 A1

)
and M =

(
1 1 1

0 In β

)
,

with β=A−1
1 αn+1∈Qn. It is straightforward to check that M det(M̂)=0, which

implies that

Adet(Â)=TM det(M̂) det(T )= 0.

As det(Â) is an integer vector, it follows that it is a dual matrix of A. �

Theorem 5.2. Let A be a circuit. Then LA′(f), and hence also A′(f), has

n! Vol(Δf ) many complement components for generic coefficients.

Proof. Let Vol(Aĵ) denote the normalized volume of the simplex Aĵ, that is n!

times its Euclidean volume. Then |det(Aĵ)|=Vol(Aĵ). Using the dual matrix given

in Lemma 5.1, we find that the zonotope ZB is an interval of length

π(Vol(A0̂)+...+Vol(A
dn+1)),

and it follows from [5, Chapter 7, Proposition 1.2, p. 217] that

π(Vol(A0̂)+...+Vol(A
dn+1))= 2πn! Vol(Δf ).
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The components of B are the maximal minors of A, and hence gA=gB , both which

we can assume equals 1. We see that for generic coefficients

|int(ZB)∩(Arg(c)B+2πZ)|=n! Vol(Δ),

and conclude the theorem from Propositions 4.6 and 4.7. �

It was conjectured by Passare [8, Conjecture 8.1] that if A is maximally sparse,

then the maximal number of connected components of the complement of the closed

coamoeba is obtained for generic coefficients. In general this conjecture is false, with

counterexamples given already in the text [8]. However, we can conclude that the

conjecture is true in the following special case.

Corollary 5.3. If the Newton polytope Δf has n+2 vertices, then the up-

per bound n! Vol(Δf ) on the number of connected components of the complement

of the coamoeba A′(f) is obtained for maximally sparse polynomials with generic

coefficients.

Proof. Using the previous theorem, it is enough to show that if f is maximally

sparse, then A is a circuit. Indeed, as all points in A are vertices of Δf , we find

that any choice of n+1 points will span a simplex of full dimension, whence the

corresponding determinant is non-vanishing. �

When n≥2, and for generic coefficients, the topological equivalence between

A′(f) and LA′(f) implied by Theorem 5.2 also yields a method to construct a set of

base points for the set of connected components of the complement of the coamoeba,

by which we mean a set with exactly one element in each such component. Given

a polynomial

f(z)= c0+c1z
α1+...+cnz

αn+cn+1z
αn+1 ,

under the above assumptions, consider the n polynomials given by

fj(z)= f(z)−ncjz
αj−2cn+1z

αn+1 , j=1, ..., n,

and the system

f1(z)= ...= fn(z)= 0.

Note that since n≥2 we have that Δfj=Δf for each j. Avoiding the discriminant lo-

cus of this system, the Bernstein–Kushnirenko theorem [5, Chapter 6, Theorem 2.2,

p. 201] tells us that such a system has exactly n! Vol(Δf ) distinct solutions in (C∗)n.

Let S be the set of arguments of these solutions. The above system is equivalent to

(13)

{
c1z

α1−cjz
αj=0, j=2, ..., n,

c0−cn+1z
αn+1=0,
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which shows that for each θ∈S the set f〈θ〉 contains at most two points. Thus,

under the genericity assumption f〈θ〉 is lopsided for each θ∈S. It also follows that

|S|=n! Vol(Δf ), and that the numbers

φθ =argπ

(c1ei〈α1,θ〉

c0

)
= ...=argπ

(cnei〈αn,θ〉

c0

)
, θ∈S,

are distinct. Hence, the orders

co-ord(Θ)=φθ(0, 1, ..., 1, 0)B

are also distinct. We conclude that S has exactly one element in each connected

component of A′(f)c.

5.2. The case m=2 and a relation to discriminants

Let us move up one step in the complexity chain and consider the case when

m=2. We will assume that gA=1. Related to the point configuration A is the so-

called A-discriminant DA(c), which is a polynomial in the coefficients c vanishing if

and only if the hypersurface V (f)⊂(C∗)n is singular, see [5]. The polynomial DA(c)

enjoys one homogeneity relation for each row of the matrix A, and choosing a Gale

dual of A yields a dehomogenization of DA(c) in the following manner; introducing

the variables

xj = c
b1j
1 ...c

bNj

N , j=1, ...,m,

there is a Laurent monomial g(c) such that g(c)DA(c)=DB(x). This relation is

described in more detail in [10], where it was first shown that the zonotope ZB

together with the coamoeba A′(DB) of the dehomogenized discriminant generically

covers T2 precisely n! Vol(Δf ) many times. Hence, if A′(DB) �=T2, then there is

a choice of coefficients c such that the set (Arg(c)+2πZ2)∩int(Z) has n! Vol(Δf )

many elements. If so, then we can find a coamoeba whose complement has the

maximal number of connected components. As the next example shows this is not

always the case.

Example 5.4. Consider the point configuration

A=

⎛

⎝
1 1 1 1 1

0 2 0 1 2

0 0 3 3 2

⎞

⎠ ,
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Figure 5. The coamoeba of DB(x) drawn with multiplicity, darker areas are covered twice.

where we note that 2!Vol(Δf )=11. The dehomogenized discriminant related to the

Gale dual

B=

⎛

⎜⎜⎜⎜⎝

1 2

−1 −3

−2 −2

2 0

0 3

⎞

⎟⎟⎟⎟⎠

is

DB(x)= 729x2
1+2187x3

1+2187x4
1+729x5

1+1728x2+4752x1x2+5400x2
1x2

−1404x3
1x2−864x4

1x2+3456x2
2−5616x1x

2
2+576x2

1x
2
2+256x3

1x
2
2+1728x3

2.

Its coamoeba covers the torus T2 completely, and hence the complement of the

closed lopsided coamoeba cannot have more than 10 connected components.

The connection between the zonotope ZB and the dehomogenized discriminant

DB(x) is believed to be true also in higher codimensions, however this is still an

open problem. For the latest development, we refer the reader to [14].

The fact that we cannot always construct a coamoeba whose complement has

n! Vol(Δf ) many connected components is of course a source of just criticism. How-

ever, let us note that it has not been proved that this upper bound is sharp. To the

contrary, recent examples suggest that this is not the case [4].
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