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Equivariant Poincaré series of filtrations
and topology

Antonio Campillo, Félix Delgado and Sabir M. Gusein-Zade

Abstract. Earlier, for an action of a finite group G on a germ of an analytic variety, an

equivariant G-Poincaré series of a multi-index filtration in the ring of germs of functions on the

variety was defined as an element of the Grothendieck ring of G-sets with an additional structure.

We discuss to which extent the G-Poincaré series of a filtration defined by a set of curve or divisorial

valuations on the ring of germs of analytic functions in two variables determines the (equivariant)

topology of the curve or of the set of divisors.

1. Introduction

The Poincaré series of a multi-index filtration (say, on the ring of germs of

functions on a variety) was defined in [5]. It was computed for filtrations on the

ring OC2,0 of germs of analytic functions in two variables corresponding to plane

curve singularities with several branches [1] and for divisorial ones [7]. In [1] it was

found that the Poincaré series of the filtration defined by a plane curve singularity

(C, 0)⊂(C2, 0) coincides with the Alexander polynomial in several variables of the

corresponding link C∩S3
ε⊂S3

ε (S3
ε is the sphere of a small radius ε centered at

the origin in C
2). Therefore it defines the (embedded) topology of the plane curve

singularity [9]. Identifying all the variables in the Alexander polynomial one gets the

monodromy zeta function of the singularity. In [3] it was shown that the Poincaré

series of a divisorial filtration in the ring OC2,0 of germs of functions in two variables

also defines the topology of the corresponding set of divisors (more precisely the

topology of its minimal resolution). The corresponding statement for the divisorial
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filtration defined by all components of the exceptional divisor of a resolution of a

normal surface singularity was obtained in [6].

The intention to generalize connections between Poincaré series of filtrations

and monodromy zeta functions to an equivariant context led to the desire to define

equivariant analogues of Poincaré series and of monodromy zeta functions. In par-

ticular, in [4] there was defined an equivariant analogue of the Poincaré series of a

multi-index filtration on the ring of functions on a complex-analytic space singu-

larity with an action of a finite group G. This G-Poincaré series is an element of

the Grothendieck ring K0((G, r)-sets) of G-sets with an additional structure. (For

the trivial group G this ring coincides with the ring Z[[t1, ..., tr]] of power series

in several variables.) It was computed for the filtrations defined by plane curve

singularities and for divisorial filtrations in the plane (see Section 3 below). Here

we discuss to which extent the G-Poincaré series of these filtrations determine the

(equivariant) topology of the curve or of the set of divisors. We show that the

G-Poincaré series of a collection of divisorial valuations determines the topology of

the set of divisors. This is not, in general, the case for curve valuations. We de-

scribe some conditions on curves under which the corresponding statement holds. It

remains unclear whether the (equivariant) topology of a collection of curves always

determines the G-Poincaré series of the collection.

2. G-equivariant resolutions

It is well known that two plane curve singularities are topologically equivalent

if and only if they have combinatorially equivalent (embedded) resolutions: see

e.g. [8]. The formula for the Poincaré series of a plane curve singularity in terms

of a resolution from [1] implies, in particular, that the Poincaré series of a plane

curve singularity is a topological invariant. The notion of topological equivalence of

two sets of divisors in [3] was in fact formulated in terms of topologically equivalent

resolutions.

Remark 2.1. A divisorial valuation can be defined by a (generic) pair of curvet-

tes corresponding to the divisor (see below). In this way a set of divisors can be

defined by a curve (the union of the corresponding pairs of curvettes) and two sets

of divisors are topologically equivalent if and only if the corresponding curves are

topologically equivalent.

Here we discuss the concept of topologically equivalent resolutions in an equiv-

ariant setting.
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Let a finite group G act on (C2, 0) (by complex-analytic transformations).

Without loss of generality one can assume that this action is faithful and is defined

by a two-dimensional representation of the group G (i.e. that G acts on C
2 by linear

transformations).

Let (Ci, 0)⊂(C2, 0), i=1, ..., r, be (different) irreducible plane curve singulari-

ties, i.e. branches.

Remark 2.2. Here we do not assume, in general, that the curve
⋃r

i=1 Ci is G-

invariant (i.e. that the set {Ci}ri=1 contains all G-shifts of its elements) or that all

the branches Ci belong to different orbits of the G-action. Restrictions of this sort

could be required for particular statements.

Definition 2.3. A G-equivariant resolution (or simply a G-resolution) of the set

{Ci}ri=1 (or of the curve
⋃r

i=1 Ci) is a proper complex-analytic map π : (X ,D)→
(C2, 0) from a smooth surface X with an action of the group G such that

(1) π is an isomorphism outside of the origin in C
2;

(2) π commutes with the G-actions on X and on C
2;

(3) the total transform π−1(
⋃r

i=1 Ci) of the curve
⋃r

i=1 Ci is a normal crossing

divisor on X ;

(4) for each branch Ci its strict transform C̃i is a germ of a smooth curve

transversal to the exceptional divisor D=π−1(0) at a smooth point x of it and is

invariant with respect to the isotropy subgroup Gx={g∈G:gx=x} of the point x.

Remark 2.4. (a) The resolution π can be obtained by a sequence of blow-ups

of points (preimages of the origin). The exceptional divisor D is the union of its

irreducible components Eσ , σ∈Γ. The set Γ inherits the partial order defined by

a representation of π as a sequence of blow-ups: a component Eσ′ is greater than

another component Eσ , σ
′>σ, if the exceptional divisor of any modification which

contains Eσ′ also contains Eσ . The condition (2) means that this sequence of blow-

ups should be G-equivariant, i.e., if a point x is blown-up, the point gx should be

blown-up for each g∈G as well. In particular, the set Γ of the components of the

exceptional divisor is a G-set.

(b) The condition (4) is equivalent to saying that π is a resolution of the

curve C=
⋃

i,g gCi where g runs through all the elements of G and i=1, ..., r. In

particular, π−1(C) is a normal crossing divisor on X . A smooth irreducible curve

(C1, 0)⊂(C2, 0) has a trivial G-resolution (C2, 0) =−→(C2, 0) if and only if it is G-

invariant.

The group G acts both on the space X of the resolution and on the excep-

tional divisor D. For σ∈Γ, let Gσ be the isotropy subgroup of the component Eσ ,
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i.e. {g∈G:gEσ=Eσ}. Note that the isotropy subgroups Gσ are Abelian for all σ

except possibly the first (minimal) one. (In the latter case Gσ coincides with the

group G itself.) The group Gσ acts on the component Eσ . Let G∗
σ⊂Gσ be the

isotropy subgroup Gx={g∈G:gx=x} of a generic point x∈Eσ . (The group G∗
σ is

always Abelian.) A point x∈Eσ will be called special if its isotropy subgroup Gx is

different from G∗
σ . (In this case Gx⊃G∗

σ and Gx �=G∗
σ .) One has a one-dimensional

representation βxσ of the isotropy subgroup Gx of a point x∈Eσ in the normal

space to Eσ in X at the point x.

Let Eσ be a component of the exceptional divisor D, let x∈Eσ be a smooth

point of D, i.e. a point which is not a point of intersection with other components

of D, and let L̃ be a germ of a smooth curve on X at the point x invariant with

respect to the isotropy group Gx of the point x. The curve L=π(L̃) is called a

curvette corresponding to the component Eσ (and/or to the point x).

A G-resolution of a curve (
⋃r

i=1 Ci, 0)⊂(C2, 0) can be described by its dual

resolution graph in the following way: The vertices of this graph correspond to the

components Eσ of the exceptional divisor D (i.e. to the elements of the partially

ordered G-set Γ) and to the strict transforms of the curves Ci and of their G-shifts

gCi, g∈G. These vertices will be depicted by dots and arrows respectively. There is

a natural G-action on the set of vertices of the graph (preserving dots and arrows).

Two vertices are connected by an edge if and only if the corresponding components

of the total transform π−1(C) of the curve C=
⋃

i,g gCi intersect.

Remark 2.5. Observe that the described information (namely the G-action on

the set of vertices of the graph) determines the isotropy subgroups Gσ of the com-

ponents and the isotropy subgroups of all the intersection points of the components

of the total transform π−1(C) of the curve C (all the latter subgroups are Abelian).

The same definition and description apply to a set of divisorial valuations with

the only difference that in this case the corresponding divisors should be indicated

and there are no strict transforms of branches. Also Remark 2.4(a) is valid.

In what follows we shall use the following description of the behavior of rep-

resentations under blow-ups. Assume that one has the complex plane C
2 with a

representation of a finite Abelian group H . This representation is the sum of two

irreducible ones, say γ1 and γ2. Let p : (Y,E)→(C2, 0) be the blow-up of the origin

(E�CP
1). The group H acts on Y as well.

If the representations γ1 and γ2 are different then the H-action on E has two

special points invariant with respect to H . At one of them the representation of H

in the normal space to E is γ1 and in the tangent space to E is γ2γ
−1
1 . At the other

one they are γ2 and γ1γ
−1
2 respectively. The isotropy subgroup Hx of a non-special
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point x of E is Hx={h∈H :γ1(h)=γ2(h)}. The representation of Hx in the normal

space to E is γ1|Hx=γ2|Hx . (The representation of Hx in the tangent space to E is

trivial.)

If the representations γ1 and γ2 coincide, there are no special points on E, the

action of H on E is trivial and the representation of Hx=H in the normal space to

E is γ1=γ2.

Thus the representation of H on C
2 determines the representations in the

tangent and in the normal spaces to E at all points.

Let {Ci}ri=1 and {C ′
i}ri=1 be two collections of branches in the complex plane

(C2, 0) with an action of a finite group G. We say that these collections are

G-topologically equivalent if there exists a G-invariant germ of a homeomorphism

ψ : (C2, 0)→(C2, 0) such that ψ(Ci)=C ′
i for i=1, ..., r. A version of this definition

can be applied to collections of divisorial valuations as well. A divisorial valuation

v on OC2,0 can be described by a generic pair of curvettes corresponding to the

divisor. (Genericity means that the strict transforms of the curvettes intersect the

divisor at different points.) Two collections of divisorial valuations {vi}ri=1 and

{v′i}ri=1 are said to be G-topologically equivalent if the corresponding collections of

curvettes {Lij}ri=1,j=1,2 and {L′
ij}ri=1,j=1,2 are G-topologically equivalent.

It is clear that the G-resolution graph of a collection of curve or divisorial

valuations does not determine the G-equivariant topology of the collection. More-

over the G-resolution graphs of collections can be the same for different actions of

the group G on C
2 (e.g. if G is Abelian and all blow-ups are performed at points

with the isotropy subgroups Gx=G). Even if the representation of G is fixed, the

G-resolution graph of a collection of curve or divisorial valuations does not deter-

mine the G-topology of the collection.

Example 2.6. Let C2 be the complex plane with the action of the cyclic group

G=Z15 defined by σ∗(x, y)=(σ3x, σ5y), where σ=exp(2πi/15) is the generator of

the group Z15 (and i here, but not elsewhere, denotes the imaginary unit). Let Ci,

i=1, 2, 3, be the curves (given by their parameterizations) (t, 0), (0, t) and (t, t2),

respectively and let C ′
i, i=1, 2, 3, be the curves (0, t), (t, 0) and (t2, t). An important

property of these curves is that no element of G different from 1 sends the curve

C3 (or the curve C ′
3) to itself and that, in the minimal G-resolution, the strict

transform of the curve C3 (or of the curve C ′
3) intersects a component Eσ of the

exceptional divisor with Gσ=G and G∗
σ=(e). (Thus the strict transforms of all

the G-shifts of the curve intersect one and the same component of the exceptional

divisor at different points.)

The minimal G-resolution graph is shown on Figure 1 (it is one and the same

for both cases). The partial order on Γ is defined by the numbering of the elements
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Figure 1. Example 2.6.

of Γ (vertices). The action of G on the set Eσ of components of the exceptional

divisor is trivial; the curves with the numbers 1 and 2 are G-invariant and all the

G-shifts of the third curve are different.

A local G-equivariant homeomorphism (C2, 0)→(C2, 0) which sends the curve

Ci to the curve C ′
i does not exist since the isotropy groups of the curves C1\{0}

and C ′
1\{0}=C2\{0} are different. Moreover there is no homeomorphism (C2, 0)→

(C2, 0) which sends C3 to C ′
3, C1 to C ′

2 and C2 to C ′
1, because a homeomorphism

has to preserve the intersection multiplicities of branches.

Example 2.7. The fact that the action of the group G=Z15 on C2\{0} has

different isotropy subgroups of different points is not really essential. Let G=Z7

with the action σ∗(x, y)=(σx, σ3y), where σ=exp(2πi/7) (and i here, but not else-

where, denotes the imaginary unit). Let Ci and C ′
i, i=1, 2, 3, be defined as in

Example 2.6. The same arguments (based on the intersection multiplicities) imply

that a local homeomorphism (C2, 0)→(C2, 0) which sends C3 to C ′
3 should send C1

to C ′
1=C2. However there is no G-equivariant local homeomorphism from (C, 0)

with the G-action σ∗z=σz to (C, 0) with the G-action σ∗z=σ3z.

The argument in Example 2.6 can be easily adapted to the case of divisorial

valuations.

Example 2.8. Let G be the group Z15 with the same action on (C2, 0) as in Ex-

ample 2.6. The divisorial valuation v (resp. v′) is defined by the following two curvet-

tes: C1 :={(t, t2)} and C2 :={(t,−t2)} (resp. C ′
1 :={(t2, t)} and C ′

2 :={(−t2, t)}).
The minimal resolution graph for both cases is shown in Figure 2. The component

of the exceptional divisor corresponding to the valuation is distinguished (marked

by the circle). The G-action on it is trivial.

A local G-equivariant homeomorphism (C2, 0)→(C2, 0) should preserve the x-

and y-axes (because of the isotropy subgroups). However such a homeomorphism
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Figure 2. Example 2.8.

cannot send a curvette corresponding to v to a curvette corresponding to v′ since

it should preserve the intersection multiplicities of branches (in other words, since

v(x) �=v′(x)).

For an Abelian group G, special points on the first component E1 of the ex-

ceptional divisor (obtained by blowing up the origin in C
2) exist if and only if the

representation of G is the sum of two different one-dimensional representations of

G and they correspond to these representations. If the group G is not Abelian, spe-

cial points on E1 correspond to Abelian subgroups of G and their one-dimensional

representations.

Theorem 2.9. Assume that the initial action (representation) of the group

G on C2 is fixed. Then a G-resolution graph of a collection of curve or divisorial

valuations with the correspondence between the “tails” of the graph (i.e. the con-

nected components of the graph without the first vertex 1) and the special points

on E1 determines the G-topology of the collection of the curves or of the divisorial

valuations.

Proof. The case of divisorial valuations is formulated in terms of curves (via

pairs of corresponding curvettes) and thus follows from the curve case. We shall

show that if G-resolutions of the collections of curves {Ci}ri=1 and {C ′
i}ri=1 are de-

scribed by the same data (i.e. they lie in the same C2 with a G-representation, have

the same G-resolution graphs and the same correspondences between the tails of the

graphs and the special points on E1), then there exists a G-equivariant homeomor-

phism (in fact a C∞-diffeomorphism) ψ : (X ,D)→(X ′,D′) of a neighborhood of the

exceptional divisor D in X to a neighborhood of D′ in X ′ sending the strict trans-

forms C̃i of the curves Ci to the strict transforms C̃ ′
i of the curves C

′
i. Blowing down

this diffeomorphism one obtains the required homeomorphism (C2, 0)→(C2, 0).

Such a diffeomorphism can be constructed inductively following the processes

of the G-resolutions. We shall show that after each blow-up (or rather after a

set of blow-ups at the points from one G-orbit) one can construct a G-equivariant

diffeomorphism of a neighborhood of the new exceptional divisor(s) in the first

resolution to a neighborhood of the one(s) in the second resolution which sends

intersection points of the strict transforms of the branches Ci with the exceptional

divisor to the corresponding points for the branches C ′
i. Moreover we shall show that
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this can be done in such a way that the diffeomorphism remains complex-analytic

in neighborhoods of all these intersection points.

After the first blow-up one has an identification (an analytic one) of the first

exceptional divisors and of their neighborhoods in both resolutions. This identi-

fication preserves special points. There may exist intersection points of the strict

transforms of the branches Ci with the exceptional divisor which are not special

ones and the corresponding points for the branches C ′
i. The diffeomorphism has to

send the former points to the latter ones. This can be done by a (smooth) isotopy

of the initial diffeomorphism (the identification in this case), say, with the help of a

G-invariant vector field which brings the images of the points to the required ones.

Moreover this can be done so that the diffeomorphism remains complex-analytic in

neighborhoods of these points.

The description of the behavior of a representation under the blow-up shows

that, for each point x in the exceptional divisor of the first resolution, its isotropy

subgroup Gx and its representations in the tangent and in the normal spaces to the

exceptional divisor coincide with those for the corresponding image x′=ψ(x).

The same construction takes place at each step of the resolution process. As-

sume that a point x of the exceptional divisor of the first resolution has to be

blown-up (and thus its image x′ under the constructed diffeomorphism as well).

One has two somewhat different situations. The point x (and thus the point x′)

is either the intersection point of two components of the exceptional divisor or a

point of only one component. In the first case one has the representations of the

group Gx=Gx′ in the tangent spaces to the components. In the second case one

has representations of this group in the tangent space to the component and in the

normal one. If one fixes local coordinates at the point x in which the represen-

tation of Gx is diagonal, then the diffeomorphism (being complex-analytic by the

induction hypothesis) defines local coordinates at the point x′=ψ(x) identifying

(complex-analytically) neighborhoods of x and of x′. This gives complex-analytic

isomorphisms of the new born components and of their tubular neighborhoods. As

above, this isomorphism, in general, does not send intersection points of the new

born components of the first resolution with the strict transforms of the curves

Ci to the corresponding points on the component in the second resolution. How-

ever this can be corrected by a smooth isotopy which remains complex-analytic in

neighborhoods of the points under consideration.

In this way one gets a diffeomorphism of neighborhoods of the exceptional

divisors D and D′ of the resolutions π and π′ which sends the intersection points of

the strict transforms of the curves Ci with D (and thus of their shifts gCi) to the

corresponding points for the curves C ′
i. Generally speaking the strict transforms of

the curves Ci do not go to the strict transforms of the curves C ′
i. (In fact this may



Equivariant Poincaré series of filtrations and topology 51

happen only if the isotropy group of the corresponding point on D is trivial.) This

can be corrected by a local diffeomorphism in a neighborhood of the intersection

point which should be duplicated at all the points of the G-orbit. �

3. G-equivariant Poincaré series

In [4] the G-equivariant Poincaré series of a multi-index filtration defined by a

set of valuations or order functions was defined as an element of the Grothendieck

ring of G-sets with an additional structure.

Let (V, 0) be a germ of a complex-analytic variety with an action of a finite

group G. The group G acts on the ring OV,0 of germs of functions on (V, 0),

i.e. g∗f(x)=f(g−1x) for f∈OV,0, g∈G and x∈V . A function v : OV,0→Z≥0∪{∞}
is called an order function if v(λf)=v(f) for a non-zero λ∈C and v(f1+f2)≥
min{v(f1), v(f2)}. (If moreover v(f1f2)=v(f1)+v(f2), the function v is a valua-

tion.) A multi-index filtration of the ring OV,0 is defined by a collection v1, ..., vr of

order functions:

(1) J(v)= {f ∈OV,0 : v(f)≥ v},

where v=(v1, ..., vr)∈Zr
≥0, v(f)=(v1(f), ..., vr(f)), and (v′1, ..., v

′
r)≥(v′′1 , ..., v

′′
r ) if

and only if v′i≥v′′i for all i=1, ..., r. We assume that the filtration J(v) is finitely

determined, i.e., for any v∈Zr
≥0, there exists an integer k such that mk⊂J(v), where

m is the maximal ideal in OV,0.

Let POV,0 be the projectivization of the ring OV,0. In [2] there were defined

the notions of cylindric subsets of POV,0, their Euler characteristics and the integral

with respect to the Euler characteristic over POV,0. In the same way these notions

can be defined for the quotient POV,0/G of POV,0 by the action of G. The (usual)

Poincaré series of the multi-index filtration can be defined as

P{vi}(t1, ..., tr)=

∫

POV,0

t v(f) dχ,

where t=(t1, ..., tr) and t v=tv11 ...tvrr ; t v(f) is considered as a function on POV,0 with

values in the ring (Abelian group) Z[[t1, ..., tr]], see [2].

Definition 3.1. A (“locally finite”) (G, r)-set A is a triple (X,w, α) where

• X is a G-set, i.e. a set with a G-action;

• w is a function on X with values in Z
r
≥0;

• α associates to each point x∈X a one-dimensional representation αx of the

isotropy group Gx={a∈G:ax=x} of the point x;

satisfying the following conditions:
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(1) αax=aαxa
−1 for x∈X and a∈G;

(2) for any w∈Zr
≥0 the set {x∈X :w(x)≤w} is finite.

All (locally finite) (G, r)-sets form an Abelian semigroup in which the sum is

defined as the disjoint union. The Cartesian product, appropriately defined (see

[4]), makes the semigroup of (G, r)-sets a semiring. Let K0((G, r)-sets) be the

corresponding Grothendieck ring—the Grothendieck ring of (locally finite) (G, r)-

sets.

Let the filtration {J(v)} be defined by the order functions v1, ..., vr by (1). For

an element f∈POV,0, let Gf be the isotropy group of the corresponding point of

POV,0, i.e. Gf={a∈G:a∗f=λf (a)f}. The map a 
→λf (a) defines a one-dimensional

representation λf of the group Gf . For an element f∈POV,0, let Tf be the element

of the Grothendieck ring K0((G, r)-sets) represented by the orbit Gf of f (as a

G-set) with wTf (a∗f)=v(a∗f) and α
Tf

a∗f=λa∗f , a∈G.

Let us consider T : f 
→Tf as a function on POV,0/G with values in the Grothen-

dieck ring K0((G, r)-sets). This function is cylindric and integrable (with respect

to the Euler characteristic).

Definition 3.2. ([4]) The equivariant Poincaré series PG
{vi} of the filtration

{J(v)} is defined by

PG
{vi} =

∫

POV,0/G

Tf dχ∈K0((G, r)-sets).

Let all the order functions vi defining the filtration {J(v)}, i=1, 2, ..., r, be

either curve or divisorial valuations. (In general it is possible that some of them

are curve valuations and some of them are divisorial ones, but we shall not consider

this case here.) Let π : (X ,D)→(C2, 0) be a G-resolution of this set of valuations,

see above.

For a collection of divisorial valuations {vi}ri=1, let
˝

Eσ be the “smooth part” of

the component Eσ in D, i.e. Eσ itself minus intersection points with all other com-

ponents of the exceptional divisor D. For a collection of curve valuations {vi}ri=1

corresponding to branches Ci, let
˝

Eσ be the “smooth part” of the component Eσ

in the total transform π−1(C), i.e. Eσ itself minus intersection points of all the

components of π−1(C), C=
⋃

i,g gCi. Let
˝

D=
⋃

σ

˝

Eσ and let D̂=
˝

D/G be the corre-

sponding quotient space, i.e. the space of orbits of the action of the group G on
˝

D.

Let p :
˝

D→D̂ be the quotient map.

For x∈
˝

D, let the corresponding curvette Lx be given by an equation h′
x=0,

h′
x∈OC2,0. Let hx=

∑
g∈Gx

(h′
x/g

∗h′
x)(0)g

∗h′
x. The germ hx is Gx-equivariant and
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{z :hx(z)=0}=Lx. Moreover, in what follows we assume that the germ hx is fixed

in this way for one point x of each G-orbit and is defined by hgx=ghxg
−1 for other

points of the orbit. (This defines hgx modulo a constant factor.)

Let {Ξ} be a stratification of the space (in fact of a smooth curve) D̂ (D̂=
∐

Ξ)

such that

(1) each stratum Ξ is connected;

(2) for each point x̂∈Ξ and for each point x from its preimage p−1(x̂), the

conjugacy class of the isotropy subgroup Gx of the point x is the same, i.e. depends

only on the stratum Ξ.

The last condition is equivalent to saying that, over each stratum Ξ, the map

p :
˝

D→D̂ is a covering.

For a component Eσ of the exceptional divisor D, let vσ be the corresponding

divisorial valuation on the ring OC2,0: for f∈OC2,0, vσ(f) is the order of zero of the

lifting f ◦π of the function f along the component Eσ . Let {σ1, ..., σr} be a subset

of Γ, and let v1, ..., vr be the corresponding divisorial valuations. They define the

multi-index filtration (1).

For a point x∈
˝

D, let Tx be the element of the Grothendieck ringK0((G, r)-sets)

defined by Tx=Thx , where hx is a Gx-equivariant function defining a curvette at

the point x. The element Tx is well-defined, i.e. does not depend on the choice of

the function hx. One can see that the element Tx is one and the same for all points

from the preimage of a stratum Ξ and therefore it will be denoted by TΞ.

Theorem 3.3. ([4])

(2) PG
{vi} =

∏

{Ξ}
(1−TΞ)

−χ(Ξ).

Proposition 3.4. The initial action (representation) of the group G on C2,

the G-resolution graph of a collection of curve or divisorial valuations plus the cor-

respondence between the tails of the graph and the special points on E1 determine

the G-Poincaré series of the set of valuations.

Proof. In order to compute the G-Poincaré series PG
{vi} using (2) one has to

describe the stratification {Ξ} and to determine, for each stratum Ξ, its Euler

characteristic, the corresponding isotropy subgroup GΞ (the G-set representing TΞ

is just G/GΞ), the function wΞ and the one-dimensional representation αx of the

isotropy subgroup Gx, x∈p−1(Ξ). Theorem 2.9 implies that the stratification and

the corresponding isotropy subgroups are determined by the described data. The

function wΞ, i.e., the values for the corresponding curvettes, is computed from
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the resolution graph in the standard way (it depends only on the corresponding

component of the exceptional divisor). Thus the only remaining problem is to

determine the representation αx for x∈Ξ. Let u and v be local Gx-equivariant

coordinates in a neighborhood of the point x such that the corresponding component

of the exceptional divisor is given by the equation u=0. By Theorem 2.9, the

action of Gx on the function u (or rather the dual action in the normal space) is

determined by the described data. Let ω=dx∧dy be a G-equivariant 2-form on C2.

The representation of G on C
2 determines the action of G on (the one-dimensional

space generated by) ω. One has (π∗ω)x=ϕ(u, v)uνdu∧dv, where ϕ(0, 0) �=0 and the

multiplicity ν is determined by the resolution graph (see, e.g., [8, Section 8.3]). From

the action of Gx on ω and on u one gets the action on v. If hx=0 is a G-equivariant

equation of the curvette π({z :v(z)=0}) at the point x one has π∗hx=ψ(u, v)umv,

where ψ(0, 0) �=0 and m can be computed from the resolution graph. Thus the

action αx of Gx on hx is also determined. �

In what follows we shall use the following property of the Grothendieck ring

K0((G, r)-sets). The ring K0((G, r)-sets) has the maximal ideal M which is gener-

ated by all irreducible (G, r)-sets different from 1. Let an element P belong to 1+M.

Then it has a unique representation in the “A’Campo type form”: P=
∏
(1−T )sT ,

where T runs over all irreducible elements of K0((G, r)-sets) and the sT are inte-

gers. In general this product contains infinitely many factors. Theorem 3.3 implies

that if P is the G-Poincaré series of a set of curve or divisorial valuations on OC2,0,

then this product is finite.

4. G-Poincaré series and G-topology of sets of divisors

Let (C2, 0) be endowed by a G-action and let {vi}ri=1 be a set of divisorial

valuations on OC2,0.

Theorem 4.1. The G-equivariant Poincaré series PG
{vi} of the set of divisorial

valuations {vi}ri=1 determines the G-equivariant topology of this set.

Proof. Let vig(ϕ):=vi((g
−1)∗ϕ) be the valuation defined by the shift gEi of

the component Ei. Let {vig}ri=1,g∈G be the corresponding set of valuations on

the ring OC2,0 numbered by the set {1, ..., r}×G. One can easily see that the G-

Poincaré series PG
{vi} of the set of valuations {vi}ri=1 determines the G-Poincaré

series PG
{vig} of the set {vig}ri=1,g∈G. Indeed, PG

{vig} is represented by the same

G-set X as PG
{vi} with the same function α and with w : X→Z

r|G|
≥0 defined by

wig(x)=wi((g
−1)∗x), x∈X . As was explained in [4, Statement 2], the G-Poincaré
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series PG
{vig} determines the usual (non-equivariant) Poincaré series P{vig}(t). The

(usual) Poincaré series P{vig}(t) determines the minimal resolution graph of the set

of valuations {vig}ri=1,g∈G [3]. (Formally speaking, in [3] it was assumed that the

divisorial valuations in the set are different. However one can easily see that there

is no difference if one permits repeated valuations.) Moreover the action of the

group G on the set {vig}ri=1,g∈G of valuations induces a G-action on the minimal

resolution graph. By Theorem 2.9 one has to show that the G-Poincaré series PG
{vig}

determines the representation of G on C
2 and the correspondence between “tails”

of the resolution graph emerging from the special points on the first component of

the exceptional divisor and these points. (If there are no special points on the first

component of the exceptional divisor (this can happen only if G is cyclic), only the

representation of G on C
2 has to be determined.)

Let us consider the case of an Abelian group G first. If there are no special

points on the first component E1 of the exceptional divisor, all points of E1 are

fixed with respect to the group G, the group G is cyclic and the representation is

a scalar one. This (one-dimensional) representation is dual to the representation of

the group G on the one-dimensional space generated by any linear function. The

case when there are no more components in D, i.e. if the resolution is achieved by

the first blow-up, is trivial. Otherwise let us consider a maximal component Eσ

among those components Eτ of the exceptional divisor for which Gτ=G and the

corresponding curvette is smooth. (The last condition can be easily detected from

the resolution graph.) The smooth part
˝

Eσ of this component contains a special

point with Gx=G (or all the points of
˝

Eσ are such that Gx=G). The point(s) from
˝

Eσ with Gx=G bring(s) into equation (2) a factor of the form (1−TΞ)
−1, where

TΞ is represented by the G-set consisting of one point, which cannot be eliminated

by other factors. The (G-equivariant) curvette L at the described special point of

the divisor is smooth. Therefore the representation of G on the one-dimensional

space generated by a G-equivariant equation of L coincides with the representation

on the space generated by a linear function.

Let us take all factors in the representation of the Poincaré series PG
{vi} of the

form
∏

T (1−T )sT , where T is represented by the G-set consisting of one point and

with sT =−1. For each of them, the corresponding w of T determines the corre-

sponding component of the exceptional divisor and therefore the topological type of

the corresponding curvettes. Therefore one can choose a factor which corresponds

to a component with a smooth curvette and the representation αT gives us the

representation on the space generated by a linear function.

Let the first component E1 contain two special points. Without loss of gener-

ality we can assume that they correspond to the coordinate axes {(x, y):x=0} and
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{(x, y):y=0}. The representation of the group G on C
2 is defined by its action on

the linear functions x and y. For each of them this action can be recovered from a

factor of the form described above just in the same way. Moreover, a factor, which

determines the action of the group G on the function x, corresponds to a component

of the exceptional divisor from the tail emerging from the point {(x, y):x=0}.
Now let G be an arbitrary (not necessarily Abelian) group. For an element

g∈G consider the action of the cyclic group 〈g〉 generated by g on C2. One can see

that the G-equivariant Poincaré series PG
{vi} determines the 〈g〉-Poincaré series P 〈g〉

{vi}
just like in [4, Statement 2]. This implies that the G-equivariant Poincaré series

determines the representation of the subgroup 〈g〉. (Another way is to repeat the

arguments above adjusting them to the subgroup 〈g〉.) Therefore the G-Poincaré

series PG
{vi} determines the value of the character of the G-representation on C

2 for

each element g∈G and thus the representation itself.

Special points of the G-action on the first component E1 of the exceptional

divisor correspond to some Abelian subgroups H of G. For each such subgroup

H there are two special points corresponding to different one-dimensional repre-

sentations of H . Again the construction above for an Abelian group permits us to

identify tails of the dual resolution graph with these two points. This finishes the

proof. �

5. G-Poincaré series and G-topology of curves

A connection between the equivariant Poincaré series of a set of curve valuations

and the equivariant topology of the corresponding curve singularity is more involved

than for divisorial valuations.

Example 5.1. One can see that the collections {Ci}3i=1 and {C ′
i}3i=1 from Ex-

amples 2.6 and 2.7 in Section 1 have the same G-Poincaré series. Namely PG
{Ci}=

PG
{C′

i}
=(1−T ), where T is the (G, 3)-set defined by X=G/(e) (G=Z15 or G=Z7

in Examples 2.6 and 2.7 respectively), w is the constant function on X with

w(x)=(2, 1, 2). (The representation α(x) is trivial being a representation of the

trivial group (e).) Thus the G-Poincaré series does not, in general, determine the

topology of the set of curves.

Remark 5.2. One can see that the G-Poincaré series of the set of divisorial

valuations from Example 2.8 are different since the factors corresponding to the

special points on the second divisors are different. These factors do not appear

in the G-Poincaré series of curves in Example 2.6 since the strict transforms of

branches pass through these points.
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We shall show that the effect like the one in Example 5.1 occurs only if, among

the branches of the curve, there are smooth branches invariant with respect to a

non-trivial element g of the group G whose action on C
2 is not a scalar one (i.e. the

representation of the cyclic subgroup 〈g〉 generated by g is the sum of two different

one-dimensional representations).

Theorem 5.3. Let C
2 be equipped with a faithful action of a finite group G

and let {Ci}ri=1 be a collection of irreducible curve singularities in (C2, 0) such that

it does not contain curves from the same G-orbit and it does not contain a smooth

curve invariant with respect to a non-trivial element of G whose action on C2 is not

a scalar one. Let {vi}ri=1 be the corresponding collection of valuations. Then the G-

equivariant Poincaré series PG
{vi} of the collection {vi}ri=1 determines the minimal

G-resolution graph of the curve
⋃r

i=1 Ci and the G-equivariant topology of the pair

(C2,
⋃r

i=1 Ci).

Proof. Let {vig}ri=1,g∈G, where vig(ϕ)=vi((g
−1)∗ϕ) is the set of “G-shifts” of

the valuations vi (it is possible that vi1g1=vi2g2 and even that vig1=vig2). The

G-Poincaré series PG
{vi} determines the G-Poincaré series PG

{vig} just in the same

way as in the divisorial case in Theorem 4.1.

Since, with every valuation from the collection {vig}ri=1,g∈G this collection con-

tains also its G-shifts, the remark after Statement 2 from [4] implies that the

usual (non-equivariant) Poincaré series P{vig}({tig}ri=1,g∈G) is determined by the

G-Poincaré series PG
{vi}.

The collection {vig}ri=1,g∈G contains repeated (curve) valuations. Therefore we

need a (somewhat more precise) version of Theorem 2 from [4] for collections of curve

valuations with (possibly) repeated ones. Assume that {Ci}ri=1 and {C ′
i}ri=1 are col-

lections of branches in (C2, 0) possibly with Ci1=Ci2 for i1 �=i2 (and/or C ′
j1
=C ′

j2

for j1 �=j2) and let {vi}ri=1 and {v′i}ri=1 be the collections of the corresponding valua-

tions. Essentially the same proof as in [4, Theorem 2] gives the following proposition.

Proposition 5.4. If P{vi}(t1, ..., tr)=P{v′
i}(t1, ..., tr) then there exists a combi-

natorial equivalence of the minimal resolution graphs of the reductions of the curves
⋃r

i=1 Ci and
⋃r

i=1 C
′
i, i.e. components of the exceptional divisors corresponding to

equivalent vertices intersect the same numbers of the strict transforms of different

curves from the collections {Ci}ri=1 and {C ′
i}ri=1. (The distribution of these curves

into groups of equal ones can be different.)

The knowledge of the usual Poincaré series of the collection {vig}ri=1,g∈G gives

the minimal resolution graph (the usual, not the G-equivariant one) of the collection.
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Moreover the action of the group G on the collection {vig}ri=1,g∈G of valuations

determines the G-action on the resolution graph.

As in Theorem 3.3 one has to show that the G-Poincaré series PG
{vi} determines

the representation of G on C
2, and the correspondence between the “tails” of the

resolution graph. This is done just as in Theorem 3.3 for divisorial valuations since

there are no strict transforms of the branches gCi at points of the exceptional divisor

with Gx=G (and thus the corresponding curvette being smooth) and therefore the

corresponding factor (1−TΞ)
−1 (which permits one to restore the action of G on

the corresponding linear function, viz. a coordinate) is contained in the A’Campo

type decomposition of the Poincaré series. �

Remark 5.5. One can see that the G-Poincaré series of a collection of curve

valuations determines whether or not the collection of curves satisfies the conditions

of Theorem 5.3.
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