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An essay on Bergman completeness
Bo-Yong Chen

Abstract. We give first of all a new criterion for Bergman completeness in terms of the

pluricomplex Green function. Among several applications, we prove in particular that every Stein

subvariety in a complex manifold admits a Bergman complete Stein neighborhood basis, which

improves a theorem of Siu. Secondly, we give for hyperbolic Riemann surfaces a sufficient condition

for when the Bergman and Poincaré metrics are quasi-isometric. A consequence is an equivalent

characterization of uniformly perfect planar domains in terms of growth rates of the Bergman

kernel and metric. Finally, we provide a noncompact Bergman complete pseudoconvex manifold

without nonconstant negative plurisubharmonic functions.

1. Introduction

In one complex variable, the Bergman kernel and the classical Green function
are two important conformal invariants which are closely related (e.g., the Bergman–
Schiffer formula). An analogue of the Green function in several complex variables
is given by the following definition.

Definition. Let X be a complex manifold and y ∈X . The pluricomplex Green
function gX(x, y) of X with logarithmic pole at y is defined as

gX(x, y)= sup u(x),

where the supremum is taken over all negative plurisubharmonic (psh) functions
on X such that u(z)≤log |z|+O(1) in a coordinate patch at y. We also denote by
PSH(X) the set of psh functions on X (we allow for −∞ ∈PSH(X)).

Recently, there has been a lot of activity in studying the Bergman metric using
the pluricomplex Green function (cf. [3], [4], [7]–[9], [17], [18] and [25], see also [12]
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for an implicit use of the pluricomplex Green function). A principle achievement
in this direction, which was obtained independently by B�locki and Pflug [4] and
Herbort [17], says that every bounded hyperconvex domain is Bergman complete
(see also Chen [8] for a generalization to hyperconvex manifolds). In this paper, we
continue to study the Bergman metric along the same line.

First of all we give a criterion for Bergman completeness as follows.

Theorem 1.1. If a Stein manifold X possesses the Bergman metric, then it
is Bergman complete provided the following condition is satisfied :

(E) For any infinite sequence of points {yk } ∞
k=1 in X without adherent point

in X , there are a subsequence {ykj } ∞
j=1, a number a>0 and a continuous volume

form dV on X such that for any compact subset K of X , one has
∫

{z∈K:gX(z,ykj
)≤ −a}

dV → 0 as j → ∞.

As an application, we improve a famous result of Siu [28] as follows (see also
Demailly [11]).

Theorem 1.2. Every Stein subvariety Y in a complex manifold X admits a
fundamental family of Bergman complete Stein neighborhoods of Y in X .

It should be mentioned that each totally real submanifold of a complex manifold
also admits a fundamental family of Bergman complete Stein neighborhoods (see
Proposition 5.2).

Proposition 1.3. Let X be a Stein manifold satisfying condition (E). If X

admits a negative continuous strictly psh function, then every Galois covering of X

is Bergman complete.

Proposition 1.4. Let X be a locally trivial holomorphic fiber bundle. Suppose
that the fiber is Bergman complete and that the base is a Stein manifold which admits
a negative continuous strictly psh function and satisfies condition (E). Then X is
Bergman complete.

Proposition 1.3 is connected with a problem of Ohsawa (private communica-
tion) on whether every Galois covering of a Bergman complete manifold is Bergman
complete.

Even for open Riemann surfaces, the Bergman completeness is not fully charac-
terized, although there exist some nice works for bounded planar domains (cf. Zwo-
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nek [35] and Pflug and Zwonek [24]). As far as we know, the following fundamental
problems are still open.

Question 1.5. Is Bergman completeness a quasi-conformal invariant of Rie-
mann surfaces?(1)

Question 1.6. Which are the relationships between the Bergman metric and
the Poincaré (hyperbolic) metric of constant negative curvature −1?

Based on a precise estimate of the Green function, we shall show the next
result.

Theorem 1.7. Let X be a hyperbolic Riemann surface with positive injectivity
radius and positive isoperimetric constant with respect to the Poincaré metric. Then
the Bergman kernel form, the Bergman metric and the Poincaré metric of X are
quasi-isometric.

Recall that two Riemannian metrics g1 and g2 are said to be quasi-isometric
if const1 g1 ≤g2 ≤const2 g1. As an application, we give the following new character-
ization of uniformly perfect planar domains.

Theorem 1.8. A hyperbolic domain Ω⊂C is uniformly perfect if and only if
the Bergman kernel KΩ and the Bergman metric bΩ|dz| enjoy the properties

KΩ ≥ const
δ2
Ω

and bΩ ≥ const
δΩ

,

where δΩ denotes the Euclidean boundary distance.

Finally, we give several examples for which the technique of the pluricomplex
Green function is not valid. The following result is also known by Tsuji (private
communication).

Proposition 1.9. The universal covering S̃ of a smooth ample divisor S in
an Abelian variety is Bergman complete.

According to a result of Lyons and Sullivan [23], S̃ does not admit any non-
constant negative harmonic function with respect to the Laplace operator since the
fundamental group π1(S) of S is Abelian. In particular, every bounded holomorphic

(1) Recently, a counterexample was found by Wang [34].
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function on S̃ is constant. Yet it is still unknown whether there exists a nonconstant
negative psh function on S̃. On the other hand, we have the following result.

Theorem 1.10. There exists a two-dimensional noncompact Bergman com-
plete pseudoconvex manifold which does not possess any nonconstant negative psh
function.

By a pseudoconvex manifold we mean a complex manifold which admits a C∞

psh exhaustion function.
The paper is organized as follows. In Section 2, we give some preliminaries.

In Section 3, we prove Theorem 1.1. In Section 4, we prove Propositions 1.3 and
1.4. In Section 5, we prove Theorem 1.2 and present some related results. In
Section 6, we prove Theorems 1.7 and 1.8. In Section 7, we prove Proposition 1.9
and Theorem 1.10.

2. Preliminaries

Let X be a complex manifold of dimension n. Following Kobayashi [22],
let H(X) denote the Hilbert space of holomorphic n-forms f on X satisfying

|
∫

X
f ∧f̄ |<∞. The Bergman kernel form is defined by

KX(x, y) =
∞∑

j=1

hj(x)∧hj(y),

where {hj } ∞
j=1 is a complete orthonormal basis of H(X). If KX(x, x) �=0 for every

x∈X , then we set

ds2
X =

n∑
α,β=1

∂2 log K∗
X

∂zα∂z̄β
dzα dz̄β ,

where KX(z, z)=K∗
X(z, z) dz1 ∧...∧dzn ∧dz̄1 ∧...∧dz̄n in local coordinate systems

of X . If ds2
X is positive definite, then it is called the Bergman metric of X .

In his pioneer paper [22], Kobayashi proved the following theorem.

Theorem 2.1. (1) A complex manifold X possesses the Bergman metric ds2
X

provided the following two conditions are satisfied :
(A1) For every y ∈X , there exists an n-form f ∈ H(X) such that f(y) �=0.
(A2) For every y ∈X , there are n-forms f1, ..., fn in H(X) satisfying fα(y)=0

and ∂f ∗
α/∂zβ(y)=δαβ (the Kronecker delta) for 1≤α, β ≤n. Here f ∗

α, 1≤α≤n, are
local representations of f .

(2) ds2
X is complete provided furthermore the following condition is satisfied :
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(A3) There is a dense subset S of H(X) such that for every f ∈S and for any
infinite sequence {yk } ∞

k=1 of points in X without adherent point in X , there is a
subsequence {ykj } ∞

j=1 such that

f(ykj )∧f(ykj )
KX(ykj , ykj )

→ 0, as j → ∞.

Let gX(x, y) denote the pluricomplex Green function of X and set AX(y, −a)=
{x∈X :gX(x, y)≤ −a} for each a>0. We also recall a result slightly weaker than
Theorem 1.1.

Theorem 2.2. ([9]) (1) A Stein manifold X possesses the Bergman metric
provided the following condition is satisfied :

(B1) For any y ∈X there is a positive number a>0 such that AX(y, −a) is
relatively compact in X .

(2) If a Stein manifold X possesses the Bergman metric, then it is Bergman
complete provided the following condition is satisfied :

(B2) For any infinite sequence {yk } ∞
k=1 of points in X without adherent point

in X there exist a subsequence {ykj } ∞
j=1 and a number a>0 such that for any

compact subset K of X one has AX(ykj , −a)⊂X\K for all sufficiently large j.

3. Proof of Theorem 1.1

The underlying idea is essentially implicit in [8]. Fix y ∈X for a moment. Let
a>0 be a constant and let {Xj } ∞

j=1 be a sequence of relatively compact strongly
pseudoconvex domains in X with Xj ⊂Xj+1 and X=

⋃∞
j=1 Xj . For each fixed j, we

may take a sequence of C∞ strictly psh functions ψj,k<a/2 on Xj , k=1, 2, ..., such
that ψj,k decreases to gX( · , y) as k→∞. Let χ : R→[0, 1] be a smooth function
such that χ|(− ∞,−1]=1, χ|[0,∞)=0 and sup |χ′ | ≤2. If f ∈ H(X), let

ηj,k = χ (− log(−ψj,k+a)+log 2a) f,

η = χ (− log(−gX( · , y)+a)+log 2a) f,

ϕj,k = 2nψj,k −log(−ψj,k+a),

ϕ = 2ngX( · , y)−log(−gX( · , y)+a).

To proceed with the proof, we need the following L2-estimate of ∂̄ due to Hörman-
der [19], Andreotti and Vesentini [1], and Demailly [10].
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Theorem 3.1. Let M be a complete Kähler manifold of dimension n. Let φ

be a psh function on M such that i∂∂̄φ≥ω in the sense of distributions for a Kähler
metric ω on M . Then for every C∞ ∂̄-closed (n, 1)-form v on M , there exists a
C∞ (n, 0)-form on M such that ∂̄u=v and

∫
M

|u|2ωe−φ ωn

n!
≤

∫
M

|v|2ωe−φ ωn

n!

provided that the right-hand side is finite. Here | · |2ω denotes the pointwise length
with respect to ω.

Applying Theorem 3.1 with M=Xj , φ=ϕj,k and v=∂̄ηj,k, we get a C∞ (n, 0)-
form uj,k on Xj such that ∂̄uj,k=∂̄ηj,k and

∣∣∣∣
∫

Xj

uj,k ∧ūj,ke−ϕj,k

∣∣∣∣ ≤
∣∣∣∣
∫

Xj

|∂̄χ̃|2i∂∂̄ϕj,k
f ∧f̄ e−ϕj,k

∣∣∣∣,

where χ̃=χ◦(− log(−ψj,k+a)+log 2a). Now

∂̄χ̃ =χ′∂̄(− log(−ψj,k+a))

and
i∂∂̄ϕj,k ≥ i∂(− log(−ψj,k+a))∧∂̄(− log(−ψj,k+a)).

We get |∂̄χ̃|2
i∂∂̄ϕj,k

≤sup |χ′ |2 and

supp ∂̄χ̃ ⊂ {x ∈ Xj : −(2e−1)a ≤ ψj,k(x) ≤ −a} ⊂ AX(y, −a)

(notice that ψj,k ≥gX( · , y) on Xj). Thus we obtain
∣∣∣∣
∫

Xj

uj,k ∧ūj,ke−ϕj,k

∣∣∣∣ ≤ constn,a

∣∣∣∣
∫

AX(y,−a)

f ∧f̄

∣∣∣∣.

Set fj,k :=ηj,k −uj,k. Then fj,k ∈ H(Xj) and
∣∣∣∣
∫

Xj

fj,k ∧f̄j,k

∣∣∣∣ ≤ constn,a

∣∣∣∣
∫

AX(y,−a)

f ∧f̄

∣∣∣∣
(we use one symbol constn,a to denote all positive constants depending only on
n, a).

Let uj and f̃ j be weak limits of uj,k and fj,k as k→∞ and let u and f̃ be weak
limits of uj and fj as j→∞. Then we have

f̃ = η −u ∈ H(X),
∣∣∣∣
∫

X

f̃ ∧f̃

∣∣∣∣ ≤ constn,a

∣∣∣∣
∫

AX(y,−a)

f ∧f̄

∣∣∣∣
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and ∣∣∣∣
∫

X

u∧ūe−ϕ

∣∣∣∣ < ∞.

Since u is holomorphic in a neighborhood of y (with u=f −f̃ therein) and gX( · , y)
has at least a logarithmic singularity at y, we get u(y)=0, i.e., f̃(y)=f(y).

Now let {yk } ∞
k=1 be an infinite sequence of points in X without adherent point

in X . Let f ∈ H(X). For any ε>0, there is a compact subset K of X such that
|
∫

X\K
f ∧f̄ |<ε. By the above argument we have for every k an (n, 0)-form fk ∈ H(X)

such that fk(yk)=f(yk) and
∣∣∣∣
∫

X

fk ∧f̄k

∣∣∣∣ ≤ constn,a

∣∣∣∣
∫

AX(yk,−a)

f ∧f̄

∣∣∣∣

≤ constn,a

(∣∣∣∣
∫

X\K

f ∧f̄

∣∣∣∣+
∣∣∣∣
∫

K∩AX(yk,−a)

f ∧f̄

∣∣∣∣
)

≤ constn,a

(
ε+sup

K
(−1)n2/2(f ∧f̄)⊗(dV )−1

∫
K∩AX(yk,−a)

dV

)
.

Take {ykj } ∞
j=1 and a as in condition (E). Then we have |

∫
X

fkj ∧f̄kj | ≤constn,a ε

provided j is large enough. By the extreme property of the Bergman kernel, we
obtain

f(ykj )∧f(ykj )
KX(ykj , ykj )

≤
∣∣∣∣
∫

X

fkj ∧f̄kj

∣∣∣∣ ≤ constn,a ε,

or in other words, Kobayashi’s criterion holds.

4. Proofs of Propositions 1.3 and 1.4

Proof of Proposition 1.3. Let π : X̃→X be a Galois covering. By Stein’s theo-
rem [29], X̃ is also Stein. Let ψ<0 be a continuous strictly psh function on X . By
Richberg’s theorem [27], we may assume that ψ is C∞. Let ψ̃ be the lift of ψ to
X̃ . Since ψ̃<0 is strictly psh on X̃ , it is easy to verify that condition (B1) holds.
In particular, X̃ possesses the Bergman metric. It suffices to verify that X̃ satisfies
condition (E). Let {yk } ∞

k=1 ⊂X̃ be an infinite sequence of points without adherent
point in X̃ . Let xk=π(yk). We divide into the following two cases.

Case 1. {xk } ∞
k=1 has an adherent point x0 in X . Then X̃ has to be an infinite

covering of X because {yk } ∞
k=1 has no adherent point in X̃ . Thus we may take a

small coordinate ball B(x0, r0) at x0 such that π−1(B(x0, r0)) is an infinite union of
mutually disjoint coordinate patches Ũk in X̃ . Since {yk } ∞

k=1 has no adherent point
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in X̃ , we may choose a subsequence {ykj } ∞
j=1 such that ykj ∈Ũkj ∩π−1(B(x0, r0/4)).

As Ũkj is biholomorphic to B(x0, r0),

i∂∂̄ψ̃(z) ≥ const i∂∂̄|z|2, z ∈ Ũkj , j ≥ 1.

Thus there is a sufficiently large constant C>0 such that

C max
{

ψ̃, min
B(x0,r0)

ψ
}

+ˇj log
|z|
2r0

is psh on X̃ for any j, where ˇj ≥0 is a smooth function on X̃ such that ˇj =1

on {z :|z| ≤r0/2} and ˇj =0 on X̃\Ũkj . Using this function as a candidate for the
extreme property of g

eX( · , ykj ), we get

A
eX(ykj , −a) ⊂ Ũkj , where a = −C min

B(x0,r0)
ψ+1.

Thus for any compact subset K of X̃ we have K ∩A
eX(ykj , −a)=∅ provided j is

large enough.
Case 2. {xk } ∞

k=1 has no adherent point in X . Since X satisfies condition (E),
there exist a subsequence {xkj } ∞

j=1, a positive number a and a continuous volume
form dV on X such that for any compact subset K ′ of X ,∫

K′ ∩AX(xkj
,−a)

dV → 0, j → ∞.

Let K be any compact subset of X̃ . It is easy to see from the definition that

g
eX(x, ykj ) ≥ gX(π(x), π(ykj )) = gX(π(x), xkj ).

Thus π(A
eX(ykj , −a))⊂AX(xkj , −a). Since K ′ =π(K) is a compact subset of X and

the sheet of the covering K→K ′ is finite, we conclude that∫
K∩A

eX(ykj
,−a)

dṼ → 0, j → ∞,

where dṼ is the lift of dV to X̃ . �

Proof of Proposition 1.4. Let π :X→M be a locally trivial holomorphic fiber
bundle over a complex manifold M with typical fiber Y such that Y is Bergman
complete and M is a Stein manifold which admits a negative C∞ strictly psh
function ψ. Let {(Uα, θα)}α be a local trivialization of X . For the sake of simplicity,
we identify π−1(Uα) with Uα ×Y and denote the pullbacks of variants on M to X

by the same characters.
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Localization Principle. X possesses the Bergman metric such that for each
pair of domains V �U�M there exists a constant C>0 so that

C ds2
π−1(U) ≥ ds2

X ≥ C−1 ds2
π−1(U)

on π−1(V ).

Proof. Fix a complete Kähler metric ωM on M . Since the Bergman metric
ds2

Y of Y is invariant under holomorphic automorphisms, we may define a complete
Kähler metric on X simply by ωM ⊕ds2

Y . Take a finite number of coordinate neigh-
borhoods Uα1 , ..., Uαm which cover ˙U and let Vαj �Uαj ∩U be a cover of ˙V . Let
p∈V . Without loss of generality, we assume that p∈V1. Let χ̃ be a real smooth
function with compact support in U1 ∩U which is equal to 1 in a neighborhood of ˙V1.
Let z denote the local holomorphic coordinate on U1. Then there is a constant C>0
such that

i∂∂̄(Cψ+2(n+1)χ̃ log |z −z(p)|) ≥ ωM on U,

where n is the dimension of M . Let f ∈ H(π−1(U)). By Theorem 3.1, we can solve
the equation ∂̄u=∂̄χ̃∧f on X such that

∣∣∣∣
∫

X

u∧ūe−Cψ−2(n+1)eχ log |z−z(p)|
∣∣∣∣ ≤

∣∣∣∣
∫

X

|∂̄χ̃|2ωM
f ∧f̄ e−Cψ−2(n+1)eχ log |z−z(p)|

∣∣∣∣
≤ const

∣∣∣∣
∫

π−1(U)

f ∧f̄

∣∣∣∣.

Let f̃=χ̃f −u. It is easy to see that f̃ ∈ H(X) is such that f̃=f , ∇∂/∂z f̃=∇∂/∂zf

on {p} ×Y , and ‖f̃ ‖L2(X) ≤const ‖f ‖L2(π−1(U)). The assertion follows immediately
from this fact and the extreme properties of the Bergman kernel and the Bergman
metric. �

We proceed with the proof of Proposition 1.4. Let {yk } ∞
k=1 be a sequence

of points without adherent point in X . If {π(yk)}∞
k=1 is contained in a compact

subset of M , it follows from the localization principle that {yk } ∞
k=1 is also a dis-

crete sequence with respect to the Bergman distance. Thus we may assume that
{π(yk)}∞

k=1 contains a discrete subsequence {pj :=π(ykj )}∞
j=1. For simplicity, we still

denote by {pj } ∞
j=1 the subsequence appearing in condition (E) which holds on M .

Let f ∈ H(X). Replacing gX( · , yk) by gM ( · , pj) in the argument in the proof of
Theorem 1.1, we get for every j a form fj ∈ H(X) such that fj =f on {pj } ×Y and
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|
∫

X
fj ∧f̄j | ≤constn,a |

∫
π−1(AM (pj ,−a))

f ∧f̄ |. For any ε>0, there is a compact subset
K of X such that |

∫
X\K

f ∧f̄ |<ε. Then we have

∣∣∣∣
∫

X

fj ∧f̄j

∣∣∣∣ ≤ constn,a

(∣∣∣∣
∫

X\K

f ∧f̄

∣∣∣∣+
∣∣∣∣
∫

K∩π−1(AM (pj ,−a))

f ∧f̄

∣∣∣∣
)

≤ constn,a

(
ε+sup

K
(−1)n2/2(f ∧f̄)⊗(dV )−1

∫
K∩π−1(AM (pj ,−a))

dV

)

≤ constn,a ε

provided j is large enough. Thus

f(ykj )∧f(ykj )
KX(ykj , ykj )

≤
∣∣∣∣
∫

X

fj ∧f̄j

∣∣∣∣ ≤ constn,a ε,

in other words, Kobayashi’s criterion holds. �

Remark. It becomes more difficult when the quotient manifold X in Proposi-
tion 1.3 or the base manifold M in Proposition 1.4 is compact.

For Riemann surfaces we have the following result.

Proposition 4.1. Let X be a hyperbolic Riemann surface, i.e., gX is not
identically equal to −∞. Suppose that X can be exhausted by a sequence of relatively
compact domains {Xj } ∞

j=1 with Xj ⊂Xj+1 such that

b := inf
j

lim inf
x→∂X

inf
y∈∂Xj

gX(x, y) > −∞.

Then X is Bergman complete. Here ∂X denotes the ideal boundary of X .

Proof. Notice that in the case of the Riemann surface the fact that gX is not
identically −∞ implies that gX(x, y)>−∞ for all x �=y. Thus by Theorem 2.2, every
hyperbolic Riemann surface possesses the Bergman metric. Let K be any compact
subset of X . We take j0 such that K ⊂Xj0 . Thus

inf
y∈∂Xj0

gX(x, y) >b−1, as x→ ∂X.

Since gX(x, y)=gX(y, x), we have

inf
x∈∂Xj0

gX(x, y) >b−1, as y→ ∂X.
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By the maximum principle for harmonic functions, we get

inf
x∈Xj0

gX(x, y) >b−1, as y→ ∂X.

In other words, K ∩AX(y, b−1)=∅ for y sufficiently close to ∂X . By Theorem 2.2
(or Theorem 1.1), the assertion follows. �

Remark. Unfortunately, the author does not know how to construct a non-
hyperconvex Riemann surface satisfying the assumption of the above proposition.

5. Bergman completeness of Stein neighborhoods of a submanifold

Proof of Theorem 1.2. Demailly’s simplified proof of Siu’s theorem contains
the following two main ingredients (cf. [11], pp. 411–413):

(1) For every C∞ strictly psh function ψ on Y and any continuous function
δ>0 on X, there exists a C∞ strictly psh function on a neighborhood V of Y such
that ψ ≤ϕ|Y ≤ψ+δ on Y .

(2) There exists an almost psh function ρ on X such that ρ|Y =−∞ with log-
arithmic poles and ρ∈C∞(X\Y ).

By an almost psh function on a complex manifold we mean a function that is
locally equal to the sum of a psh function and a smooth function.

Fix a C∞ strictly psh exhaustion function ψ>0 on Y . Applying (1) with δ=1,
we get a C∞ strictly psh function ϕ>0 on a neighborhood W0 of Y such that ϕ|Y
is an exhaustion function. Let W1 be a neighborhood of Y such that W 1 ⊂W0 and
ϕ|W 1

be an exhaustion function, i.e., {x∈W 1 :ϕ(x)≤C} is a compact subset of X

for each C>0. We may choose W1 as follows: Let

Kj := {x ∈ Y : j −1 ≤ ϕ(x) ≤ j+1}, j =1, 2, ... .

The we have Y =
⋃∞

j=1 Kj . Since Kj is a compact set in Y , there is a neighborhood
Uj �W0 of Kj such that

j −2 ≤ ϕ(x) ≤ j+2 for all x ∈ ˙Uj .

It suffices to take W1=
⋃∞

j=1 Uj .
Next we are going to show that every neighborhood W ⊂W1 of Y contains

a Bergman complete Stein neighborhood V of Y . Let ρ be the function in (2).
Shrinking W if necessary, we may assume that ρ<−1 on W . We set

ρ̃= − log(−ρ)+λ◦ϕ on W,
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where λ : R→[0, ∞) is a smooth convex increasing function. For every y ∈W , there
is a local coordinate ball B(y, ry), at y with radius 0<ry ≤1, such that r−1

y is locally
bounded as a function of y ∈W . If λ grows fast enough, we get

(i) ρ̃>0 on ∂W ;
(ii) for every y ∈W , i∂∂̄ρ̃≥(C+ϕ(y))/r2

yi∂∂̄|z|2 on B(y, ry), where C>0 is a
universal constant to be determined later;

(iii) ∫
B(y,ry)

e−ρ̃ dVz =
∫

B(y,ry)

(−ρ)e−λ◦ϕ dVz ≤ 1.

(Notice that ρ has only logarithmic pole at Y , and thus −ρ is locally integrable
on W .)

By (i), the open set V ={x∈W :ρ̃(x)<0} is a Stein neighborhood of Y such
that ˙V ⊂W . The rest of the proof is divided into two steps:

Step 1. Existence of the Bergman metric. For any y ∈V , we set

η0 =ˇy(z) dz1 ∧...∧dzn, ηj =
zj

ry
ˇy(z) dz1 ∧...∧ dzn, 1 ≤ j ≤ n,

and

φ = ρ̃+(n+1)ˇy(z) log
|z|2
r2
y

,

where ˇy ≥0 is a smooth function on V such that ˇy=1 on {z :|z| ≤ry/2} and ˇy=0
on V \{z :|z| ≤ry }. Furthermore,

i∂∂̄

(
ˇy(z) log

|z|2
r2
y

)
≥ − C ′

r2
y

i∂∂̄|z|2

for a suitable universal constant C ′ >0. If C=(n+1)C ′ +1 in (ii), then we have
i∂∂̄φ≥i/r2

y∂∂̄|z|2 on B(y, ry). By Theorem 3.1, there is, for every 0≤j ≤n, a C∞

(n, 0)-form uj on V such that ∂̄uj =∂̄ηj and (by (iii))
∣∣∣∣
∫

V

uj ∧ūje
−φ

∣∣∣∣ ≤
∫

B(y,ry)

|∂̄ˇy |2i/r2
y∂∂̄|z|2e

−φ dVz

≤ constn

∫
B(y,ry)

e−ρ̃ dVz ≤ constn .

Let fj =ηj −uj . Then fj ∈ H(V ), f0(y)=1, fj(y)=0, 1≤j ≤n, and ∂f ∗
j /∂zk(y)=

δjk/ry . By Theorem 2.1, we conclude that the Bergman metric exists on V .
Step 2. Completeness of the Bergman metric. Let {yk } ∞

k=1 be an infinite se-
quence of points in V without adherent point in V . If {yk } ∞

k=1 has an adherent
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point on ∂V , then a standard argument shows that Kobayashi’s criterion holds be-
cause each point on ∂V is a strongly pseudoconvex point. Thus we may assume
that ϕ(yk)→∞ as k→∞.

Let K be any compact subset of V and let dV be any continuous volume form
of V . For any τ >0, there exists a positive integer k0 such that for any k>k0 we
have B(yk, ryk

)⊂V \K and

uτ,k := τ ρ̃+ˇyk
(z) log

|z|
ryk

is a negative psh function on V , according to (ii) (notice that ϕ(yk)→∞). Since
uτ,k has an at least logarithmic singularity at yk, we have

gX(x, yk) ≥ uτ,k(x) = τ ρ̃ for x ∈ K.

Thus
K ∩AV (yk, −a) ⊂

{
x ∈ K : ρ̃(x) < − a

τ

}
,

which implies that ∫
K∩AV (yk,−a)

dV <ε, if τ � 1.

By Theorem 1.1, the proof is finished. �

It is interesting to point out that the role of AX(y, −a) is almost optimal for
Bergman completeness (cf. Pflug and Zwonek [25]). Here is a simple example.

Proposition 5.1. Let D be a bounded pseudoconvex domain in C
n and let

ϕ>0 be a continuous psh function on D satisfying

lim inf
z→∂D

ϕ(z)
log(1/δD(z))

= ∞.

Then the Hartogs domain Ω:={(z, w)∈D ×C:|w|<e−ϕ(z)} is Bergman complete.

It is easy to verify that the above condition is sharp, e.g., let D be a punctured
disc and ϕ(z) be psh on D satisfying ϕ(z)∼N log(1/|z|) as z→0, where N is a
positive integer, then Ω is not Bergman complete.

Proof. The underlying idea is essentially due to B�locki. Let {yk=(zk, wk)}∞
k=1

be an infinite sequence of points in Ω without adherent point in Ω. Since Ω is
locally hyperconvex at each p∈∂Ω\(∂D × {0}) (that is, there is a ball B(p, rp) such
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that Ω∩B(p, rp) is hyperconvex), we may assume that yk→∂D × {0}, in particular,
ϕ(zk)→∞ as k→∞. Let R=diam D. If x=(z, w), then

gΩ(x, yk) ≥ log
|z −zk |

R
≥ log

δD(zk)
R

, if δD(z) ≥ 2δD(zk).

Let
Nk := inf{ϕ(z) : δD(z)= 2δD(zk)}.

Then Nk/log(1/2δD(zk))→∞, as k→∞, and log |w|<−ϕ(z)≤ −Nk for (z, w)∈Ω
with δD(z)=2δD(zk). Thus

gΩ(x, yk) ≥ log
δD(zk)

R

log |w|
−Nk

, if δD(z)= 2δD(zk).

On the other hand, since gΩ(x, yk)=0 for any x∈∂Ω with δD(z)≥2δD(zk) (notice
that Ω is locally hyperconvex at x), the same inequality holds on this part of
boundary. As the pluricomplex Green function gΩ( · , yk) is maximal on Ω\{yk }
(cf. [21]), we conclude that the above inequality holds for all x∈Ω with δD(z)≥
2δD(zk). Thus

{x ∈ Ω : gΩ(x, yk) ≤ −1} ⊂ {x ∈ Ω : δD(z) < 2δD(zk)}

∪
{

x ∈ Ω : δD(z) ≥ 2δD(zk), log |w| ≤ − Nk

log(R/δD(zk))

}
.

By Theorem 1.1, the assertion follows. �

In contrast to complex submanifolds, totally real submanifolds are of indepen-
dent interest. A C1-differentiable submanifold Y of a complex manifold X is called
totally real if the tangent space to Y at any point does not contain any complex
lines. According to Theorem 2.2 of Harvey and Wells [16], Y admits a fundamental
neighborhood system of Stein manifolds in X . Indeed, their proof even implies that
these Stein manifolds are hyperconvex. Thus by [8], we obtain the following result.

Proposition 5.2. Every totally real submanifold of a complex manifold admits
a fundamental neighborhood system of Bergman complete manifolds.

6. Comparison of the Bergman and Poincaré metrics

Due to a result of Myrberg, every hyperbolic Riemann surface may be written
as Δ/Γ, where Δ is the unit disc and Γ is a (torsion-free) Fuchsian group satis-
fying

∑
γ∈Γ(1− |γ(0)|)<∞ (cf. Tsuji [32]). There are several important isometric

invariants related to the Poincaré metric listed as follows.
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(1) The critical exponent of Poincaré series defined as

δ(Γ) = inf
{

s ≥ 0 :
∑
γ∈Γ

(1− |γ(0)|)s < ∞
}

.

(2) The injectivity radius of Δ/Γ defined as

r(Γ) =
1
2

inf
z∈Δ

rz, with rz = inf
γ∈Γ\ {1}

ρ(z, γz),

where ρ denotes the Poincaré distance and rz is called the injectivity radius at z.
(3) The bottom of the spectrum with respect to the Laplace–Beltrami operator

defined as

λ(Γ) = inf
{∫

Δ/Γ
|gradφ|2 dV∫

Δ/Γ
|φ|2 dV

: φ ∈ C∞
0 (Δ/Γ)

}
.

(4) The isoperimetric constant defined as

h(Γ) = inf
vol ∂Ω
volΩ

,

where Ω runs over all relatively compact open sets in Δ/Γ with smooth boundaries.
There are also some well-known relationships.
(i) Elstrodt, Patterson and Sullivan [31]:

λ(Γ) =

{
1
4 , if 0≤δ(Γ)≤ 1

2 ,

δ(Γ)(1−δ(Γ)), if 1
2 ≤δ(Γ)≤1.

It is also known that δ(Γ)≤1 always holds (cf. Tsuji [32]).
(ii) Cheeger [6] and Buser [5]: λ(Γ)>0 if and only if h(Γ)>0.
The above two facts imply the following result:
(iii) h(Γ)>0 if and only if δ(Γ)<1.

Proof of Theorem 1.7. Write X=Δ/Γ, where Γ is a Fuchsian group. Let Ω
be an open set with smooth boundary in Δ/Γ. For a relatively compact open set
U ⊂Ω, we define its capacity by

Cap(U, Ω) = inf
∫

Ω

|gradφ|2 dV,

where φ runs over all locally Lipschitz functions with compact support in Ω such
that 0≤φ≤1 and φ|˙U =1. The relationship between the Green function gΩ and the
capacity is as follows:

(1) a := inf
x∈∂U

(−gΩ(x, y)) ≤ 1
Cap(U, Ω)

≤ sup
x∈∂U

(−gΩ(x, y)) =: b
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and

(2) {x ∈ Ω : −gΩ(x, y) ≥ a} ⊃ ˙U ⊃ {x ∈ Ω : −gΩ(x, y) ≥ b}

(cf. Grigor′yan [15], p. 18). As h(Γ)>0, by Theorem 8.1 of Grigor′yan [15] we have

1
Cap(U, Ω)

≤
∫ vol Ω

vol U

dv

h(Γ)2v2
=

1
h(Γ)2

(
1

vol U
− 1

volΩ

)
.

Now fix any y ∈Δ/Γ. We take U to be the geodesic ball B(y, r(Γ)). Let {Ωj } ∞
j=1

be an exhaustion sequence of smooth relatively compact open sets in Δ/Γ. Since
volU=4π sinh2 1

2r(Γ), we conclude that Cap(U, Ωj)−1 ≤const(Γ) provided j is suf-
ficiently large. Let � : Δ→Δ/Γ be the natural projection. By a Möbius transfor-
mation, we may assume that �(0)=y. As ρ(0, z)=log((1+|z|)/(1− |z|)), we may
identify U with the coordinate disc Δ(Γ):={z ∈C:|z|<tanh 1

2r(Γ)} such that the
Poincaré metric is uniformly quasi-isometric to the Euclidean metric on U . By
Harnack’s inequality, we have a≥const(Γ)b. Thus by (1) and (2), there is a con-
stant c=c(Γ)>0 such that

AΩj (y, −c) = {x ∈ Ωj : −gΩj (x, y) ≥ c} ⊂ ˙U.

Letting j→∞, we get the crucial estimate

(3) AΔ/Γ(y, −c) ⊂ ˙U.

The argument in the proof of Theorem 1.1 shows that for every holomorphic 1-form
f on AΔ/Γ(y, −c) there is a holomorphic 1-form F on Δ/Γ such that F (y)=f(y) and
‖F ‖ ≤const(Γ)‖f ‖L2(AΔ/Γ(y,−c)). In particular, for f=dz there exists a holomorphic
1-form F on Δ/Γ such that F (y)=dz and by (3),

‖F ‖ ≤ const(Γ)
∣∣∣∣
∫

U

dz ∧dz̄

∣∣∣∣ ≤ const(Γ).

Write KΔ/Γ=K∗
Δ/Γ dz ∧dz̄ and F =F ∗ dz ∧dz̄ in local coordinates at y. Then

K∗
Δ/Γ(y) ≥ |F ∗(y)|2

‖F ‖2
≥ const(Γ).

On the other hand, Cauchy’s integral implies

|f ∗(y)|2 ≤ 1
vol(Δ(Γ))

∣∣∣∣
∫

Δ(Γ)

f ∧f̄

∣∣∣∣ ≤ const(Γ)‖f ‖2 for any f ∈ H(Δ/Γ),

and hence
K∗

Δ/Γ(y) ≤ const(Γ).

Since y is arbitrarily chosen, we conclude that the Bergman kernel form is quasi-
isometric to the Poincaré metric. The case of the Bergman metric is similar. �
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Conjecture. The hypothesis λ(Γ)>0 in Theorem 1.7 is unnecessary for hyper-
bolic Riemann surfaces.

Definition. (Cf. [2] and [26]) A hyperbolic domain Ω⊂C is said to be uniformly
perfect if there exists a constant c>0 such that for any boundary point p∈∂Ω and
0<r<diam ∂Ω there is a point q ∈∂Ω such that cr ≤ |q −p| ≤r.

It turns out that the uniform perfectness of Ω is equivalent to each of the
following conditions (cf. Sugawa [30]):

(α) The Poincaré metric ρΩ|dz| satisfies ρΩ ≥const δ−1
Ω .

(β) The injectivity radius of Ω with respect to the Poincaré metric is positive.
(γ) The logarithmic capacity

LogCap(∂Ω∩Δ(p, r)) ≥ const r for all p ∈ ∂Ω and 0 <r <diam Ω.

We also mention the following result of Fernández (cf. [13], see also [30]).
(δ) Uniform perfectness of Ω implies that the bottom λ(Ω) of the spectrum of

the Laplace–Beltrami operator with respect to the Poincaré metric is positive.

Proof of Theorem 1.8. The only if part follows directly from (ii), (α), (β), (δ)
and Theorem 1.7. It suffices to verify the if part. For simplicity, we denote the
Bergman kernel function of Ω by KΩ. Fix any point z0 ∈Ω and set δ0=δΩ(z0).
Since

KΩ(z0) ≤ KΔ(z0,δ0)(z0) ≤ const δ−2
0 ,

we have KΩ(z0)�δ−2
0 . Viewing KΩ(z, w̄) as a holomorphic function on Δ(z0, δ0/2)×

Δ(z0, δ0/2), we infer from Cauchy’s integral that
∣∣∣∣ ∂

∂z
KΩ(z0)

∣∣∣∣ ≤ 2δ−1
0 max

{
|KΩ(z0+z, z0+w̄)| : z, w ∈ Δ

(
0, 1

2δ0

)}

≤ 2δ−1
0 max

{
|KΩ(z0+z)| : z ∈ Δ

(
0, 1

2δ0

)}
≤ const δ−3

0 ,

where the second inequality follows from |KΩ(z, w̄)|2 ≤KΩ(z)KΩ(w). Thus
∣∣∣∣∂ log KΩ

∂z

∣∣∣∣ ≤ const δ−1
Ω .

On the other hand, we know that the Bergman metric bΩ|dz| satisfies bΩ ≥const δ−1
Ω .

Thus there is a constant ε0>0 such that

i∂∂̄ log KΩ ≥ ε0i∂ log KΩ ∧∂̄ log KΩ.
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Let ψ=−e−ε0/2 log KΩ . Notice that

i∂∂̄ψ = ie−ε0/2 log KΩ

(
ε0

2
∂∂̄ log KΩ − ε2

0

4
∂ log KΩ ∧∂̄ log KΩ

)

≥ ε0

4
e−ε0/2 log KΩi∂∂̄ log KΩ ≥ const

δ2−ε0
Ω

i dz ∧dz̄

because KΩ �δ−2
Ω . Thus there is a constant C>0 such that

ϕ=Cδ−ε0
0 ψ+χ

(
2|z −z0|

δ0

)
log

|z −z0|
δ0

becomes a negative subharmonic function on Ω with a logarithmic pole at z0, where
χ : R→[0, 1] is a C∞ function such that χ|(1,∞)=0 and χ|(− ∞,1/2)=1. It follows that
the Azukawa metric

aΩ(z0, ζ) := lim
|t|→0+

1
|t| e

gΩ(z0,z0+tζ) ≥ lim
|t|→0+

1
|t| e

ϕ(z0+tζ)

= exp(−Cδ−ε0
0 KΩ(z0)−ε0/2)

|ζ|
δ0

≥ const
|ζ|
δ0

, ζ ∈ C,

because KΩ(z0)�δ−2
0 . Since the Poincaré metric coincides with the Kobayashi–

Royden metric on Ω, which is no less than aΩ (cf. Jarnicki and Pflug [20]), the
assertion follows immediately from (α). �

Remark. In fact, one can also show that bΩ ≤const δ−1
Ω for uniformly perfect

domains since Theorem 1.7 implies that bΩ|dz| is quasi-isometric to the Poincaré
metric ρΩ|dz| while ρΩ ≤const δ−1

Ω always holds.

7. Bergman completeness of complex submanifolds

Proof of Proposition 1.9. Consider an Abelian variety A, whose universal cov-
ering is C

n+1 with n≥2. Let S be a smooth ample divisor of A. According to
the Lefschetz hyperplane theorem (cf. [14], p. 156), we have π1(A)∼=π1(S) between
fundamental groups of A and S. In particular, the closed submanifold S̃=π−1(S)
of C

n+1 is the universal covering of S, where π : C
n+1→A is the natural projection.

Since S̃ covers a compact complex manifold, it suffices to verify the existence of
the Bergman metric. Let L be a positive holomorphic line bundle on A correspond-
ing to S and let L̃ be the lift of L to C

n+1. Let h be a smooth positive Hermitian
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metric of L whose local representation is e−ϕ, where ϕ is C∞ strictly psh. Thus
h̃=e−eϕ and ϕ̃=π∗ϕ, gives a smooth positive Hermitian metric of L̃ such that

const i∂∂̄|z|2 ≤ i∂∂̄ϕ̃ ≤ const−1 i∂∂̄|z|2.

Let H(Cn+1, L̃) be the set of holomorphic L̃-valued (n+1)-forms f on C
n+1 satis-

fying ∣∣∣∣
∫

Cn+1
f ∧f̄ e−eϕ

∣∣∣∣ < ∞.

We claim that
(C1) for all z0 ∈Cn+1, there exists f0 ∈ H(Cn+1, L̃) such that f0(z0) �=0;
(C2) for all z0 ∈C

n+1, there are f1, ..., fn+1 ∈ H(Cn+1, L̃) satisfying fα(z0)=0
and ∂f ∗

α/∂zβ(z0)=δαβ for 1≤α, β ≤n+1.
Indeed, a direct calculation shows that

i∂∂̄

(
ˇ

(
|z −z0|2

R2

)
log

|z −z0|2
R2

)
≥ − const

R2
i∂∂̄|z|2,

where ˇ : R→[0, 1] is a cut-off function satisfying ˇ|(− ∞,1/2)=1 and ˇ|(1,∞)=0.
Thus we may choose R sufficiently large such that

i∂∂̄

(
ϕ̃(z)+(n+1)ˇ

(
|z −z0|2

R2

)
log

|z −z0|2
R2

)
≥ const

R2
i∂∂̄|z|2.

A standard application of L2-estimates of ∂̄ yields solutions uj to the equations
∂̄u=∂̄ηj , where

η0 = ˇ

(
|z −z0|2

R2

)
dz1 ∧...∧dzn+1 ⊗ξ,

ηj = (zj −z0
j )ˇ

(
|z −z0|2

R2

)
dz1 ∧...∧dzn+1 ⊗ξ, 1 ≤ j ≤ n+1,

and ξ is a frame of L̃, such that∣∣∣∣
∫

Cn+1
uj ∧ūje

−eϕ−(n+1)ˇ(|z−z0|2/R2) log(|z−z0|2/R2)

∣∣∣∣ < ∞.

It is easy to see that fj :=ηj −uj , 0≤j ≤n+1, satisfy (C1) and (C2). Thus it suffices
to verify the following L2 adjunction formula:

H(Cn+1, L̃)|
eS ⊂ H(S̃). �

Proof of the adjunction formula. By the standard adjunction formula (cf. [14],
p. 147), we conclude that every restriction f |

eS of any f ∈ H(Cn+1, L̃) to S̃ is a
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holomorphic n-form on S̃. It suffices to verify that f |
eS is square-integrable on S̃. We

cover S by finite coordinate patches (U1, z
1), ..., (Um, zm) on A such that S ∩Uk=

{zk ∈Uk :zk
n+1=0}. Without loss of generality, we assume that Uk are unit polydiscs

and that slightly smaller polydiscs {Vk }m
k=1 still cover S. Let Γ be a discrete group

of translations of C
n+1 such that A=C

n+1/Γ. Clearly, Γ also acts on S̃ such that
S=S̃/Γ. Let {Ũν }m

ν=1 and {Ṽ ν }m
ν=1 be lifts of {Uk }m

k=1 and {Vk }m
k=1 to C

n+1. Then

{Ṽ ν }m
ν=1 covers S̃. By Cauchy’s inequality, we have

|f ∗
ν | ≤ const

∫
eUν

|f ∗
ν |2 dV on Ṽ ν .

Thus, ∫
eV ν ∩eS

|f ∗
ν |2 dV ≤ const

∫
eUν

|f ∗
ν |2 dV ≤ const

∣∣∣∣
∫
eUν

f ∧f̄ e−eϕ
∣∣∣∣

since Ũν and ϕ̃ are lifts of some Uk and a smooth function ϕ on ˙Uk. Notice that
there are m coordinate patches, say, Ũ1, ..., Ũm, which intersect a fixed fundamental
domain of Γ in S̃. Thus

m∑
ν=1

∣∣∣∣
∫
eUν

f ∧f̄ e−eϕ
∣∣∣∣=

m∑
k=1

∑
γ∈Γ

∣∣∣∣
∫

γ(eUk)

f ∧f̄ e−eϕ
∣∣∣∣ ≤ m

∣∣∣∣
∫

Cn+1
f ∧f̄ e−eϕ

∣∣∣∣,

from which we get
∣∣∣∣
∫
eS

f ∧f̄

∣∣∣∣ ≤
m∑

ν=1

∫
eV ν ∩eS

|f ∗
ν |2 dV < ∞. �

Proof of Theorem 1.10. Let Γ be the discrete group of translations of C
3 which

is generated by the six translations

γ1(z1, z2, z3) = (z1+1, z2, z3), γ2(z1, z2, z3)= (z1+i, z2, z3),

γ3(z1, z2, z3) = (z1, z2+1, z3), γ4(z1, z2, z3)= (z1, z2+i, z3),

γ5(z1, z2, z3) = (z1, z2, z3+1), γ6(z1, z2, z3)= (z1, z2, z3+i).

Then A:=C
3/Γ is the product of three one-dimensional tori, and hence is projective

algebraic. Let Γ′ be the normal subgroup of Γ which is generated by γ1, γ2, γ3

and γ4. Then A′ :=C
3/Γ′ is a (noncompact) pseudoconvex Galois covering of A

(notice that A′ is the product of a two-dimensional torus and C). Let S be a
smooth ample divisor of A and let S̃ ⊂C3 be the universal covering of S. We set
S′ =S̃/Γ′. In other words, S′ is the lift of S to A′. Thus it is also pseudoconvex.
By a similar argument as in the proof of Proposition 1.9, we conclude that S′ is
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Bergman complete provided S is sufficiently ample. Furthermore, we claim that S′

does not possess any nonconstant negative psh function. Let us recall the following
result.

Varopoulos’ theorem. (Cf. [33], see also [15]) Let a noncompact complete
Riemannian manifold X̃ be a Galois covering of a compact manifold X with a deck
transformation group Γ. Then X̃ is parabolic if and only if Γ contains a finite index
subgroup isomorphic with Z or Z

2.

By a parabolic Riemannian manifold we mean a manifold which does not pos-
sess any nonconstant negative subharmonic function. In our case, S′ is a non-
compact complete Kähler manifold. Since plurisubharmonic functions are always
subharmonic on Kähler manifolds and the deck transformation group of S′ is iso-
morphic with Z

2, our claim follows immediately from Varopoulos’ theorem. �

Remark. It is not known whether there exists a two-dimensional Bergman com-
plete Stein manifold (or unbounded domain in C

2) which does not possess any
nonconstant negative psh function.

Acknowledgement. The author thanks the referee for a detailed report which
improved the paper substantially.
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