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Verdier specialization via weak factorization
Paolo Aluffi

Abstract. Let X ⊂V be a closed embedding, with V \X nonsingular. We define a con-

structible function ψX,V on X, agreeing with Verdier’s specialization of the constant function 1V

when X is the zero-locus of a function on V . Our definition is given in terms of an embedded

resolution of X; the independence of the choice of resolution is obtained as a consequence of the

weak factorization theorem of Abramovich–Karu–Matsuki–W�lodarczyk. The main property of

ψX,V is a compatibility with the specialization of the Chern class of the complement V \X. With

the definition adopted here, this is an easy consequence of standard intersection theory. It recovers

Verdier’s result when X is the zero-locus of a function on V .

Our definition has a straightforward counterpart ΨX,V in a motivic group. The func-

tion ψX,V and the corresponding Chern class cSM(ψX,V ) and motivic aspect ΨX,V all have natural

‘monodromy’ decompositions, for any X ⊂V as above.

The definition also yields an expression for Kai Behrend’s constructible function when applied

to (the singularity subscheme of) the zero-locus of a function on V .

1. Introduction

Consider a family π : V →D over the open disk, satisfying a suitable condi-
tion of local triviality over D \ {0}. In [33], J.-L. Verdier defines a ‘specialization
morphism’ for constructible functions, producing a function σ∗(ϕ) on the central
fiber X of the family for every constructible function ϕ on V . The key property
of this specialization morphism is that it commutes with the construction of Chern
classes of constructible functions in the sense of MacPherson [23]; cf. Theorem 5.1 in
Verdier’s note. The specialization morphism for constructible functions is induced
from a morphism at the level of constructible sheaves F , by taking alternating sums
of ranks for the corresponding complex of nearby cycles RΨπ F .

The main purpose of this note is to give a more direct description of the spe-
cialization morphism (in the algebraic category, over algebraically closed fields of
characteristic 0), purely in terms of constructible functions and of resolution of
singularities, including an elementary proof of the basic compatibility relation with
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Chern classes. We will assume that V is nonsingular away from X , and focus on the
case of the specialization of constant functions; by linearity and functoriality prop-
erties, this suffices in order to determine σ∗ in the situation considered by Verdier.
On the other hand, the situation we consider is more general than the specialization
template recalled above: we define a constructible function ψX,V for every proper
closed subscheme X of a variety V (such that V \X is nonsingular), which agrees
with Verdier’s specialization of the constant function 1V when X is the fiber of a
morphism from V to a nonsingular curve.

The definition of ψX,V (Definition 2.1) is straightforward, and can be summa-
rized as follows. Let w : W→V be a proper birational morphism such that W is
nonsingular, and D=w−1(X) is a divisor with normal crossings and nonsingular
components, and for which w|W \D is an isomorphism. Then define ψD,W (p) to be
m if p is on a single component of D of multiplicity m, and 0 otherwise; and let
ψX,V be the push-forward of ψD,W to X .

Readers who are familiar with Verdier’s paper [33] should recognize that this
construction is implicit in Section 5 of that paper, if X is the zero-locus of a func-
tion on V . Our contribution is limited to the realization that the weak factorization
theorem of [1] may be used to adopt this prescription as a definition, that the prop-
erties of this function follow directly from the standard apparatus of intersection
theory, and that this approach extends the theory beyond the specialization situ-
ation considered by Verdier (at least in the algebraic case). Denoting by cSM( · )
the Chern–Schwartz–MacPherson class of a constructible function, we prove the
following theorem.

Theorem I. Let i : X↪→V be an effective Cartier divisor. Then

cSM(ψX,V ) = i∗cSM(1V \X).

An expression for i∗cSM(1V \X) in terms of the basic ingredients needed to
define ψX,V as above may be given as soon as i : X→V is a regular embedding
(cf. Remark 3.5). In fact, with suitable positions, Theorem I holds for arbitrary
closed embeddings X ⊂V (Theorem 3.3).

Theorem I reproduces Verdier’s result when X is a fiber of a morphism from
V to a nonsingular curve; in that case (but not in general) 1V \X may be replaced
with 1V , as in Verdier’s note. The definition of ψX,V is clearly compatible with
smooth maps, and in particular the value of ψX,V at a point p may be computed
after restricting to an open neighborhood of p. Thus, Verdier’s formula for the
specialization function in terms of the Euler characteristic of the intersection of a
nearby fiber with a ball (Section 4 in [33]) may be used to compute ψX,V if X is a
divisor in V , over C.
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From the definition it is clear that the function ψX,V is birationally invariant
in the following weak sense.

Theorem II. Let π : V ′→V be a proper birational morphism, let X ′ =π−1(X),
and assume that π restricts to an isomorphism V ′ \X ′→V \X . Then

π∗(ψX′,V ′ ) =ψX,V .

(Here, π∗ is the push-forward of constructible functions.)

In fact, the whole specialization morphism commutes with arbitrary proper
maps, at least in Verdier’s specialization situation ([33], Corollary 3.6). It would be
desirable to establish this fact for the morphism induced by ψX,V for arbitrary X ,
by the methods used in this paper.

The definition summarized above yields a natural decomposition of the con-
structible function ψV,X (and hence of its Chern class i∗cSM(1V \X)) according to
the multiplicities of some of the exceptional divisors, see Remarks 2.5 and 3.6. In
the specialization situation, this decomposition matches the one induced on the
Milnor fiber by monodromy, as follows from the description of the latter in [2]. As
Schürmann pointed out to me, an analogous description in the more general case
considered here may be found in [32], Theorem 3.2.

In the basic specialization situation, in which X is the zero-scheme of a function
f on V and V is nonsingular, let Y be the singularity subscheme of X (i.e., the
‘critical scheme’ of f ). One can define a constructible function μ on X by

(1) μ=(−1)dim V (1X −ψX,V ).

In this case (and over C), the function ψX,V agrees with Verdier’s specialization
function χ (here we use notation as in [26], cf. especially Proposition 5.1). The
function μ is 0 outside of Y , so may be viewed as a constructible function on Y .
In fact, it has been observed (cf., e.g., [4] and [12]) that the function μ is a specific
linear combination of local Euler obstructions, and in particular it is determined by
the scheme Y and can be generalized to arbitrary schemes. Kai Behrend denotes
this generalization νY in [12]. The definition of ψX,V given in this paper yields
an alternative computation of μ when Y is the critical scheme of a function, and
Theorem II describes the behavior through modifications along X of this function:
if π : V ′→V is as in Theorem II, then

(2) νY =π∗(νY ′ )+(−1)dim V (1Y −π∗(1Y ′ ))

provided that V and V ′ are nonsingular, X and hence X ′ =π−1(X) are hyper-
surfaces, and Y and Y ′ are their singularity subschemes. As ψX,V is defined for
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arbitrary X ⊂V , there may be a generalization of (1) linking Behrend’s function
and χX,V when X is not necessarily a hypersurface; it would be interesting to have
statements analogous to (2) holding for more general X .

In Section 5 we comment on the relation between cSM(ψX,V ) and the ‘weighted
Chern–Mather class’ of the singularity subscheme Y of a hypersurface X ; the de-
gree of this class is a Donaldson–Thomas type invariant ([12], Section 4.3). We also
provide an explicit formula for the function μ in terms of a resolution of the hyper-
surface X . It would be interesting to extend these results to the non-hypersurface
case.

In a different vein, J. Schürmann has considered the iteration of the special-
ization operator over a set of generators for a complete intersection X ⊂V ([29],
Definition 3.6). It would be a natural project to compare Schürmann’s definition
(which depends on the order of the generators) with our definition of ψX,V (which
is independent of the order, and may be extended to arbitrary X ⊂V ). Schürmann
also points out that the deformation to the normal cone may be used to reduce
an arbitrary X ⊂V to a specialization situation; this strategy was introduced in
[34], and is explained in detail in [28], Section 1. Again, it would be interesting to
establish the precise relation between the resulting specialization morphism and the
function ψX,V studied here.

We include in Section 2.3 a brief discussion of a ‘motivic’ invariant ΨX,V , also
defined for any closed embedding X ⊂V into a variety, still assumed for simplicity
to be nonsingular outside of X . This invariant can be defined in the quotient of
the Grothendieck ring of varieties by the ideal generated by the class of a torus
T=A

1 −A
0, or in a more refined relative ring over X . The definition is again ex-

tremely simple, when given in terms of a resolution in which the inverse image of X

is a divisor with normal crossings; the proof that the invariant is well-defined also
follows from the weak factorization theorem. As its constructible function coun-
terpart, the class ΨX,V admits a natural ‘monodromy’ decomposition (although a
Milnor fiber is not defined in general in the situation we consider), see Remark 2.14.
When V is nonsingular and X is the zero-locus of a function on V , ΨX,V is a poor
man’s version of the Denef–Loeser motivic Milnor/nearby fiber ([17], Section 3.5);
it is defined in a much coarser ring, but it carries information concerning the topo-
logical Euler characteristic and some other Hodge-type data. We note that ΨX,V

is not the image of the limit of the naive motivic zeta function of Denef–Loeser,
since it does carry multiplicity information, while Znaive(T ) discards it (see for ex-
ample [17], Corollary 3.3). The limit of the (non-naive) Denef–Loeser motivic zeta
function Z(T ) encodes the multiplicity and much more as actual monodromy infor-
mation, and in this sense it lifts the information carried by our ΨX,V . It would be
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interesting to define and study an analogous lift for more general closed embeddings
X ⊂V , and possibly allowing V to be singular along X .

The approach of [15] could be used to unify the constructions of ψX,V and
ΨX,V given in this paper, and likely extend them to other environments, but we
will not pursue such generalizations here since our aim is to keep the discussion at
the simplest possible level. Likewise, ‘celestial’ incarnations of the Milnor fiber (in
the spirit of [6] and [8]) will be discussed elsewhere.

In our view, the main advantages of the approach taken in this paper are the
simplicity afforded by the use of the weak factorization theorem and the fact that
the results have a straightforward interpretation for any closed embedding X ⊂V ,
whether arising from a specialization situation or not. These results hold with iden-
tical proofs over any algebraically closed field of characteristic zero. We note that
the paper [32] of van Proeyen and Veys also deals with arbitrary closed embeddings
with nonsingular complements, as in this note. A treatment of Verdier specializa-
tion over arbitrary algebraically closed fields of characteristic zero, also using only
the standard apparatus of intersection theory, was given by Kennedy in [22] by
relying on the Lagrangian viewpoint introduced by C. Sabbah [27]. Fu [19] gives a
description of Verdier’s specialization in terms of normal currents.

We were motivated to take a new look at Verdier’s specialization because of
applications to string-theoretic identities (cf. [10], Section 4). Also, Verdier special-
ization offers an alternative approach to the main result of [9]. The main reason
to allow V to have singularities along X is that this typically is the case for spe-
cializations arising from pencils of hypersurfaces in a linear system, as in these
applications. See Section 4 for a few simpler examples illustrating this point.

Acknowledgements. I am indebted to M. Marcolli for many insightful conver-
sations, and I thank W. Veys and J. Schürmann for comments on a previous version
of this paper.

2. The definition

Our schemes are separated, of finite type over an algebraically closed field k

of characteristic 0. The characteristic restriction is due to the use of resolution of
singularities and the main result of [1], as well as the theory of Chern–Schwartz–
MacPherson classes. (Cf. [21] and [7] for discussions of the theory in this generality.)
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2.1. Definition of ψX,V

Definition 2.1. Let V be a variety, and let i : X↪→V be a closed embedding.
We assume that V \X is nonsingular and nonempty. The constructible function
ψX,V on X is defined as follows:

– Let w : W→V be a proper birational morphism; let D=w−1(X), and d=w|D:

D
j

d

W

w

X
i

V.

We assume that W is nonsingular, D is a divisor with normal crossings and non-
singular components Dl in W , and w restricts to an isomorphism W \D→V \X .
(Such a w exists, by resolution of singularities.) Let ml be the multiplicity of Dl

in D.
– We define a constructible function ψD,W on D by letting ψD,W (p)=ml for

p∈Dl, p /∈Dk, k �=l, and ψD,W (p)=0 for p∈Dl ∩Dk, any k �=l.
– Then let ψX,V :=d∗(ψD,W ).

We remind the reader that the push-forward of constructible functions is de-
fined as follows: For any scheme S, denote by 1S the function with value 1 along
S, and 0 outside of S. If S is a subvariety of D, and x∈X , d∗(1S)(x) equals
χ(d−1(x)∩S). By linearity, this prescription defines d∗(ϕ) for every constructible
function ϕ on D. Here, χ denotes the topological Euler characteristic for k=C; see
[22] or [7] for the extension to algebraically closed fields of characteristic 0.

Of course we have to verify that the definition of ψX,V given in Definition 2.1
does not depend on the choice of w : W→V .

Lemma 2.2. With notation as above, the function ψX,V is independent of the
choice of w : W→V .

Proof. The weak factorization theorem of [1] reduces the verification to the
following fact:

– Let W , D and ψD,W as above.
– Let π : ˜W→W be the blow-up of W along a center Z ⊆D that meets D with

normal crossings, and let ̂D=π−1(D).
– Then π∗(ψ

bD,fW
)=ψD,W , where ψ

bD,fW
and ψD,W are defined by the prescrip-

tion for divisors with normal crossings given in Definition 2.1.
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Recall that Z meets D with normal crossings if at each point z of Z there is
an analytic system of parameters x1, ..., xn for D at z such that Z is given by
x1=...=xr+1=0, and D is given by a monomial in the xl’s. The divisor ̂D=π−1(D)
is then a divisor with normal crossings, cf. Lemma 2.4 in [5]. The divisor ̂D consists
of the proper transforms ˜Dl of the components Dl, appearing with the same multi-
plicity ml, and of the exceptional divisor E, appearing with multiplicity

∑

Dl ⊃Z ml.
It is clear that π∗(ψ

bD,fW
) agrees with ψD,W away from Z; we have to verify that the

functions match at all z ∈Z. The fiber of E=π−1(Z) over z is a projective space
of dimension r=codimZ W −1; we have to analyze the intersection of the rest of
π−1(D) (that is, of the proper transforms ˜Dl) with this projective space.

Now there are two kinds of points z ∈Z: either z is in exactly one component Dl,
or it is in the intersection of several components. In the first case, ˜Dl is the unique
component of π−1(D) other than E meeting the fiber F of E over z. By definition,
ψ
bD,fW

=ml on the complement of F ∩ ˜Dl in ˜Dl, and ψ
bD,fW

=0 along F ∩ ˜Dl. Thus,
π∗(ψ

bD,fW
)(z) equals

mlχ(F \(F ∩ ˜Dl))+0χ(F ∩ ˜Dl) =ml =ψD,W (z),

since F ∼=Pr and F ∩ ˜Dl
∼=Pr−1. This is as it should be. If z is in the intersec-

tion of two or more components Dl, then ψD,W (z)=0, so we have to verify that
π∗(ψ

bD,fW
)(z)=0. Again there are two possibilities: either one of the components

containing z does not contain Z, and then the whole fiber F ∼=P
r is contained in

the proper transform of that component, as well as in E; or all the components Dl

containing z contain Z. In the first case, the value of ψ
bD,fW

is zero on the whole

fiber F , because F is in the intersection of two components of ̂D; so the equality is
clear in this case.

In the second case, let D1, ..., De be the components of D containing Z; no
other component of D contains z, by assumption. The proper transforms ˜Dl meet
the fiber F ∼=P

r along e hyperplanes meeting with normal crossings, 1<e≤r+1.
The value of ψ

bD,fW
along F is then m1+...+me along the complement U of these

hyperplanes, and 0 along these hyperplanes. Thus,

π∗(ψ
bD,fW

)(z)= (m1+...+me)χ(U).

The proof will be complete if we show that χ(U)=0; and this is done in the ele-
mentary lemma that follows. �

Lemma 2.3. Let H1, ..., He be hyperplanes in Pr meeting with normal cross-
ings, with 1≤e≤r+1, and let U=P

r \(H1 ∪...∪He). Then χ(U)=1 for e=1, and
χ(U)=0 for e=2, ..., r+1.
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Proof. The hyperplanes may be assumed to be coordinate hyperplanes, and
hence U may be described as the set of (x0 :...:xr) such that the first e coordinates
are nonzero. As the first coordinate is nonzero, we may set it to be 1, and view the
rest as affine coordinates. It is then clear that U ∼=A

r+1−e ×T
e−1, where T=A\ {0}

is the 1-dimensional torus. The statement is then clear, since χ(T)=0. �

Remark 2.4. By definition, the value of ψX,V at a point p∈X is

ψX,V =
∑

l

mlχ(D◦
l ∩w−1(p)),

where D◦
l =Dl \

⋃

k �=l Dk. In the complex hypersurface case, this equals the Euler
characteristic χ(Fθ) of the Milnor fiber, by formula (2) in Theorem 1 of [2]. An anal-
ogous interpretation holds in general, as may be established by using Theorem 3.2
in [32].

Remark 2.5. Let α : Z→Z be any function. The argument proving Lemma 2.2
shows that one may define a constructible function ψα

X,V on X as the push-forward
of the function ψα

D,W with value α(ml) on Dl \
⋃

k �=l Dk and 0 on intersections, for
D and W as in Definition 2.1.

For α �=identity we do not have an interpretation for ψα
X,V (or for the corre-

sponding Chern class, cf. Remark 3.6). Letting εm be the function that is 1 at m∈Z

and 0 at all other integers, we have a decomposition of the identity as
∑∞

m=− ∞ mεm,
and hence a distinguished decomposition

ψX,V =
∞
∑

m=− ∞
mψεm

X,V .

The individual terms in this decomposition are clearly preserved by the morphisms
considered in Propositions 2.6 and 2.7. In the hypersurface case they can be related
to the monodromy action on the Milnor fiber, as the nonzero contributions arise
from the nonzero eigenspaces of monodromy (cf. [2], Theorem 4; and Theorem 3.2
in [32] for generalizations to the non-hypersurface case). From this perspective, the
piece ψε1

X,V may be thought of as the ‘unipotent part’ of ψX,V .

2.2. Basic properties and examples

Theorem II from the introduction is an immediate consequence of the definition
of ψX,V .
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Proposition 2.6. Let V ′ be a variety, and let π : V ′→V be a proper morphism.
Let X ′ =π−1(X), and assume that π restricts to an isomorphism V ′ \X ′→V \X .
Then

π∗(ψV ′,X′ ) =ψV,X .

Indeed, a resolution for the pair X ′ ⊂V ′ as in Definition 2.1 is also a resolution
for the pair X ⊂V . Another immediate consequence of the definition is the behavior
with respect to smooth maps.

Proposition 2.7. Let U be a variety, and let η : U→V be a smooth morphism.
Then

ψη−1(X),U = η∗(ψX,V ).

(Pull-backs of constructible functions are defined by composition.) Indeed, in
this case one can construct compatible resolutions.

For example, the value of ψX,V at a point p∈X may be computed by restricting
to an open neighborhood of p.

Example 2.8. If X and V are nonsingular varieties, then ψX,V =codimX V ·1X .
Indeed, if X and V are nonsingular, then we may let w : W→V be the blow-

up of V along X ; D is the exceptional divisor, and the push-forward of 1D equals
codimX V ·1X because the fibers of d are projective spaces P

codimX V −1.

Example 2.9. The function ψX,V depends on the scheme structure on X . For
example, let X ⊂P

2 be the scheme defined by (x2, xy), consisting of a line L with
an embedded point at p∈L. Then ψX,P2 equals 1 along L\ {p}, while ψX,P2(p)=2.
(Blow-up at p, then apply Definition 2.1. In terms of the decomposition in Re-
mark 2.5, ψX,P2 is the sum of ψε1

X,P2 =1L\p and 2ψε2
X,P2 =2·1p.) Thus, ψX,P2 =1L+1p,

while of course ψL,P2 =1L.

Example 2.10. Let X be the reduced scheme supported on the union of three
non-coplanar concurrent lines in P

3; for example, we may take (xy, xz, yz) as a
defining ideal. Then ψX,P3 =2 along the three components, and ψX,P3(p)=0 at the
point of intersection p.

To see this, blow-up P
3 at p first, and then along the proper transforms of the

three lines, to produce a morphism w : W→P
3 as in Definition 2.1; D=w−1(X)

consists of 4 components, one of which dominates p. This component is a P
2 blown

up at three points; the complement in this component of the intersection with the
three other exceptional divisors has Euler characteristic 0, so the push-forward of
ψD,W equals 0 at p.
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If the three concurrent lines are coplanar, say with ideal (xy(x+y), z), then
the value of ψX,P3 at the intersection point is −2.

That the value of the function is 2 away from the point of intersection is clear
a priori in both cases by Example 2.8, since as observed above we may restrict to
an open set avoiding the singularity and use Example 2.8.

2.3. A motivic invariant

Definition 2.1 has a counterpart in a quotient of the naive Grothendieck group
of varieties K(Vark). Recall that this is the group generated by isomorphism classes
of k-varieties, modulo the relations [S]=[S −T ]+[T ] for every closed embedding
T ⊆S; setting [S1]·[S2]=[S1 ×S2] makes K(Vark) into a ring. Denote by L the class
of A

1 in K(Vark), and by T=L−1 the class of the multiplicative group of k.
We let MT denote the quotient K(Vark)/(T). Every pair X ⊂V as in Defini-

tion 2.1 (that is, with V being a variety and V \X being nonsingular) determines a
well-defined element ΨX,V of MT, as follows:

– let D, d, W and w be as in Definition 2.1;
– for every component Dl of D, let D◦

l be the complement Dl \
⋃

k �=l Dk;
– then ΨX,V =

∑

l ml[D◦
l ], where ml is the multiplicity of Dl in D.

The argument given in Lemma 2.2 proves that ΨX,V is well defined in the
quotient MT. Indeed, the argument applies verbatim to show that the class of the
fiber of a blow-up over z ∈Z agrees mod T with the class of z; Lemma 2.3 is replaced
by the analogous result in MT:

Lemma 2.11. Let H1, ..., He be hyperplanes in P
r meeting with normal cross-

ings, with 1≤e≤r+1, and let U=P
r \(H1 ∪...∪He). Then [U ]=1∈ MT for e=1,

and [U ]=0∈ MT for e=2, ..., r+1.

The proof of Lemma 2.3 implies this statement, as it shows that U ∼=A
r+1−e ×

T
e−1. It is also evident that ΨX,V satisfies the analogues of Propositions 2.6 and 2.7.

Since χ(T)=0, the information carried by an element of MT suffices to compute
topological Euler characteristics, but is considerably more refined: for example, the
series obtained by setting v=u−1 in the Hodge–Deligne polynomial can be recovered
from the class in MT.

Example 2.12. Let X ⊆P3 be a cone over a smooth plane curve C ⊆P2 of de-
gree m. Blowing up at the vertex p yields a resolution as needed in Definition 2.1;
the function ψX,P3 is immediately computed to be 1 outside of the vertex and
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m(χ(P2)−χ(C))=(m−1)3+1 at p; the class ΨX,P3 equals [C]+m(3−[C])∈ MT.
For m>2, this is not the class of a constant.

If X is the scheme of zeros of a nonzero function f : V →k, and V is nonsingular,
then a motivic Milnor fiber ψf was defined and studied by J. Denef and F. Loeser,
see [18], Section 3. The motivic Milnor fiber ψf is defined in a ring Mmon

k,loc analogous
to the ring K(Vark) considered above, but localized at L and including monodromy
information. The much naiver ΨX,V generalizes to arbitrary pairs X ⊂V (with V \X

nonsingular) a small part of the information carried by the Denef–Loeser motivic
Milnor fiber in the specialization case.

Remark 2.13. It is probably preferable to work in the relative Grothendieck
ring of varieties over X , moding out by classes of varieties Z→X which fiber in
tori. Lemma 2.11 shows that the resulting class Ψrel

X,V is also well defined. For
p∈X , the fiber of Ψrel

X,V over p is well defined as a class in MT, so it has an Euler
characteristic, which clearly equals ψX,V (p). Thus, the constructible function ψX,V

may be recovered from the relative class Ψrel
X,V . This point of view is developed

fully for Chern classes and more in [14] and [15]. (Cf. [17] and [13] for the relative
viewpoint on the Denef–Loeser motivic Milnor fiber.)

Remark 2.14. There is a class Ψα
X,V (resp. Ψrel,α

X,V ) for every function α : Z→Z,
defined by

∑

l α(ml)[D◦
l ] on a resolution. In particular, there is a decomposition

ΨX,V =
∞
∑

m=− ∞
mΨεm

X,V ,

with εm as in Remark 2.5. As observed in that remark, in the hypersurface case
this decomposition can be related to the monodromy decomposition. If X is the
zero scheme of a function on V , and V is nonsingular, then the limit of the naive
motivic zeta function Znaive(T ) of Denef–Loeser ([17], Corollary 3.3) lifts Ψ1

X,V ,
where α≡1 is the constant function 1. In fact, the corresponding expression

∑

|I|>0

(−T)|I|−1[D◦
I ]

(where DI =
⋂

l∈I Dl, and D◦
I =DI \

⋃

l/∈I Dl) may be verified to be a well-defined
element of K(Vark) for any X ⊂V such that V \X is nonsingular, and with D as in
Definition 2.1. This also follows from the weak factorization theorem; no localization
is necessary. Also, this expression is clearly preserved by morphisms which restrict
to the identity on V \X (as in Theorem II). Thus, Ψ1

X,V admits a natural lift to
K(Vark) in general. We do not know whether ΨX,V itself admits a natural lift to
K(Vark).
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3. Compatibility with Chern classes

3.1. Specialization in the Chow group and Chern–Schwartz–MacPherson
classes

Recall ([30], [31] and [23]) that every constructible function ϕ determines a class
in the Chow group, satisfying good functoriality properties and the normalization
restriction of agreeing with the total Chern class of the tangent bundle if applied
to the constant function 1 over a nonsingular variety. We call this function the
Chern–Schwartz–MacPherson (CSM) class of ϕ, cSM(ϕ). The functoriality may be
expressed as follows: if f : X→Y is a proper morphism, and ϕ is a constructible
function on X , then f∗(cSM(ϕ))=cSM(f∗(ϕ)). The simplest instance of this property
is the fact that for every complete variety X (nonsingular or otherwise), the degree
of cSM(1X) equals the Euler characteristic of X .

We are particularly interested in the CSM classes of the function ψX,V defined
in Section 2, and of the function 1V \X =1V −1X , with value 0 on X and 1 along
the complement of X .

In the situation considered by Verdier (and more generally when X is, e.g.,
a Cartier divisor in V ), there is a natural way to specialize classes defined on V or
V \X to X . We consider the following definition of the specialization of a specific
class, for arbitrary X ⊂V .

Definition 3.1. Let V be a variety, X ⊂V be a closed embedding, and assume
that V \X is nonsingular. Let ṽ : ˜V →V be the blow-up of V along X , let ι : E→ ˜V

be the exceptional divisor, and let e : E→X be the induced map. We define the
‘specialization of cSM(1V \X) to X ’ to be the class

σX,V (cSM(1V \X)) := e∗ι∗(cSM(1
eV \E)) ∈ A∗X.

The blow-up ˜V →V in Definition 3.1 may be replaced by any proper birational
morphism v′ : V ′→V dominating the blow-up and restricting to an isomorphism on
V ′ \(v′)−1(X); this follows easily from the projection formula and the functoriality
of CSM classes.

When X is a Cartier divisor in V , this specialization is the ordinary pull-back,
and could be defined for arbitrary classes in V .

Lemma 3.2. Let i : X↪→V be a Cartier divisor. Then σX,V (cSM(1V \X))=
i∗cSM(1V \X).

Proof. In this case we may take ˜V =V and E=X , and let e be the identity. �
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If X ⊂V is not a Cartier divisor, it is not clear how to extend Definition 3.1 to
arbitrary classes; but this is not needed for the results in this paper.

By Lemma 3.2, Theorem I from the introduction follows from the following
result.

Theorem 3.3. Let V be a variety, X ⊂V be a closed embedding, and assume
that V \X is nonsingular. With notation as above,

cSM(ψX,V ) =σX,V (cSM(1V \X)).

Proof. First consider the case in which V =W is nonsingular, and X=D is
a divisor with normal crossings and nonsingular components Dl, appearing with
multiplicity ml. Let D◦

l ⊆Dl be the complement of
⋃

k �=l Dk in Dl. By the definition
of ψD,W , and by the linearity of the cSM operator,

cSM(ψD,W ) =
∑

l

mlcSM(1D◦
l
).

The key to the computation is the fact that the CSM class of the complement of a
divisor with normal crossings in a nonsingular variety is given by the Chern class of
a corresponding logarithmic twist of the tangent bundle; for this, see e.g. (*) at the
top of p. 4002 in [3]. As D◦

l is the complement of
⋃

k �=l Dk ∩Dl, a normal crossing
divisor in Dl, we have (omitting evident pull-backs)

cSM(1D◦
l
) =

c(TDl)
∏

k �=l(1+Dk)
∩[Dl] =

c(TW )
∏

k(1+Dk)
∩[Dl].

Therefore

cSM(ψD,W ) =
c(TW )

∏

k(1+Dk)
∩

∑

l

ml[Dl] =
c(TW )

∏

k(1+Dk)
∩[D].

Since cSM(1W \D)=(c(TW )/
∏

k(1+Dk))∩[W ], this shows that

(3) cSM(ψD,W ) = j∗cSM(1W \D),

where j : D↪→W is the inclusion. This is the statement in the normal crossing case.
Now assume that X ⊂V is any closed embedding, and apply (3) to D and W

as in Definition 2.1, observing that any such w : W→V must factor through the
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blow-up ˜V along X . Let w′ : W→ ˜V and d′ : D→E be the induced morphisms, so
that w=ṽ ◦w′ and d=e◦d′:

D
j

d′
W

w′

w
E

ι

e
d

˜V

ṽ

X
i

V .

By the covariance of cSM, we have

cSM(ψE,eV ) = cSM(d′
∗ψD,W ) = d′

∗cSM(ψD,W ) = d′
∗j∗cSM(1W \D)

†
= ι∗w′

∗cSM(1W \D) = ι∗cSM(w′
∗(1W \D)) = ι∗cSM(1

eV \E),

where
†
= holds by Theorem 6.2 in [20] (note that j∗ =j!=ι! as both D and E are

Cartier divisors). We have w′
∗(1W \D)=1V ′ \E since w′ is an isomorphism off D.

Finally, using Proposition 2.6 and again the covariance of cSM:

cSM(ψX,V ) = cSM(e∗ψE,eV ) = e∗cSM(ψE,eV ) = e∗ι∗cSM(1
eV \E) =σX,V (cSM(1V \X))

as claimed. �

Example 3.4. Let X ⊆P
2 be the line L with embedded point p considered in

Example 2.9. By Theorem 3.3,

σX,P2(cSM(1P2\X)) = cSM(ψX,P2) = cSM(1L+1p)= [L]+3[ p].

(This may of course be verified by hand using Definition 3.1.) Here, cSM(1P2\X)=
[P2]+2[P1]+[P0]. Restricting this class to L gives [L]+2[ p]; the specialization σX,P2

picks up an extra [ p] due to the embedded point.

Remark 3.5. By Lemma 3.2, if i : X→V embeds X as a Cartier divisor in V ,
then σX,V acts as the pull-back to X , so that in this case Theorem 3.3 states that

cSM(ψX,V ) = i∗cSM(1V \X).

This is not the case if i : X→V is a regular embedding of higher codimension. If the
embedding is regular, then the exceptional divisor E ⊂ ˜V may be identified with the
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projective normal bundle to X , and as such it has a universal quotient bundle N .
Tracing the argument proving Theorem 3.3 shows that

i∗cSM(1V \X) = e∗(ctop(N )∩cSM(ψE,eV ));

and in fact

i∗cSM(1V \X) = d∗

(

ctop

(

d∗NXV

NDV

)

∩cSM(ψD,W )
)

for any W and D, etc. as in Definition 2.1.

Warning. When X ⊂V is a regular embedding, so that the blow-up morphism
˜V →V is a local complete intersection morphism (cf. Section 6.7 in [20]) one may
be tempted to define a specialization of classes from V to X by pulling back to the
blow-up, restricting to the exceptional divisor, and pushing forward to X . However,
the pull-back of cSM(1V \X) may not agree with cSM(1

eV \E): the blow-up of V =P
2

at X={a point} already gives a counterexample. (Corollary 4.4 in [11] provides a
condition under which a similar pull-back formula does hold.) Thus, this operation
does not agree in general with the class defined in Definition 3.1.

Remark 3.6. Since ψX,V admits a distinguished decomposition
∑∞

m=− ∞ mψεm

X,V

(see Remark 2.5), so does the specialization of cSM(1V \X):

σX,V (cSM(1V \X)) =
∞
∑

m=− ∞
mcSM(ψεm

X,V ).

In the classical case of specializations along the zero set of a function, this means
that every eigenspace of monodromy carries a well-defined piece of the Chern class,
a fact we find intriguing, and which we are not sure how to interpret for more general
X ⊂V . In fact, any α : Z→Z determines a class cSM(ψα

X,V ); Theorem 3.3 gives an
interpretation of this class for α=identity. It would be interesting to interpret this
class for more general α.

3.2. Specialization to the central fiber of a morphism

To interpret Theorem 3.3 in terms of standard specializations, consider the
template situation in which V fibers over a nonsingular curve T , and X is the fiber
over a marked point 0∈T :

X V

v

{0} T.
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Further assume for simplicity that the restriction of v to V \X is a trivial fibration:

V \X ∼= (T \ {0})×Vt,

with nonsingular (‘general’) fiber Vt. (In particular, V \X is nonsingular, as in
Section 3.1.) Here X is a Cartier divisor in V , so the specialization of Definition 3.1
agrees with ordinary pull-back (Lemma 3.2). We can use this pull-back to specialize
classes from the general fiber Vt to the special fiber v−1(0)=X , as follows. The
pull-back i∗ : A∗V →A∗X factors through A∗(V \X) via the basic exact sequence
of Proposition 1.8 in [20]: indeed, for α∈A∗X , i∗i∗(α)=c1(NXV )∩α=0 as NXV is
trivial. We may then define a specialization morphism by composing this morphism
with flat pull-back:

σ∗ : A∗Vt −→A∗(V \X) −→A∗X.

Corollary 3.7. In the specialization situation just described,

cSM(ψX,V ) =σ∗(c(TVt)∩[Vt]).

Proof. Since the normal bundle of Vt in V \X is trivial, and abusing notation
slightly, c(TVt)∩[Vt]=c(T (V \X)∩[Vt]). Hence, by definition of σ∗ we have

σ∗(c(TVt)∩[Vt]) = i∗(τ),

where τ is any class in V whose restriction to A∗(V \X) equals c(T (V \X)∩[V \X]).
We claim that τ =cSM(1V \X) is such a class; it then follows that

σ∗(c(TVt)∩[Vt]) = i∗(cSM(1V \X)) =σX,V (cSM(1V \X)) = cSM(ψX,V ),

by Theorem 3.3 (and Lemma 3.2). Our claim is essentially immediate if V itself
is nonsingular, but as we are only assuming V \X to be nonsingular we have to
do a bit of work. Again consider a resolution w : W→V as in Definition 2.1. Let
w′ : W \D→V \X be the restriction (an isomorphism by hypothesis). Also, let
i′ : V \X→V and j′ : W \D→W be the open inclusions. Thus we have the fiber
diagram

W \D
j′

w′

W

w

V \X
i′

V

with i′ and j′ flat, and w and w′ proper. We have
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c(T (V \X))∩[V \X] =w′
∗c(T (W \D))∩[W \D]

(1)
= w′

∗(j′)∗c(TW (− log D))∩[W ]

(2)
= (i′)∗w∗c(TW (− log D))∩[W ]

(3)
= (i′)∗w∗cSM(1W \D)

= (i′)∗cSM(1V \X)

as claimed. Equality (1) holds by definition of TW (− log D)=(Ω1
W (log D))∨; equal-

ity (2) follows from Proposition 1.7 in [20]; and equality (3) is again the computation
of the CSM class of the complement of a divisor with normal crossings mentioned
in the proof of Theorem 3.3. �

Summarizing, in the strong specialization situation detailed above, ψX,V is
the constructible function on the central fiber X corresponding via MacPherson’s
natural transformation to the specialization of the Chern class of the general fiber.

Remark 3.8. The hypothesis of triviality of the family away from 0∈T is not
necessary, if specialization is interpreted appropriately. Let v : V →T be a morphism
to a nonsingular curve, and let X=v−1(0) as above; assume our blanket hypothesis
that V \X is nonsingular, but no more. As V is nonsingular away from X , we may
assume that v|V \X is smooth, after replacing T with a neighborhood of 0 in T . The
fiber Vt is then smooth for all t �=0 in T , and since NVtV is trivial, we get

cSM(1Vt) = c(Vt)∩[Vt] =Vt ·(c(T (V \X))∩[V \X]);

since cSM(1V ) restricts to c(T (V \X))∩[V \X] on V \X , this gives

(4) cSM(1Vt) =Vt ·cSM(1V ).

This computation fails for t=0, as the fiber X over 0 is (possibly) singular. However,
the classes cSM(1V ) and cSM(1V \X) have the same specialization to X : indeed, their
difference is supported on X , and NXV is trivial in the case considered here. Thus,
in this case Theorem 3.3 gives

(5) cSM(ψX,V ) =X ·cSM(1V ).

Comparing (4) and (5), we may still view ψX,V as the limit of the constant 1Vt as
t→0 (in terms of the information carried by cSM classes).
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Remark 3.9. We can also consider specializations arising from maps v : V →T ,
allowing T to be a nonsingular variety of arbitrary dimension with a marked point 0,
and X=v−1(0) be a local complete intersection of codimension dimT , with trivial
normal bundle. We still assume V \X to be nonsingular. Using the formula in
Remark 3.5, the specialization i∗cSM(1V \X) may be written as

i∗cSM(1V \X) = d∗((−D)dim T −1 ·cSM(ψD,W )),

where W , D and d are as in Definition 2.1. Indeed, since NXV is trivial, then

ctop

(

d∗NXV

NDV

)

=term of codimension dim T −1 in
1

1+D
=(−D)dim T −1.

Note that in this situation d∗(−D)dim T −1 ·[D]=[X]: indeed, the Segre class of
D in W pushes forward to the Segre class of X in V , by the birational invariance
of Segre classes.

As mentioned in the introduction, Schürmann has considered specialization
to a complete intersection, by iterating applications of Verdier specialization ([29],
Definition 3.6). It would be interesting to establish a precise relation between
Schürmann’s specialization and the formula given above.

4. Example: pencils of curves

4.1. Pencils of hypersurfaces

Pencils of hypersurfaces give rise to specializations, as follows.
Consider a pencil of hypersurfaces in a linear system in a nonsingular variety V ′.

Let the pencil be defined by the equation

F +tG=0,

where F and G are elements of the system, and t∈k. Assume that for any t �=0 in
a neighborhood of 0, Vt={p|F (p)+tG(p)=0} is nonsingular. We can interpret this
datum as a specialization by letting V be the correspondence

V = {(p, t) ∈ V ′ ×A
1 | F (p)+tG(p)= 0}.

This is endowed with a projection v : V →T =A1; after removing a finite set of t �=0
from A

1 (that is, those t �=0 for which the fiber F +tG=0 is singular), we reach the
standard situation considered in Section 3.2 (Remark 3.8):

– T is a nonsingular curve, and 0∈T ;
– v : V →T is a surjective morphism, and X=v−1(0);
– V \X is nonsingular, and v|V \X is smooth.
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Note that V may be singular along X ; in fact, the singularities of V are contained
in the base locus of the pencil and in the singular locus of X .

As proven in Section 3,

cSM(ψX,V ) =X ·cSM(1V ),

for ψX,V as in Definition 2.1, and this class can be viewed as the limit as t→0 of
the classes c(TVt)∩[Vt] of the general fibers. For example, the degree

∫

cSM(ψX,V )
equals

∫

c(TVt)∩[Vt]=χ(Vt), the Euler characteristic of the general fiber.
The following are immediate consequences of the definition.
– Let p∈X be a point at which X (and hence also V ) is nonsingular. Then

ψX,V (p)=1.
– More generally, let p be a point such that there exists a neighborhood U of

p in V such that U is nonsingular, and U ∩X is a normal crossing divisor in U ∩V .
Then ψX,V (p)=0 if p is in the intersection of two or more components of X , and
ψX,V (p)=m if p is in a single component of X , of multiplicity m.

Since ψX,V (p)=1 at nonsingular points of X , 1X −ψX,V is supported on the
singular locus of X . This function has a compelling interpretation, see (1) in
the introduction and Section 5. The following example illustrates a typical situ-
ation.

Example 4.1. Let X be a reduced hypersurface with isolated singularities in a
nonsingular variety V ′, and assume that a general element Vt of the linear system
of X is nonsingular, and avoids the singularities of X . Then (−1)dim V (1−ψX,V (p))
equals the Milnor number μX(p) of X at p.

Indeed, as the matter is local, after a resolution we may assume that X is
complete and p is its only singularity. Consider the pencil through X and a general
element Vt of its linear system. Then by the linearity of cSM, and since 1X −ψX,V

is 0 away from p,

(−1)dim V (1−ψX,V (p)) = (−1)dim V

∫

cSM(1X(p)−ψX,V (p))

= (−1)dim V

∫

cSM(1X −ψX,V )

= (−1)dim V

(∫

cSM(1X)−
∫

cSM(ψX,V )
)

.

Now
∫

cSM(1X)=χ(X) (as recalled in Section 3.1), and
∫

cSM(ψX,V )=
∫

cSM(Vt)=
χ(Vt) as observed above. Thus,

(−1)dim V (1−ψX,V (p)) = (−1)dim V (χ(X)−χ(Vt)),
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and this is well known to equal the Milnor number of X at p (see, e.g., [24], Corol-
lary 1.7).

The above formula is a particular case of the formula μ=(−1)dim V (1X −ψX,V )
mentioned in the introduction, and discussed further in Section 5.

Near points of X away from the base locus, V is trivially isomorphic to V ′, and
hence it is itself nonsingular; the specialization function is then computed directly
by an embedded resolution of X . Along the base locus, V itself may be singular,
and it will usually be necessary to resolve V first in order to apply Definition 2.1
(or Proposition 2.6).

In the following subsections we illustrate this process in a few simple examples,
for pencils of curves.

4.2. Singular points on curves

Let X be a curve with an ordinary multiple point p of multiplicity m, and
assume that this point is not in the base locus of the pencil. As pointed out above,
ψX,V (p) may be computed by considering the embedded resolution of X over p.
This may be schematically represented as:

.

We have one exceptional divisor, a P
1, meeting the proper transform of the curve

m times and appearing with multiplicity m. As the Euler characteristic of the
complement of the m points of intersection in the exceptional divisor is 2−m, we
have that ψX,V (p)=m(2−m).

More generally, let X be a plane curve with an isolated singular point p, again
assumed to be away from the base locus of the pencil. If the embedded resolution of
X has exceptional divisors Di over p, Di appears with multiplicity mi, and meets
the rest of the full transform of X at ri points, then

ψX,V (p) =
∑

i

mi(2−ri);

indeed, each Di is a copy of P1, and the Euler characteristic of the complement of
ri points in P

1 is 2−ri. It follows (cf. Proposition 4.1) that the Milnor number of
p is 1−

∑

i mi(2−ri), yielding a quick proof of this well-known formula (see [16],
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Section 8.5, Lemma 3, for a discussion of the geometry underlying this formula
over C).

For example, the resolution graph of an ordinary cusp is:

where the numbers indicate the multiplicity of the exceptional divisors. It follows
that ψX,V (p)=2(2−1)+3(2−1)+6(2−3)=−1 at an ordinary cusp.

4.3. Cuspidal curve, cusp in the base locus

Typically, V is singular at base points of the system at which X is singular.
Subtleties in the computation of the specialization function arise precisely because
of this phenomenon.

Again consider a pencil centered at an ordinary cusp p, but such that the
general element of the pencil is nonsingular at p and tangent to X at p:

A local description for the correspondence V near p is

(y2 −x3)−ty =0.

This may be viewed as a singular hypersurface in A3
(x,y,t) and is resolved by a single

blow-up at (0, 0, 0) (as the reader may check). One more blow-up produces a divisor
with normal crossings as needed in Definition 2.1, with the same resolution graph
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as in Section 4.2:

but with different multiplicities, as indicated. This does not affect the value of

ψX,V (p):

ψX,V (p) = 1(2−1)+1(2−1)+3(2−3) = −1.

In fact, it is clear ‘for specialization reasons’ that the value of ψX,V (p) at an
isolated singularity p of X is the same whether p is in the base locus of the pencil or
not, since (as pointed out at the beginning of this section) the Euler characteristic
of X weighted according to ψX,V must equal the Euler characteristic of the general
element of the pencil, and this latter is unaffected by the intersection of X with
the general element. It is however interesting that the geometry of the resolution
is affected by the base locus of the pencil: the total space of the specialization is
smooth near p if the cusp is not in the base locus (as in Section 4.2), while it is
singular if the cusp is in the base locus (as in this subsection). Any difference in the
normal crossing resolution due to these features must compensate and produce the
same value for ψX,V (p). The next example will illustrate that this is not necessarily
the case for nonisolated singularities.

Note also that the ‘distinguished decomposition’ of ψX,V , or of its motivic
counterpart, do tell these two situations apart: for example, with notation as in
Remark 2.5, ψε3

X,V =1p for the cuspidal curve in Section 4.2 (cusp p away from the
base locus), while ψε3

X,V =−1p for the cuspidal curve in this subsection (cusp on the
base locus).

4.4. Nonisolated singularities

Let V ′ be a nonsingular surface, and X ⊂V ′ be a (possibly multiple, reducible)
curve. Consider the pencil between X and a nonsingular curve Y meeting a com-
ponent of multiplicity m≥1 in X transversally at a general point p. View this as
a specialization, as explained in Section 4.1. Then ψX,V (p)=1, regardless of the
multiplicity m.
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To verify this, we may choose analytic coordinates (x, y) so that p is the origin,
X is given by xn+1 for n=m−1, and Y is y=0; the correspondence V is given by

xn+1 −yt =0

in coordinates (x, y, t).
If n=0, then both X and V are nonsingular, and ψX(p)=1 as seen above. If

n>0, V has an An singularity at the origin, and its resolution is classically well
known: the exceptional divisors are P

1’s, linked according to the An diagram,

◦——◦——...——◦.

The only work needed here is to keep track of the multiplicities of the components
in the inverse image of t=0. The reader may check that the pull-back of t=0 in
the resolution consists of the proper transform of the original central fiber, with
multiplicity n+1, and of a chain of smooth rational curves, with decreasing multi-
plicities:

.

The contribution to ψX,V (p) of all but the right-most component in this diagram
is 0, because the Euler characteristic of the complement of 2 points in P

1 is 0.
The right-most component contributes 1, since it appears with multiplicity 1 and it
contributes by the Euler characteristic of the complement of one point in P

1, that
is 1. Thus ψX,V (p)=1, as claimed.

Note that ψX,V =m at a general point of a component of multiplicity m in X .
Thus, the effect of p being in the base locus is to erase the multiplicity information,
provided that the general element Y of the pencil meets X transversally at p.

This is in fact an instance of a general result, proven over C in all dimensions
and for arbitrarily singular X by A. Parusiński and P. Pragacz in Proposition 5.1
of [26]. The proof given in this reference uses rather delicate geometric arguments
(for example, it relies on the fact that a Whitney stratification satisfies Thom’s af

condition, [25]). It would be worthwhile constructing a direct argument from the
definition of ψX,V given in this paper, and valid over any algebraically closed field
of characteristic 0.
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5. Weighted Chern–Mather classes, and a resolution formula

5.1. Weighted Chern–Mather classes

Let V be a nonsingular variety, and let Y ⊂V be a closed subscheme. In [4] we
have considered the weighted Chern–Mather class of Y ,

cwMa(Y ) :=
∞
∑

i=1

(−1)dim Y −dim Yimiji∗cMa(Yi),

where Yi are the supports of the components of the normal cone of Y in V , mi is
the multiplicity of the component over Yi, and cMa denotes the ordinary Chern–
Mather class. Also, dim Y is the largest dimension of a component of Y . Up
to a sign, cwMa is the same as the Aluffi class of [12]. With the definition given
above, if Y is irreducible and reduced, then cwMa(Y ) equals cMa(Y ); in particular,
cwMa(Y )=c(TY )∩[Y ] if Y is nonsingular. (However, with this choice of sign the
contribution of a component Yi depends on the dimension of the largest component
of Y .)

Consider the case in which Y is the singularity subscheme of a hypersurface X

in V : if f is a local generator for the ideal of X , then the ideal of Y in V is locally
generated by f and the partial derivatives of f .

Proposition 5.1. Let X be a hypersurface in a nonsingular variety V , and
let Y be its singularity subscheme. Then

(6) (−1)dim Y cwMa(Y )= (−1)dim V cSM(1X −ψX,V )

in A∗X .

Since cSM(ψX,V ) admits a natural multiplicity decomposition (Remark 3.6),
so do the class cwMa(Y ) and its degree, a Donaldson–Thomas type invariant ([12],
Proposition 4.16). That is, monodromy induces a decomposition of these invariants.

Remark 5.2. The relation in Proposition 5.1 is a cSM-counterpart of the iden-
tity μ=(−1)dim V (1X −ψX,V ) mentioned in the introduction, and is equivalent to
Theorem 1.5 in [4]. The identity amounts to the relation of μ with the Euler char-
acteristic of the perverse sheaf of vanishing cycles. It goes at least as far back as [2],
Theorem 4; it also follows from Proposition 5.1 in [26], and is equation (4) in [12].
However, these references work over C, and it seems appropriate to indicate a proof
of (6) which is closer in spirit to the content of this paper.
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Proof. By Theorem 3.3,

cSM(ψX,V ) =X ·cSM(1V \X)

(cf. Lemma 3.2). Thus

cSM(1X −ψX,V ) = cSM(1X)−X ·cSM(1V )+X ·cSM(1X)

= (1+X)·cSM(1X)−c(TV |X)∩[X]

= c(L)∩
(

cSM(1X)− c(TV |X)
1+X

∩[X]
)

with L=O(X). The class (c(TV |X)/(1+X))∩[X] is the class of the virtual tangent
bundle to X , denoted cF(X) in [4]. Thus,

cSM(1X −ψX,V ) = c(L)∩(cSM(X)−cF(X)).

By Theorem 1.2 in [4], it follows that

cSM(1X −ψX,V )= (−1)dim V −dim Y cwMa(Y ),

which is the statement. �

Both sides of the formula in Proposition 5.1 make sense in a more general
situation than the case in which Y is the singularity subscheme of a hypersurface X :
the class cwMa(Y ) is defined for arbitrary subschemes of a nonsingular variety, and
Definition 2.1 also gives a meaning to ψX,V for any subscheme X of a nonsingular
variety. Or in other terms, both sides of the identity μ=(−1)dim V (1X −ψX,V ) admit
compelling generalizations: Definition 2.1 does not require X to be a hypersurface,
and cwMa(Y ) is the class corresponding to a constructible function νY defined for
all Y as a specific combination of local Euler obstructions (see Proposition 1.5
in [4]). This function has garnered some interest in Donaldson–Thomas theory, and
is currently commonly known as Behrend’s function. It is tempting to guess that a
statement closely related to Proposition 5.1 may still hold for any Y and a suitable
choice of X ⊂V with singularities along Y . (Of course 1X should be replaced by
(codimX V )1X for the right-hand side to be supported on the singularities of X ,
see Example 2.8.)
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5.2. Resolutions

We end with an expression for the function μ for the singularity subscheme
Y of a hypersurface X in terms of a resolution of X . For this we need to work
with Q-valued constructible functions; we do not know if a similar statement can
be given over Z.

Assume that V is nonsingular, X ⊂V is a hypersurface, and Y ⊆X is the sin-
gularity subscheme. Consider a morphism w : W→V as in Definition 2.1. Thus,
w−1(X) is a divisor D with normal crossings and nonsingular components Dl, l∈L;
ml denotes the multiplicity of Dl in D, and d : D→X is the restriction of w.

The relative canonical divisor of w is a combination
∑

l μlDl of components
of D.

For K ⊆L, we let

D◦
K =

(

⋂

k∈K

Dk

)∖(

⋃

l/∈K

Dl

)

.

Proposition 5.3. With notation as above, μ is given by

(−1)dim Xd∗

(

∑

l∈L

(

ml − 1
1+μl

)

1D◦
l

−
∑

K⊆L
|K|≥2

1
∏

k∈K(1+μk)
1D◦

K

)

.

Proof. As discussed above, μ=(−1)dim X(ψX,V −1X). The given formula fol-
lows immediately from

ψX,V = d∗
∑

l∈L

ml1D◦
l
,

which is a restatement of Definition 2.1, and

1X = d∗

(

∑

K⊆L
|K|≥1

1
∏

k∈K(1+μk)
1D◦

K

)

,

which follows from a small generalization of Section 4.4.3 in [17] (cf. Theorem 2.1
and the proof of Theorem 3.1 in [5]). �

Again, it is tempting to guess that a similar expression may exist for Behrend’s
function of an arbitrary subscheme Y of a nonsingular variety V , for a suitable choice
of a corresponding pair X ⊂V .
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