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On the h-triangles of sequentially (.5;)
simplicial complexes via algebraic shifting
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Dedicated with gratitude to our teacher and friend Jiirgen Herzog on the occasion
of his 70th birthday.

Abstract. Recently, Haghighi, Terai, Yassemi, and Zaare-Nahandi introduced the notion
of a sequentially (S) simplicial complex. This notion gives a generalization of two properties for
simplicial complexes: being sequentially Cohen—-Macaulay and satisfying Serre’s condition (S;).
Let A be a (d—1)-dimensional simplicial complex with T'(A) as its algebraic shifting. Also let
(hi’j (A))OSjSiSd be the h-triangle of A and (hiyj (F(A)))nggis(i be the h-triangle of I'(A). In
this paper, it is shown that for a A being sequentially (S;) and for every ¢ and j with 0<j<i<r-—1,
the equality h; j(A)=h; ;(I'(A)) holds true.

1. Introduction and preliminaries

Algebraic combinatorics is an area of mathematics that employs methods of
abstract algebra in various combinatorial contexts. One of the fastest developing
subfields within algebraic combinatorics is combinatorial commutative algebra. It
has evolved into one of the most active areas of mathematics during the last several
decades. Throughout the paper we deal with algebraic shifting and h-triangles of
simplicial complexes. The study of these concepts has long been a topic of interest
both in combinatorics and combinatorial commutative algebra. In this section, we
recall some definitions and notation concerning combinatorics and combinatorial
commutative algebra for later use. We refer the reader to the books by Stanley [13],
Bruns and Herzog [2], Miller and Sturmfels [11], as well as Herzog and Hibi [8] as
general references in the subject.
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1.1. Notions from combinatorics

A simplicial complex A on the set of vertices [n]:={1,...,n} is a collection of
subsets of [n] which is closed under taking subsets; that is, if F€A and F'CF, then
also F'€A. Every element F€A is called a face of A, the size of a face F' is defined
to be |F| and its dimension is defined to be |F|—1. (As usual, for a given finite set
X, the number of elements of X is denoted by |X|.) The dimension of A which
is denoted by dim A, is defined to be d—1, where d=max{|F||F€A}. The degree
of a face F€A, denoted deg F, is defined to be deg F=max{|G||FCG and GEA}.
Also, the degree of A, denoted deg A, is defined to be deg A=min{deg F|Fe€A}.
A facet of A is a maximal face of A with respect to inclusion. Let F(A) denote the
set of facets of A. It is clear that F(A) determines A. When F(A)={F1,..., F,},
we write A=(F},..., F,,). We say that A is pure if all facets of A have the same
cardinality. Note that A is pure if and only if all of its faces have the same degree.
A nonface of A is a subset F' of [n] with F¢A. Let N'(A) denote the set of minimal
nonfaces of A with respect to inclusion. The link of A with respect to a face F€A,
denoted by lka (F), is the simplicial complex lka (F)={GC[n|\F|GUFeA}. Let
A and A’ be two simplicial complexes on disjoint vertex sets V' and W, respectively.
The join AxA’ is the simplicial complex on the vertex set VUW with faces FUG,
where FEA and GeA'.

Let A be a (d—1)-dimensional simplicial complex and let —1<i,j<d—1.
In 1996, Bjérner and Wachs (see [1, Definition 2.8]) defined A(+7) as

A6 ={FeA|deg F>i+1 and dim F < j}.

One can extend this definition to the case i>d— 1, by defining A% to be the empty
simplicial complex. Clearly, A7) is a subcomplex of A. Throughout, we consider
the following special cases: (i) the simplicial complex A®:=A(=19called the ith
skeleton of A; (i) the simplicial complex A :=A4=1) "called ith sequential layer
of A; (iii) the simplicial complex All:=A®9  called the ith pure skeleton of A.
Note that A is the subcomplex of A generated by all facets whose dimension is
at least 4. That is, in fact, the subcomplex of all faces of A whose degree is at least
i+1. Also, All is the pure subcomplex of A generated by all i-dimensional faces.
The notation Al is due to Wachs [14].

1.2. Notions from combinatorial commutative algebra

One of the connections between combinatorics and commutative algebra is
via rings constructed from the combinatorial objects. Let R=K][z1, ..., x,] be the
polynomial ring in n variables over a field K and let A be a simplicial complex
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on [n]. For every subset F'Cln], we set xp=[[,cp ;. The Stanley-Reisner ideal
of A is the ideal In of R which is generated by those squarefree monomials xp
with F¢A. In other words, In={xp|FeN(A)). The Stanley—Reisner ring of A,
denoted by K[A], is defined to be K[A]=R/Ix.

We now recall two notions related to commutative algebra. Let M be a nonzero
finitely generated R-module. We say that M is Cohen—Macaulay, if for every
peSpec(R), the equality depth M,=dim M, holds true. Also M is said to satisfy
Serre’s condition (S,.), or simply M is an (S,) module, if for every peSpec(R), the
inequality depth M, >min{r, dim M, } holds true. It is easy to see that M is Cohen—
Macaulay if and only if it is an (S,.) module for all r>1. We say that a simplicial
complex A is Cohen—Macaulay if the Stanley—Reisner ring of A is Cohen—Macaulay.
Also A is said to satisfy Serre’s condition (S,.), or simply A is an (S,.) simplicial
complez, if its Stanley—Reisner ring satisfies Serre’s condition (S,.). Since every
simplicial complex satisfies Serre’s condition (S7), we assume that r>2. It is well
known that if A is an (S,) simplicial complex, then A is pure (see [12, Lemma 2.6]).

We now record the numerical data associated with a (d—1)-dimensional sim-
plicial complex A. Let f; denote the number of faces of A of dimension i. The
sequence f(A)=(fo, f1,..-, fa—1) is called the f-vector of A. Also to find out more
about f(A), we need to study the h-vector of A, first defined by Stanley. Although
it is seemingly complicated, but often is an elegant way to record the face numbers.
Letting f_1=1 we define the h-vector h(A)=(hg,h1, ..., hq) of A by the formula

St =S
One can easily check that

d
f’L 1*2 <Z_jj)hj

7=0

and ,
Ny g (4T
hi = E (1) (i—j)f]_l.

It is well known that if h(A)=(ho, 1, ..., hq) is the h-vector of A and Hgpa)(t) is
the Hilbert series of K[A], then we have

Z?:o hiti

H]K[A](t): (l—t)d )

where d=dim A+1 is the Krull dimension of K[A].
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2. Simplicial complexes satisfying the (d,) property

Algebraic shifting is a procedure that to every simplicial complex A corresponds
a new simplicial complex T'(A), called the shifted complex of A, with the same
h-vector as A and a nice combinatorial structure. Additionally, algebraic shifting
preserves many algebraic and topological properties of the original complex, includ-
ing Cohen—Macaulayness: a simplicial complex A is Cohen—Macaulay if and only
if T'(A) is Cohen—Macaulay, which, in turn, holds if and only if T'(A) is pure (see
Proposition 2.3).

Notation and Remarks 2.1. If S={s1<...<s;} and T={t1<...<t;} are two j-
subsets of integers, then S<pT under the standard partial order if s,<t, for all p.
Also S< 1T under the lexicographic order if there is a ¢ such that s, <t, and s,=t,
for all p with p<q. A collection C of two j-subsets S and T of integers is shifted
if S<pT and Te€C together imply that S€C. A simplicial complex A is shifted
if the set of j-dimensional faces of A is shifted for every j. In other words, a
simplicial complex A on [n] is shifted if, for FEA, i€ F and j€&[n] with j<i, one
has (F\{i})U{j}€A.

Definitions and Remarks 2.2. Let A be a simplicial complex with the set of
vertices V={ey,...,e,} linearly ordered e;<...<e,. For a given field K, let A KV
denote the exterior algebra of the vector space KV'; it has a K-vector space basis
consisting of all the monomials es:=e; A...\e;;, where S:{ei1<...<ei].}§V and
ez=1. Let I(A) be the ideal of AKV generated by the set {eg|S¢A}, and let
Z denote the image of x€KV modulo I(A). Let {f1,..., fn} be a generic basis
of KV, ie., fi=) 7, aiej, where the a;,’s are n® transcendentals, algebraically
independent over K. Define fg:=fi, A..Af;, for S={i1<...<ix} and set fz=1.
Let

D(A):={SCn]| fs¢Span{fr| R <L S}}

be the algebraically shifted complex obtained from A. As the name implies, I'(A) is
a shifted simplicial complex, and it is independent of the numbering of the vertices
of A or the choices of a;,.

As is often the case with algebraic shifting, we do not use the definition directly,
but rather some theorems that characterize the results of algebraic shifting.

We continue this section by stating the following result. This result is just a
translation of a purity result given by Kalai for algebraic shifting of Cohen—Macaulay
simplicial complexes in terms of degree.



On the h-triangles of sequentially (S, ) simplicial complexes via algebraic shifting 189

Proposition 2.3. (Kalai) Let A be a (d—1)-dimensional simplicial complex
and let T'(A) be its algebraic shifting. Then A is Cohen—Macaulay if and only if
degI'(A)=d.

Proof. Tt is known that A is Cohen—Macaulay if and only if I'(A) is pure (see
[10]). Therefore, A is Cohen-Macaulay if and only if I'(A) has no facet of dimension
less than d—1, which holds if and only if deg'(A)=d, as requested. O

We now give the following definition to obtain an extension of Proposition 2.3.

Definition 2.4. Let K be a field, A be a simplicial complex and let K[A] be its
Stanley—Reisner ring. Then we say that A is a (d,.) simplicial complex (over K),
provided depth K[A]>7.

By using Exercise 5.1.23 of [2] and Corollary 4.5 of [3] we may conclude the
following proposition.

Proposition 2.5. Let A be a simplicial complex and let T'(A) be its algebraic
shifting. Then A is (d,.) if and only if degT'(A)>r.

Remark 2.6. Note that Proposition 2.5 is a generalization of Proposition 2.3.
In order to see this, let K be a field, A be a (d—1)-dimensional simplicial complex
and K[A] be its Stanley—Reisner ring. Then A is Cohen-Macaulay if and only if
depth K[A]>d, which holds if and only if A is (dg). Therefore, by Proposition 2.5,
A is Cohen-Macaulay if and only if degT'(A)>d. But by the definition of degree,
degI'(A) is always less than or equal to d, and therefore, we conclude that A is
Cohen—Macaulay if and only if degI'(A)=d, which is Proposition 2.3.

We now state and prove the following theorem which gives us a necessary and
sufficient condition for a simplicial complex to be (d,.) in terms of reduced homology.
For the definition of reduced homology we refer the reader to [2].

Theorem 2.7. Let A be a (d—l)—ciimensional simplicial complex and let K
be a field. Then A is (d,) if and only if H;(Ika(0); K)=0 for all o€ A with |o|<r
and for all i with i<dimlka -1 (0).

Proof. By using Exercise 5.1.23 of [2] we conclude that A is (d,.) if and only if
A=Y is Cohen-Macaulay. But Reisner’s criterion (see [2, Corollary 5.3.9]) implies
that the latter is equivalent to the vanishing of H(lkae—1 (0); K) for all o€ A1
and all i with i <dim k-1 (o). Since 0€ A1) is equivalent to |o| <7, we obtain
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that A is (d,) if and only if H;(lka— (0); K)=0 for all g€ A with |o|<r and all i
with i <dimlka -1 (o). But for every o with |o|<r we have

lkpo—n (o) = (ka(0) 717170,
and so for every ¢ with i <dimlks -1 (o) we conclude that
Hi(lkpae1 (0); K) = Hy(Ika(0); K).

This implies that A is (d,.) if and only if H;(Ika(c); K)=0 for all c€A with |o|<r
and all ¢ with i<dimlka¢—1) (o), as requested. O

In the next proposition we collect some basic properties of (d,.) simplicial com-
plexes.

Proposition 2.8. Let A and A’ be two simplicial complexes. Then the fol-
lowing statements hold:

(1) if A is (d,.), then AD is (d) for all i, where s=min{r,i+1};

(2) if Ais (dy) and A’ is (dyr), then AxA’ is (dpiqpr);

(3) if A is (dy), then 1ka(v) is (dy—1) for every vertex v of A.

Proof. We easily conclude (1) by using [2, Exercise 5.1.23]. Also (2) is proved
in [5, Lemmas 1 and 2]. For proving (3), we may assume that r>2; otherwise, there
is nothing to prove. Note that by Theorem 2.7, it is enough to prove that for a
given field K, ﬁi(lklkA(U)(a);K):O for all o€lka(v) with |o|<r—1 and all ¢ with
i<dimlky, () -2 (o). This is also equivalent to showing that for every o€lka (v)
with |o|<r—1 and every i with i <dim Ik, ()2 (0), Hi(lka(cU{v}); K)=0. But
i<dim Ik, ())-—2) (o) implies that i<dimlka-1)(cU{v}), and so Theorem 2.7
completes the proof (see also [12, Lemma 4.3] for another proof). O

We now state and prove the following lemma for later use.

Lemma 2.9. Let A be an (S,) simplicial complez and let AW be its i-th
skeleton. Then AW is Cohen—Macaulay for every i with 1<i<r—1.

Proof. Since A is an (S,) simplicial complex, Proposition 2.3 of [7] implies
that A("=1 is also (S,). On the other hand, dim A("~Y =y —1. Therefore, we con-
clude that A=1) is Cohen-Macaulay. For every i with 1<i<r—1, we have A(®) =
(A=Y@ Also, by Corollary 24.4 of [9], every skeleton of a Cohen-Macaulay
simplicial complex is again Cohen-Macaulay. Hence, we conclude that A is
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Cohen Macaulay. All in all, we obtain that for every i with 1<i<r—1, A® is
Cohen—Macaulay, as requested. 0O

Let K be a field, A be a simplicial complex and K[A] be its Stanley—Reisner
ring. By using Exercise 5.1.23 of [2] we conclude that

depth K[A] = max{i+1| A®) is Cohen Macaulay}.

Therefore, Lemma 2.9 implies that if A is (S,), then depthK[A] >r and so A
is (d,). This means that
(Sr) - (dr)’

We now apply the above observation to one implication of Proposition 2.5 to get
the following proposition, which in turn is another generalization of Proposition 2.3.

Proposition 2.10. Let A be a simplicial complex and let T'(A) be its algebraic
shifting. If A is (Sy), then degT'(A)>r.

Note that the converse of Proposition 2.10 is not true in general. In order to see
this, let A be an (S,) simplicial complex which is not Cohen-Macaulay. Then I'(A)
is not pure, while by Proposition 2.10 we have deg'(A)>r. Hence I'(T'(A))=T(A)
has degree grater than or equal to r and is not (S,).

Therefore it is natural to ask the following question.

Question 2.11. What is the characterization of (S,) simplicial complexes via
algebraic shifting?

3. On the h-triangle of a sequentially (S,) simplicial complex

The h-vector of a simplicial complex plays an important role in the theory of
Cohen—Macaulay complexes, including pure shellable complexes (see, for example,
[13]). To extend part of this to the nonpure case we are led to introduce doubly
indexed h-numbers. In order to do this, let A be a (d—1)-dimensional simplicial
complex. For every ¢ and j with 0<j<i<d, let f; ; denote the number of faces of
A of degree i and size j and consider

h -—Xj)(—nj—’“(i‘k)ﬁ
i,j — P _]—k ik -

Then the triangular integer arrays f=(f; ;)o<j<i<a and h=(h; ;)o<;<i<aq are called
the f-triangle and h-triangle of A, respectively. In order to show that f; ; (resp. h; ;)
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is the (i, j)th array of f (resp. h), we sometimes write f; ;(A) (resp. h; ;(A)) instead
of f; ; (vesp. hi ;).

Before stating the results of this section, we define the notion of a sequentially
(S,) simplicial complex which was introduced in [7].

Definition 3.1. Let M be a finitely generated Z-graded module over a standard
graded K-algebra R, where K is a field. For a positive integer r, we say that M is
sequentially (S,) if there exists a finite filtration 0=MyCM; C...C My=M of M by
graded submodules M; satisfying the following two conditions:

(a) every quotient M;/M;_; satisfies the (S,) condition of Serre;

(b) dim(M; /M) <dim(My/M7)<...<dim(My/M;_q).

We say that a simplicial complex A on [n]={1,...,n} is sequentially (S,) (over
a field K) if its Stanley—Reisner ring K[A]=K][z1, ..., x,]/Ia, as a module over R=
Klz1, ..., x,] is sequentially (S,).

Duval [3] has shown that algebraic shifting preserves the h-triangle of a sim-
plicial complex A, provided A is sequentially Cohen—Macaulay. The analogue of
Duval’s result is given in the following theorem.

Theorem 3.2. Let A be a sequentially (S,.) simplicial complex and let T(A) be
its algebraic shifting. Then for every i and j with 0<j<i<r—1, we have h; j(A)=
hi ;(D(A)).

Proof. Let A be a sequentially (S,.) simplicial complex. By Theorem 2.6 of [7],
the simplicial complex Al for i<r—1 is (S,) and since its dimension is equal
to i, we conclude that All=(A®)® is Cohen-Macaulay. Now by Corollary 4.5
of [3], deg'(A{")>i+1 and so Theorem 4.6 of [3] implies that T(A))=T'(A)%.
Therefore, for every j and for every i with i <r—1, we have f;(T'(A{)))=f;(T(A)),
where f; denotes the jth component of the f-vector. By using [3] we obtain that

£1d(8) = i1 (AT = £ (AD),
Fig(T(A) = f-a (DA D)= £ (D(A) D).

Therefore, for every ¢ and j with 0<j<i<r—1, we have f; ;(I'(A))=/fi;(A). Now
the relation between f-triangles and h-triangles completes the proof. [

We now state and prove our two next results. But first, let us to recall the
following definition (see [1, Definition 2.1]).
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Definition 3.3. A simplicial complex A is shellable (in nonpure sense) if there
exists a linear order Fi, ..., F}. of the facets of A such that for every i with 2<i<r,
the simplicial complex (F;)N(F1, ..., F;_1) is pure of dimension dim F;—1.

Corollary 3.4. Let A be a sequentially (S,) simplicial complex. Then for
every i and j with 0<j<i<r—1, we have h; j(A)>0.

Proof. By Theorem 3.2, for every i and j with 0<j<i<r—1, we have
hij(A)=h; ;(T'(A)). But shifted complexes are shellable and so by Theorem 3.4
of [1] their h-triangles are nonnegative. [J

Corollary 3.5. Let h=(h; j)o<j<i<a be an array of integers. Then the fol-
lowing conditions are equivalent:

(1) there exists a sequentially (S,) simplicial complex A such that h; ;(A)=h; ;
for every i and j with 0<j<:<r—1;

(2) there exists a shifted simplicial complex A such that h; j(A)=h; ; for every
1 and j with 0<5<i<r—1;

(3) there exists a shellable simplicial complex A such that h; j(A)=h, ; for
every © and j with 0<5<i<r—1;

(4) there exists a sequentially Cohen—Macaulay simplicial complex A such that
hi j(A)=h; ; for every i and j with 0<j<i<r—1.

Proof. (
(2)=(3)
(3)=(4)
(4)=(1) Every sequentially Cohen—Macaulay simplicial complex is sequentially
(5,). O

1)=(2) Consider the algebraic shifting of A and apply Theorem 3.2.
=-(3) Every shifted simplicial complex is shellable.
=(4) Every shellable simplicial complex is sequentially Cohen—Macaulay.

We now state and prove the following proposition. We recall that a sequence of
integers h=(hg, h1, ..., h,) is an M -vector if there exists a Cohen—-Macaulay (r—1)-
dimensional simplicial complex A’ with h(A”)=h.

Proposition 3.6. Let A be a (d—1)-dimensional sequentially (S,) simpli-
cial complex. Then for every c with 1<c<r, the sequence (hi g, h ,...,h; ) is an

M -vector, where for every j with 0<j<c,
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Proof. By Theorem 2.6 of [7], for every ¢ with 1<c¢<r the simplicial com-
plex Ale=ll=Ale=1e=1) ig (S ) and since its dimension is less than r, it is Cohen—
Macaulay. Therefore its h-vector is an M-vector. Now Lemma 3.3(v) of [1] com-
pletes the proof. [I

Proposition 3.7. Let A be a (d—1)-dimensional sequentially (S,.) simplicial
complex. Then for every ¢ with r+1<c<d the following conditions hold, where for
every j with 0<5<¢,

A s—c—1+j5—1
o=t 3 (T,

s=c+1 1=0

(1) The sequence (h g, hy. 1, .., b, ,) is an M -vector;

s er

(2) For every i with 0<i<r, we have

<Z> h:: r+ (l+1> h:c T+1++ <C+Z_r) hlc c 2 0.
1 ’ (2 ’ 2 ’

Proof. By Theorem 2.6 of [7], for every ¢ with r+1<c¢<d, the simplicial com-
plex AlemH=Ale=1e=1) j5 (S,) and by Lemma 3.3(v) of [1] the sequence

( /c,O’ /c,l’ A h/c,c)

is the h-vector of Alc=1.c=1) Now, Theorem 3.1 of [6] completes the proof. [

Iterated Betti numbers, introduced in [4], are a nonpure generalization of the
reduced homology Betti numbers §;_1(A)=dimg H;_1(A). Although they can be
defined as the Betti numbers of a certain chain complex (see [4, Section 4]), we will
use the following equivalent formulation.

Notation and Remarks 3.8. Let A be a simplicial complex. For a set F' of
positive integers, let init(F)=max{r|{1,...,7} CF}. Therefore, init(F) measures
the largest “initial segment” in F', and is O if there is no initial segment, i.e., if
1 does not belong to F. Now, by Theorem 4.1 of [4], the ith iterated Betti number
of A is

Bi—1[i](A)={F e F(I'(A)) |dim F=j—1 and init(F)=1d}|.

A special case is i=0. In this case, 3;[0](A)=/43;(A) is the ordinary Betti number
of reduced homology. Bjorner and Wachs [1, Theorem 4.1] have shown that if A is
nonpure and shellable, then

Bj-1(A)=h;;(A)
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for every j with 0<j<d. This equation was generalized in Theorem 1.2 of [4] to
Bi-alil(A) =h; ;-i(A)

for nonpure shellable A. This algebraic interpretation of the h-triangle of nonpure
shellable complexes was part of the motivation for iterated Betti numbers. Theo-
rem 3.2 allows us to generalize even further, by weakening the assumption on A
from being nonpure shellable to being merely sequentially (.S..).

Corollary 3.9. Let A be a sequentially (S,) simplicial complex. Then for
every i with i<r—1, we have 3;_1[i](A)=h; ;j—i(A).

Proof. By Theorem 5.4 of [4], 8;_1[i](A)=h, ;—;(T'(A)) for every simplicial
complex A. We now apply Theorem 3.2 to obtain the result. [
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