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A new generalization of the Lelong number
Aron Lagerberg

Abstract. We will introduce a quantity which measures the singularity of a plurisubhar-

monic function ϕ relative to another plurisubharmonic function ψ, at a point a. We denote this

quantity by νa,ψ(ϕ). It can be seen as a generalization of the classical Lelong number in a nat-

ural way: if ψ=(n−1) log | · −a|, where n is the dimension of the set where ϕ is defined, then

νa,ψ(ϕ) coincides with the classical Lelong number of ϕ at the point a. The main theorem of this

article says that the upper level sets of our generalized Lelong number, i.e. the sets of the form

{z :νz,ψ(ϕ)≥c} where c>0, are in fact analytic sets, provided that the weight ψ satisfies some

additional conditions.

1. Introduction

In what follows, we let Ω denote an open subset of C
n, ϕ a plurisubharmonic

function in Ω, and ψ a plurisubharmonic function in Cn. When we are dealing
with constants, we often let the same symbol denote different values when the
explicit value does not concern us. The object of this paper is to introduce a
generalization of the classical Lelong number: The quantity we will consider depends
on two plurisubharmonic functions ϕ and ψ and it will be a measurement of the
singularity of ϕ relative to ψ. Moreover, if we let ψ(z)=(n−1) log |z −a| we get
back the classical Lelong number of ϕ at the point a. The main theorem of this
paper (Theorem 3.9) tells us that this generalized Lelong number satisfies a semi-
continuity property of the same type as the classical Lelong number does, namely, its
super level sets define analytic varieties. Also, we investigate some further properties
that this quantity satisfies. The paper is organized as follows: in this introduction
we define the generalized Lelong number and discuss the motivation behind it. In
Section 2 we explore some basic properties and examples of the generalized Lelong
number, obtaining as corollaries classical results concerning the classical Lelong
number. Section 3 concerns the theorem stating that the upper level sets of the
generalized Lelong number defines an analytic set. In Section 4 we prove a theorem
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due to Demailly, which states that one can approximate plurisubharmonic functions
well with Bergman functions with respect to a certain weight.

Let us begin by recalling some relevant definitions. For r>0 define

(1.1) νa(ϕ, r) :=
sup|z−a|=r ϕ(z)

log r
.

The function in the numerator can actually be seen to be a convex function of log r

(cf. [7]). Furthermore, the fraction is increasing in r, and so the limit as r tends
to 0 exists.

Definition 1.1. The (classical) Lelong number of ϕ at a∈Ω is defined as

(1.2) νa(ϕ) = lim
r→0

νa(ϕ, r).

As can be seen from the definition, the Lelong number compares the behaviour
of ϕ to that of log |z −a|, as z→a. In fact (cf. [6]), the following is true: if νa(ϕ)=τ

then, near the point a,

(1.3) ϕ(z) ≤ τ log |z −a|+O(1),

and τ is the best constant possible.
Two other ways to represent the classical Lelong number are given by the

equalities

νa(ϕ) = lim inf
z→a

ϕ(z)
log |z −a|

and
νa(ϕ) = lim

r→0

∫
B(a,r)

(ddcϕ(z))∧(ddc log |z −a|2)n−1,

where B(a, r)={z :|z −a|<r}. The first of these equalities is a simple consequence
of (1.1) (cf. [8]), while the other follows from Stokes’ theorem (cf. [3]). Two gen-
eralizations of the Lelong number, due to Rashkovskii and Demailly respectively,
come from exchanging log |z −a| for a different plurisubharmonic function ψ in the
characterizations of the Lelong number above (cf. [8] and [3], respectively). To that
effect, the relative type of ϕ with respect to a function ψ is given by

(1.4) σa(ϕ, ψ) = lim inf
z→a

ϕ(z)
ψ(z −a)

,

and Demailly’s generalized Lelong number of ϕ with respect to ψ is given by

(1.5) νDemailly(ϕ, ψ) = lim
r→0

∫
ψ<log r

(ddcϕ)∧(ddcψ)n−1.
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Of course, in each of the definitions above, ψ needs to satisfy some regularity condi-
tions; for our discussion it suffices to assume that eψ is continuous and
{z :ψ(z)=−∞}={0}.

The inspiration for this article comes from an observation made by Berndtsson,
who in the article [2] related the classical Lelong number to the convergence of a
certain integral.

Theorem 1.2. For a∈Ω,

νa(ϕ) ≥ 1 ⇐⇒
∫

a

e−2ϕ(ζ)−2(n−1) log |ζ−a| dλ(ζ) = ∞,

where λ is Lebesgue measure on C
n.

We will give a simplified proof of this theorem in Section 2. Using this result,
assuming νa(ϕ)=τ so that νa(ϕ/τ)=1, we see that∫

a

e−2ϕ(ζ)/s−2(n−1) log |ζ−a| dλ(ζ) =
∫

a

e−2τϕ(ζ)/sτ −2(n−1) log |ζ−a| dλ(ζ)

is finite if and only if s>τ . Thus Theorem 1.2 implies that the classical Lelong
number coincides with the number given by

inf {s> 0 : ζ 	−→ e−2ϕ(ζ)/s−2(n−1) log|ζ−a| ∈ L1
loc(a)}.

In [2] the following generalization of the classical Lelong number is indicated.

Definition 1.3. The generalized Lelong number of ϕ at a∈Ω with respect to a
plurisubharmonic function ψ, is defined as

νa,ψ(ϕ)= inf {s> 0 : ζ 	−→ e−2ϕ(ζ)/s−2ψ(ζ−a) ∈ L1
loc(a)}.

Obviously, some condition regarding the integrability of e−2ψ is needed for the
definition to provide us with something of interest; for our purpose, it is sufficient
to assume that

(1.6) e−2(1+τ)ψ ∈ L1
loc(0)

for some τ >0. We single out the following special case of the generalized Lelong
number.

Definition 1.4. For t∈[0, n) we define

νa,t(ϕ)= inf {s> 0 : ζ 	−→ e−2ϕ(ζ)/s−2t log|ζ−a| ∈ L1
loc(a)},

that is, νa,t(ϕ):=νa,ψ(ϕ), with ψ=t log | · |.
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Theorem 1.2 shows that νa,n−1 equals the classical Lelong number, which we
will denote by just νa. For t=0, νa,t=νa,0 equals another well-known quantity,
the so called integrability index of ϕ at a. Thus νa,t can be regarded as a family of
numbers which interpolate between the classical Lelong number and the integrability
index of ϕ, as t ranges between 0 and n−1. One should put this in context with
the following important inequality, due to Skoda (cf. [10]).

Theorem 1.5. (Skoda’s inequality) For ϕ∈PSH(Ω),

(1.7) νz,0(ϕ) ≤ νz,n−1(ϕ) ≤ nνz,0(ϕ).

Later, we will prove the following generalization of Skoda’s inequality:

νz,0(ϕ) ≤ νz,n−1(ϕ) ≤ (n−t)νz,t(ϕ) ≤ nνz,0(ϕ) for 0 ≤ t ≤ n−1.

Remark 1.6. Observe that when n=1 the Lelong number and integrability
index of a function coincide. This follows from, for instance, Theorem 1.2.

A well-known important result concerning classical Lelong numbers, due to Siu
(cf. [9]), is the following.

Theorem 1.7. The sets {z ∈Ω:νz(ϕ)≥τ } are analytic subsets of Ω for τ >0.

In fact both the relative type and Demailly’s generalized Lelong number defined
above, enjoy similar analyticity properties, provided that e2ψ is Hölder continuous.
A natural question arises: does an equivalent statement to Siu’s analyticity theorem
hold for Berndtsson’s generalized Lelong number? More precisely, are the sets

{z ∈ Ω : νz,ψ(ϕ) ≥ τ }

analytic for τ >0? In the case where the weight e2ψ is Hölder continuous the affir-
mative answer is the content of Theorem 3.9. The main idea of the proof is due
to Kiselman (cf. [6]) and consists of his technique of “attenuating the singularities
of ϕ”. However, this is here done in a different manner than in [6], following results
from [2]. Attenuating the singularities means that we construct a plurisubharmonic
function Ψ satisfying the following properties: if the generalized Lelong number of
ϕ is large then its classical Lelong number is positive, and if the generalized Lelong
number of ϕ is small then its classical Lelong number vanishes. Using this function
we can then realize the set {z ∈Ω:νz,ψ(ϕ)≥τ } as an intersection of analytic sets,
which by basic properties of analytic sets is analytic.



A new generalization of the Lelong number 129

Acknowledgements. I would like thank my advisor Bo Berndtsson for intro-
ducing me to the topic of this article, for his great knowledge and inspiration, and
for his continuous support.

2. Properties and examples

We begin with listing some properties which the generalized Lelong number
satisfies.

Lemma 2.1. Let ϕ, ϕ′ ∈PSH(Ω), and assume that ψ satisfies (1.6). Then the
following are true:

(1) For c>0, νa,ψ(cϕ)=cνa,ψ(ϕ);
(2) If ϕ≤ϕ′ on some neighbourhood of a∈Ω, then νa,ψ(ϕ)≥νa,ψ(ϕ′);
(3) νa,ψ(max{ϕ, ϕ′ })≥min{νa,ψ(ϕ), νa,ψ(ϕ′)};
(4) νa,ψ(ϕ+ϕ′)≤νa,ψ(ϕ)+νa,ψ(ϕ′);
(5) Assume that ϕ satisfies (ddcϕ)n=0 on a punctured neighbourhood of a and

that νa,0(ϕ)≤σa(ϕ, ψ):=σ, where σa denotes the relative type as defined by (1.4).
Then,

νa,ψ(ϕ) ≤ νa,0(ϕ)
1−νa,0(ϕ)/σ

.

If νa,0(ϕ)>σa(ϕ, ψ) then νa,ψ(ϕ)=0.

Proof. The first properties, (1), (2) and (3), are immediate consequences of the
definition.

(4) This is a simple application of Hölder’s inequality.
(5) In [8] it is deduced that, under the assumptions on ϕ,

ϕ(z) ≤ σa(ϕ, ψ)ψ(z)+O(1),

as z→a (cf. (1.3)). Thus, if we choose r>0 small enough, and σ ≤νa,0(ϕ),
∫

B(a,r)

e−2ϕ(ζ)/s−2ψ(ζ−a) dλ(ζ) ≤ C

∫
B(a,r)

e−2ϕ(ζ)/s−2ϕ(ζ)/σ dλ(ζ)

which is finite if (remember that νa,0 denotes the integrability index)

1
s
+

1
σ

<
1

νa,0(ϕ)
,

i.e. if

s>
νa,0(ϕ)

1−νa,0(ϕ)/σ
.
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Thus we obtain

ν(ϕ, ψ) ≤ νa,0(ϕ)
1−νa,0(ϕ)/σ

.

On the other hand, it is evident that if σ>νa,0(ϕ) then the integral above will
always be infinite, whence ν(ϕ, ψ)=0. �

We proceed by listing properties which the special case νz,tψ satisfies.

Lemma 2.2. For ϕ, ψ plurisubharmonic we have:
(1) The function

t 	−→ 1
νz,tψ(ϕ)

is concave while
t 	−→ νz,tψ(ϕ)

is convex, both for t∈[0, νz,0(ψ)].
(2) The function

t 	−→
( 1

νz,0(ψ)
−t

)
νz,tψ(ϕ)

is decreasing for t∈[0, 1/νz,0(ψ)].
(3) The following inequalities hold :

(2.1) νz,0(ϕ) ≤ νz,n−1(ϕ) ≤ (n−t)νz,t(ϕ) ≤ nνz,0(ϕ) for 0 ≤ t ≤ n−1.

Proof. (1) Assume that z=0 and put

f(t) =
1

ν0,t(ϕ)
= sup{s> 0 : e−s2ϕ−2tψ ∈ L1

loc(0)}.

By the definition of concavity, we need to show that for every a, b∈[0, 1/ν0,0(ψ)]
and τ ∈(0, 1) the inequality

f(τa+(1−τ)b) ≥ τf(a)+(1−τ)f(b)

holds. Applying Hölder’s inequality once again, with p=1/τ and q=1/(1−τ), we
see that∫

0

e−2(τf(a)+(1−τ)f(b))ϕ−2(τa+(1−τ)b)ψ dλ

≤
(∫

0

e−2f(a)ϕ−2aψ dλ

)τ(∫
0

e−2f(b)ϕ−2bψ dλ

)1−τ

,
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which implies that f(τa+(1−τ)b)≥τf(a)+(1−τ)f(b). Thus f is a concave func-
tion of t for t∈[0, 1/ν0,0(ψ)]. The exact same calculations with f(t)=ν0,tψ(ϕ) give
convexity of t 	→νz,tψ(ϕ). Note however that this statement is weaker than saying
that t 	→1/νz,tψ(ϕ) is concave.

(2) One can show that if f(t)≥0 is a concave function with f(0)=0, then
t 	→f/t is decreasing. Since t 	→1/ν0,(1/ν0,0(ψ)−t)ψ(ϕ) is concave for t∈[0, 1/ν0,0(ψ)]
by property (1) and is equal to 0 for t=0 by the condition on ψ, we see that

1
tν0,(1/ν0,0(ψ)−t)ψ(ϕ)

is decreasing in t for t∈[0, 1/ν0,0(ψ)]. This implies that t 	→(1/ν0,0(ψ)−t)ν0,tψ(ϕ)
is a decreasing function on [0, 1/ν0,0(ψ)].

(3) If we accept Skoda’s inequality (1.7), the only new information is the in-
equality

ν0,n−1(ϕ) ≤ (n−t)ν0,t(ϕ) ≤ nν0,0(ϕ), 0 ≤ t ≤ n−1,

which follows immediately from property (2) with ψ=log | · |, that is, the fact that
t 	→(n−t)ν0,t(ϕ) is decreasing in t. �

Remark 2.3. The proof of property (1) in Lemma 2.2 can easily be adapted to
show that something stronger holds: the function

ψ 	−→ 1
νz,ψ(ϕ)

is concave on the set of plurisubharmonic functions ψ.

We proceed by calculating two special cases of the generalized Lelong number,
which will give us some insight into what it measures.

Example 2.4. We calculate ν0,t(ϕ), where ϕ(z)= 1
2 log |z1z̄1+...+zkz̄k |, z=

(z1, ..., zn), and k lies between 1 and n. Thus we want to decide for which s>0
the following integral goes from being finite into being infinite:∫

Δ

dλ

|z1z̄1+...+zkz̄k |1/s|z|2t
,

where Δ is some arbitrarily small polydisc containing the origin. In this integral we
put z′ ′ =(zk+1, ..., zn) and introduce polar coordinates with respect to z′ =(z1, ..., zk)
to obtain that it is equal to

(2.2) C

∫
Δ′ ′

∫ 1

0

R2k−1−2/s

∣∣R2+|z′ ′ |2
∣∣t dR dλn−k(z′ ′),
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where Δ′ ′ ={(zk+1, ..., zn):z ∈Δ}, λk is k-dimensional Lebesgue measure and C is
some constant depending only on the dimension. (By dimension we always mean
complex dimension, unless otherwise stated.) This integral is easily seen to be finite
if and only if 2k −2/s>0 and 2k −2t−2/s>2k −2n. In other words

ν0,t

(
1
2 log |z1z̄1+...+zkz̄k |

)
=max

{
1
k

,
1

n−t

}
.

This example shows that when we look at sets of the type {z :z1=...=zk=0} in
C

n, where z=(z1, ..., zn), the generalized Lelong number, as a function of t, thus
senses the (co)dimension of the set: it is constant, and equal to the integrability
index of 1

2 log |z1z̄1+...+zkz̄k |, when t is so small so that n−t is larger than k – the
codimension of the set – and then grows linearly to 1, which is the Lelong number
of 1

2 log |z1z̄1+...+zkz̄k |.

Example 2.5. A similar calculation to that of Example 2.4 reveals that

ν0,t(log |zα1
1 ...zαk

k |)=max
{

α1, ..., αk,

∑k
i=1 αi

n−t

}
for t ∈ [0, n).

Thus, when considering sets of the form {z :z1...zk=0}, which is the union of the k

coordinate planes {z :zk=0} (corresponding to the function ϕ=log |z1...zk |), the gen-
eralized Lelong number senses how many coordinate planes the union is taken over.

Remark 2.6. These two examples show us that the two rightmost inequalities
in (2.1) are sharp. More precisely: using ϕ from Example 2.4, we see that if t=n−k,

ν0,n−1(ϕ)= 1= (n−t)ν0,t(ϕ).

However, if ϕ(z)=log |z1...zn|, we see by Example 2.5 that

(n−t)ν0,t(ϕ) =n=nν0,0(ϕ) for every t ∈ [0, n).

Using our generalized Lelong number it is now easy to obtain a classical result
due to Siu (cf. [9]), namely that νa,n−1 is invariant under biholomorphic coordinate
changes. This will be a corollary of the following proposition.

Proposition 2.7. If f : Ω→Ω is biholomorphic, f(0)=0 and det f ′(0) 
=0,
then

ν0,t(ϕ◦f) = ν0,t(ϕ).



A new generalization of the Lelong number 133

Proof. By a change of coordinates we obtain∫
0

e−2ϕ◦f(ζ)/s−2t log |ζ|/s dλ(ζ) =
∫

0

e−2ϕ(z)/s−2t log |f −1(z)| |det f ′(z)| −1 dλ(z),

which by the assumptions on f is finite if and only if∫
0

e−2ϕ(ζ)/s−2t log |ζ| dλ(ζ) < ∞. �

Since for t=n−1 we get the classical Lelong number, we obtain the following
corollary.

Corollary 2.8. The classical Lelong number is invariant under biholomorphic
changes of coordinates.

Example 2.9. Let V ⊂Ω be a variety and pick a point x∈V where V is smooth.
We can then find a neighbourhood U of x and f1, ..., fk ∈ O(U) such that

V ∩U = {z : f1(z) = ... = fk(z)= 0}.

Since V was smooth at x, we can change coordinates via a function g : U→U such
that in these new coordinates

V ∩U = {z : z1 = ... = zl =0}

for some l≤k. This means that fi ◦g=zi for 1≤i≤l and fi ◦g=0 for i≥l. By
Proposition 2.7 we have that

νx,t

( k∑
i=1

|fi|2
)

= νx,t

( l∑
i=1

|zi|2
)

,

and thus, by Example 2.4 we see that νx,t

(∑k
i=1 |fi|2

)
senses the codimension of V

at x.

When considering the generalized Lelong number, our next technical lemma
shows that we can “move” parts of the singularity from the plurisubharmonic func-
tion to the weight, provided the singularity is sufficiently large.

Lemma 2.10. Let δ>0, and let ψ be a plurisubharmonic function such that
e−2(1+τ)ψ ∈L1

loc(0) for some τ >0. If νa,ψ(ϕ)=1+δ, then with 0<ε<τδ we have
that ∫

a

e−2ϕ(ζ)−2(1−ε)ψ(ζ−a) dλ(ζ) = ∞.
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Proof. The hypothesis implies that for every neighbourhood U of a,
∫

U

e−2ϕ(ζ)/(1+δ′)−2ψ(ζ−a) dλ(ζ) = ∞,

when δ′ <δ. The function ζ 	→e−2(1−ε)ψ(ζ−a) is locally integrable around a, and we
apply Hölder’s inequality with respect to the measure e−2(1−ε)ψ(ζ−a) dλ(ζ) on U ,
with p=1+δ′ and q=(1+δ′)/δ′, to obtain

∫
U

e−2ϕ(ζ)/(1+δ′)−2ψ(ζ−a) dλ(ζ)

=
∫

U

e−2ϕ(ζ)/(1+δ′)e−2(1−ε)ψ(ζ−a)e−2εψ(ζ−a) dλ(ζ)

≤
(∫

U

e−2ϕ(ζ)e−2(1−ε)ψ(ζ−a) dλ(ζ)
)1/p(∫

U

e−2(εq+1−ε)ψ(ζ−a) dλ(ζ)
)1/q

.

Since the left-hand side is infinite by hypothesis, and the second integral on the right-
hand side converges (after possibly shrinking U , since εq+1−ε≤1+τ , if ε<δ′τ ), we
see that (∫

U

e−2ϕ(ζ)−2(1−ε)ψ(ζ−a) dλ(ζ)
)1/p

= ∞.

This implies the desired conclusion, as δ′ can be choose arbitrarily close to δ. �

We will now give a proof of the Skoda inequality (1.7), based on the Ohsawa–
Takegoshi extension theorem. We will also use the same technique to give a simple
proof of Theorem 1.2. We begin by recalling the statement of the Ohsawa–Takegoshi
theorem (see e.g. [1]):

Assume that V is a smooth hypersurface in Cn which in local coordinates can
be written as V ={z :zn=0}, and let U be a neighbourhood in C

n whose intersection
with V is non-empty. We also assume that ϕ is such that

∫
V

e−2ϕ dλ<∞. Then, if
h0 ∈ O(V ∩U), there exists an h∈ O(U) with h=h0 on V which satisfies the estimate

(2.3)
∫

U

|h|2e−2ϕ

|zn|2−2δ
dλ ≤ Cδ

∫
U ∩V

|h0|2e−2ϕ dλ,

for 0<δ<1 and some constant Cδ depending only on U , δ and ϕ.
The hard part of Skoda’s inequality, and the part we will show, is the impli-

cation νz,n−1(ϕ)<1⇒νz,0(ϕ)<1. We record the core of the argument as a lemma
(cf. [4], Proposition 2.2).
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Lemma 2.11. Let ϕ∈PSH(Ω) and let x∈Ω. Assume there exists a complex
line L through x for which ∫

L∩Ω

e−2ϕ dλ1 < ∞,

then there exists a neighbourhood ω ⊂Ω of x for which
∫

ω

e−2ϕ dλ < ∞.

That is, in order to prove that e−2ϕ is locally integrable at a point, we need
only to find a complex line where the statement holds.

Proof. It suffices, of course, to prove this for x=0. Assume that L is a com-
plex line through the origin for which

∫
L∩Ω

e−2ϕ dλ1<∞. Applying the Ohsawa–
Takegoshi extension theorem inductively, we can extend the function

1 ∈ L2(L∩Ω, e−ϕ)∩ O(L∩Ω)

to a function h∈L2(Ω, e−ϕ)∩ O(Ω), where Ω is a neighbourhood in C
n, with a bound

on the L2 norm: ∫
Ω

|h|2e−2ϕ dλ ≤ C

∫
Ω∩L

e−2ϕ dλ1 < ∞

for some constant C. This inequality is obtained from (2.3) by just discarding the
denominator figuring in the left-hand-side integral. Since h is equal to 1 on L, the
quantity |h|2 is comparable to 1 in a neighbourhood ω of the origin. Thus we obtain

∫
ω

e−2ϕ dλ < ∞

which is what we aimed for. �

Proof of Skoda’s inequality. Remember, we want to prove the implication
νz,n−1(ϕ)<1⇒νz,0(ϕ)<1. To that effect, assume that νz,n−1(ϕ)<1. It is well known
that the Lelong number (at the origin) of a function ϕ is equal to the Lelong number
of the same function restricted to a generic complex line passing through the origin
(we will prove this later, see Lemma 2.16), which coincides with the integrability
index on that line. Thus we can find a complex line L for which

∫
Ω∩L

e−2ϕ dλ1<∞
and so by Lemma 2.11 we see that νz,0(ϕ)<1. �

One might hope that knowledge of the dimension of the set where νz,n−1(ϕ)≥c

would enable us to sharpen the estimate of Skoda’s inequality. The following ex-
ample shows that unfortunately this information is not sufficient to succeed.
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Example 2.12. Let n=2 and ϕ(z1, z2)=log(|z1|2+|z2|2a). Then one calculates:
– ν0,n−1(ϕ)=2,
– ν0,0(ϕ)=2/(1+1/a),
– {z :νz,n−1(ϕ)≥1}={0}.

This is the best scenario possible: the dimension of the upper-level set of the Lelong
number is 0 and still the lower bound of the Skoda inequality is sharp, which one
realizes by letting a→∞.

Let us see how we can apply the full strength of the estimate (2.3) of the
Ohsawa–Takegoshi theorem to obtain a proof of Theorem 1.2. We recall the state-
ment of Theorem 1.2:

νa(ϕ) ≥ 1 ⇐⇒
∫

a

e−2ϕ(ζ)−2(n−1) log |ζ−a| dλ(ζ) = ∞.

Proof of Theorem 1.2. Assume that a=0, let Ω be a small neighbourhood of
the origin in C

n, and let ϕ∈PSH(Ω) satisfy ν0(ϕ)<1. Then we know that the
restriction of e−2ϕ to a generic complex line is integrable. However, since a rotation
of ϕ will not effect ϕ’s integrability properties in Cn, we may assume that the line is
given by {z :z2=...=zn=0}. In fact we can assume that ϕ is integrable along every
coordinate axis. Thus ϕ satisfies

(2.4)
∫

{z:z2=...=zn=0} ∩Ω

e−2ϕ dλ1 < ∞.

We want to prove that
∫

0

e−2ϕ(ζ)−2(n−1) log |ζ| dλ(ζ) < ∞.

If we consider the constant function 1 as an element of O(C∩Ω) then, by the
argument above, we obtain a function h∈ O(C2 ∩Ω), comparable to 1 in Ω, and
thus acquiring the inequality

∫
C2∩Ω′

e−2ϕ

|z1|2−2δ
dλ2(z) ≤ Cδ

∫
C∩Ω

e−2ϕdλ1 < ∞,

with Ω′ ⊂Ω. Since 0<δ<1 the function ϕ+(1−δ) log |z1| is plurisubharmonic in Ω.
Thus we can repeat the argument with ϕ exchanged for ϕ+(1−δ) log |z1| to obtain

∫
C3∩Ω′ ′

e−2ϕ

|z1|2−2δ |z2|2−2δ
dλ3(z) ≤ Cδ

∫
C2∩Ω

e−2ϕ

|z1|2−2δ
dλ2(z) < ∞,
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with Ω′ ′ ⊂Ω′. Iterating this procedure it is easy to realize that, after possibly shrink-
ing Ω, we obtain the inequality
(2.5)∫

Ω

e−2ϕ

|z1|2−2δ...|zn−1|2−2δ
dλ(z) ≤ Cδ

∫
Cn−1∩Ω

e−2ϕ

|z1|2−2δ...|zn−2|2−2δ
dλn−1(z) < ∞.

Using the trivial estimate

∫
Ω

e−2ϕ

|z|2(n−1)(1−δ)
dλ(z) ≤

∫
Ω

e−2ϕ

|z1|2−2δ...|zn−1|2−2δ
dλ(z)

we see that ∫
Ω

e−2ϕ−2(n−1)(1−δ) log |z| dλ(z) ≤ Cδ < ∞, δ > 0,

which, by Lemma 2.10 with ψ(ζ)=(n−1) log |ζ|, implies that

∫
Ω

e−2ϕ/(1+δ(n−1))−2(n−1) log |z| dλ(z) ≤ Cδ < ∞, δ > 0.

In this argument, since ν0(ϕ)<1, we can exchange ϕ for ϕ/(1−r), where r>0, and
still have ν0(ϕ/(1−r))<1. Thus, the hypothesis implies that ν0,n−1(ϕ)<1.

The other direction is simpler: by introducing polar coordinates we see that
∫

a

e−2ϕ(ζ)−2(n−1) log |ζ−a| dλ(ζ) =C

∫
ω∈S2n−2

∫
t∈C,|t|<1

e−2ϕ(a+tω) dλ1 dω.

If νa(ϕ)≥1 then the integral of ϕ over almost every complex line through a is
infinite, and thus the above integral is infinite which is the same as saying that
ν0,n−1(ϕ)≥1. We have proved Theorem 1.2. �

We will now describe the relation between the generalized Lelong number
νa,k and restrictions to linear subspaces of dimension k. In order to do this,
we will have to recall the natural measure on the Grassmannian induced by the
Haar measure on U(n), where U(n) denotes the unitary group of C

n. Also, let
ϑ denote the unique unit Haar measure on U(n). Then we can define a mea-
sure dμ on the Grassmannian G(k, n) – the set of k-dimensional subspaces of
C

n – by setting for some fixed V ∈G(k, n) and A⊂G(k, n), the mass of A to be
μ(A)=ϑ{M ∈U(n):MV ∈A}. This means that if P :U(n)→G(k, n) is the function
P (M)=MV , then

μ=P∗(ϑ).
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The measure μ is easily seen to be invariant under actions of U(n), that is, μ(MA)=
μ(A) if M ∈U(n), and also to be independent of our choice of V . For a function f

defined on G(k, n), we have
∫

T ∈G(k,n)

f(T ) dμ=
∫

M ∈U(n)

f(MV ) dϑ.

We deduce that, for g ∈C∞
c (Cn),

∫
T ∈G(k,n)

∫
T

g(z) dλk(z) dμ=
∫

M ∈U(n)

∫
MV

g(z) dλk(z) dϑ.

After changing to polar coordinates the above integral becomes
∫ ∞

0

∫
M ∈U(n)

∫
S2k−1

MV

ρ2k−1g(ρω) dS(ω) dϑ dρ,

where S2k−1
MV denotes the sphere of real dimension 2k −1 in the k-dimensional sub-

space defined by MV . Consider the linear functional on C(ρS2n−1), defined by

(2.6) Iρ(g) := ρ2n−1

∫
M ∈U(n)

∫
S2k−1

MV

g(ρω) dS(ω) dϑ.

Notice that, even though this functional is defined for functions on S2n−1 while
the integration takes place on the sphere S2k−1, it is invariant under rotations on
the sphere S2n−1. By the Riesz representation theorem, this functional is given by
integration against a measure dγ on ρS2n−1, i.e.,

(2.7) Iρ(g) =
∫

ρS2n−1
g(ω) dγ(ω),

where, since Iρ is rotationally invariant, the measure dγ is rotationally invariant
as well. Thus dγ is equal to the surface measure on ρS2n−1 multiplied by a
constant c(ρ). This constant is easily determined by evaluating Iρ(1) using the
two expressions (2.6) and (2.7) above (remember that ϑ was normalized so that
ϑ(U(n))=1):

ρ2n−1c(ρ) = Iρ(1) = ρ2n−1

∫
S2k−1

MV

dS(ω).

So c(ρ)=ck=
∫

S2k−1 dS(ω) and is therefore independent of ρ. Thus we see that the
integral ∫

T ∈G(k,n)

∫
T

g(z) dλk dμ=
∫ ∞

0

ρ2(k−n)Iρ(g) dρ
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is equal to

ck

∫ ∞

0

ρ2(k−n)

∫
ρS2n−1

g(ω) dS(ω) dρ= ck

∫
Cn

|z|2(k−n)g(z) dλ.

Exchanging g(z) for g(z)|z|2(n−k) we have proven the following formula, which gen-
eralizes the formula for changing to polar coordinates in an integral.

Lemma 2.13. For an integrable function g,
∫

Cn

g dλ =
1
ck

∫
T ∈G(k,n)

∫
T

|z|2(n−k)g(z) dλk dμ.

Proof. We have proven the formula under the condition that g ∈C∞
c (Cn). The

general case follows by approximating an arbitrary integrable function g by functions
in C∞

c (Cn). �

Of course, a similar formula holds if we instead consider k-planes through some
arbitrary point a∈C

n, and in the above discussion assume the spheres to be centred
around the point a. This remark applies to the following result as well.

Proposition 2.14. Let k be an integer satisfying 0≤k ≤n−1. Then the fol-
lowing are equivalent :

(a) ν0,n−k(ϕ)<1;
(b) ν0,0(ϕ|T )<1 for almost every T ∈G(k, n);
(c) ν0,0(ϕ|T )<1 for some T ∈G(k, n).

Proof. The assumption ν0,n−k(ϕ)<1 means that
∫

B(0,r)

e−2ϕ(ζ)/(1−δ)−2(n−k) log |ζ| dλ < ∞

for some r>0, and δ>0 small. Using Lemma 2.13 this integral equals
∫

T ∈G(k,n)

∫
B(0,r)∩T

e−2ϕ(ζ)/(1−δ) dλk dμ.

Thus
∫

B(0,r)∩T
e−2ϕ(ζ)/(1−δ) dλk must be finite for almost every T (since by the

lemma, dμ is a multiple of the Lebesgue measure), which implies that ν0,0(ϕ|T )<1
for almost every T ∈G(k, n). This, of course, implies that ν0,0(ϕ|T )<1 for some
T ∈G(k, n). On the other hand, if

∫
B(0,r′)∩T

e−2ϕ(ζ)/(1−δ) dλk<∞ for some T and
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δ>0, then the exact same argument involved in proving the Skoda inequality (using
the Ohsawa–Takegoshi theorem), shows that in fact∫

B(0,r)

e−2ϕ(ζ)/(1−δ′)−2(n−k) log |z| dλ < ∞,

for some small δ′ >0, which implies that ν0,n−k(ϕ)<1. �

A similar argument gives us the following classical statement (cf. [9]).

Theorem 2.15. For a generic V ∈G(k, n) we have that

ν0,n−1(ϕ) = ν0,k−1(ϕ|V ).

Proof. Assume that ν0,n−1(ϕ)<1. Then by Lemma 2.13, with the function
g(ζ)=exp(−2ϕ(ζ)−2(n−1) log |ζ|) we get that for some small δ>0,

∞ >

∫
B(0,r)

e−2ϕ(ζ)/(1−δ)−2(n−1) log |ζ| dλ

=
∫

V ∈G(k,n)

∫
B(0,r)∩V

e−2ϕ(ζ)/(1−δ)−2(k−1) log |ζ| dλk dμ.

Thus ν0(ϕ|V )<1 for a generic V ∈G(k, n). The other direction is proved by using
the same Ohsawa–Takegoshi argument as before. �

Taking k=1 we obtain again the following classical result.

Theorem 2.16. For almost every complex line L through a point a,

νa(ϕ) = νa(ϕ|L).

That is, the Lelong number coincides with what it generically is on complex
lines. Moreover, νn−k coincides with the integrability index of ϕ restricted a generic
k-plane.

3. The analyticity property of the upper level sets of the generalized
Lelong number

In this section we prove that the upper level sets of our generalized Lelong
number are analytic, provided that the weight is “good enough”. This we accom-
plish by considering the Bergman function, whose definition we will soon recall.
First, however, we begin with discussing which properties the weight need to satisfy
in order to be “good enough”.
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• We assume that ψ satisfies the following condition: there exists an M>0
such that

ψ(z) ≥ M log |z|

for z close to 0. It might be worth mentioning that in the case of analytic singu-
larities, i.e., if ψ=log |f |, where f=(f1, ..., fn) is a tuple of holomorphic functions
with common intersection locus at the a single point, the least of all M for which

log |f(z)| ≥ M log |z|

is called the �Lojasiewicz exponent of f .
• We assume as before that

e−2(1+τ)ψ ∈ L1
loc(0)

for some τ >0.
• We also assume that e2ψ is Hölder continuous with exponent α in a neigh-

bourhood of the origin.
• Finally we assume that ν0(ψ)=l>0, so that ψ carries some singularity at the

origin.

Definition 3.1. We say that a plurisubharmonic function ψ is an admissible
weight, and write ψ ∈W (τ, l, M, α), if it satisfies the four properties above.

Admissible weights satisfy the following property, which we will make use of in
the proof of the analyticity.

Lemma 3.2. Assume that e2ψ is Hölder continuous at the origin, with expo-
nent α and satisfies ψ ≥M log |z| near the origin. Then there exists an R>0 and a
constant C>0, such that for every k ∈N,

e−2ψ(ζ−a′) ≥ Ce−2ψ(ζ),

where 2−(k−1) ≥ |ζ| ≥2−k and |a′ |=2−Rk.

Proof. Fix k ∈N. We want to show that

e−2ψ(ζ−a′) ≥ Ce−2ψ(ζ)

for 2−(k−1) ≥ |ζ| ≥2−k and |a′ |=2−Rk. Since |ζ|R ≥ |a′ | the assumption gives us that

e2ψ(ζ) ≥ |ζ|2M ≥ |a′ |α
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if Rα≥2M (which is a condition independent of k). Now, using the Hölder conti-
nuity, we obtain

e2ψ(ζ−a′) ≤ e2ψ(ζ)+c|a′ |α ≤ ce2ψ(ζ),

which implies that
e−2ψ(ζ−a′) ≥ Ce−2ψ(ζ)

for some constant C>0. �

Example 3.3. Examples of plurisubharmonic functions which are admissible
weights are given by

ψ = log
( n∑

i=1

|fi|αi

)
,

where f=(f1, ..., fn) is an n-tuple of holomorphic functions with common zero locus
at the origin. Here we have to assume that αi>0 are as small as needed in order
for a τ >0 to exist for which

e−2(1+τ)ψ ∈ L1
loc(0).

Then eψ is Hölder continuous with Hölder exponent min{1, αi}, and ψ has Lelong
number equal to mini αiν0(log |fi|). Also, the �Lojasiewicz exponent, which is the
smallest M for which

∑n
i=1 |fi|αi ≥ |z|M is easily seen to be finite.

We now define the Bergman kernel with respect to a weight.

Definition 3.4. Let a∈Ω, ϕ∈PSH(Ω) and ψ ∈W (τ, l, M, α). We define Ha=
O(Ω)∩L2(Ω, e−2ϕ( · )−2ψ( · −a)), which is a separable Hilbert space. The Bergman
kernel for a point z ∈Ω is defined as the unique function Bψ

a (ζ, z), holomorphic in ζ ,
satisfying

h(z) =
∫

Ω

h(ζ)Bψ
a (ζ, z)e−2ϕ(ζ)−2ψ(ζ−a) dλ(ζ)

for every h∈ Ha.

The existence of the Bergman kernel is a (rather easy) consequence of the Riesz
representation theorem for Hilbert spaces. Closely related to the Bergman kernel is
the Bergman function.

Definition 3.5. For a∈Ω the Bergman function at a point ζ ∈Ω is defined as

Bψ
a (ζ) :=Bψ

a (ζ, ζ).
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We define

Λ(a) =
{

h ∈ O(Ω) :
∫

Ω

|h(ζ)|2 e−2ϕ(ζ)−2ψ(ζ−a)dλ(ζ) ≤ 1
}

,

that is, the set of functions in Ha of norm less than or equal to 1. Let us calculate
the norm of ζ 	→Bψ

a (ζ, z):

‖Bψ
a ( · , z)‖2 =

∫
Ω

Bψ
a (ζ, z)Bψ

a (ζ, z)e−2ϕ(ζ)−2ψ(ζ−a) dλ(ζ) =Bψ
a (z, z),

which in particular implies that Bψ
a (z, z) is given by a non-negative real number.

Consequently

s(ζ) =
Bψ

a (ζ, z)√
Bψ

a (z, z)
∈ Λ(z)

and so

(3.1) |s(z)|2 =Bψ
a (z).

Also, we have that

(3.2) sup
h∈Λ(a)

|h(z)|2 = sup
h∈Λ(a)

|(h, Bψ
a ( · , z))|2 = ‖Bψ

a ( · , z)‖2 =Bψ
a (z),

where ( · , · ) denotes the inner product in Ha, which gives us the following extremely
useful characterization of the Bergman function,

(3.3) Bψ
a (z) := sup

{
|h(z)|2 : h ∈ O(Ω) and

∫
Ω

|h(ζ)|2 e−2ϕ(ζ)−2ψ(ζ−a) dλ(ζ) ≤ 1
}

,

and (3.1) means that this supremum is actually realized by the function s.
Bergman functions enjoy several nice properties, and one, critical for our pur-

poses, is provided by the following theorem of Berndtsson (cf. [2]).

Theorem 3.6. If Ω is pseudoconvex, then the function (a, z) 	→log Bψ
a (z) is

plurisubharmonic in (a, z).

Thus we can talk about the Lelong number of the function z 	→log Bψ
z (z) in Ω,

and the following proposition relates it to the generalized Lelong number of ϕ. More
specifically, it says that if the generalized Lelong number of ϕ with respect to ψ is
larger than 1, then the classical Lelong number of z 	→log Bψ

z (z) is larger than 0,
and if the generalized Lelong number is smaller than 1 the classical number is 0.
In the terminology of Kiselman, we say that log Bψ

z (z) attenuates the singularities
of ϕ.
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Recall that by Lemma 3.2 we can find an R>0 for which

e−2ψ(ζ−a′) ≥ Ce−2ψ(ζ)

for 2−(k−1) ≤ |ζ| ≤2−k and |a′ |=2−Rk, for every k ∈N.
Also, by Lemma 2.10 we can choose an ε<δτ (arbitrarily close to δτ ) for which

(3.4)
∫

B(a,1/2N )

e−2ϕ(ζ)−2(1−ε)ψ(ζ−a) dλ(ζ) = ∞,

if we fix an N>0 large enough.

Proposition 3.7. Let δ>0 be small, let Ω be an open and pseudoconvex set
containing the point a and let ψ ∈W (τ, l, M, α). Assume that

νa,ψ(ϕ)= 1+δ.

Then, with Cδ=δτ l, the classical Lelong number of log Bψ
· ( · ) at a is larger than or

equal to Cδ/R, that is

νa(log Bψ
· ( · )) ≥ Cδ

R
.

On the other hand, if we assume that

νa,ψ(ϕ) < 1,

then
νa(log Bψ

· ( · )) = 0.

Without loss of generality, we can assume that a=0. Recalling the definition
of the classical Lelong number, we see that we want to show that

(3.5) lim
r→0

sup|z|=r log Bψ
z (z)

log r
≥ Cδ

R
.

The idea of the proof is the following. The assumption ν0,ψ(ϕ)=1+δ essentially
means that ∫

0

e−2ϕ/(1+δ′)−2ψ dλ = ∞

for every δ′ <δ. Thus, the weight ϕ+ψ has a rather large singularity at the origin.
If we move the singularity of ψ by translating it to an arbitrary point a′, then if
a′ is small enough, the weight ϕ(ζ)+ψ(ζ −a′) will have a rather large singularity
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at the point a′. As we will show, the singularity will actually be so large that if
h∈Λ(a′), that is if h is holomorphic and satisfies

∫
Ω

|h(ζ)|2 e−2ϕ(ζ)−ψ(ζ−a′) dλ(ζ) ≤ 1,

then h is forced to be small at the point a′. In fact,

(3.6) |h(a′)|2 ≤ |a′ |Cδ/R.

This would be enough to prove the proposition, but the following observations
show that in fact it will be enough to show something weaker. By Cauchy estimates
we will see that it suffices to find just some point z0 near the origin for which
|h(z0)|2 ≤ |z0|Cδ , if h∈Λ(a′). This simplifies things considerably. Also, since we, in
(3.5), are dealing with a limit, it suffices to find a sequence rk tending to 0, for
which the inequality (3.5) holds. This means that instead of applying the above
idea to arbitrary points a′ near the origin, we merely need to apply it to points of
a sequence ak tending to 0. We now turn to the details.

Lemma 3.8. Assume that ν0,ψ(ϕ)=1+δ. Fix any sequence ak→0 with |ak |=
2−Rk and for every k choose a corresponding hk ∈Λ(ak). Then {ak } ∞

k=1 contains a
subsequence {akj } ∞

j=1, for which there exists bkj ∈B(0, 2−kj ) with

|hkj (bkj )| ≤ |bkj |Cδ .

Proof. The lemma will be proved with Cδ=εl. The general case with Cδ=δτ l

then follows, since ε can be chosen arbitrarily close to δτ . We will prove the lemma
by arguing via contradiction. The negation of the statement is the following: For
every k larger than some finite number, which we can assume to be the N figuring
in (3.4),

|hk(ζ)| > |ζ|Cδ

for every ζ ∈B(0, 2−k).
Let us assume this negation. Then, for every ak we have, since hk ∈Λ(ak),

1 ≥
∫

B(0,2−k)

|ζ|Cδ e−2ϕ(ζ)−2ψ(ζ−ak) dλ(ζ) ≥
∫

A(k)

|ζ|Cδ e−2ϕ(ζ)−2ψ(ζ−ak) dλ(ζ),

where A(k) denotes the annulus B(0, 2−k)\B(0, 2−k−1). Since for ζ ∈A(k),

e−2ψ(ζ−ak) ≥ Ce−2ψ(ζ)
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by Lemma 3.2, we deduce that

(3.7) C ≥
∫

A(k)

|ζ|Cδ e−2ϕ(ζ)−2ψ(ζ) dλ(ζ).

Now, remember that ε was chosen so that

∞ =
∫

B(0,1/2N )

e−2ϕ(ζ)−2(1−ε)ψ(ζ) dλ(ζ).

Thus, by covering the ball B(0, 1/2N ) by annuli B(0, 2−k)\B(0, 2−k−1), we get

∞ =
∫

B(0,1/2N )

e−2ϕ(ζ)−2(1−ε)ψ(ζ) dλ(ζ) ≤ C

∞∑
k=1

∫
A(k)

|ζ|2εl
e−2ϕ(ζ)−2ψ(ζ) dλ(ζ)

≤ C

∞∑
k=1

2−kεl

∫
A(k)

|ζ|εl
e−2ϕ(ζ)−2ψ(ζ) dλ(ζ) ≤ C

∞∑
k=1

2−kεl < ∞,

where we in the first inequality use the fact that ν0(ψ)<l implies that e2εψ(ζ) ≤
C|ζ|2εl for |ζ| ≤2−N , if N is large enough, and in the last but one inequality use
(3.7). This establishes the desired contradiction. �

Proof of Proposition 3.7. Fix a point a∈Ω with |a|=2−Rk for some k ∈N, and
choose an h∈Λ(a) for which |h(b)| ≤ |b|Cδ for some b∈B(0, 2−k). We claim that in
fact such an h satisfies the estimate

(3.8) |h(a)| ≤ D|a|Cδ/R

for some constant D ≥0 which does not depend on h nor k: Since ϕ and ψ are
locally bounded from above, every h∈Λ(a) satisfies:

∫
Ω′

|h(ζ)|2 dλ(ζ) ≤ C

for every Ω′ �Ω. Fix such an Ω′ with B(0, 2−k)⊂Ω′. Then, by applying Cauchy
estimates on h, we see that

|h′(ζ)|2 ≤ C,

in Ω′, where C is some constant independent of k. By using a first order Taylor
expansion of h, we conclude that

|h(a)| ≤ |h(b)|+C|a−b| ≤ |b|Cδ +C|b| ≤ D |a|Cδ/R

for some constant D ≥0 independent of h and k, as promised.
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Let us complete the proof. Assume that ν0,ψ(ϕ)=1+δ. Fix a sequence {ak } ∞
k=1 ⊂

Ω with |ak |=2−Rk satisfying

sup
|z|=2−Rk

log Bψ
z (z)= log Bψ

ak
(ak)

for every k. This we can accomplish since a plurisubharmonic function attains its
supremum on any compact set. In view of (3.1), which says that we can actually
find a holomorphic function in Λ(z) realizing the Bergman function at z, we can
find for each k, a function hk ∈Λ(ak) for which

(3.9) hk(ak) =Bψ
ak

(ak).

By Lemma 3.8 we can extract a subsequence {akj } ∞
j=1 with a corresponding se-

quence {bkj } ∞
j=1, where |bkj |=2−kj , for which

|hkj (bkj )| ≤ |bkj |Cδ .

The estimate (3.8) implies that

log Bψ
akj

(akj ) ≤ log |akj |Cδ/R+D.

Thus we obtain (observe that the denominators are negative),

lim
r→0

sup|z|=r log Bψ
z (z)

log r
= lim

j→∞

sup|z|=2−Rkj log Bψ
z (z)

log 2−Rkj
= lim

j→∞

log Bψ
akj

(akj )

log 2−Rkj
≥ Cδ

R
,

and we are done in this case.
If νa(ϕ, ψ)<1, then an application of Hörmander’s L2-methods (cf. [5]) provides

us with a holomorphic function h, satisfying |h(a)|2>0, and the integral over Ω of
h with respect to the weight e−2ϕ( · )−2ψ( · −a) is less than 1. In view of (3.3) this
implies that Bψ

a (a)>0. Hence νa(ϕ, ψ)=0. �

We can now prove the analogue of Siu’s theorem for our generalized Lelong
number, using an argument due to Kiselman.

Theorem 3.9. Let Ω∈C
n be open and pseudoconvex and ϕ be a plurisubhar-

monic function in Ω. Then if ρ>0,

{z ∈ Ω : νz,ψ(ϕ) ≥ ρ}

is an analytic subset of Ω.
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Proof. We first note that if ψ=0 then νa,0(ϕ) is the same as the integrability
index of ϕ for which the conclusion of the theorem holds (see e.g. [6]). Using the
notation of Proposition 3.7 we define

Ψ(z)= 3n
log Bψ

z (z)
Cδ/R

, z ∈ Ω.

The core of the proof is to show that

{z ∈ Ω : νz,ψ(ϕ) ≥ 1+δ} ⊂ {z ∈ Ω : e−2Ψ /∈ L1
loc(z)} ⊂ {z ∈ Ω : νz,ψ(ϕ) ≥ 1}.

This we can accomplish as follows.
If for a∈Ω we have that νa,ψ(ϕ)≥1+δ then due to Proposition 3.7, the classical

Lelong number of Ψ at a is greater than 3n since

νa(Ψ) ≥ 3nCδ/R

Cδ/R
=3n.

By Skoda’s inequality (1.7) we have that νa(Ψ)≤nνa,0(Ψ) which shows that the
integrability index of Ψ at a is larger than or equal to 3. In particular, this implies
that e−2Ψ( · ) is not locally integrable at a and proves the first of the inclusions.

For the second one, assume that

νa,ψ(ϕ) < 1.

This implies that e−2ϕ(ζ)−2ψ(ζ−a) is locally integrable at a. As noted above, an
application of Hörmander’s L2-methods gives us a holomorphic function h in Ω such
that |h(a)|2>0, and the integral of h with respect to the weight e−2ϕ( · )−2ψ( · −a)

is less than 1. Thus the function z 	→Bψ
z (z), being defined as that supremum of

the modulus square of all holomorphic functions whose integral with respect to our
weight is less than or equal to 1, is strictly positive at a, which implies that

Ψ(a) > −∞.

But (see e.g. [5]) e−2u is locally integrable around the points where u is finite for
every plurisubharmonic function u, and thus we see that

e−2Ψ ∈ L1
loc(a),

which proves the second inclusion.
As noted above, we know that set {z ∈Ω:e−2Ψ /∈L1

loc(z)} is analytic in Ω. Thus,
by rescaling we obtain analytic sets Zδ,ρ such that

{z ∈ Ω : νz,ψ(ϕ) ≥ ρ} ⊂ Zδ,ρ ⊂
{

z ∈ Ω : νz,ψ(ϕ) ≥ ρ

1+δ

}
,
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which implies that
{z ∈ Ω : νz,ψ(ϕ) ≥ ρ} =

⋂
δ>0

Zδ,ρ.

Since the intersection of any number of analytic sets is analytic, we are done. �

As a consequence of this theorem we can define the following concept, intro-
duced in the classical case by Siu [9].

Definition 3.10. For an analytic set Z in Ω, we define the generic generalized
Lelong number of ϕ by

mψ
Z(ϕ)= inf{νz,ψ(ϕ) : z ∈ Z}.

We have the following lemma by precisely the same argument as in the classical
case.

Lemma 3.11. νz,ψ(ϕ)=mψ
Z(ϕ) for z ∈Z \Z ′, where Z ′ is a union of countably

many proper analytic subsets of Z.

Proof. Put Z ′ =
⋃

c>mψ
Z ,c∈Q

Z ∩Eψ
c , where Eψ

c ={z ∈Z :νz,ψ(ϕ)≥c}. Then each

Z ∩Eψ
c is an analytic proper subset of Z and νz,ψ(ϕ)=mψ

Z(ϕ) on Z \Z ′ by construc-
tion. �

4. Approximation of plurisubharmonic functions by Bergman kernels

A well-known result due to Demailly (see for instance [4]) makes it possible
to approximate a plurisubharmonic function ϕ by the logarithm of the Bergman
function Ψm with respect to the weight e−2mϕ, as m tends to infinity. Furthermore,
the approximation is continuous with respect to the (classical) Lelong number, i.e.

νz,n−1(Ψm)→ νz,n−1(ϕ), as m→ ∞.

We will now show that the same holds true using the Bergman function with respect
to the weight e−2mϕ−2ψ( · −x), where x is the point at which we evaluate the Bergman
function. The argument mimics closely that of Demailly (cf. [4]), with some minor
changes to fit our case. To begin with, we modify the construction of Ha slightly.

Definition 4.1. For each m∈N and a∈Ω we let

Hm
a = O(Ω)∩L2(Ω, e−2mϕ( · )−2ψ( · −a)).
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Denote by Bm
a (for notational convenience we suppress the dependence on ψ)

the Bergman function for Hm
a , and put

Ψm
a (z) =

1
2m

log Bm
a (z)

for z ∈Ω. Fix a∈Ω. If h∈ Hm
a has norm bounded by 1, the mean value property for

holomorphic functions shows that for r=r(a)>0 small enough,

|h(a)|2 ≤ n!
πnr2n

∫
|a−ζ|<r

|h(ζ)|2 dλ(ζ)

≤ n!
πnr2n

esup|a−ζ|<r(2mϕ(ζ)+2ψ(ζ−a))

∫
|a−ζ|<r

|h(ζ)|2e−2mϕ(ζ)−2ψ(ζ−a) dλ(ζ).

Thus, if we assume that

(4.1) ψ(ζ −a) ≤ l log |ζ −a|,

we have that

Ψm
a (a) ≤ sup

|a−ζ|<r

(
ϕ(ζ)+

1
2m

2ψ(ζ −a)
)

− 1
2m

log r2n+C

≤ sup
|a−ζ|<r

ϕ(ζ)+
1
m

(l−n) log r+
C

m
.

Now, assume that

(4.2) ψ(ζ) ≥ (n−δ) log |ζ|

for some small, fixed δ>0. Fix a point a for which ϕ(a)>−∞. By considering
the 0-dimensional variety {a}, we obtain, by the Ohsawa–Takegoshi theorem (see
Section 2), that for every ξ ∈C, there exists an h∈ O(Ω), satisfying h(a)=ξ, and a
constant Cδ>0, depending only on the dimension and δ, such that∫

Ω

|h(ζ)|2e−2mϕ(ζ)−2(n−δ) log |ζ−a| dλ(ζ) ≤ Cδe
−2mϕ(a)|ξ|2.

By the assumption (4.2) this implies that∫
Ω

|h(ζ)|2e−2mϕ(ζ)−2ψ(ζ−a) dλ(ζ) ≤ Cδe
−2mϕ(a)|ξ|2.

Since this holds for every ξ we can choose a ξ such that the right-hand-side is equal
to 1, i.e. Cδe

−2mϕ(a)|ξ|2=1. Then h satisfies∫
Ω

|h(ζ)|2e−2mϕ(ζ)−2ψ(ζ−a) dλ(ζ) ≤ 1
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and
log |h(a)|2 = log |ξ|2 = − log Cδ+2mϕ(a).

Thus,

Ψm
a (a) ≥ ϕ(a)− log Cδ

2m
.

If a is such that ϕ(a)=−∞ this inequality is trivial. Thus, for every m and z ∈Ω
we have that

(4.3) ϕ(z)− 1
2m

log Cδ ≤ Ψm
z (z) ≤ sup

|z−ζ|<r

ϕ(ζ)+
1
m

(l−n) log r+C.

We now want to show that this approximation behaves well with respect to the
generalized Lelong number with weight ψ.

To this end, fix a∈Ω, let ρ>νa,ψ(Ψm
a ( · )), and put

p=1+mρ and q =1+
1

mρ
.

Then 1/p+1/q=1 and we apply Hölder’s inequality to the following integral, with
r(a) so small that {ζ :|a−ζ|<r(a)}�Ω,∫

|ζ−a|<r

e−2m/pϕ−2ψ(ζ−a) dλ(ζ)

=
∫

|ζ−a|<r

e−2m/pϕ−2ψ(ζ−a)Bm
a (ζ)1/pBm

a (ζ)−1/p dλ(ζ),

to obtain, since −q/p=−1/mρ, that it is dominated by
(∫

|ζ−a|<r

Bm
a (ζ)e−2mϕe−2ψ(ζ−a) dλ(ζ)

)1/p

×
(∫

|ζ−a|<r

Bm
a (ζ)−1/mρe−2ψ(ζ−a) dλ(ζ)

)1/q

.

The first integral can be seen to be finite (cf. [4], p. 546), as well as the second
integral, as it equals ∫

|ζ−a|<r

e−2 log Bm
a (ζ)/2mρ−2ψ(ζ−a) dλ(ζ),

which is finite due to the assumption on ρ. Since p/m=1/m+ρ this implies the
inequality

(4.4) νa,ψ(ϕ( · )) ≤ νa,ψ(Ψm
a ( · ))+

1
m

.

We need the following lemma.
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Lemma 4.2. For every m∈N and a∈Ω we have that

Bm
a (ζ) ≥ C|ζ −a|(n+2)(n−δ)/lBm

ζ (ζ)

for every ζ in a small neighbourhood of a, where C>0 is a constant not depending
on ζ or a.

Proof. For a fixed point a in Ω, choose ζ 
=a with distance less than
min{1, dist(a, ∂Ω)} to each other, and let

M =
n−δ

l
.

First, we claim that for
z ∈ B(ζ, 2−M |ζ −a|M ),

the inequality

(4.5) e−2ψ(a−z) ≤ e−2ψ(ζ−z)

holds. Indeed, due to the assumptions (4.1) and (4.2), for such z,

eψ(ζ−z) ≤ |ζ −z|l ≤ |a−z|n−δ ≤ eψ(a−z),

since
|ζ −z| ≤ 2−M |ζ −a|M ≤ |z −a|M ,

where in the second inequality we used that |ζ −a| ≤2|z −a|. Now, let

h ∈ Λm(ζ) :=
{

h ∈ O(Ω) :
∫

Ω

|h(z)|2 e−2mϕ(z)−2ψ(z−ζ) dλ(z) ≤ 1
}

be such that h(ζ)=Bm
ζ (ζ). To simplify notation we assume that m=1, but the fol-

lowing calculations remains valid for any m. Take a smooth function θ with support
in B(ζ, 2−M |ζ −a|M ) satisfying θ=1 in a neighbourhood of B(ζ, 2−(1+M)|ζ −a|M ),
and

(4.6) |∂̄θ(z)| ≤ 1
|a−ζ|2M

.

Thus for every point z ∈supp θ the inequality (4.5) holds. Moreover, we have that

e−2(n+1) log |z−ζ| =
1

|z −ζ|2(n+1)
≤ 2(n+1)(M+1)

|a−ζ|2M(n+1)
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for z ∈supp ∂θ. Putting this information together we obtain the estimate
∫

Ω

|∂θh|2e−2ϕ(z)−2ψ(a−z)−2(n+1) log |z−ζ| dλ(z)

≤ 2(n+1)(M+1)

|a−ζ|2M(n+1)

∫
Ω

|∂θh|2e−2ϕ(z)−2ψ(ζ−z) dλ(z) ≤ 2(n+1)(M+1)

|a−ζ|2M(n+2)
,(4.7)

since h∈Λ(ζ). Thus, by standard L2-estimates, we can solve the equation

(4.8) ∂̄u = ∂̄(θh) = ∂̄θh

with respect to the weight e−2ϕ(z)−2ψ(a−z)−2(n+1) log |z−ζ|. The singularity of the
weight forces u to vanish at ζ , so if we define F =θh−u, then F (ζ)=h(ζ), and F is
holomorphic in Ω. Moreover, by the triangle inequality,

(∫
Ω

|F |2e−2ϕ(z)−2ψ(a−z) dλ(z)
)1/2

≤
(∫

Ω

|θh|2e−2ϕ(z)−2ψ(a−z) dλ(z)
)1/2

+
(∫

Ω

|u|2e−2ϕ(z)−2ψ(a−z) dλ(z)
)1/2

.

Using (4.5) we have that
∫

Ω

|θh|2e−2ϕ(z)−2ψ(a−z) dλ(z) ≤
∫

Ω

|θh|2e−2ϕ(z)−2ψ(ζ−z) dλ(z) ≤ 1,

and we also see that∫
Ω

|u|2e−2ϕ(z)−2ψ(a−z) dλ(z) ≤
∫

Ω

|u|2e−2ϕ(z)−2ψ(a−z)−2(n+1) log |z−ζ| dλ(z)

≤ C ′
∫

Ω

|∂θh|2e−2ϕ(z)−2ψ(a−z)−2(n+1) log |z−ζ| dλ(z),

where the first inequality comes from the assumption that |z −ζ| ≤ |a−ζ| ≤1, and
the last inequality, as well as the constant C ′ (which only depends on Ω), comes
from the L2-estimate obtained from solving (4.8). Using (4.7) we arrive at

∫
Ω

|F |2e−2ϕ(z)−2ψ(a−z) dλ(z) ≤ 1+C ′ 2(n+1)(M+1)

|a−ζ|2M(n+2)
≤ C1

|a−ζ|2M(n+2)
,

where C1 is a constant independent of ζ and a. Thus, if we define the function

F̃ (z) =
|a−ζ|M(n+2)

√
C1

F (z)
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then F̃ belongs to Λ(a) and satisfies

|F̃ (ζ)| =C
−1/2
1 |Bm

ζ (ζ)| |a−ζ|M(n+2).

This shows that for every a and ζ (the inequality is trivial if ζ=a),

|Bm
a (ζ)| ≥ C|Bm

ζ (ζ)| |a−ζ|M(n+2),

where C=C
−1/2
1 does not depend on ζ or a. �

Using the lemma we see that for each a∈Ω,

1
2m

log |Bm
a (ζ)| ≥ 1

2m
log |Bm

ζ (ζ)|+ M(n+2)
2m

log |a−ζ|+ C

m

for ζ close to a, which implies that

νa,ψ(Ψm
a ( · )) ≤ νa,ψ(Ψm

· ( · ))+
C

2m
.

Combining with (4.4) we obtain that

νa,ψ(ϕ( · )) ≤ νa,ψ(Ψm
· ( · ))+

C

m

for every a∈Ω.
On the other hand, the left-hand estimate of (4.3) implies that

νa,ψ(ϕ( · )) ≥ νa,ψ(Ψm
· ( · )).

Thus we have proved the following theorem.

Theorem 4.3. Assume that ψ satisfies

(4.9) l log |z| ≥ ψ(z) ≥ (n−δ) log |z|

for some small, fixed δ>0. Then for ϕ∈PSH(Ω), m∈N, z, a∈Ω and every r<

d(z, ∂Ω) we have that

(4.10) ϕ(z)− 1
2m

log Cδ ≤ Ψm
z (z) ≤ sup

|z−ζ|<r

ϕ(ζ)+
1
m

(l−n) log r+
C

m

and

(4.11) νa,ψ(ϕ( · ))− C

m
≤ νa,ψ(Ψm

· ( · )) ≤ νa,ψ(ϕ( · )),

where C is a constant depending on Ω, l and δ. In particular, Ψm
z (z) converges to

ϕ(z), as m→∞, both pointwise and in L1
loc.
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Remark 4.4. If ψ=0, as in the original theorem of Demailly, then Ψm
a are

plurisubharmonic functions with analytic singularities, and thus we approximate ϕ

with plurisubharmonic functions with analytic singularities. For instance, this gives
a very simple proof of Siu’s analyticity theorem for the classical Lelong number. In
our setting however, it is unclear, and an interesting question, if the presence of ψ

allows for Ψm
a to have analytic singularities.

Remark 4.5. One can show that when comparing the approximations Ψm
z to

the classical Lelong number we can obtain, instead of (4.11), the inequalities

νa,n−1(ϕ( · ))− n−l

m
≤ νa,n−1(Ψm

· ( · )) ≤ νa,n−1(ϕ( · )).

The approximation of Demailly, that is with ψ=0, satisfied these inequalities with
l=0.
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