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Calculation of local formal Fourier transforms

Adam Graham-Squire

Abstract. We calculate the local Fourier transforms for connections on the formal punc-
tured disk, reproducing the results of J. Fang and C. Sabbah using a different method. Our method
is similar to Fang’s, but more direct.

1. Introduction

In [4], S. Bloch and H. Esnault introduced the local Fourier transforms for con-
nections on the formal punctured disk. In [6], R. Garcia Lépez found similar results
to [4] using a different method. Neither [4] nor [6] gave explicit calculations for the
local Fourier transforms, however. Explicit formulas were proved by J. Fang [5] and
C. Sabbah [10]. Interestingly, the calculations rely on different ideas: the proof of
[5] is more algebraic, while [10] uses geometric methods.

In this paper, we provide yet another proof of these formulas. Our approach
is closer to Fang’s, but more straightforward. In order to calculate a particular
local Fourier transform, one must ascertain the ‘canonical form’ of the local Fourier
transform of a given connection. This amounts to constructing an isomorphism
between two connections (on a punctured formal disk). In [5], this is done by
writing matrices of the connections with respect to certain bases. We work with
operators directly, using techniques described by D. Arinkin in [1, Section 7].

Acknowledgements. 1 am very grateful to my advisor Dima Arinkin for many
helpful discussions and his consistent encouragement of this work.

2. Definitions and conventions

We fix a ground field k, which is assumed to be algebraically closed of charac-
teristic zero.
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2.1. Connections on formal disks

Consider the field of formal Laurent series K =k((2)).

Definition 2.1. Let V be a finite-dimensional vector space over K. A connection
on V is a k-linear operator V: V —V satisfying the Leibniz identity
daf
\Y =fV —
(fo)=fV(v)+ v
for all fe K and veV. A choice of basis in V' gives an isomorphism V~K"; we
can then write V=V, as d/dz+ A, where A=A(z)€egl, (K) is the matriz of V with
respect to this basis.

We write C for the category of vector spaces with connections over K. Its
objects are pairs (V, V), where V is a finite-dimensional K-vector space and V: V—
V is a connection. Morphisms between (V7,V1) and (V2,Vs) are K-linear maps
¢: V1 —V5 that are horizontal in the sense that ¢V1=Vsy¢.

We summarize below some well-known properties of connections on formal
disks. The results go back to Turrittin [11] and Levelt [7]; more recent references
include [2], [3, Sections 5.9 and 5.10], [8], and [9].

Let ¢ be a positive integer and consider the field K,=k((2'/9)). Note that K,
is the unique extension of K of degree q. For every feK,, we define an object
EfEC by

d _
Ef ZEf’q = (Kq, E-&-Z 1f>

In terms of the isomorphism class of an object Ef, the reduction procedures of
[11] and [7] imply that we need only consider f in the quotient

) k() / (Mol +22),

where k[[z]] denotes formal power series.

Let R, (we write R,;(z) when we wish to emphasize the local coordinate) be
the set of orbits for the action of the Galois group Gal(K,/K) on the quotient.
Explicitly, the Galois group is identified with the group of gth roots of unity n€k;
the action on f€R, is by f(z9)— f(nz'/9). Finally, let Rqoch denote the set of
f€R, that cannot be represented by elements of K, for any 0<r<gq.

Remark 2.2. R(q) can alternatively be described as the locus of R, where
Gal(K,/K) acts freely.
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The following proposition lists some well-known facts about the objects Ej.
The proofs of the different parts of the proposition are either straightforward or
common in the literature, and are thus omitted.

Proposition 2.3. (1) The isomorphism class of Ey depends only on the orbit
of the image of f in R,.

(2) Ey is irreducible if and only if the image of f in Ry belongs to R,C;. As q
and f vary, we obtain a complete list of irreducible objects of C.

(3) Every E€C can be written as

E~ @(Efi;q'i ®Jm, ),
i

where the Ey, 4, are irreducible and Jy,,=(K™i,d/dz+2" Ny,,), with Ny,, repre-
senting the nilpotent Jordan block of size m,;.

Remark 2.4. Proposition 2.3(3) is particularly useful because it allows us to
reduce the calculation of the local Fourier transform of E€C to looking at the
calculation on E¢. A precise statement is found in Corollary 3.3.

2.2. Local Fourier transforms

Sometimes it is useful to keep track of the choice of local coordinate for C. To
stress the coordinate, we write Cy to indicate the coordinate z at the point zero and
Cw to indicate the coordinate (=1/z at the point at infinity. Note that Cy and Coo
are both isomorphic to C, but not canonically. We also let C<! (respectively CZ!)
denote the full subcategory of Co, of connections whose irreducible components all
have slopes less than one (respectively greater than one); that is, E; such that
—1<ord(f) (respectively —1>ord(f)).

Definition 2.5. We define the local Fourier transforms F(0:20) = F(o.0) and
F(>%) using the relations given in [4, Propositions 3.7, 3.9 and 3.12] while fol-
lowing the convention of [1, Section 2.2]. We let the Fourier transform coordinate
of z be z, with 5:1/2. Let E=(V,V .)€y such that V, has no horizontal sections,
and thus V. is invertible. The following is a precise definition for F(%°°)(E); the
other local Fourier transforms can be defined analogously and thus precise defini-
tions are omitted. Consider on V the k-linear operators

(2) (=-V:hV—V and Vi=—(2:V V.
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As in [1], ¢ extends to define an action of k((¢)) on V and dimy (¢, V <oo. We

write V; to indicate that we are considering V' as a k((¢))-vector space. Then V

is a connection, and the k((¢))-vector space Ve with connection @5 is denoted by
(0,00) o R <1
which defines the functor F(%°): Cy—C<!.

Given the conventions above, we can express the other local Fourier transforms
by the functors

FEo0 et — ¢y and FEo): ozt — 2t

If one considers only the full subcategories of Cy and CZ! of connections
with no horizontal sections, the functors F(%:°°) and F(>9) define an equivalence
of categories. Similarly, F(°*>) is an auto-equivalence of the subcategory czl
[4, Propositions 3.10 and 3.12].

3. Statement of theorems

Let s be a nonnegative integer and r a positive integer.

3.1. Calculation of F(0>°°)
Theorem 3.1. Let f€R;(z) with ord(f)=—s/r and f#0. Then E;€Cy and
OBy E,

where gGRSH (é) is determined by the system of equations

(4) 9:f+ﬁ-

Remark 3.2. Recall that (=1/2. We determine g using (3) and (4) as follows.
First, using (3) we express z in terms of (/("+5) We then substitute that expression
for z into (4) and solve to get an expression for g(¢) in terms of (1/(7+9).

When we use (3) to write an expression for z in terms of (1/(r+5) the expression
is not unique since we must make a choice of a root of unity. More concretely, let
n be a primitive (r+s)th root of unity. Then replacing (/) with n¢/("+9) in
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our equation for z will yield another possible expression for z. This choice will not
affect the overall result, however, since all such expressions will lie in the same Galois
orbit. Thus by Proposition 2.3(1), they all correspond to the same connection.

Corollary 3.3. Let E be an object in C. By Proposition 2.3(3), let E have
decomposition E~@,(Ef, ®Jm,). Then

K3

for By, =F ) (E},) as defined in Theorem 3.1.

Sketch of proof. E;®Jy, is the unique indecomposable object in C formed by
m successive extensions of Ey. Since we have an equivalence of categories, we only
need to know how F(©:>) acts on E¢. This is given by Theorem 3.1. [

3.2. Calculation of F(°=:0)

Theorem 3.4. Let feRY(¢) with ord(f)=—s/r, s<r, and f#0. Then we
have E;eC%! and

FO(Ey) =,
where gERY_ (2) is determined by the system of equations
(5) f=z2
(6) = —f+5——

9= 2(r—s)’

Remark 3.5. We determine g from (5) and (6) as follows. First, we use (5) to
express C in terms of 21/("=%), We then substitute this expression into (6) to get an
expression for g(2) in terms of £/("=%),

3.3. Calculation of F(°°:>°)

Theorem 3.6. Let f€RY(¢) with ord(f)=—s/r and s>r. Then E;€CZ! and
FEo)(By) ~ By,
where geR?_T(QA') is determined by the system of equations
(7) f=z

(8) g=—f+-——

2(s—r)’
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Remark 3.7. We determine g from (7) and (8) as follows. First, we use (7) to
express ¢ in terms of ('/(="), We then substitute this expression into (8) to get an
expression for g(¢) in terms of ¢!/(5=7).

4. Proofs of theorems

4.1. Outline of proof of Theorem 3.1

We start with the operators given in (2), viewing them as equivalent operators
on K,. We wish to understand how the operator V. acts in terms of the operator é
The proof is broken into two cases, depending on the type of singularity. In the case
of regular singularity, we have ord(f)=0, and the proof is fairly straightforward.
In the irregular singularity case where ord(f)<0, the proof hinges upon defining
a fractional power of an operator, which is done in Lemma 4.4. Lemma 4.4 is
the heavy lifting of the proof; the remaining portion is just calculation to extract
the appropriate constant term (see remark below) from the expression given by
Lemma 4.4.

Remark 4.1. We give a brief explanation regarding the origin of the system of
equations found in Theorem 3.1. Consider the expressions given in (2). Suppose we
were to make a “naive” local Fourier transform over K, by defining V,=2"1f(z)
and ﬁng -1 g(f ); in other words, as in Definition 2.1 but without the differential

parts. Then from the equation —(z’lf)*lzé we conclude that
9) f=—zz.

Similarly, from —(~22=("'g we find —2z=g, which when combined with (9) gives

(10) f=g.

When one incorporates the differential parts into the expressions for V. and @5,
one sees that the system of equations (9) and (10) nearly suffices to find the correct
expression for g(é ), only a constant term is missing. This constant term arises from
the interplay between the differential and linear parts of V,, and we wish to derive
what the value of it is. Similar calculations can be carried out to justify the systems

of equations for Theorems 3.4 and 3.6.



Calculation of local formal Fourier transforms 7

4.2. Lemmas

Definition 4.2. Let A and B be k-linear operators from K, to K,. We define
Ord(A) to be

Ord(A) = fienlg (ord(Af)—ord(f)), with Ord(0):=c0

and define o(z*) by
A=DB+o(z*) if and only if Ord(A—B)>k.

We say that A is a similitude if Ord(A)=ord(Af)—ord(f) for any feK,.

Lemma 4.3. Let A and B be k-linear operators on K, such that A and A+B
are similitudes, and [A,[B, A]]=0. Let Ord(A)=a, Ord(B)=b, and suppose that
a<b. Then

m—1)

(11) (A+B)m:Am+mA(m*”B+m(2 AT2[B, Al 4oz D)

for all meZ.

Proof. We first prove that (11) holds for m >0 using induction. The case m=0
is trivial. Assuming the equation holds for (A+B)™, we have

(A+B)"! = (A+B)™(A+B)

(m—1)

:Aerl_'_mAmleA_'_m 5 Amf2[B’A]A_i_AmB_,'_Q(Za(mfl)erJra)

(m—1)

=A™y (4 1) A™ B+mA™ B, Al+ A" (B, 4]

+Q(Zam+b)
m(m+1)
2

which completes the induction for the nonnegative integers. Since A+ B is invert-
ible, the expansion

=A™ 4 (m+1)A" B+ A™B, Al 4o(27m ),

(A+B) '=A"1'-A"'BAT '+ AT'BAT'BAT — ..

is well defined. Using this expansion (which verifies the base case m=—1), the proof
for m<—1 follows in the same manner as the proof for the nonnegative integers
above. Note that the condition Ord(A~1)=-0rd(A) (which follows from A being
a similitude) is necessary for the induction on the negative integers. O
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We now wish to use (11) to define fractional powers of the operator A+ B, given
certain operators A and B. We follow the method of [1, Section 7.1] to extend the
definition, though our goal is more narrow; Arinkin defines powers for all a€k, but
we only need to define fractional powers me(1/p)Z for a given nonzero integer p.

Lemma 4.4. Let A and B be the following k-linear operators on Kg: A is
multiplication by f=jzP/940(2P/9), 0£j€k, and B=2z"d/dz, with integers n#0,
p#0, and ¢>0. We have Ord(A)=p/q and Ord(B)=n—1, and we assume that
p/q<n—1. Then we can choose a p-th root (A+B)Y/P of A4+ B, such that

(A+B)™ = Am+mA(m_1)B+w A™2[B, A]+o(2P/0)(m=D+n-1)
holds for all me(1/p)Z, where (A+B)™=((A+B)Y/P)rm,

Proof. We use the notation found in [1, Section 7.1]. Letting P=(1/4)(A+B)
we have that P: K;,— K, is k-linear of the form

p<z Cﬁzﬁ/q> =Y s Y pu(B)
B B i>0
Thus po(B)=1 and all p; are constants or have the form [3/g+constant, so the

necessary conditions [1, Section 7.1, conditions (1) and (2)] are satisfied. We can
now define P™, and likewise (A+B)™=4"P™, for m=1/p. O

4.3. Proof of Theorem 3.1

From [4, Proposition 3.7] we have the following equations for the local Fourier
transform F(0:%0):

(12) z:—§2aé and 9, =—C"1.

Converting to our notation, we write 8é:§€c:d/dé+é_1g(é) and 0,=V,=
d/dz+z71f(2). Then (12) becomes

_ o d o
(13) z=—¢ e ¢g(Q)
and
d -1 F—1

Our goal is to use (14) to write an expression for the operator z in terms of f , at

which point we can substitute into (13) to find an expression for g(().
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Case 1. Regular singularity (ord(f)=0).

In this case we have s=0 and r=1, so f=a€k\Z. Then (14) has the form
d/dz+a/z=—("'. But on K, the operator d/dz acts on monomials as multipli-
cation by n/z for some n€Z, and f€R?(z) means that « is only defined up to a
shift by Z. Thus the operator d/dz+«/z acts in the same manner as just «/z. In
other words, we can safely ignore the differential part of the operator in the case of
a regular singularity. The remainder of this case follows from Remark 4.1.

Case 2. Trregular singularity (ord(f)<0).
Consider the equation

(15) T f==C,

which is (14) without the differential part, and which coincides with (3). Equation
(15) can be thought of as an implicit expression for the variable z in terms of é , which
one can rewrite as an explicit expression z=h(C)ek((¢Y/("+9)) for the variable z.
This is the purely algebraic calculation which in Theorem 3.1 is stated as expressing
z in terms of (/") Note that since there is no differential part in (15), h() is
not the same as the operator z. Since the leading term of 2~ f(z) is az=("+%)/" (for
some a€k), (15) implies that h(¢)=a"/"+9) (=)r/(r+5) 4 o({r/(7+9)) . Using (14) we
find that the operator z will be of the form

(16) 2=h({)++(—()+0(C),

where the x€k represents the coefficient that arises from the interplay between
the differential and linear parts of —é =V, 1. As explained in the outline, we wish
to find the value of . Let A=z71f(2) and B=d/dz, then we have [B, A|=A'=
Zz71f/—272f. From (14) we have —(=(A+B)~!, and we apply Lemma 4.4 to find

(~yter+

Y (e | B T L B (VS N TN
r+sr r+s 2(r+s)

Remark 4.5. We use the notation Z/r to represent the operator zd/dz. This
notation makes sense, because zd/dz: K,— K, acts as (zd/dz)(z"/")=nz"/"/r for
any neZz.

Also from Lemma 4.3 we have

(_é) — a—lzl+s/r+g(zl+s/r).
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The appropriate value for # in (16) is the expression that will make the leading
term of *(—(C), which will be xa~12'+%/" cancel with

_ 7 r s
a 1| _ _ 21+S/7"

r+s r+s 2(r+s)

Thus we find that

B Z+r s

(17) = r+s +2(s—|—r)'

Applying both sides of (13) to 1€ K,, and using the fact that (d/d¢)(1)=0, we
see that z=—f g(f) Thus to find the expression for g we simply need to compute
the Laurent series in ¢ given by (—é ~1)z. Substituting the expressions from (16)
and (17) into (—(~1)z, we have

9O =~ (F 4 ) )

By Proposition 2.3(1), E4 r+s will be isomorphic to E; s where

S

(18) §(0) ==+ 55

as g and ¢ differ only by (Z+7)/(r+s)€Z/(r+s). From (15) we have that —(~1h({)=
—z2=f, so (18) matches (4) which completes the proof.

4.4. Proof of Theorem 3.4

This proof is much the same as the proof of Theorem 3.1, so we only sketch
the pertinent details. From [4, Proposition 3.9], in our notation we have

(19) (*°Ve=2 and ('=-V..
We wish to write z=¢~! in terms of 21/("=%)_ Consider the equation

(20) (f=2,

which is the first equation of (20) without the differential part. We can think of
(20) as an implicit definition for the variable ¢, which we can rewrite as an explicit
expression (=h(2)=a""/("=9)57/(r=%) L o(57/(r=9)) Letting A=(f(¢), B=¢%d/d¢
and 2=A+ B, we have [B, A]=(?A’ and the operator-root lemma gives

. ) . Z . )
27/(7“—-5) :aT/(T—é) C‘f’u--‘ra_l r z, S <1+5/7 +Q(C1+s/r)
r—sr 2(r—s)
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and
é(rJrs)/(rfs) _ a('r+s)/(rfs)CI+S/T+Q(<1+S/T).

We conclude that the operator ¢ will be

Z s
r—s 2(r—s)

Czh(é)—Fa_QT/(T_s) |:_ :| 2(7"—&-3)/(7“—3)_~_Q(2(r+s)/(r—s)).

Inverting the operator ¢, we find

S T PSS S (B,
¢ =E=hE) +<r—s+2(r—s)

) 27 ho(27h)
and it follows that
1. Z s

Cr—s 2(r—s)

+o(1).

Note that we have f=2h(2)"!. As in the proof of Theorem 3.1, we use Propo-
sition 2.3(1), to find an object isomorphic to Ey which matches the object given in
the theorem, completing the proof of Theorem 3.4.

4.5. Proof of Theorem 3.6

The calculations are virtually identical to the proof of Theorem 3.4, but the
expressions are written in terms of ( instead of Z, and with s—r instead of r—s.
Starting with [4, Proposition 3.12], in our notation we have

(*Ve=% and ('=-(V,.
Repeating the calculations of Theorem 3.4 we conclude that

9Oy =—C o=~ Tt o to(1).

s
2(s—r)
Note that —C~1h({)~1=f. As before, by considering an appropriate isomorphic
object we eliminate the term with Z, completing the proof of Theorem 3.6.

5. Comparison with previous results

One notes that in [5], Fang’s Theorems 1, 2, and 3 look slightly different from
those given in (respectively) our Theorems 3.1, 3.4, and 3.6. We shall present a brief
explanation for the equivalence of Fang’s Theorem 1 and our Theorem 3.1. One
large difference in our methods is that Fang’s calculations are split into a regular
and an irregular part, whereas we calculate both parts simultaneously. We first
verify the equivalence for the irregular part.
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5.1. Equivalence for the irregular part

Suppose f in Theorem 3.1 has zero regular part. In particular, this means that
f has no constant term. Then with Fang’s notation on the left and our notation on
the right, we have the following relationships:

t corresponds to z,
t" corresponds to 2,

td¢(«) corresponds to f,

1 S
=014 ———— corresponds to g.
79 )(ﬁ)+2(r+s) p g

Using the correspondences above and equation (2.1) from Fang’s paper, one
can manipulate the systems of equations to see that the theorems coincide on the
irregular part.

5.2. Equivalence for the regular part

In [5], the structure of the theorems is such that the calculation of the regular
part is quite straightforward. Using our theorems, however, the calculation of the
regular part is hidden. To verify that the regular portion of our calculation matches
up with the results from [5], it suffices to prove the claim below. We note that one
can also calculate the regular part by using the global Fourier transform and the
meromorphic Katz extension; our proof is independent of that method.

Claim. Let f(z)=az"%/"+...+b as in Theorem 3.1 and F(O>)(E;)=E,. Then
g will have constant term br/(r+s)+s/2(r+s).

Before we prove Claim 5.2, we first prove two lemmas regarding general facts
about formal Laurent series and compositional inverses.

Lemma 5.1. Let j(z)€ K, with ord(j)=p/q, p€Z\{0} and ¢>0. If p>0, then
§ has a formal compositional inverse j$~V €k((2'/P)). If p<0, then j has a formal
compositional inverse j<=1 €k((¢'/P)).

Proof. Let h(z)=(z'/Pojoz7)(z). Then h(z) is a formal power series with no
constant term and a nonzero coefficient for the z term. Such a power series will
have a compositional inverse, call it h{=1(z). Then ;{1 (2):=(270h{"V021/P)(2)
will be a compositional inverse for j. [
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Remark 5.2. Note that h (and h{~1 as well) is not unique since a choice of
root of unity is made. This will not affect our result, though, since h? and (h<*1>)q
will be unique.

Lemma 5.3. Let j(2)=az""+9)/" 4 4bz" 40(z7Y), j(2)€K,, with a non-
negative integer s and r€Z*. Then the coefficient for the z=' term of 7~ (2) will
be br/(r+s).

Proof. Let h(z)=(z""*%)0j02")(z). Then j(z")=h~*%) and from the proof
of Lemma 5.1 we have

(21) FEVETE) =)

According to the Lagrange inversion formula, the coefficients of h and k{1 are
related by

(22) (r+s)[" ) ()T = o[z A7),

where [2715](h{(=1)" denotes the coefficient of the z"** term in the expansion of
(R, Substituting (21) and j(2")=h~("+*) into (22) we conclude that

23 481 (=1) (,—(r+s)y — r “T5(57).

(23) [ (2 )=l

Since [z7"]j(2")=b, the conclusion follows. O

Proof of Claim 5.2. Given the notation used above for the Lagrange inversion

formula, we can restate the claim as follows: if [2°]f=b, then
. br 5
0 _ P
[7lg r+s+2(r—|—s)'

Let j(2)=—2"1f. Then
[e7j = —["1f =-b.

By (3) we conclude that 2=35(z), and let 5¢~% be the compositional inverse, given
by Lemma 5.1. Then j{~1(2)=2. From (4) we have g=—2z%+5/2(r+s), which
implies that —2~1(g—s/2(r+s))=4{"1(2). This gives

s—17:(~=1) _ _ 150 s
EaV [£°]g+ 2015)
or equivalently
24 01— 105
(24) [£"lg=—[2""] *3ts)

By Lemma 5.3, [z~ !]j=—b implies that [27']j(~"=—br/(r+s). The result then
follows from (24) after noting that [2°]g=[¢"]g.
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