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Asymptotic porosity of planar harmonic
measure

Jacek Graczyk and Grzegorz Świa̧tek

Abstract. We study the distribution of harmonic measure on connected Julia sets of uni-

critical polynomials. Harmonic measure on a full compact set in C is always concentrated on a

set which is porous for a positive density of scales. We prove that there is a topologically generic

set A in the boundary of the Mandelbrot set such that for every c∈ A, β>0, and λ∈(0, 1), the

corresponding Julia set is a full compact set with harmonic measure concentrated on a set which

is not β-porous in scale λn for n from a set with positive density amongst natural numbers.

1. Introduction

A compact set in the plane is called full if its complement is connected. An
intuition about the harmonic measure of a full compact set in the plane is that it is
supported on “exposed” points of the set. One way to make this notion precise is
based on Makarov’s theorem, namely that for every parameter β< 1

2 the harmonic
measure is supported on the set of points in the neighborhood of which the set
is β-porous for a positive density set of scales. It does not seem, however, that
such points are very “exposed” and one might conjecture that a stronger statement
could be made, for example that a density of scales in which the set is porous is
asymptotically 1. We show sets for which the harmonic measure is supported on
a set of points around which the set fails to be porous with any given parameter
β>0 in a set of scales of positive density. Intuitively speaking such points can only
be accessed by passing through infinitely many increasingly narrow “bottlenecks”.
This also demonstrates that the positive density statement in Makarov’s theorem
cannot be improved.

The existence of full compact sets with these properties has not been to our
knowledge demonstrated in the literature. Further, we show also that such examples
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are dynamically natural. They occur as Julia sets of quadratic polynomials for pa-
rameters from a generic set on the boundary of the connectedness locus. “Generic”
here certainly cannot be taken in the sense of the harmonic measure on the bound-
ary of the connectedness locus. It is known from [1] and [9] that this measure is
supported on the set of polynomials with porous Julia sets. Genericity here is taken
in the topological sense, meaning a residual set. From the dynamical standpoint
this is another example of a sharp split between properties which are typical in the
sense of the harmonic measure on the boundary of the connectedness locus and
topologically generic. Another way in which this contrast manifests itself is in the
Hausdorff dimension of the Julia sets. By Shishikura’s theorem, the Hausdorff di-
mension of quadratic Julia sets is 2 on a topologically generic set. But since typical
sets in the sense of harmonic measure are porous, their Hausdorff dimensions are
always less than 2.

The main idea of this work is to use symbolic dynamics constructed on Yoccoz
partitions and Bernoulli probabilistic models, cf. [1] and [9], to control distortion
properties of high iterates of unicritical polynomials at almost every point in the
sense of harmonic measure. These distortion properties and the renormalization re-
sults of [6] allows one to transfer an asymptotic density of the quadratic Feigenbaum
Julia set at the critical point to almost all points, in the sense of harmonic measure,
of a topologically generic Julia set Jc with c in the boundary of the Mandelbrot set.

Harmonic measure, porosity, and complex dynamics. Let E be a full compact
set in C. The harmonic measure ω of E with a base point at ∞ can be described
in terms of the Riemann map

Ψ: ̂C\D(0, 1) �−→ ̂C\E,

which is tangent to identity at ∞. Namely, Ψ extends radially almost everywhere on
the unit circle, with respect to the normalized 1-dimensional Lebesgue measure dθ,
and ω=Ψ∗(dθ). The probabilistic interpretation of ω is that for any Borel subset U

of E, ω(U) is a hitting probability of a Brownian particle sent from ∞ toward E.
We need also a few basic concepts from complex dynamics. The Julia set Jc of

a unicritical polynomial fc(z)=zd+c is defined as a closure of all repelling periodic
points of fc,

Jc := {z ∈ C : fn
c (z) = z and |(fn

c )′(z)| > 1 for some n ∈ N}.

Let Md be the set of all c∈C for which Jc is connected. The set M:=M2 is
usually called the Mandelbrot set. The boundary of Md is the topological bifurca-
tion locus of Jc, i.e. when c traverses ∂Md from the inside of Md toward ∞, then
the corresponding Julia sets are initially connected and turn totally disconnected.
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The distribution of harmonic measure on Jc for certain values of c∈∂M shows many
‘exotic’ features and will be of special interest to us.

Definition 1.1. We will say that a bounded set E ⊂C is β-porous at scale ε at
z if there is z′ such that |z −z′ |=ε and D(z′, βε)∩E=∅.

Clearly, β ∈(0, 1]. The concept of porosity has a long history, see [5], but only in
the last two decades it was used in a systematic way to study dimensional features
of sets, [4]. In the form closely related to that of Theorem 1.2, it appears in [2].
The work [4] shows that any planar set porous at every scale with β tending to 1
is of Hausdorff dimension 1 while in [2] it is proved that a more flexible property of
mean porosity at every point of a bounded set E yields dimH(E)<2.

A set A is topologically generic or residual in a given topology if it contains an
intersection of countably many open dense sets. The boundary of the Mandelbrot
set M has a natural topology inherited from the complex plane.

The purpose of this article is to prove the following theorem.

Theorem 1.2. For every full compact E ⊂C and every choice of positive β< 1
2

and λ>1, there exist σ>0 and a set of full harmonic measure such that for every z

from this set

lim inf
N→∞

1
N

#{n∈(0, N):E is β-porous at some scale ε∈(λ−n−1, λ−n) at z} ≥ σ.

Moreover, there exists a topologically generic set A in ∂M such that for every
c∈ A and every choice of positive numbers λ>1 and β>0 there exists σ>0 and a
set of full harmonic measure in Jc such that for every z in this set,

lim inf
N→∞

1
N

#{n∈(0, N):Jc is not β-porous at any scale ε∈(λ−n−1, λ−n) at z} ≥ σ

and

lim
N→∞

1
N

max{n∈(0, N):Jc is not β-porous at any scale ε∈(λ−n−1, λ−n) at z} =1.

The proof of the asymptotic porosity of harmonic measure at a positive density
of scales is standard, although the limiting value of β= 1

2 falls short of the upper
bound 1. We do not know what happens for β between 1

2 and 1. The calculation
is based on Makarov’s law of iterated logarithm [3]. The main difficulty lies in the
second part of Theorem 1.2 which shows that the estimate cannot be improved in
that the density σ is only positive, but not 1.
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Corollary 1.3. Let A be the set defined in Theorem 1.2. There exists a topo-
logically generic set A ′ ⊂ A such that for every c∈ A the corresponding Julia set Jc

is locally connected of Hausdorff dimension 2.

Proof. By [8], we know that there exists a residual set in M such that for
every c from this set, dimH(Jc)=2. Also, by the work of Yoccoz, there is another
topologically generic set in ∂M such that for every c from this set Jc is locally
connected. Intersecting these three topologically generic sets, we obtain the claim
of Corollary 1.3. �

2. Asymptotic Lipschitz accessibility

Let Ω be a domain in ̂C with ∂Ω⊂C. Let δ(z) denote the Euclidean distance
dist(z, ∂Ω). Let dρ(z) be a hyperbolic metric in Ω of constant curvature −1. The
hyperbolic distance between x, y ∈Ω is defined by ρ(x, y)=inf

∫

γ
|dρ|, where the

infimum is taken over all curves γ ⊂Ω joining x and y.
We say that Ω is Hölder accessible with an exponent α at y ∈∂Ω if there exist

a positive constant C>0 and a hyperbolic geodesic Γ joining a base point x0 ∈Ω
and y such that for every w ∈Γ,

ρ(w, x0) ≤ 1
α

log
1

|w −y| +C.

A domain Ω is asymptotically Lipschitz accessible at y ∈∂Ω if it is Hölder accessible
at y with an exponent α(w) tending to 1 when w tends to y along Γ.

The distribution of planar harmonic measure is governed by Makarov’s law of
iterated logarithm [3].

Theorem 2.1. (Makarov) If g maps D(0, 1) conformally into C then

lim sup
r→1

|log g′(rζ)|
√

log
1

1−r
log log log

1
1−r

≤ 6

for almost all ζ from the unit circle in the sense of 1-dimensional Lebesgue measure.

From Theorem 2.1, we know that almost every point in Jc, with respect to the
harmonic measure, is asymptotically Lipschitz accessible from the outside of Jc.
Indeed, we can assume that ζ=1 is a typical point in the sense of Theorem 2.1.
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Hence, for every α∈(0, 1) there exists r0 such that for every r ∈(r0, 1), |g′(r)| ≤
(1−r)α−1. Let w=g(r), y=g(1), and z0=g(0). If w is close enough to y then

(1) |w −y| ≤
∫ 1

r

|g′(r)| dr ≤ 1
α

(1−r)α.

The conformal invariance of the hyperbolic distance and (1) imply that

ρ(w, x0) = ρ(r, 0) = log
1+r

1−r
≤ 1

α
log

1
|w −y| +C,

where the constant C does not depend on α provided w is near y.
The first estimate of Theorem 1.2 follows immediately from Proposition 2.2

below.

Proposition 2.2. Suppose that Ω⊂ ̂C, with ∂Ω⊂C, is Hölder accessible at y

with an exponent α>0. Then for every β ∈
(

0, 1
2

)

and λ>1 we have that

lim inf
N→∞

1
N

#{n ∈ (0, N) : ∂Ω is β-porous at scale ε∈(λ−n−1, λ−n)} ≥ 1−2α/β

1−β
.

Proof. Suppose a hyperbolic geodesic Γ joins a base point x0 ∈Ω and y ∈∂Ω.
For every non-negative integer n, set An :={z ∈C:λ−n−1 ≤ |z −y| ≤λ−n}. Let wn ∈Γ
be a point of last intersection of Γ(w) with the circle |z −y|=λn when w runs from
x0 to y along Γ. We use the Hölder accessibility of Ω at y and the fact that the
density dρ(z) of the hyperbolic metric in every simply connected domain is bigger
than or equal to 1/2δ(z) to obtain that

(2)
n−1
∑

i=0

∫

Γ∩An

1
δ(z)

|dz| ≤ 2
n−1
∑

i=0

∫

Γ∩An

|dρ(z)| ≤ 2ρ(wn, x0) ≤ 2
α

n log λ+C.

Put χi=0 if K at y is not β-porous at any scale ε∈(λ−i−1, λ−i) and χi=1 otherwise.
We want to estimate the dependence of

∫

Γ∩Ai
δ(z)−1 |dz| on the value of χi.

If χi=0 then

∫

Γ∩Ai

1
δ(z)

|dz| ≥
∫

Γ∩Ai

1
β|y −z| |dz| ≥

∫ λ−i

λ−i−1

1
βr

dr =
log λ

β
.

If χi=1 then
∫

Γ∩Ai

1
δ(z)

|dz| ≥
∫ λ−i

λ−i−1

1
r

dr = log λ.
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Let sn=
∑n

i=0 χi. Combining these estimates with (2), we obtain that

log λ

β
(n−sn)+sn log λ ≤ 2n

α
log λ+C.

Dividing both sides by n log λ and letting n tend to ∞, we have that

lim inf
n→∞

sn

n
≥ 1−2β/α

1−β
. �

3. Dynamics on the Julia set and the harmonic measure

As a preparation for the proof of the second part of Theorem 1.2, we conduct
certain probabilistic considerations, closely following [1]. The goal is to describe the
behavior of a typical point with respect to the harmonic measure.

3.1. Bernoulli model

Consider a Bernoulli shift on p symbols denoted 0, 1, ..., p−1, with its natural
Tikhonov topology and product probability measure. Let Ω denote the space of
the shift and S the shift map. A point ω ∈Ω is identified with a sequence x0(ω)=
1, x1(ω), ..., xn(ω), ... with xi(ω)∈ {0, 1, ..., p−1} for i>0.

Let us introduce a metric on Ω which induces the Tikhonov topology: namely
if ω1, ω2 ∈Ω we find the least i≥0 for which xi(ω1) 	=xi(ω2) and set d(ω1, ω2)=2−i.
Note the improved triangle inequality

d(ω1, ω2) ≤ max(d(ω1, ω3), d(ω3, ω2)).

Furthermore, S is 2-Lipschitz with respect to d.
Let N denote the set of positive integers, and Z+=N∪ {0}.

Definition 3.1. Given ω, ν ∈Ω, let us define a function

ρω,ν : N −→N

as
ρω,ν(k)= inf{j > 0 : d(Sjω, ν) ≤ 2j−k }.

Informally speaking, ρω,ν(k)=j means that starting from j at least through
k −1 the code xi(ω) repeats the initial sequence of ν starting with x0(ν) and j is
the smallest positive number with this property. For j=k this requirement becomes
vacuous, so ρω,ν(k)≤k.

We are now ready to state the result.
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Theorem 3.2. Let (S, Ω, p) be a Bernoulli shift on finitely many symbols.
There exists L>0 and for every ν ∈Ω not periodic under S with period less than or
equal to L, there are a constant ˇ and a set Ων of full measure in Ω such that for
every ω ∈Ων one can find an increasing infinite sequence of integers ki so that

(1) ki −ρω,ν(ki)<ˇ for every i;
(2) lim sup(ki/i)≤3;
(3) ki+1<ki+

√
ki for all but finite number of i.

Theorem 3.2 and its proof are analogous to Theorem 2.1 in [1].

4. Combinatorial considerations

This section is devoted to the proof of Theorem 3.2 which proceeds entirely
inside the Bernoulli model. We will prove certain properties of the function ρω,ν .
We give formal proofs based on the metric d. Alternative proofs can be constructed
by using the interpretation of the function ρω,ν in terms of repeating codes.

Lemma 4.1. If ν ∈Ω is not periodic with period less than L then

lim
k→∞

ρν,ν(k) ≥ L.

Proof. The function ρν,ν is non-decreasing, so let us suppose that it stabilizes
at some j. Then Definition 3.1 implies that

d(Sjν, ν) ≤ 2j−q

for q arbitrarily large, so Sjν=ν and ν is periodic with period j ≥L. �

Lemma 4.2. Let ω, ν ∈Ω. If ρω,ν(k+1)>ρω,ν(k), then

ρω,ν(k+1) ≥ ρω,ν(k)+ρν,ν(k −ρω,ν(k)).

Proof. Let j=ρω,ν(k) and J=ρω,ν(k+1). Then d(SJω, ν)≤2J −k−1. Next,

(3) d(SJ −jν, ν) ≤ max(d(SJω, ν), d(SJω, SJ −jν))

and
d(SJω, SJ −jν) = d(SJ −j(Sjω), SJ −jν) ≤ 2J −jd(Sjω, ν) ≤ 2J −k.

Now, the estimate (3) leads to

d(SJ −jω, ν) ≤ max(2J −k−1, 2J −k)= 2J −k =2(J −j)−(k−j).
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In view of Definition 3.1 this means that

ρω,ν(k −j) ≤ J −j,

which is precisely what the lemma claims. �

4.1. The key argument

From now we regard ν as fixed and we will write ρω instead of ρω,ν . In the
first step of the proof of Theorem 3.2, we can now specify ˇ. It will still satisfy
ρν,ν(ˇ)≥L+1. In view of Lemma 4.1, we can choose ˇ with this property.

Proposition 4.3. For a certain choice of a positive integer L the following
holds true. Let Gω be defined as the set of all k ∈N for which k −ρω(k)<ˇ.

Then almost surely for ω ∈Ω:
(1) ˇ<∞;
(2)

lim inf
n→∞

|Gω ∩ {1, ..., n}|
n

≥ 1
3
;

(3) except for finitely many n, if n∈Gω , then

Gω ∩
(

n, n+
√

n
)

	= ∅.

The first property holds whenever ω is not periodic under S, which is true almost
everywhere regardless of L. Since ˇ is locally constant, we can restrict the attention
to a cylinder Ω0 on which ˇ is finite and constant. In particular, we will talk of
probabilities conditioned onto Ω0.

We will now prove Proposition 4.3 which implies Theorem 3.2.

Lemma 4.4. Consider a sequence of m independent Bernoulli trials, each with
the probability of success at most P <1. For some M>0 let Xi be 1 if the i-th trial
is a success, and −M if it is a failure.

There is a constant M0 only depending on P so that if M ≥M0, then
∑m

i=1 Xi ≤
−m with probability at least 1−exp(−m(1−P )/4).

Proof. This is Lemma 3.3 from [1]. �

We now indicate the idea of the proof of the remaining part of Proposition 4.3.
We watch a non-negative function rω(k):=k −ρω(k). As k grows by 1, then rω(k)
may increase at most by 1, and that only happens if xk+1(ω)=xk−ρω(k)+1(ω). Call
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the event rω(k+1)(ω)>rω(k) a success at k+1. Clearly, this defines independent
trials with probabilities of success all bounded by P <1, where P is the maximum of
probabilities of any symbol. If k /∈Gω meaning that rω(k)≥ˇ, then failure at k+1
means that we get pω(rω(k))≥L+1 and rω(k+1)−rω(k)≤ −L.

If we count only the trials which follow k /∈Gω ∩[n, n+m), then by Lemma 4.4,
with overwhelming probability rω will jointly drop by the number of such k. Re-
gardless of the outcome of trials following k ∈Gω , rω(k) may grow at most by 1. If
the number of k /∈Gω is more than 2/3m, this implies a drop by m/3. But on the
other hand, rω(k) is non-negative which yields a lower bound on the density of Gω

in [n, n+m).
Let us state this reasoning formally.

Lemma 4.5. Fix L and consider ω in a cylinder, where ˇ takes a constant
finite value, choose integers n>ˇ and m in such a way that 10rω(n)≤m. Let P

denote the maximum of probabilities of any single symbol. There is a constant
L0 which depends only on P so that if L≥L0, then with probability at least 1−
exp(−m(1−P )/6)

|Gω ∩[n, n+m)| >
m

3
.

Proof. Let βm be the number of integers in the set B=[n, n+m)\Gω . For
any k ∈B let us call it a success when pω(k+1)=pω(k). This defines a sequence of
Bernoulli trials with the probability of success at most P . On the other hand, if
k /∈Gω , then rω(k)≥ˇ and by Lemma 4.2 and the definition of ˇ, rω(k+1)−rω(k)≤

−L. We apply Lemma 4.4 to this sequence of βm trials. We get that there is
L0 :=M0 depending only on P , so that if L≥L0, then

(4)
∑

k∈B

rω(k+1)−rω(k) ≤ −mβ

with probability at least 1−exp(−mβ(1−P )/4). For any k ∈[n, n+m),

rω(k+1)−rω(k) ≤ 1.

Let Bc :=[n, n+m)∩Gω . Hence, assuming estimate (4),

rω(n+m)−rω(n) =
∑

k∈B

rω(k+1)−rω(k)+
∑

k∈Bc

rω(k+1)−rω(k)

≤ −mβ+m(1−β) ≤ m(1−2β).

But rω(n+m)≥0 while rω(n)≤0.1m by the hypothesis of the lemma, so

m(1−2β) ≥ rω(n+m)−rω(n) ≥ −0.1m.
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Thus, estimate (4) implies β ≤0.55. Hence, if β ≥ 2
3 , then estimate (4) fails, which

happens only with probability not exceeding

exp
(

−m
1−P

6

)

. �

Now Proposition 4.3 follows easily. The claim regarding the asymptotic density
of Gω follows if we apply Lemma 4.5 with n=ˇ and m tending to ∞ and invoke
Borel–Cantelli’s lemma. If we now apply the lemma with m=

[√
n
]

, we get that
almost surely for almost all n either rω(n)>0.1

[√
n
]

or

∣

∣Gω ∩[n, n+
√

n)
∣

∣ ≥ [
√

n ]
3

.

(Here [x] stands for the integer part of x.) For all sufficiently large n the first con-
dition implies that n /∈Gω and the second one that Gω ∩

(

n, n+
√

n
)

	=∅ as needed.

5. Yoccoz pieces

5.1. Construction of symbolic dynamics

Ray-sectors and facets. Let us define a self-map of the circle T (x)=dx (mod 1).
For this section, we assume that c∈ Md, all of its periodic orbits are repelling and
the critical orbit is infinite. In particular, fc has a fixed point q(c) which attracts a
ray with external angle λ. This ray is periodic under T with period p>1. Rays with
external angles λ, ..., T p−1(λ) divide the plane into p ray-sectors. Corresponding to
each ray sector there is an arc on the circle consisting of all external arguments of
rays belonging to this ray-sector.

The mapping fc is univalent on ray-sectors which do not contain 0. We can
label the ray sectors in such a way that Q0 contains 0, Q1 contains c, and fc(Qi)=
Qi+1 (mod p) for i=1, ..., p−1. The set fc(Q0) is the union of all ray-sectors. We
will denote by si the arc of the circle which corresponds to Qi. We will call these
open arcs facets of order 0.

The Yoccoz partition. Let us continue to develop the picture of ray-sectors and
the corresponding gaps. Consider the topological disk Δ:={z :Gc(z)<1}, where

(5) Gc(z) = lim
n→∞

log|fn
c (z)|

dn
.

Observe that Δ intersects each Qi along a “curvilinear triangle” Δi. The collection
of these Δi’s is sometimes referred to as the Yoccoz partition for fc.
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Induced maps. The action of fc on each Qi, i>0, is boring: each is mapped
univalently onto Qi+1 modulo p. As the result, the codes k and � are quite re-
dundant, since every symbol is predicted by the previous one, provided that one is
not 0.

Definition 5.1. An induced map Φc is defined on the union of all ray-sectors Qi.
On Qi, i>0, we set Φc :=fp−i+1

c . On Q0, Φc=fc.

Analogously we can construct a mapping φ induced by T on the circle which
corresponds to Φc. Thus, φ=T on s0 and φ=T p−i+1 on any other si.

Lemma 5.2. The following statements hold :
– Φc maps any Δi over the union of all Δj ;
– If K ⊂Δj is relatively compact in Δj , then Φ−1

c (K) is relatively compact in
⋃p−1

i=0 Δi;
– If j 	=1, then Φ−1

c (Δj) is relatively compact in
⋃p−1

i=0 Δi;
– The only critical value of Φc is at c and this is a branching point of degree d.

Proof. To get Φc(z) we first map z to Q0 and then one more time. The
properties of Φc depend on this last iteration, which can be easily understood in
terms of the map T acting on the external angles of rays. The proof is then easy
and mostly standard. �

Itineraries. We define for every z ∈C its itinerary ω(z)=ω0, ..., ωn, ... by the
condition Φi

c(z)∈Δωi . The transformation z �→ω(z) semi-conjugates fc to the full
shift on p symbols. Similarly, we define, for γ in the circle, an itinerary �(γ)=
�0, ..., �n, ... by the condition φi(γ)=s�i . Both itineraries could be finite if the point
cannot be iterated or leaves the Yoccoz partition. However, if z ∈Jc is the closure
of a ray with external argument γ then ω(z)=�(γ).

5.2. Properties of Yoccoz pieces

Consider an itinerary x0, ..., xk. A Yoccoz piece of order k following this
itinerary is any maximal connected set of points z for which the first k+1 sym-
bols of their itineraries ω(z) are the same as x0, ..., xk. Similarly, a facet of order k

following this itinerary is a maximal connected set (arc) of points γ for which the
first k+1 symbols of their itineraries �(γ) are the same as x0, ..., xk.

Lemma 5.3. If a Yoccoz piece D of order k follows the itinerary x0, ..., xk,
then Φk

c restricted to the piece is a proper holomorphic map onto Δxk
.
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Proof. Obviously, F :=Φk
c is a holomorphic map from the Yoccoz piece into Δxk

.
We have to show that F is proper. The proof proceeds by induction with respect
to k. For k=0, F is the identity map. In general, Φk

c =Φc ◦Φk−1
c , where both Φc

and Φk−1
c are proper by the induction hypothesis. �

As a consequence of Lemma 5.3, Φk
c is onto Δxk

and is a finitely branched
cover. In particular, D is a topological disk. Here is another lemma.

Lemma 5.4. Consider the two Yoccoz pieces D of order k which follows
an itinerary x0, ..., xk and D′ ⊂D which follows the itinerary x0, ..., xk, xk+1 with
xk+1 	=1. Then D

′
is contained in D.

Proof. Observe that
D′ ⊂ Φ−k

c (Φ−1
c (Δxk+1)).

By the properties of Φc, listed following its definition, Φ−1(Δxk+1) is precompact
in Δxk

and so the claim follows by Lemma 5.3. �

The next lemma establishes a connection between the dynamics of Φc on Yoccoz
pieces and the combinatorial function ρω(z),ω(c), see Definition 3.1.

Lemma 5.5. Suppose that D is a Yoccoz piece of order k which contains a
point z. Then Φj

c are univalent on D for all j<ρω(z),ω(c)(k).

Proof. Choose the smallest j for which Φj
c is not univalent. Then Φj

c(D)
c.
But then the k −j consecutive symbols of ω(c) starting from the beginning and from
ωj(z) are the same, or d(Sjω(z), ω(c))≤2j−k, which implies that j ≥ρω(z),ω(c)(k) by
Definition 3.1. �

Lemma 5.6. For every Yoccoz piece of order k, the set of external arguments
whose rays enter D is a union of finitely many facets of order k.

Proof. This immediately follows by induction with respect to k. �

5.3. Visits to large scale

Theorem 5.7. Let fc(z)=zd+c and suppose that c∈ Md, all periodic orbits
of fc are repelling and the orbit of c is infinite. On the set of such c there are two
integer-valued continuous functions L(c) and ˇ(c) such that if the itinerary ω(c) is
not periodic with period less than or equal to L(c), then for every Yoccoz piece D of
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order at least ˇ(c) there exist a constant K and a set of full harmonic measure in
Jc such that for every z in this set the following holds:

There exists an infinite increasing sequence of integers mi and sequence of
Yoccoz pieces Ui 
z such that fmi maps Ui univalently onto a Yoccoz piece of order
ˇ(c) while fmi(z)∈D for every i. The sequence mi is dense in the following sense:

(1) lim supi→∞ mi/i≤K;
(2) limi→∞ mi+1/mi=1.

Proof. We start with defining a probabilistic setting. We will regard the circle
with its normalized Lebesgue measure as a probabilistic space with the measure
preserving transformation φ. Let Pk denote a partition of the circle into facets
of order k. The key observation is that φ is then a random variable independent
of P0. Since φk maps a facet of order k linearly onto a facet of order 0, it follows that
more generally φk+1 is independent of Pk for every k ≥0. In particular, the map
γ �→�(γ), which conjugates φ to the one-sided shift S, is a measure isomorphism.
Also, if qi>k then the partitions Pk, φ−q1(Pk), ..., φ−qi(Pk), ..., φ−

Pn
i=1 qi(Pk), ...

are all independent.

In addition we have a map χ from the circle into Jc which maps γ to the landing
point of the corresponding external ray and transports the Lebesgue measure to the
harmonic measure of Jc.

As a starting point we can take a sequence ki constructed in Theorem 3.2.
Theorem 3.2 will also fix the values of L(c) and ˇ(c). We know from Lemma 5.5
that for z from a set of full harmonic measure and every i, z has a neighborhood
which is mapped univalently by Φki −ˇ(c)

c onto a Yoccoz piece of order ˇ(c). We

would like to choose a further subsequence kij so that Φ
kij

−ˇ(c)
c (z)∈D. First, by

setting ij =j(k+1) we guarantee that kij+1 −kij ≥k and hence the events consisting
of φkij

−ˇ(c) belonging to any facet of order k are independent. The facet here
should be chosen corresponding to D as in Lemma 5.6 so that whenever φkij

−ˇ(c)(γ)

belongs to this facet then Φ
kij

−ˇ(c)
c (χ(γ))∈D. Events consisting of φkij

−ˇ(c)(γ)

belonging to this facet can be viewed as independent Bernoulli trials with a positive
probability of success t. The final subsequence kij is obtained by eliminating all j for
which such a trial results in a failure. The resulting sequence preserves the density
properties of kij , namely lim supj→∞ kij /j ≤K ′, where K ′ depends on t and k,
and lim supj→∞ kij+1/kij =1. The proof of this is standard and follows closely the
reasoning in Section 3.3 in [1].

Since Φc is an iterate of fc of order no more than p, if we define mj by the

condition f
mj
c =Φ

kij
−ˇ(c)

c , the sequence mj satisfies the same density conditions
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with K=pK ′ and by its construction satisfies the other claims of Theorem 5.7 as
well. �

6. Examples of non-porosity

6.1. Construction of the residual set

The property opposite to porosity is hairiness. Let us recall that a set E is hairy
at z0 if and only if for every β>0 there exists ε>0 such that whenever |z −z0|<ε,
then D(z, βε)∩E 	=∅. By [6], the Julia set of the Feigenbaum polynomial is hairy
at its critical point, and hence at the critical value. Additionally, it can be asserted
that the following holds.

Proposition 6.1. There exists a dense set Y in ∂M such that for every c∈ Y
the Julia set of z2+c is hairy at c.

Proposition 6.1 follows from Theorem 1 in [7] which asserts that every open
subset of M in the induced topology contains a complete copy of the Mandelbrot
set. It means that for every c∈ M there exists c′ in that neighborhood such that a
certain iterate of z2+c′ is quasiconformally conjugate to z2+c on a neighborhood
U of 0 which is mapped over U as a proper holomorphic map by that iterate. The
neighborhood U contains the image K of the Julia set Jc, by the quasiconformal
conjugacy, and necessarily K ⊂Jc′ . If Jc is hairy at c, then so is K at c′ and thus
Jc′ itself is hairy at c′. Taking c to be the Feigenbaum polynomial, we obtain
Proposition 6.1.

Proposition 6.2. There exist a residual set R in M such that for every c∈ R,
(1) all periodic orbits of fc are repelling ;
(2) the itinerary ω(c) is infinite and aperiodic;
(3) for every θ>0 there exists R>0 such that if |z −c| ≤R then

D(z, θR)∩Jc 	= ∅.

Proof. Fix an integer m. Consider the set S1,m of all c∈∂M such that any
non-repelling periodic orbit of fc has period greater than m. This set is clearly
open. Its density is a direct consequence of the density of copies of the Mandelbrot
set used in the proof of Proposition 6.1. Next, we consider the set S2,m of c∈∂M
for which the critical itinerary is well defined up to length m and not periodic with
any period less than m. This set contains an open and dense subset. Indeed, there
is a dense set of c with infinite and aperiodic critical itineraries, and some open
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neighborhood of each of them belongs to S2,m. Finally, S3,m is the set of all c such
that the claim of Proposition 6.2 is satisfied for all θ>1/m. This again contains an
open and dense set since every element of the set Y from Proposition 6.1 contains
an open neighborhood with this property.

By intersecting
⋂∞

m=1(S1,m ∩S2,m ∩S3,m) we get the set R. �

6.2. Proof of the last claim of Theorem 1.2

Let c∈∂M be a parameter supplied by Proposition 6.2. We fix positive β< 1
2

and λ>1. For any θ>0, to be specified later, find R>0 so that if |z −c| ≤R then
D(z, θR) intersects Jc. By the decay of geometry, there exists a Yoccoz piece W 
0
such that W ⊂D(0, R/2). This means that for every y ∈W , Jc is not 2θ-porous at
scale R/2 at y.

Theorem 5.7 guarantees the existence of a set of full harmonic measure in Jc

and positive constants ˇ and K such that for every z from this set there exists an
increasing sequence mi ∈N and a collection of nested neighborhoods Ui of z such
that for every i, fmi maps Ui on some Yoccoz piece U of order ˇ while fmi(z)∈W .
Also, lim supi→∞ mi/i≤K and limi→∞ mi+1/mi=1.

Choose R>0 so small that mod(U \D(0, R))≥10. Using uniformly bounded
distortion of f −mi on D(0, R) we can choose θ>0 so that Jc is not β/λ-porous
at z, and scales εi :=|(fmi(z))′ | −1R. By the Markov property of Yoccoz pieces,
fmi(Ui+1)⊂W and hence the conformal invariance of modulus yields

(6) mod(Ui \Ui+1) ≥ mod(U \D(0, R)) ≥ 10.

From the super-additivity of modulus, mod(U \Ui)≥10i. The Teichmüller mo-
dule theorem asserts that if the modulus of a topological annulus is v>5 log 2
then the topological annulus contains a geometric ring of modulus v −5 log 2. Since
Jc ⊂D(0, 2), we may assume that diamU<25 and consequently, for every i∈N large
enough,

diam Ui ≤ e−10i+5 log 2diamU.

For the same i∈N, the Schwarz lemma implies that

|(fmi(z))′ |
R

≥ 2−5e10i−5 log 2 ≥ 2−10e5mi/K ,

which in terms of εi becomes

(7) log
1
εi

≥ −10 log 2+
5mi

K
≥ mi

K
.
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We want to show that the density of the sequence [log(1/εi)] is positive, where
[ x ] stands for the integer part of x. By compactness, there exists a positive constant
M so that |f ′

c(z)|<M for every z ∈Jc and every c∈ M. Therefore,

(8) log
1
εi

≤ mi log M.

The estimate (6) implies that there exists L>0 such that at most L consecutive
numbers log(1/εi) could yield the same integer [log(1/εi)]. Using this observation,
the inequality (8), and lim supi→∞ mi/i≤K, we have that

1
N

#
{

i ∈ [1, N ] :
[

log
1
εi

]

≤ N

}

≥ 1
NL

#{i ∈ [1, N ] : mi log M ≤ N }

≥ 1
NL

#{i ∈ [1, N ] : 2Ki log M ≤ N }

≥ 1
2KL log M

provided N is large enough.
The last estimate of Theorem 1.2 follows from (7) and a direct calculation. Let i

be the largest integer such that log(1/εi)≤N . Since for every y ∈Jc, |(fmi+1−mi)′(y)| ≤
Mmi+1−mi ,

log εi −log εi+1

|logεi+1| ≤ K
log Mmi+1−mi

mi+1
≤ K log M

mi+1 −mi

mi+1

and therefore,

lim
N→∞

1
N

log
1
εi

=1.
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