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Percolation in invariant Poisson graphs
with i.i.d. degrees

Maria Deijfen, Olle Häggström and Alexander E. Holroyd

Abstract. Let each point of a homogeneous Poisson process in R
d independently be

equipped with a random number of stubs (half-edges) according to a given probability distribu-

tion μ on the positive integers. We consider translation-invariant schemes for perfectly matching

the stubs to obtain a simple graph with degree distribution μ. Leaving aside degenerate cases,

we prove that for any μ there exist schemes that give only finite components as well as schemes

that give infinite components. For a particular matching scheme which is a natural extension of

Gale–Shapley stable marriage, we give sufficient conditions on μ for the absence and presence of

infinite components.

1. Introduction

Let P be a homogeneous Poisson process with intensity 1 on R
d. Furthermore,

let μ be a probability measure on the strictly positive integers. We shall study
translation-invariant simple random graphs whose vertices are the points of P and
where the degrees of the vertices are independent identically distributed (i.i.d.) with
law μ. Deijfen [7] studied moment properties achievable for the edge lengths in such
graphs. Here, we shall instead be interested in the percolation-theoretic question of
whether the graph contains a component with infinitely many vertices.

We next formally describe the objects that we will work with. For any random
point measure Λ we write [Λ]:={x:Λ({x})>0} for its support, or point-set. Let ξ be
a random integer-valued measure on R

d with the same support as P , and which,
conditional on P , assigns i.i.d. values with law μ to the elements of [P ]. The pair
(P , ξ) is a marked point process with positive integer-valued marks. For x∈[P ] we
write Dx for ξ({x}), which we interpret as the number of stubs at vertex x.

A matching scheme for a marked process (P , ξ) is a point process M on the
space of unordered pairs of points in R

d with the property that almost surely for
every pair (x, y)∈[M] we have x, y ∈[P ], and such that in the graph G=G(P , M)
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with vertex set [P ] and edge set [M], each vertex x has degree Dx. If each vertex
x has degree at most Dx, we talk about a partial matching scheme. The matching
schemes under consideration will always be simple, meaning that G has no self-loops
and no multiple edges, and translation-invariant, meaning that M is invariant in
law under the action of all translations of R

d. We say that a translation-invariant
matching is a factor if it is a deterministic function of the Poisson process P and the
mark process ξ, that is, if it does not involve any additional randomness. We write
P and E for probability and expectation on the probability space supporting the
random triplet (P , ξ, M). For later purposes, we note that the notion of a matching
scheme generalizes from the Poisson case to general simple point processes.

Let (P ∗, ξ∗, M ∗) be the Palm version of (P , ξ, M) with respect to P , and write
P

∗ and E
∗ for the associated probability law and expectation operator. Informally

speaking, P
∗ describes the conditional law of (P , ξ, M) given that there is a point

at the origin, with the mark process and the matching scheme taken as stationary
background; see [16, Chapter 11] for more details. Note that since P is a Poisson
process, we have [P ∗] d=[P ]∪ {0}. Let C denote the volume of the component of the
origin vertex for P ∗, that is, C is the number of vertices that can be reached by a
path in G(P ∗, M ∗) from the origin. Our first result states that, excluding trivial
cases, on one hand it is always possible to obtain configurations that contain only
finite components in a translation-invariant way, while on the other hand infinite
components can always be achieved. Furthermore, a connected graph is possible if
and only if the expected degree is at least 2.

Theorem 1.1. Let P be a Poisson process of intensity 1 in R
d, for any d≥1,

and let D be a random variable with law μ.
(a) For any degree distribution μ, there is a simple translation-invariant factor

matching scheme such that P
∗(C<∞)=1.

(b) If P(D ≥2)>0, then there is a simple translation-invariant factor match-
ing scheme such that G has exactly one infinite component a.s., and furthermore
P

∗(C=∞ |D0 ≥2)=1.
(c) The following are equivalent :

(i) E[D]≥2;
(ii) there exists a simple translation-invariant matching scheme for which

the graph G is a.s. connected ;
(iii) there exists a simple factor matching scheme for which the graph G

is a.s. connected.

The implication (ii)⇒(i) of (c) is analogous to various results for percolation
on lattices to the extent that the expected degree of vertices in infinite clusters must
be at least 2; see, e.g. [11, Theorem 2] and [1, Theorem 6.1].
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We move on to consider a particular natural type of matching scheme, which in
the special case where μ({1})=1 (i.e. deterministically one stub per vertex) is known
as the stable matching (see, e.g. [14]). The natural extension to general degrees,
called the stable multi-matching, is defined as follows; here and throughout, distance
|x−y| and edge length are defined in terms of the Euclidean metric on R

d.

Definition 1.1. A matching scheme M is said to be a stable multi-matching if
a.s., for any two distinct points x, y ∈[P ], either they are linked by an edge or at
least one of x and y has no incident edges longer than |x−y|.

We remark that the concept of a stable multi-matching can be defined analo-
gously for general point sets. Here however we will use the term restricted to the
specific situation described above. We will see in Proposition 2.2 below that, for any
dimension d≥1 and any μ, there is an almost surely unique stable multi-matching,
which can therefore be taken to be translation-invariant (and a factor). Our main
result on the stable multi-matching is the following, giving sufficient conditions for
existence and non-existence of an infinite cluster. It may be noted that the gap be-
tween the conditions in (a) and (b) is quite large; see Section 6 for some discussion
on this point.

Theorem 1.2. Consider the stable multi-matching.
(a) For any d≥2, there is k=k(d) such that if P(D ≥k)=1, then P

∗(C=∞)>0.
(b) For any d≥1, if P(D ≤2)=1 and P(D=1)>0, then P

∗(C=∞)=0.

The rest of this paper is organized as follows. In Section 2 we offer some further
background on the model considered here. In Section 3 we prove Theorem 1.1, while
in Sections 4 and 5 we prove parts (a) and (b), respectively, of Theorem 1.2. Finally,
in Section 6 we briefly mention some open problems and scope for further work.

2. Background and preliminaries

2.1. Random graph models with i.i.d. degrees

Random graphs with prescribed degree distribution have been extensively stud-
ied in non-spatial settings; see, e.g. [2]–[5], [18] and [19]. Deijfen and Meester [9]
studied the problem of constructing translation-invariant graphs with Z as vertex
set and i.i.d. degrees assigned to the vertices. They focused on the question of
which moment properties on edge lengths are achievable. Deijfen and Jonasson [8]
obtained further results in this direction, which Jonasson [15] extended to more
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(a) P(D=1)=1−P(D=2)=0.05

(b) P(D=2)=1

Figure 1. Stable multi-matchings on the torus, with given degree distributions.
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(a) P(D=3)=1−P(D=2)=0.05

(b) P(D=3)=1

Figure 2. Stable multi-matchings on the torus, with given degree distributions.
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general deterministic lattices. Finally, Deijfen [7] considered the same problem for
the Poisson process P on R

d, which is the setting we are concerned with here.

2.2. Stable matchings and stable multi-matchings

The concept of stable matchings goes back to Gale and Shapely [10], and has
been extensively studied ever since. Holroyd and Peres [14] considered the case of
matching Poisson points in R

d, while Holroyd, Pemantle, Peres and Schramm [13]
went on to consider bipartite matching of two independent Poisson processes. These
last two references provide constructions that will be useful to us in later sections.
We isolate the relevant findings in the following result concerning the existence of
matching schemes with constant degree 1 in translation-invariant point processes.
The intensity of a translation-invariant point process is the expected number of
points in a fixed set of unit volume. A set U ⊂R

d is said to be non-equidistant if
there are no distinct points x, y, u, v ∈U with |x−y|=|u−v| or |x−y|=|y −v|, while
a descending chain is an infinite sequence {xi} ∞

i=1 ⊂U such that |xi −xi−1| is strictly
decreasing.

Proposition 2.1. (Existence of matchings)

(a) Let R be a translation-invariant point process on R
d with finite intensity,

and assume that a.s. [R] is non-equidistant and has no descending chains. Then a
factor matching scheme for R with constant degree 1 exists.

(b) Let R and S be point processes on R
d, jointly ergodic under transla-

tions, and with equal finite intensities. Assume that [R]∪[S] is almost surely
non-equidistant and has no descending chain. Then there exists a factor match-
ing scheme with constant degree 1 for [R]∪[S], having the property that every point
in [R] is linked to a point in [S] and vice versa.

Proof. As an example that proves (a), we can take the stable matching, whose
existence and uniqueness is established in [14, pp. 10–11] (the stable matching may
be constructed via a procedure of repeatedly matching mutually closest points,
which we will generalize below). For (b) we can take the stable bipartite matching
of R and S (i.e. the stable matching, where two points that are either both in R or
both in S are postulated to have distance ∞, while the distance between other pairs
of points is the usual Euclidean one), whose existence and uniqueness is established
in [13, Proposition 9]. �
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We remark at this point that the Poisson process P satisfies the assumptions
of Proposition 2.1(a), because it satisfies the no descending chains property as first
noted in [12]; see also [6].

Moving on to stable multi-matchings, consider the following procedure for
matching the stubs of (P , ξ). In a set of points S ⊂R

d, call a distinct pair x, y ∈S

mutually closest if x is the closest point to y in S \ {y}, and vice-versa.
Step 1. Consider the set [P ] of all points. An edge is created between each

mutually closest pair in this set, and one stub is removed from each of these points.
Step 2. Consider the set of all points that still have at least one stub after

step 1. Two such points are called compatible if no edge was created between them
in step 1. An edge is created between each compatible mutually closest pair in this
set, and one stub is removed from each of these points.

...

Step n. Consider the set of all points that still have at least one stub. Two
such points are called compatible if no edge has been created between them. An
edge is created between each compatible mutually closest pair in this set, and one
stub is removed from each of these points.

...

It is immediate that this procedure will not produce self-loops or multiple edges,
and the resulting process is clearly translation-invariant. We will show that a.s. all
stubs are eventually matched, and moreover that the resulting graph is the unique
stable multi-matching of (P , ξ).

Proposition 2.2. Let (P , ξ) be a marked Poisson process as before. Almost
surely, the iterative multi-matching procedure described above exhausts the set of
stubs, and the limiting graph (after an infinite number of iterations) is a stable
multi-matching. No other stable multi-matching of (P , ξ) exists.

Proof. For the case where μ({1})=1 this is an application of the result from [14]
mentioned in the proof of Proposition 2.1(a). The general case is a straightforward
adaptation of their argument, as follows.

Let P ′ be the process of points with at least one unmatched stub on them after
the above matching procedure is completed. Then P ′ is an ergodic point process
and hence has either a.s. infinitely many points or a.s. no points. To rule out the
former case, call two points in [P ′] compatible if they do not have an edge between
them in the configuration obtained from the matching procedure. Then create a
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directed graph G′ with [P ′] as vertex set by drawing a directed edge from each
point to its nearest compatible point (which exists because the initial numbers of
stubs were finite). Some thought reveals that G′ cannot contain cycles of length
more than two, and that each finite component must contain precisely one cycle of
length two. However, a cycle of length two is also impossible, since it corresponds
to two mutually closest points with no edge between them and an unmatched stub
at each point, and between such points an edge would indeed have been created
at some stage in the matching procedure. Hence G′ has no finite components, and
no cycles. This implies that if [P ′] is non-empty, then following the outgoing edges
starting at any x∈[P ′] yields a descending chain. Since descending chains do not
exist in P (and hence not in P ′), we conclude that [P ′] is a.s. empty, as desired.

That the resulting multi-matching is stable follows from the definition: an
unstable pair of points would have had an edge created between them at some
stage of the matching procedure. That it is the unique matching with this property
follows by induction over the stages in the algorithm to show that each edge that
is present in the resulting configuration must be present in any stable matching of
the stubs. �

Remark 2.1. Note that the given procedure works and proves Proposition 2.2
in the greater generality where the Poisson process P is replaced by any point
process satisfying the requirements of Proposition 2.1.

Remark 2.2. We later want to apply the given procedure in situations where
some pairs of vertices already have an edge between them and additional connections
between such vertices are prohibited. Provided the existing edges form a translation-
invariant process, the proof of Proposition 2.2 shows that the process still exhausts
all remaining stubs, and results in a translation-invariant process.

2.3. Mass transport

The so-called mass transport method in percolation theory was originally de-
veloped for the setting of non-amenable lattices (see [1] for background) but has
turned out to be a convenient tool also for the more familiar setting of processes liv-
ing on Z

d or R
d. Here we formulate a special case adapted to the particular needs of

the present paper. We define a mass transport to be a random measure T on (Rd)2

which is invariant in law under translations of R
d, that is, T (A+x, B+x) d=T (A, B)

for all Borel sets A, B ⊆R
d and x∈R

d, where we write T (A, B):=T (A×B). We
interpret T (A, B) as the amount of mass transported from A to B. Let Q denote
the unit cube [0, 1)d.
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Lemma 2.1. (Mass transport principle) Let T be a mass transport. Then

E[T (Q, Rd)] = E[T (Rd, Q)].

Proof.

E[T (Q, Rd)] =
∑

z∈Zd

E[T (Q, Q+z)] =
∑

z∈Zd

E[T (Q−z, Q)] = E[T (Rd, Q)]. �

3. Anything is possible

The task in this section is to prove Theorem 1.1, and we begin with part (a).

Proof of Theorem 1.1(a). We need to describe a factor matching scheme that
gives only finite components. To this end, let Pn denote the process of points x∈[P ]
with Dx=n (recall that Dx denotes the number of stubs attached to x). We will
partition [Pn] into groups of size n+1. The configuration is then taken to consist
of complete graphs on each of these groups.

Take n such that Pn is non-empty. To partition [Pn], we assign each point in
[Pn] a type i∈ {1, ..., n+1} as follows. Let R∗ be the distance from the origin to the
closest other point in the Palm version of Pn and let 0=r0<r1<...<rn<rn+1=∞
be such that

(1) P
∗(ri−1 <R∗ ≤ ri) =

1
n+1

, i =1, ..., n+1.

For x∈[Pn], let Rx denote the distance to the nearest other point in [Pn]. We assign
x∈[Pn] type i if ri−1<Rx ≤ri, and let P i

n be the process of points of Pn of type i.
Note that this assignment involves no randomness beyond the Poisson process itself,
and that for each given n, the processes P 1

n, ..., P n+1
n have equal intensities and are

jointly ergodic under translations. By Proposition 2.1(b), this means that for each
i=1, ..., n we can find a matching scheme that matches each type i point to a unique
type i+1 point and vice versa. The components of the graph obtained by taking
the union of these matchings partition [Pn] into groups of size n+1 with one point
of each type in each group. �

For the proofs of parts (b) and (c) of Theorem 1.1 the following lemma will be
useful.

Lemma 3.1. For a Poisson process with exactly 2 stubs on each point, there
exists a factor matching scheme in which G has a single component consisting of a
doubly infinite path.



50 Maria Deijfen, Olle Häggström and Alexander E. Holroyd

Proof. This is contained in the proof of [14, Theorem 1]. For expository pur-
poses, let us nevertheless say a few words about how it is proved. The main step
is to construct, in a translation-invariant way, a one-ended tree whose vertex set
is [P ]. Once that is done, the single doubly infinite path is easily constructed from
the tree by first ordering the children of each vertex according to distance from the
parent, then ordering all vertices according to depth-first search, and finally linking
each pair of vertices that fall next to each other in this ordering by an edge. The
construction of the one-ended tree is quite involved and we refer to [14] for details
on this. �

Remark 3.1. If we relax the requirement in Lemma 3.1 to ask for a union of
doubly infinite paths rather than a single infinite path (this will be enough for
our proof of Theorem 1.1(b) but not for the proof of Theorem 1.1(c)), then the
tree construction of [14] can be replaced by the following construction: Define the
cone V ={(y1, ..., yd)∈R

d :y1 ≥ |(y2, ..., yd)| } and, for x∈[P ], put a directed edge to
the (almost surely unique) point in (x+V )∩[P ] whose first coordinate is minimal
among all points in (x+V )∩[P ]. The resulting graph is clearly a forest and it is
shown in [14, pp. 10–11] that the trees are indeed one-ended. Directed infinite paths
can then be created from each tree as in the proof of Lemma 3.1.

Proof of Theorem 1.1(b). It is sufficient to provide a factor matching scheme
where all vertices of degree at least 2 belong to a single infinite component.

To match the stubs in the Poisson configuration in such a way that an infinite
component is obtained we proceed as follows. First consider all vertices of degree
at least 2 and create, in a translation-invariant and deterministic way, a directed
infinite path that contains all of them; this is possible by Lemma 3.1 (or, if we
opt for a union of infinite paths which is sufficient for the existence but not for the
uniqueness of the infinite component, by the more elementary result in Remark 3.1).
When this is done we are left with a reduced stub configuration. This is then
matched up using the stable multi-matching described prior to Proposition 2.2 with
the obvious modification that we do not allow for connections between points that
already have an edge between them arising from the connections along the paths.
Proposition 2.2 along with Remark 2.2 guarantee that this indeed leads to a multi-
matching. �

For the proof of Theorem 1.1(c), one more lemma—a generalization of Propo-
sition 2.1(b)—will be convenient.

Lemma 3.2. Let ν be a probability measure on the strictly positive integers
and let X be a random variable with law ν. Let R and S be translation-invariant
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point processes on R
d, jointly ergodic under translations, and with finite intensities

λR and λS satisfying

(2) λR ≤ E[X]λS .

Assign degree 1 to each point in R and assign i.i.d. degrees with law ν to the points
in S . If [R]∪[S] is almost surely non-equidistant and has no descending chains,
then there exists a translation-invariant partial matching scheme, a deterministic
function of (R, S), that matches each point in [R] to a stub in [S]. If (2) holds
with equality, then the procedure also exhausts all stubs in [S].

Proof. Define

m= inf
{

j :
j∑

i=1

P(X ≥ i)λS ≥ λR

}

(with m=∞ if (2) holds with equality) and, if m≥2, let

pi =
P(X ≥ i)λS

λR
, i =1, ..., m−1,

and if m<∞ let pm=1−
∑m−1

i=1 pi. If m=1, just let p1=1. As in the proof of
Theorem 1.1(a), we let R∗ be the distance from the origin to the closest other
point in the Palm version of R and, analogously to (1), we define real numbers
0<r1<...<rm−1 such that

P
∗(R∗ ≤r1) = p1,

P
∗(r1<R∗ ≤r2) = p2,

...

P
∗(rm−2<R∗ ≤rm−1) = pm−1,

P
∗(R∗ >rm−1) = pm.

For x∈[R], say that x is of type i∈ {1, ..., m−1} if ri is the first number in the
ordered sequence r1<...<rm−1 that exceeds the distance from x to the nearest
other point in [R], and of type m if the distance from x to the nearest other point
in [R] is larger than rm−1. This divides the process R into processes Ri, i=1, ..., m,
with intensities λRpi. Write Si for the process of vertices in S with degree at least i.
By the choice of pi, for i=1, ..., m−1, the intensity of Ri coincides with the intensity
of Si, and condition (2) implies that the intensity of Rm is at most the intensity of
Sm (indeed, the intensity of Rm is λR −

∑m−1
i=1 P(X ≥i)λS , which does not exceed

P (X ≥m)λS by the choice of m).
Now, for each i=1, ..., m, match the points of Ri to the points of Si using

Proposition 2.1(b). For i=1, ..., m−1, the intensities of the processes coincide, and
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we hence get a perfect matching of the points (that is, a matching, where each point
is matched to precisely one other point). For i=m, it is not difficult to see that all
points in Rm get matched up (while some points in Sm may not be used). Since
the assignment of types and the matchings from Proposition 2.1 are all translation-
invariant, the same holds for the resulting matching scheme. �

Proof of Theorem 1.1(c). To show that conditions (i), (ii) and (iii) are equiva-
lent, it suffices to show that (iii)⇒(ii)⇒(i)⇒(iii). Since (iii)⇒(ii) is trivial, we only
need to show that (i)⇒(iii) and that (ii)⇒(i).

To prove (i)⇒(iii), first note that the matching scheme described in the proof
of Theorem 1.1(b) gives a connected graph as soon as all vertices have degree at
least 2 (provided we use the construction in Lemma 3.1 rather than the one in
Remark 3.1). To handle the case where P(D=1)>0, let X be a random variable
distributed as D −2 conditional on that D ≥3 and note that E[D]≥2 implies that

(3) P(D =1) ≤ E[X]P(D ≥ 3)

with equality if and only if E[D]=2.
Consider first the case E[D]=2. For a matching scheme here, first employ the

scheme in the proof of Theorem 1.1(b) in order to connect up all points in [R]
which are assigned degree 2 or more into an infinite path. This leaves the points
which are assigned degree 1, plus the points initially assigned degree 3 or more,
each having two of their stubs already matched. Since (3) holds with equality,
Lemma 3.2 is exactly tailored to produce a factor matching of the degree-1 points
to the unmatched stubs of the degree ≥3 points. This gives a connected graph, so
the case E[D]=2 is settled.

For the case E[D]>2 we proceed as with E[D]=2 by first constructing the
infinite path and then connecting up degree-1 points to it by the scheme offered
in the proof of Lemma 3.2. This time, however, the latter scheme, although re-
sulting in a connected graph, fails to use up all the stubs of the degree ≥3 points.
These remaining stubs can be hooked up to each other by the stable multi-matching
scheme described prior to Proposition 2.2 with the restriction that we do not allow
connections between points that already have an edge between them on the infinite
path. Using Remark 2.2, this completes the proof of the (i)⇒(iii) implication.

To prove (ii)⇒(i) we employ a mass-transport argument. Assume (ii), and let
M be a matching scheme that produces a connected graph. Consider the mass
transport, where each point x∈[P ] sends a unit mass to y ∈[P ] if and only if x

and y are connected by an edge, and removing that edge would leave x in a finite
component. Note that the mass Mout

x sent from x cannot exceed 1. We claim that,
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for any vertex x,

(4) Dx −2 ≥ M in
x −Mout

x .

This follows by considering separately the two cases Mout
x =1 and Mout

x =0. When
Mout

x =1 we get M in
x =Dx −1 and (4) holds with equality. When Mout

x =0 we have
that x is connected to infinity via at least two edges adjacent to it, which implies
that M in

x ≤Dx −2, and again (4) holds.
By the mass transport principle (Lemma 2.1), the expectation of the right-

hand side of (4) summed over all Poisson points x in the unit cube Q is 0. But the
expectation of Dx −2 summed over all Poisson points in the unit cube Q is simply
E[D]−2 (because the Poisson process has intensity 1), so (4) implies E[D]≥2, as
desired. �

4. Percolation in the stable multi-matching

In this section we prove Theorem 1.2(a), that is, we show that if each Poisson
point has sufficiently many stubs attached to it, then the edge configuration result-
ing from the stable multi-matching percolates. The proof uses the result from [17]
concerning domination of r-dependent random fields by product measures, where
a random field {Xz }z∈Zd is said to be r-dependent if for any two sets A, B ∈Z

d at
l∞-distance at least r from each other we have that {Xz }z∈A is independent of
{Xz }z∈B . The version we need is as follows.

Theorem 4.1. ([17]) For each d≥2 and r ≥1 there exists a pc=pc(d, r)<1
such that the following holds. For any r-dependent random field {Xz }z∈Zd satisfying
P(Xz=1)=1−P(Xz=0)≥p with p>pc, the 1’s in {Xz }z∈Zd percolate almost surely.

Proof of Theorem 1.2(a). The idea of the proof is a renormalization procedure.
We partition R

d into cubes and declare a cube to be good if it contains at least one
but not too many Poisson points and if the same holds for all cubes close to it,
where “too many” and “close” will be specified below. We then use Theorem 4.1
to deduce that the good cubes can be made to percolate, and we observe that, if
each Poisson point has sufficiently many stubs attached to it, then each point in
a good cube must be connected to each point in its adjacent cubes in the stable
multi-matching. This forces the existence of an infinite component in the stable
multi-matching.

To make this reasoning more precise, for a∈R, let aZ
d={az :z ∈Z

d} and parti-
tion R

d into cubes {Caz }z∈Zd centered at the points of aZ
d and with side a. Two

cubes Caz and Cay are called adjacent if |z −y|=1, and we write m=m(d) for the
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smallest integer such that the maximal possible Euclidean distance between points
in adjacent cubes does not exceed ma. For each cube Caz a super-cube Saz is de-
fined, consisting of the cube itself along with all cubes Cay with y at l∞-distance
at most 2m from z. A super-cube hence contains (4m+1)d cubes.

Now, call a cube Caz acceptable if it contains at least one and at most n=n(d)
Poisson points, where n will be specified below, and it is good if all cubes in Saz

are acceptable. We have that

P(Caz is acceptable) = 1−P[P (Caz)= 0]−P[P (Caz) >n].

The first probability on the right-hand side can be made arbitrarily small by taking
a large, and, for a fixed a, the second probability can be made arbitrarily small by
taking n large. Hence, by choosing first a large and then n very large, we can make
the probability that a cube is good come arbitrarily close to 1. In particular, by
Theorem 4.1, we can make it large enough to guarantee that the good cubes per-
colate. Fix such values of a and n, let k=n(4m+1)d and assume that P(D ≥k)=1.
We will show that then each Poisson point in a good cube is connected to all Poisson
points in the adjacent cubes, which completes the proof.

Say that a point x∈[P ] with Dx stubs desires a point y ∈[P ] if y is one of the
Dx nearest points to x in [P ]. Then a Poisson point x in a good cube Caz desires
all points in the adjacent cubes: For any point y in an adjacent cube, the distance
between x and y is at most ma, and the Euclidean ball Bma(x) with radius ma

centered at x is contained in the supercube Saz , which contains at most k Poisson
points (indeed, all (4m+1)d cubes in Saz are acceptable, which means that each
one of them contains at most n points). Since Dx ≥k, it follows that y desires all
points in Bma(x), so in particular x desires y. Furthermore, each Poisson point y

in a cube that is adjacent to a good cube Caz desires each point in the good cube:
Since the distance between x and y is at most ma, we have that Bma(y)⊂B2ma(x).
Moreover, the ball B2ma(x) is contained in the supercube Saz , which contains at
most k points. Hence Bma(y) contains at most k points and, since Dy ≥k, it follows
that y desires all points in Bma(y).

We have shown that each point in a good cube desires each point in the adjacent
cubes and vice versa. All that remains is to note that two points that desire each
other will indeed be matched. This follows from the definition of the stable multi-
matching. Hence each point in a good cube is connected to each point in the adjacent
cubes and since the good cubes percolate this proves part (a) of Theorem 1.2. �

Remark 4.1. An easy modification of the above proof reveals that the following
slightly stronger variant of Theorem 1.2 holds. For any ε>0, there exists k=k(d, ε)
such that if P(D ≥k)>ε, then P

∗(C=∞)>0.
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5. Non-percolation in the stable multi-matching

In this section we prove Theorem 1.2(b), that is, we show that if all points
have degree at most 2 and there is a positive probability for degree 1, then almost
surely the stable multi-matching gives configurations with only finite components.
The proof is based on the following lemma.

Lemma 5.1. In any translation-invariant matching scheme, a.s. G has no
component consisting of a singly infinite path.

Proof. Assume that components consisting of a singly infinite path occur with
positive probability, and consider the mass transport, where each Poisson point that
sits on a singly infinite path sends mass 1 to the endpoint of the path. With positive
probability the unit cube Q contains such an endpoint, and hence the expected mass
that is received by Q is infinite. But the expected mass that is sent out from Q is at
most 1, because the expected number of Poisson points in Q is 1. This contradicts
the mass transport principle (Lemma 2.1). �

Proof of Theorem 1.2(b). Let the degree distribution be such that P(D ≤2)=1
and P(D=1)>0. The only infinite components that can occur when P(D ≤2)=1
are infinite paths of degree-2 vertices which are connected to each other and, by
Lemma 5.1, any such path has to be bi-infinite. Assume for contradiction that such
a bi-infinite path occurs with positive probability. We will describe a coupled con-
figuration of vertex degrees, where, with positive probability, the edge configuration
remains unchanged except that a doubly infinite path is cut apart and turned into
two singly infinite paths. This conflicts with Lemma 5.1.

Given the Poisson process P with associated degrees {Dx}x∈[P], we now intro-
duce a modified degree process {D̃x}x∈[P]. Conditional on P and {Dx}x∈[P], let
{D̃x}x∈[P] be independent random variables chosen as follows. With probability
1−e− |x|, we set D̃x=Dx, where |x| is the Euclidean distance from x to the origin.
With the remaining probability e− |x|, the degree D̃x is taken to be an independent
random variable with law μ. The Poisson points that receive a newly generated
degree in D̃x are referred to as re-randomized. Note, crucially, that {D̃x}x∈[P] has
the same distribution as {Dx}x∈[P]. Note also that

E

∑

x∈[P]

1[x re-randomized] =
∫

Rd

e− |x| dx< ∞ .

Hence, by the Borel–Cantelli lemma, the number of re-randomized points is finite
almost surely.
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Now, take a configuration of Poisson points and associated degrees for which the
graph G resulting from the stable multi-matching contains some bi-infinite path.
Let G̃ be the graph resulting from the modified degrees {D̃x}x∈[P]. Along each
such path {xi} ∞

i=− ∞, there must be an edge that is locally maximal, that is, an
edge (xi, xi+1) with |xi+1 −xi|>max{ |xi −xi−1|, |xi+2 −xi+1| }. To see this, note
that if such an edge did not exist, the vertices of the path would either constitute
a descending chain, or contain a single locally minimal edge (defined in obvious
analogy with locally maximal). Descending chains do not occur in Poisson processes
(as noted in Section 2.2) while chains with a single minimal edge are ruled out by
a mass transport argument similar to the one in the proof of Lemma 5.1 (let each
vertex on such a path send unit mass to the midpoint of the unique invariant edge).
Let (xm, xm+1) be a locally maximal edge—say the one with a vertex closest to the
origin. Write A for the event that xm and xm+1 are the only two vertices that are
re-randomized and that D̃xm =D̃xm+1 =1, that is, the degrees of xm and xm+1 are
changed to 1’s while the rest of the degrees remain unchanged.

We claim that, on A, the modified graph G̃ consists of the same edges as in the
original G except that the edge (xm, xm+1) is absent. Indeed, since |xm+1 −xm| ≥
max{|xm+2 −xm+1|, |xm −xm−1| }, the edge (xm, xm+1) is created at a later stage
in the matching procedure than the edges (xm−1, xm) and (xm+1, xm+2). On the
event A, no stubs have been added or removed in the modified configuration except
that one stub is taken away from each of xm and xm+1. Hence, up until the stage
when the edge (xm, xm+1) was created in the original process, precisely the same
edges are created in the modified configuration. At this stage, the vertices xm

and xm+1 do not have a stub on them, and so the edge (xm, xm+1) is not created
in the modified configuration. After this stage, the situation is as in the original
configuration, and so the same edges are again created.

The arguments above show that, on A, the modified stable multi-matching for
the modified configuration contains two singly infinite paths (xm+1, xm+2, ...) and
(xm, xm−1, ...). All that remains is to note that, since the number of re-randomized
vertices is finite almost surely, the event A has positive probability. We have hence
derived a contradiction with Lemma 5.1. �

6. Open problems

Closing the gap in Theorem 1.2. Theorem 1.2 provides conditions for when the
stable multi-matching contains an infinite component and for when it consists only
of finite components. These conditions however are quite far apart and it would be
desirable to obtain a more precise understanding for when the stable multi-matching
percolates. Consider for instance the case with exactly two stubs attached to each
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point, that is, μ({2}). Do infinite components occur in this case? Simulations
appear to suggest a positive answer for d=1, but are less conclusive for d=2.

Theorem 1.2(b) states that percolation does not occur when there are only
degree-1 and degree-2 vertices. Roughly speaking, this is because the degree-1
vertices serve as dead ends in the configuration. Does this phenomenon persist
when a small proportion of degree-3 vertices is added? Does a sufficiently large
proportion of degree-1 vertices always guarantee non-percolation?

Finally, if degree distribution μ results in an infinite cluster, and we replace
μ by a distribution μ′ that stochastically dominates μ, do we still get an infinite
cluster?

Other translation invariant point processes. We have chosen to focus on the
Poisson process case, and not worried about what might be a fruitful level of general-
ity for answering the corresponding questions on more general translation-invariant
point processes. For the case of stable multi-matchings, however, it is (as indi-
cated already in Remark 2.1) clear that the lack-of-descending-chains property (see
Proposition 2.1) is important; see [6] for some fairly general conditions guaranteeing
this property.
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