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Embeddings through discrete sets of balls

Stefan Borell and Frank Kutzschebauch

Abstract. We investigate whether a Stein manifold M which allows proper holomorphic
embedding into C™ can be embedded in such a way that the image contains a given discrete set of
points and in addition follow arbitrarily close to prescribed tangent directions in a neighbourhood
of the discrete set. The infinitesimal version was proven by Forstneri¢ to be always possible. We
give a general positive answer if the dimension of M is smaller than n/2 and construct counterex-
amples for all other dimensional relations. The obstruction we use in these examples is a certain
hyperbolicity condition.

1. Introduction

It is a famous theorem of Remmert [15] that any Stein manifold admits a proper
holomorphic embedding into affine N-space CV of sufficiently high dimension N.
The main theme of the present paper is the following question which was asked by
Forstneri¢ in [9]:

If M is a Stein manifold which admits a proper holomorphic embedding
into C" for some n>1, what other properties of the embedding can one
prescribe?

In the above mentioned paper of Forstneri¢, the main result states that there exist
embeddings of M through any discrete subset of C™ with prescribed finite jets at
the points of the discrete set. Strong tools for prescribing additional properties of
embeddings are based on the Andersén—Lempert theory [2] developed in the 1990s.

We would like to mention that these sort of properties of an embedding are cru-
cial for the constructions of non-straightenable embeddings of C into C? (see [10]),
in sharp contrast with the algebraic situation where the famous Abhyankar—Moh—
Suzuki theorem states that any algebraic embedding of a line in a plane is always
equivalent to a linear one [1], [17]. This was crucial for Derksen and the second
author who constructed counterexamples to the holomorphic linearisation problem
(they showed existence of non-linearisable holomorphic C*-actions on C™, m>4,
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and, moreover, existence of such non-linearisable holomorphic actions for any com-
pact Lie group K on C" with n sufficiently large; see [5] and [6]). In the same
way (using affine modifications) many interesting examples of manifolds with the
density property can be constructed (see [14]).

The present paper is devoted to the following natural question in this context:

Given a discrete set of points in C™ with prescribed tangent planes of dimen-
sion dim M, is it possible to require an embedding of M to follow arbitrarily
close to the tangent planes in some neighbourhood of the given points?

It turns out that there is not such a very general answer as in the case of Forstneri¢’s
theorem. The situation is more subtle: in certain dimensions the intrinsic properties
of the manifold M itself play an important role for the answer.

We do not have a complete answer to our question, but on one hand we have
a positive general answer for 0<k< %n (see Theorem 3.5).

Theorem 1. Let O<k<%n. If X is a complex space of dimension k which
admits a proper holomorphic embedding into C", then for any discrete set D of
k-dimensional balls in C"* and any e€RS®, there exists a proper holomorphic em-
bedding F: X —C" such that F(X) contains an e-perturbation of D.

On the other hand, for %n§k<n we are able to construct counterexamples to
the corresponding result by using a hyperbolicity obstruction: For %n§k<n there
exists a discrete set of k-dimensional balls in C™ such that no embedding F': C*¥<C"
maps CF through small perturbations of the balls (see Proposition 4.5). In fact, we
are able to prove the following (see Theorem 4.7):

Theorem II. For %n§k<n there exist a discrete set D of k-dimensional balls
in C" and e€R$° such that if a Stein manifold X admits a proper holomorphic em-
bedding into C™ which contains an e-perturbation of D, then X is (n—k)-Eisenman
hyperbolic.

We would like to state separately the following special case of Theorem II (see
Corollary 4.8).

Corollary I. There exist a discrete set D of discs in C? and e€R such
that no e-perturbation of D can be contained in the image of a proper holomorphic

embedding of C or C*.
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2. k-balls in C™

Throughout this paper B,, will always denote the open unit ball in C™ centred
at the origin. For 0<k<n, we say that DCC" is a k-ball centred at peC™ if
D=BnNV, where B is an open ball in C" centred at p and V CC" is a k-dimensional
affine plane through p. We say that a sequence of k-balls D; in C" is discrete if
their closures are pairwise disjoint and each set of the type {p;€D;;jeN} forms
a discrete subset of C™. Often we will use the phrase “discrete set D of k-balls
in C"” when referring to a discrete sequence D; of k-balls in C".

Let e>0 and let D CC™ be a k-ball centred at p, i.e., D=BNV as above. We say
that a set D' CC™ is an e-perturbation of the k-ball D if D'={z+F(z);z€ D}, where
F: D—C" is a holomorphic map such that ||F'|| <e and the image of F' is contained
in the orthogonal complement of the linear subspace V—p={z€C";z+peV}.

Given a discrete set D={D;}32, of k-balls in C" and a sequence ¢; of positive
real numbers, denoted € €R$°, where e=(e1, €2, ...), we say that D’ is an e-perturb-
ation of D if D' is a union of ¢;-perturbations D; of Dj.

Let M CC™ be an analytic subspace of dimension k, and assume that M con-
tains an e-perturbation D’ of some k-ball DCC"™. We will need the fact that
deformations of M, which are small near D', will still contain a perturbation of D.
By definition, D’ is the graph of a holomorphic function f over D. If ¢: C*—C" is
a holomorphic map such that o f is close enough to f in C'-norm, then it follows
that the image of @o f contains a graph over a slightly smaller ball DcD. Hence,
deforming M by some holomorphic map ¢ for which the Cl-norm |jp—id|c: is
small enough near D', we are assured that o(M) still contains a perturbation of D.
Since ¢ deforms D’ by at most v=sup, ¢ |¢(2)|, it follows that ¢(M) contains an
(e+v)-perturbation of D.

3. Theorem 1

The statement of Theorem I is essentially contained in the following result.

Proposition 3.1. Let O<k<%n. For any discrete set D of k-balls in C™,
e€RY, and analytic subspace M CC™ of dimension k, there exist an open set €2,
McQcC™, and a biholomorphic map ®: Q—C", such that ®(M) contains an
e-perturbation of D.

To prove the proposition we make small modifications of the methods used by
Forstneri¢ to prove the main theorem in [9]. The methods being inductive, we first
perturb the discrete set of k-balls in order to find an exhaustion of the target space
C™ by compact polynomially convex sets in such a way that a new k-ball is added in
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each step of the exhaustion (see Lemma 3.2). Using this exhaustion, we can follow
the methods in [9], modifying the inductive step to guarantee the statement of the
proposition (see Lemma 3.3).

3.1. The two lemmata

The following two lemmata are essential in the construction of ® in Prop-
osition 3.1.

Lemma 3.2. Let 0<k<3in. Given a discrete set D of k-balls and e ERS®, there
exist an e-perturbation D' of D and compact polynomially convex sets X; CC™ such
that

(i) the sets X; exhaust C™;

(ii) EZ/CX]- for 1<3;

(iii) D,NX;=2 for I>].

Furthermore, there are pairwise disjoint analytic subsets Pj( (biholomorphic
to Ck) in C™ with D}CPJ{ and PJ{OXZZZ, 1<j.

Proof. Let P; be the k-dimensional affine plane in C" containing the k-ball D;.
First we will define perturbations P]{ of the affine planes P;. If possible, let k; be
the largest positive integer such that

Djﬂijang and Pjﬁijn#Q

For j so that no such k; exists, we set P;:Pj. Otherwise, let 7; be the orthogonal
projection onto P; and observe that D; and m;(k;B,) are two open disjoint balls
in P; sharing no boundary points. As a result, their union is Runge in P; and we
can find a holomorphic function f; on P; such that

5
eI<Z, e,

and
|fj(2)|>2kj, ZGﬂ'j(/ijn).

Choose a vector v€C™ orthogonal to P; with |v|=1 and define a shear o€ Aut(C")
by

z—>z+ fom;(2)v.

Set P/=0(P;) and observe that, since f is small enough on Dj, the set o(D;) is an
gj/2-perturbation of D;.
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Assume that the sets P/, ..., P/, are pairwise disjoint and let N:U;.n=1 P;. Con-
sider deformations of P,
tion of P}, makes it transversal to IV, and since 2k<n, this implies that almost
every such deformation of P ., do not intersect N. Hence, if we choose such
a deformation 7,11 small enough, we can guarantee the additional property that
Tm+1(D;, 1) is an e,,-perturbation of D, 1. For this reason we may assume that

the sets P]f are pairwise disjoint, and each P]f contains an ¢;-perturbation D;- of D;.

,+1 given by translations in C™. Since almost every deforma-

Now we have pairwise disjoint sets P]{ containing e;-perturbations of D;. Fur-
thermore, any compact set in C™ intersects at most finitely many sets Pj(. It follows
that the disjoint union

P= [j P](
j=1

is closed and constitutes an analytic subset of C". Define a sequence C; of non-
negative real numbers inductively so that
Ci=0 and min

1

|2)24-Cjg1 > max 1z|24-C;, j>1.
ZEDJ.+1 z .

J

Then, since P is an analytic set in C”, there is a holomorphic function F' on C"
such that F|pJ{=C’j. Let p: C*—R be given by

p(z) = 2" +|F(2)].

Observe that p is a continuous strictly plurisubharmonic exhaustion function. The
proof is finished by defining sublevel sets of p. Choose positive real numbers R; in
such a way that

Rj < max p(2) < Rji1
2€D; 4,

and define X;={z€C";p(z)<R;}. O

Let D be a discrete set of k-balls in C* and e€R%°. Apply Lemma 3.2 to
find an e-perturbation D" of D together with an exhaustion X;. Moreover, assume
that M CC" is an analytic subset of dimension k and K CM a compact set such
that MNX,,CK. Set K,,=X,,UK. Observe that, by the same methods used to
prove Lemmata 5.4 and 5.6 in [9], it follows that K, and Kmuﬁfnﬂ are compact
and polynomially convex. We describe the modification of the inductive step in the
following lemma.
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Lemma 3.3. We use the above notation and assume that 0<I<;<%n, v1>0.
If MND;, ,,=@ and M contains a vy-perturbation Ej of Dj, 1<j<m, with f)jc
Int Ky, then for all va>0 there exists o€ Aut(C™) such that

(i) (M) contains a (v1+v2)-perturbation of D;, 1<j<m;

(i) (M) contains an (€me1+v2)-perturbation of Dpyi1;

(i) $(M)N DY, 2=

(iv) |p(z)—z|<wve for all ze Xy,

Proof. Let p; be the centre of l~)j, 1<j<m, i.e., the point in l~)j corresponding
to the centre of D;, and let p be the centre of D}, , ;. Choose a point g€ (Reg M)\ K,
such that dim, M =dim M =k. For any v3>0, Proposition 1.1 in [9] assures that
there exists ¢1 €Aut((C”) with the following properties:

(1) e1(g)=p

(2) Tppr (M ) TpDii1;

(3) @1(:)=2+O(|z=p,?) as z—p;, 1<j<m;

(4) |p1(2)—z|<vs for all ze Ky,

We let 3>0 be small enough for (4) to ensure that o1 (M) contains (v1 +v2/4)-
perturbations of Dy, ..., D,,.

It is enough to find a Runge neighbourhood R=R;URs of KmUE;n_H and
a vector field Z on R such that

(a) K, C Ry, mHCRQ, and R1NRx=0

(b) Z|r, =0;

(c) the time-one flow of Z on a neighbourhood U of p, with U relatively compact
in Ry, deforms U inside Ry such that a part of ¢ (M)NU is stretched onto a small
enough perturbation of Dy, ;1.

Indeed, if this is achieved we can approximate Z uniformly on K,,UU by an
entire vector field in C". Therefore, the flow of the vector field Z can be uni-
formly approximated on K, UU by a holomorphic automorphism s of C* accord-
ing to Lemma 1.4 in [11]. Making the approximations good enough, (b) assures
that pa°p1|K,, is close enough to the identity. Moreover, (b) and (c) assures that
w2op1(M) contains (14 +v2/2)-perturbations of Dy, ..., D, and an (g,41+v2/2)-
perturbation of Dy, ;1. If pa0¢1 (M) does not intersect Dy, o, we let o=(o0¢p;.

If @oop1(M) intersects D;,,, we use small deformations of 20, to avoid
intersection. In general we know that small deformations, e.g. translations, of oo
makes its image transversal to D;, 5. Since 2k<n, this means that the image does
not intersect D), ,. Hence, it is enough to choose a small enough deformation
p3€Aut(C") and define p=30op001.

Let us now construct the Runge neighbourhood R together with the desired
vector field Z as above. Consider the analytic subspace P; ,; from Lemma 3.2



Embeddings through discrete sets of balls 257

which contains Dj, ,; and for which there exists )€ Aut(C") such that (P}, ;)=
Ckx{0}. Moreover, we may assume that ¢(D}, ,)=Bpx{0}. Since K,,UD},
is polynomially convex it admits a Stein neighbourhood basis, and we can choose
a Runge neighbourhood R=R,UR; of K,,UD, ., satisfying (a) above. In fact, we
may assume that ¢(Re)=sBjy xtB,,_) for some s>1 close enough to one and ¢t>0
close enough to zero.

Use the coordinates (w’, w”)€CF x C*~* and define the vector field Y on ¢ (Rz)
by Y (v, w"”)=(pw', —vw"), u,v>0. Moreover, the time-t flow F}; of Y in ¢(Ry3) is
given by

Ft (wl, w//) _ (eutwl7 e—ytw//).

We consider the time-one flow F; of Y. For each large enough choice of p and v we
can find >0 such that

rB,, C 'I)Z}(RQ) and Ek X {0} C F1(7‘Bn) C 1/)(R2)

Additionally, we can increase p and v and decrease r so that the time-one flow of
o1 (M)NrB,, contains a perturbation of By x {0}. This is possible since (2) above
implies that 1oy (M) is tangent to By x {0} at the origin. Hence, it is possible to
choose p, v, and r in order to make the resulting perturbation arbitrarily small.

For our purpose, and in order to satisfy (b) above, we define the vector field Z
on R=R1URy by letting Z|g, =0 and Z|r,=1"1oY. We use the freedom of choice
of the parameters p, v, and r to guarantee that the resulting time-one flow of Z
in RoUy~—1(rBy,) stretches 1(M)Ny~1(rB,) so that it contains a small enough
perturbation of D,,1. Hence (c) above is satisfied with U=%"1(rB,), and the
proof is finished. [

Remark 3.4. By a more careful analysis it is possible to assure that ¢(M)
passes through the midpoints of the balls D; and the tangent space of M at these
points coincides with that of the balls. The best way of keeping this property in the
inductive step is using the Andersén-Lempert theorem for the geometric structure
of holomorphic vector fields on C™ vanishing to order at least 2 at a finite set of
points.

3.2. Proof of Theorem I

Using the two lemmata above we can now prove Proposition 3.1, and in turn
guarantee the statement of Theorem I.
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Proof of Proposition 3.1. Lemma 3.2 furnishes an e/4-perturbation D’ of D.
Let p; be the centre of D , 1.e., the point in D;- corresponding to the centre of D;.
We may assume that 0€X 1NM and choose a€ X1\ D’ arbitrarily small to guaran-
tee that the map ®p€Aut(C"), defined by ®y(z)=z+a, satisfies o(M)ND| =0
Choose r>0 small enough so that Xg=rB,, CInt X;.

Let e€R%° be chosen such that 0<é<e,

5j+1§%, and 0<¢;<dist(X,;_1,C"\X;), j>0.

Suppose that m is a positive integer, and set

€; 5
vi=g4 Y 51’ 0<j<m.

j<l<m

Assume that we have constructed a map ®,,—1 €Aut(C") in such a way that, for
My 1=®,,-1(M), the following holds true:

(a) M,,—1 contains an v;-perturbation of D;, 0<j<m;

(b) My,—1ND,,=2.

Let ppm>max{m, py—1} be such that for z€ M we have

(bm_l(Z)E(Cn\Xm, |Z|me7
and set

Ky =@ 1(M0pmBr)UXm_1.

As in the prerequisites of Lemma 3.3 the sets K, and Kmuﬁfn are compact and
polynomially convex.

Observe that there are no obstructions to have separate parameters 1/{ defining
the scale of deformations of D; in Lemma 3.3 (replacing each occurrence of 14
with »7). Hence, by Lemma 3.3 there exists ¥,, € Aut(C") such that

(1) ¥, (Mp,—1) contains a (v;+&p,/2)-perturbation of Dj, 0<j<m;

(2) ¥ (Mp,—1) contains an e, /2-perturbation of D,,;

(3) Win(Miy—1)N Dy =25

(4) |V (2) —2|<ép, for all z€ Kp,.

It follows that ®,,=V,,o®,, ; satisfies (a) and (b) above with m replaced
by m+1. By Theorem 4.1 in [9], the sequence ®,,, of automorphisms of C™ converges
on an open set QCC" to a biholomorphic map ®: Q—C". Furthermore, since
pmBrnNM is an exhaustion of M by compact sets, (4) above guarantees that ®,,
converges on M, i.e., M CQ.
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To see that ® has the needed properties, it remains to show that ®(M) contains
an e-perturbation of D. Let m be a positive integer. We know that ®,,(M;,—1)
contains an &,,/2-perturbation T, of D,,. Furthermore,

O=lim VU;joW; 0.0V, 10D,
j—oo

and each map ¥; deforms T, by at most £;/2, j>m. Recall that &, <¢&;/2 for
all positive integers j. Hence, the total deformation of T,, is at most

oo oo 5
§ ' Jjtm E : —j—lz _-m
; y = ; 2 "
Jj=1 Jj=1

Thus, ®(M) contains a perturbation of D,, which is an &,,/2-perturbation of Ty,.
Since T, itself is an e,,/2-perturbation of D,,, and &, <&, we get that ®(M)
contains an &,,-perturbation of D,,. This finishes the proof. O

Let X be a complex space of dimension k, where O<k<%n, which admits
a proper holomorphic embedding ¥: X <—C"™. Composing ¥ with the map ¢ from
Proposition 3.1, we get the following result.

Theorem 3.5. Let O<k<%n. If X is a complex space of dimension k which
admits a proper holomorphic embedding into C", then for any discrete set D of k-
balls in C™ and any e €R°, there exists a proper holomorphic embedding F: X —C"
such that F(X) contains an e-perturbation of D.

The case X =C* deserves to be stated separately.

Corollary 3.6. Let 0<I<;<%n, Then for any discrete set D of k-balls in C™
and any e RS, there exists a proper holomorphic embedding G : CFkC" such that
G(CF) contains an e-perturbation of D.

4. Theorem II

In order to construct counterexamples for the corresponding statement of Corol-
lary 3.6 in the case %ng k<n, we use Eisenman hyperbolicity. We can always choose
a discrete set of k-balls in C™ in such a way that the complement of any small
enough perturbation is (n—k)-Eisenman hyperbolic (see Proposition 4.3). Making
more careful choices of balls, we get a certain kind of global lower bound for the
Eisenman norm in the complement, i.e., a global lower bound of Q as defined
n (4.1). We use this bound to prove Theorem II.
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4.1. The Eisenman norm

Let M be a complex manifold of dimension n. We will use the following nota-
tion: T'M is the holomorphic tangent bundle of M; T, M is the holomorphic tangent
space at the point p€ M; A*T,M (resp. A¥T'M) is the kth exterior power of T, M
(resp. TM); DEM (resp. D*M) is the set of decomposable elements of A*T,M
(resp. AFT'M).

Given any Hermitian metric (-,-) on T M, it can be extended to a Hermitian
metric on A¥T'M by defining it pointwise as <u,v>:det(<ui,vj>)ﬁj:1 for decom-
posable elements u=uiA...Aux and v=viA...Avy of AkTpM and then extend this
definition linearly to arbitrary elements of A¥T' M. Below we will always use (-, )
to denote the complex Euclidean metric and ||u||*= (u, u).

The Kobayashi—-Royden norm of a vector in the tangent bundle of a complex
manifold has a natural extension to higher dimensions. This extension was first
introduced by Eisenman in [7]. The following definition can be found in [12].

Definition 4.1. For pe M and uED’IfM7 1<k<n, the k-FEisenman norm of u is
given by

EM(p,u) =inf{||v||* ;v € D§ By, and there is an F € O(By, M)
with F'(0) =p and Fi(v) =u}.

Equivalently, for R>0 we can define the k-Fisenman norm by
EM(p,u)=inf{R™?" ; there is an F € O(RBy, M) with F(0)=p and F,(e) =u},
where e€ DE By, is the unit element e=0/0z1A... A0/ 2.

Although we have not formally defined a norm above, we still call it a norm
based on how it is used intuitively.

Definition 4.2. A complex manifold M is k-FEisenman hyperbolic at a point
peM if EM(p,u)>0 for all non-zero uGD’;M, and M is k-Fisenman hyperbolic if
it is k-Eisenman hyperbolic at each point of M.

Whenever the complex manifold M is an open subset of a complex Euclid-
ean space C" for some n, we may compare the k-Eisenman norm to the extended
Euclidean norm induced from C™. We consider a pointwise lower bound given by

EJW
(4.1) QM (p)= inf &’2“): inf  EM(p,u).
w€ART, M ||u|| ueDEM
u0 lull =1
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In the case M =B, 0<k<n, and pe B,, we get
(4.2) Q0 (p) = (1=[pf)7".

For details see Example 1.2 in [3].

4.2. k-balls and Eisenman hyperbolicity

The following proposition generalises a result of Kaliman (see [13], where k=0
and the balls are just points).

Proposition 4.3. Let 0<k<n. Then there exist a discrete set D of k-balls
in C" and e €R° such that C*\ D' is (n—k)-Eisenman hyperbolic for any e-perturb-
ation D' of D. Furthermore, the k-balls in D can be chosen in such a way that there
exists K >0 for which Qgi\kD/ >K.

The proposition is merely a simple observation, and the method for choos-
ing balls can be found in [9]. The whole construction goes back to the work of
Rosay and Rudin in [16] and was earlier used by Forneess and Buzzard in [4] (with
n=2 and k=1). The authors of the present paper also used k-balls with hyperbolic
complement in [3]. The crucial point in proving Theorem II is the fact that we can
choose k-balls D with a positive global lower bound for Qgi\le.

Proof. Let aC{1,...,n} be a set with m=dim X elements. We will consider
a as a strictly increasing multiindex and also write a=(a1,...,ay,). Moreover,
o/ ={1,..,n}\a is considered as the complementary (strictly increasing) multi-
index. Given a, we let C, be the subspace of C" spanned by the coordinates
Zons -y Za,, and Cy is defined similarly. We use 7, to denote the natural projec-
tion m,: C*"—Cy.

Let r; be any strictly increasing sequence of positive real numbers which di-
verges and set 79=0. Consider a fixed positive integer j. For each o we choose an
open non-empty spherical shell S, with respect to the origin such that

Sa C rj+an\rj§n
and
S_aﬁggzg, a# .

In each shell S,, we choose a countable dense subset {gq,1}72; such that 74[(q, ,y is
injective. Let B, ; be the largest open ball in C,, centred at the origin, such that

qa,l +ZBo¢,l C Sa.
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Given a positive integer lo=[(j) (which is specified in the lemma below), we define

lo(J5)

A]"a: U (QQ,l+Ba,l) and Aj:UAj7a'
=1 e

Let d=n—k and choose a strictly decreasing real sequence {v,,}>_; such that
0<v, <1 and

(4.3) 1<2 ﬁ (1—vpm)?.

Given a map F' we write JF to denote the determinant of the Jacobian of F'. The
following is a small modification of Lemma 5.6 in [9].

Lemma 4.4. There is an integer lo(j) sufficiently large and a real number &;>
0 sufficiently small such that the set A; satisfies the following property: If F': Bg—
Tj+2Bn 15 any holomorphic map for which

(i) 1P(0)|<ry;

(i) max, |J(7ma°F)(0)|>1/7;

(iii) F'(Ba) avoids a &;-perturbation A CC™ of Aj;
then F((1—v;)Bq)Crj+1By.

From this point on we consider lop=Iy(j) and ¢;>0 to be chosen in accordance
to Lemma 4.4. By choosing k-balls like this for each j we get a discrete set D of
k-balls in C". Let us enumerate this set, i.e., D={D;}{°,, and set g;=4; if D; is
one of the k-balls in the finite set A; of k-balls.

Let D’ be any e-perturbation of D and set P=C™\ D’. Suppose that p€ P and
O#UGDgP are arbitrarily chosen. To prove that P is d-Eisenman hyperbolic we
need to show that

0 < EF (u,p) = inf{||v]|? ;v € D{Bg, and there is an F € O(By, P)
with F'(0) =p and Fyv=u}.

Choose F' as stated above, and note that for some 0#c€C we have
v=c TAPIVAN 0
T owy T Qwg

Expressing F,v in terms of the global coordinates z1, ..., z,, inherited from C", we
get

5} 0 )
(44) F*<08—UHAA8—W>_C%:J(WQOF)(O)W7
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where

0 0 0

- = AN .
Oz 8Za/1 82%

Set jo=min{jeN;|p|<r;}. We choose 0<r<1 and an integer N >j, such that
(4.5) 1<2(1-v)?

and F((1—v)Bg)Crn+1By. Let 1=0 and consider

Fi: Bi—rn_141Bn, Fi(2)=F((1-v)2).

In order to apply Lemma 4.4 to the map E, we need to assure that

(1) [F(0)|<rn-i-1;

(2) maxe | (ma=F)(0) = 1/ (N —1—1);

(3) the image of F} avoids a dy_;—1-perturbation of An_;_1.

Note that (1) is true since N—1>jo. Furthermore, since €;=0nx_;—1 when-
ever D;CApn_;—1, (3) holds true by the assumptions on F. However, we cannot
assure (2).

Assume that (2) is true. Then by Lemma 4.4 (with F replaced by F; and j
replaced by N—[—1) we get f‘z((l—uN,l,l)Bd)CrN,an. Let

Fy1: Ba—rn_iBp,  Fipa(w)=F(1-vn_1-1)w).

Defining ﬁl—&-l in terms of F} can be done repeatedly for increasing [ as long as
[<N —jo and (2) holds true, but (1) is no longer true for [>N —jo. We continue to
assume that (2) holds for increasing I, as long as 0<I<N —jg. As [=N—jo—1 we
get the map ﬁN_jo : Bg—1j,+1DB, given by

ﬁN—jo(w) :ﬁN—jo—l((l_Vjo)w) = :F((l_V)(l_VN—l)“'(l_Vjo)w)'

Consider the automorphism ¢(z)=z/rj,+1 of C". Set p=¢(p)=p/Tjo+1, b=psu
and define the map G: By— B,, by

G(2) = o Fy_j,(w)= Fn—jo(w) _ F((1—u)(1_VN_l)...(1_yjo)w).

Tjo+1 Tjo+1

According to Definition 4.1, the d-Eisenman norm EdB" (p, @) of & at p in B, is given
by

EP»(p, ) =inf{||v]|? ;v € DIB,, and there is an H € O(Bg, B,,)
with H(0)=p and H,v=1au}.
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Since GeO(Bq, By,), G(0)=p, and G,.0=1 for

- _ _ 0 0
v=c(l-v) " (1—vn_1)"4.(1=vj)~ da o A /\% € D{By,
it follows from (4.1) and (4.2) that
(4.6) 191> > Eg" (5, @) > " (B)l|al* = (1~ [3*) = |lall*.

Using that 0<rj,_1/7jo+1<[p|<1 and ||@|*= j0+1||u||2 together with (4.3), (4.5),
and (4.6), we get the estimate

(4.7) ]2 = (1=v)* (1 —vn-1)*". (L) |5
> 35 (A=181*) " all* > 1 (5, 1 =75, ) "l
which gives a lower bound for ||| in the case that (2) holds true for 0<I< N —jo.
We now turn to the case when, during the process of making repeated use of

Lemma 4.4, we get to an [<N —jo—1 for which (2) does not hold true. For such
an [ we thus have

~ 1
o I} [
mas (= F)(0)] < .
and it follows from (4.3) and (4.5) that
~ 4
maX|J(7Ta 0F)(O)| S4maX|J(7Ta Oﬂ)(0)| <maX|J(7ra OF)(O)| < m <4.

In view of (4.4) we get
n n
el = [ Fl]? < Jef? Y 1 (ra o F)(O)[2 < Jef* max | T (ma - F)(O) 2 () < el ()

and since |[v]|2=|c|? it follows that

Ju?
()

It follows from (4.7) and (4.8) that for any holomorphic map F': Bq—C"\ D’
such that F'(0)=p and F,v=u we get the bound

(4.8) lvl* >

lolf* > Kpl|u?,

where

—d
K. —min (rjzo-‘rl_rjzo—l) 1
P 16 “4(%)
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depends only on the point pe P. Hence,
By (p,u) = Kp|ul|* > 0.

If the sequence r; is chosen in such a way that r]2-+2—rj2§0 for some C'>0,
e.g., 7;=1/7, we see that K, can be chosen independent of p by setting

c-4 1
K= min{—, _}
16 74(})
In such a situation we get the same lower bound K at each point p, i.e.,

E} (p,w)
QF(p)= inf —TZC>K>0. O
aP)= e T =

4.3. Proof of Theorem II

We will now make use of the “global lower bound” for the Eisenman norm
which is assured for certain choices of k-balls according to Proposition 4.3. As-
suming the existence of a proper holomorphic embedding whose image contains an
e-perturbation of the balls D, it follows from Lemma 4.4 that the complement of
the embedding enjoys the same hyperbolic property as the complement of the balls.
This allows us to prove the following result.

Proposition 4.5. For %n§k<n there exists a discrete set of k-dimensional
balls in C™ for which one cannot find a proper holomorphic embedding of C* into C™
containing small perturbations of the k-balls.

It is crucial to use the fact that there is a neighbourhood of the embedded space
which is biholomorphic to a neighbourhood of C*¥ x {0} in C" (identifying the image
of the embedding with C* x{0}). Since 2k>n, i.e., n—k<k, this enables us to put
large (n—k)-dimensional balls in the complement of the embedding by including
the balls into C* x {0} and then translate them out of C*x {0} (within the normal
bundle). This means that as a point in the complement approaches the embedding,
we may put larger and larger (n—k)-dimensional balls through it. Considering the
Eisenman norm (in the complement of the embedding), this has the effect that the
pointwise lower bound of the Eisenman norm in Section 4.1 must tend to zero as
one approaches the embedding, i.e., there cannot exist a global positive lower bound
in the sense studied earlier. Hence we get a contradiction, if the k-balls are chosen
in accordance with Proposition 4.3. We will now give the details of the proof.
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Proof. Let d=n—k. By Proposition 4.3 there exist a discrete set D of k-balls,

e€R, and K >0 such that for any e-perturbation D’ of D, the complex manifold
C™\ D' is d-Eisenman hyperbolic and QSH\D >K. For a contradiction, assume

that there exists an embedding F': C*<C™ such that the image of F' contains an
g-perturbation D’ of D.
We need the following result.

Theorem 4.6. ([8, Hilfssatz 11]) Let X and Y be Stein manifolds, ®: X =Y
be a holomorphic embedding, and identify X with the zero section of the mormal
bundle of ®. Then there exist a neighbourhood U of X in the normal bundle and
a biholomorphic map ®: U—Y such that <T>|X=CI>.

We can now apply the theorem to find a neighbourhood U of the zero section
in the normal bundle of our map F: C¥<—C" such that there is a map F:U—Cn
which is biholomorphic onto its image V> F(C*) in C™ and which satisfies F|cx = F.
Since by Grauert’s Oka principle any vector bundle over a complex Euclidean space
is trivial, the normal bundle of F' is trivial. Choose a direction v in the normal
bundle of F' which is orthogonal to the zero section.

For positive integers j, consider jBy to be included in the zero section of the
normal bundle of F' using the standard inclusion of C% into C* (which can be done
since d=n—k<k). Choose a positive real number cj such that the translation
¢;v+jBqg (considered in the normal bundle) is a subset of U. If needed, we modify
the sequence c; to guarantee that c¢;—0 as j—o0.

Set Rj:f(cjv+j§d)CC7‘\F(Ck) and define the map

Fj: jBs— C"\F(C"), Fj(w)=F(cju+w).
Let u=0/0wiA...A0/Owy€ DE(jBy) and define p;=F;(0) and u;=(F}).u. Then we
have ||u;||— || Fsul|>0. Choose jo such that ||u;||> || Fiul|/2 whenever j>jo. Since
QSR\F(C’C)EK, we get

cm\F(Ck K .
By " 0goug) 2 K |* > | Feal> =:C > o,

On the other hand, by the definition of the Eisenman norm, we get

C™\F(CF o
ES \F( )(pj,uj)ﬁj 2(17

which gives a contradiction when j>jy is large enough to ensure j=2¢<C. [

Assume that X is a Stein manifold, dim X =k, %n§k<n, and assume that
X is not (n—k)-Eisenman hyperbolic, i.e., there is a point p€ X and a non-zero
uED;}_’“X such that EX | (p,u)=0.
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Let us choose a discrete set of k-balls as in the proof of the proposition above,
and assume that there is a proper holomorphic embedding ®: X < C™ such that
its image contains a small perturbation of the balls. Set ¢=®(p) and v=>,u.
Then it follows from Definition 4.1 that there for each positive integer j exists
F;: jBy_—®(X) such that

0 0

Furthermore, there is a neighbourhood U of ®(X) in C™ which is biholomorphic
to a neighbourhood V' of the zero section of the normal bundle N of ®(X) in C™

(identifying ®(X) with the zero section). Hence, given F); as above, we may consider
the pullback bundle F; N, for which the diagram

F;NFJ_>N

commutes. Observe that the pullback bundle F’ N is trivial. Hence, for any j, we
may choose a direction e; in the bundle /N and £;>0 such that the translation
of the zero section in FIN by ¢je; is a section s in the complement of the zero
section in F}'N. Choosing €; small enough guarantees that ﬁjos is a section in
the complement of the zero section in N over the set F;(jB,—;) and that the
section is contained in V. In this way we get an induced map G;: jBn——U\®(X)
corresponding to a small translation of the image of F}j into the complement of ®(X).

Next, we define ¢;=G;(0) and v;=(G;)+(9/0wiA...A0/Ow,_). Observe that
we may assume that e; and €; are chosen in such a way that ¢;—+¢ and v;—v as
j—o0. Now we get the same kind of contradiction as in the proof of Proposition 4.5.
Hence, we have proved the following result.

Theorem 4.7. For %n§k<n there exist a discrete set D of k-dimensional
balls in C"* and e€RY® such that if a Stein manifold X admits a proper holomor-
phic embedding into C™ which contains an e-perturbation of D, then X is (n—k)-
Eisenman hyperbolic.

We find the following special case worthwhile to be stated separately.

Corollary 4.8. There exist a discrete set D of discs in C? and e€R such
that no e-perturbation of D can be contained in the image of a proper holomorphic

embedding of C or C*.
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We see that, for %n<k<n, there are at least two obstructions for embedding
a Stein manifold X of dimension k through perturbations of k-balls in C*. If
n<[3k/2]+1, there might not exist proper holomorphic embeddings of X into C™.
On the other hand, if it does, Theorem 4.7 states that non-hyperbolicity of X is an
obstruction. Hence, we formulate the following question.

Open problem. Let %n<k<n and let X be an (n—k)-Eisenman hyperbolic

Stein manifold of dimension k& which admits a proper holomorphic embedding
into C". Given any discrete set D of k-balls in C" and any e€R%°, does there
exist such an embedding for which the image contains an e-perturbation of D?

More concretely. Given any discrete set D of discs in C? and any e €RS°, does

there exist a proper holomorphic embedding of the unit disc into C? such that the
image contains an e-perturbation of D?
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