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The injectivity of the extended Gauss map
of general projections of smooth projective

varieties

Marc Coppens

Abstract. Let X be a smooth n-dimensional projective variety embedded in some projective

space P
N over the field C of the complex numbers. Associated with the general projection of X to

a space P
N−m (N−m>n+1) one defines an extended Gauss map γ : X!Gr(n; N−m) (in case

N−m>2n−1 this is the Gauss map of the image of X under the projection). We prove that X is

smooth. In case any two different points of X do have disjoint tangent spaces then we prove

that γ is injective.

Introduction

0.1. LetX be a smooth n-dimensional projective variety embedded in some project-
ive space P

N over the field C of the complex numbers. Associated with a point x∈X
there is an embedded tangent space Tx(X). This is an n-dimensional linear sub-
space of P

N , hence a point γ(x) in the Grassmannian Gr(n,N). The morphism
γ : X!Gr(n,N) is called the Gauss map.

In [2] we studied the following question: does there exist a projective embedding
X⊂P

2n+1 such that the Gauss map is injective? This question is motivated by the
following two facts: for each embedding of X in a projective space the Gauss map
is generically injective (see [7, I, Corollary 2.8]) and in general 2n+1 is the smallest
possible dimension for a projective space such that X can be embedded in it.

We proved the answer in the affirmative as follows. First we proved that, in
case any two different points on X do have disjoint embedded tangent spaces, then
a general projection to P

2n+1 gives an embedding of X having an injective Gauss
map. Next we proved that, starting from an arbitrary embedding of X in some
projective space P

M and composing it with the 3-Veronese embedding of P
M we

obtain an embedding ofX such that any two points onX do have disjoint embedded
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tangent spaces. Motivated by this proof, we introduce the following definition: in
case any two different points on X have disjoint embedded tangent spaces to X

then we say that X has disjoint embedded tangent spaces.

0.2. In this paper, given an embedding of X in P
N with disjoint embedded tangent

spaces, we consider the behavior of the Gauss map using a general projection to
some projective space P

N−m with N−m≤2n. As soon as N<2n, in general, the
projection is not a local embedding of X at some points, hence the embedded
tangent space is not defined at such point. Therefore, the Gauss map associated to
the projection j : X!P

N−m is only defined on a non-empty open subset U of X .
LetX be the closure of the graph of that map in X×Gr(n,N−m). The projection γ
of X on Gr(n,N−m) is called the extended Gauss map of j : X!P

N−m.

0.3. We are going to prove the following theorem.

Theorem. Let i : X!P
N be an embedding of a smooth n-dimensional project-

ive variety having disjoint embedded tangent spaces. Assume that Λ is a general
(m−1)-dimensional linear subspace of P

N . Then the projection with center Λ gives
rise to a morphism j : X!P

N−m. The extended Gauss map of j is injective if
N−m≥n+2.

In the first part of the paper we give an explicit description of the domain X of the
extended Gauss map in the situation of a general projection. In particular we will
prove that X is smooth. In the second part we will prove the theorem.

Part 1

In this part we will prove the following proposition.

Proposition. Let X⊂P
N be a smooth n-dimensional projective variety and

let Λ be a general (m−1)-dimensional linear subspace of P
N . The projection with

center Λ gives rise to a morphism j : X!P
N−m. Let γ : X!Gr(n;N−m) be the

extended Gauss map. In case N−m≥n+2 then X is smooth.

1.1. First we give a description of the Gauss map of X⊂P
N using vector bundles.

Let V be a complex vector space of dimension N+1 and let P
N (V )=

Proj(S∗(V D)) be the projective space of 1-dimensional vector subspace of V (we
only consider closed points). We omit the vector space V and write P

N . Dualizing
the Euler sequence (see [4, Chapter II, Example 8.20.1]) we have a natural exact
sequence

0−!OPN
α−−!OPN (1)⊗CV

β−−!TPN −! 0.
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A point x∈P
N corresponds to a 1-dimensional vector subspace L(x) of V and one

has ker(β(x))=L(x) (after twisting by O(1)).
Consider the exact sequence 0!TX!TPN |X!NX/PN!0. Composing with

β|X we obtain an epimorphism of vector bundles OX(1)⊗V!NX/PN on X . Let
EX be its kernel, hence EX =(β|X)−1(TX). We obtain the exact sequence:

0−!OX
αX−−!EX

βX−−!TX −! 0.

As a vector subbundle of OX(1)⊗V , the vector bundle EX defines a morphism
X!Gr(n;N); this is the Gauss map γX of X ; for x∈X one has that γX(x) corres-
ponds to the embedded tangent space Tx(X)⊂P

N of X at x.

1.2. We give a description of a bundle map u that will be used to define the
extended Gauss map associated to j : X!P

N−m.
A general linear subspace Λ⊂P

N of dimension m−1 is a projective space P(W )
for some general m-dimensional vector subspace W⊂V . The projection with
center Λ gives rise to a morphism I : P

N (V )\Λ!P
N−m(V/W )=P

N−m. The image
of a point x∈P

N(V )\Λ is defined as being the 1-dimensional vector subspace
(L(x)+W )/W⊂V/W . On P

N−m we have the natural exact sequence

0−!OPN−m
α′−−!OPN−m(1)⊗C(V/W ) β′

−−!TPN−m −! 0.

For x∈P
N \Λ the tangent map dxI : TPN ,x!TPN−m,I(x) lifts to (a multiple of) the

natural surjection V!V/W through β and β′ (the multiple depending on a trivial-
ization of OPN (1) and OPN−m(1)).

Because Λ is general and N−m>n we have Λ∩X=∅. Hence the restriction
of I to X is a morphism j : X!P

N−m. We have a commutative diagram

OX(1)⊗CV
βX ��

natural

��

TPN |X

dI|X
��

OX(1)⊗C(V/W )
j∗(β′)

�� j∗(TPN−m).

The restriction to the vector bundle EX⊂OX(1)⊗CV gives rise to morphisms
u : EX!OX(1)⊗C(V/W ) and EX!j∗(TPN−m) of vector bundles on X . Clearly
αX(OX)⊂EX belongs to the kernel of this second morphism, hence it induces
a morphism TX!j∗(TPN−m). This is the tangent map dj defined by j : X!P

N−m.
Hence u is a lifting of dj (it induces the identity on ker(EX!TX)).

1.3. Associated with u and dj we can define subschemes ofX using rank conditions.
Since those subschemes are the same for u and dj we give a description of those
subschemes using the morphism u.
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We write E (resp. F ) instead of EX (resp. OX(1)⊗C(V/W )). As a set,
we define Dk(u)={x∈X :rk(u(x))≤dim(X)+1−k}, hence x∈Dk(u) if and only if
dim(ker(u(x)))≥k (this is equivalent to dim(ker(dj(x)))≥k). Locally as a scheme,
Dk(u) is defined as follows. Let U be an open neighborhood of x in X such that
the restrictions of E and F are trivial. Using trivializations, the morphism u de-
fines a morphism U!Hom(Cn+1; CN+1−m). The minors of order n+2−k associ-
ated with the universal morphism above Hom(Cn+1; CN+1−m) define universal loci
Dk⊂Hom(Cn+1; CN−m+1) as subschemes and Dk(u)∩U is the inverse image of Dk.

Let x∈Dk(u)\Dk+1(u) and let x′∈Dk\Dk+1 be the image of x in the space
Hom(Cn+1; CN+1−m) using trivializations as before. The tangent space of
Hom(Cn+1; CN+1−m) at x′ is Hom(Cn+1; CN+1−m) itself in a natural way. This
can be described explicitly as follows. Let v be a tangent vector at x′. This
corresponds to a morphism of C[ε]=C[x]/〈x2〉 to Hom(Cn+1; CN+1−m) defined by
a C-linear map C

n+1!C
N+1−m[ε] : t 	!u(x′)(t)+εu(t) (here u(x′) is the linear map

defined by x′). Then u is the linear map associated with v (and we are going to
denote this linear map by v too). The tangent vector v is tangent to Dk if and
only if v(ker(u(x′)))⊂im(u(x′)) (see e.g. [3, Example 14.16]). This implies that
Dk is smooth at x′ and the normal bundle of Dk at x′ can be identified with
Hom(ker(u(x′)); coker(u(x′))).

The natural map Tx′(Hom(Cn+1; CN+1−m))!NDk;x′ is the natural map

Hom(Cn+1; CN+1−m)−!Hom(ker(u(x)); coker(u(x))).

The local map U!Hom(Cn+1; CN+1−m) defined above induces a morphism
Tx(X)!Hom(ker(u(x)); coker(u(x))). This map is called the Kodaira–Spencer map
RKS(u;x) associated to u at x (see [5, p. 165]). The tangent space Tx(Dk(u)) is
equal to the kernel of RKS(u;x).

Concerning the behavior of tangent spaces under general projections, there is
an important theorem of Mather (see [6]). There is a discussion of that theorem in
the setting of complex algebraic geometry in [1]. Here we only use the easy part of
that theorem. It says Dk(u)\Dk+1(u) is smooth of codimension

(N−n−m+1−1+k)k= (N−m−n+k)k= dim(Hom(ker(u(x)); coker(u(x))).

This implies that RKS(u;x) is surjective.

1.4. Using [5, Section 3.4] at the end of Section 1.3 we obtain that (Dk(u))k is an
RN−m−n-like stratification ofX . We recall the concept of Rδ-like stratification ofX
(see [5]) and we give a general discussion of that concept in case of a stratification
defined by means of rank conditions associated to a map between vector bundles.
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Consider a sequence X=Z0⊃Z1⊃...⊃Zm of closed subschemes of X . This
defines a stratification: X is the disjoint union of locally closed subschemes Zi\Zi+1.
This stratification is called Rδ-like if for each x∈Zi\Zi+1 there exists an étale
neighborhood Z ′ of X at x and a smooth morphism Z ′!Hom(Ci; Cδ+i) such that
the inverse image of Dk⊂Hom(Ci; Cδ+i) on Z ′ is equal to the inverse image of
Zk⊂X on Z ′.

In case X is a smooth variety; E and F are vector bundles on X of rank e and
e+δ, resp.; u : E!F is a morphism such that for each x∈X the map RKS(u;x) is
surjective, then Dk(u) is Rδ-like. In this case, let x∈Dk(u)\Dk+1(u). Choose V ⊂
E(x) (resp. W⊂F (x)) of dimension e−k (resp. δ+k) complementary to ker(u(x))⊂
E(x) (resp. im(u(x))⊂F (x)). Using local trivializations of E and F on a neigh-
borhood U of x on X we can consider u as a morphism U!Hom(ker(u(x))⊕V ;
im(u(x))⊕W ). At x this induces an isomorphism V!im(u(x)), by shrinking U

we can assume that it induces an isomorphism at each point of U . Then the
rank stratification is induced by U!Hom(ker(u(x));W ). This is the morphism
Z ′!Hom(Ck; Cδ+k) mentioned in the definition of Rδ-like.

Let πe;F : Gr(e;F )!X be the Grassmannian of subbundles of rank e of F and
let 0!E′!π−1

e;F (F )!Q′!0 be the tautological exact sequence. The restriction of
u to X\D1(u) induces a natural section s : X\D1(u)!Gr(e;F ) such that s(x) cor-
responds to im(u(x)) for x∈X\D1(u). Let X⊂Gr(e;F ) be the set of points x corre-
sponding to a subspace Ex⊂Fx (here x=πe;F (x)) such that im(u(x))⊂Ex. Clearly
s(X\D1(u))⊂X, the projection π : X!X is surjective and its fibers are connected.
For x∈X let RKS(Ex;x) be the composition of RKS(u;x) and the natural map
Hom(ker(u(x)); coker(u(x)))!Hom(ker(u(x));Fx/Ex). Clearly for all x∈X this
map is surjective too. From [5, Section 3.5] it follows that X is smooth (in [5] one
uses a dual description). In particular it follows thatX is the closure of s(X/D1(u)).

1.5. We return to the situation obtained in Section 1.3 and we apply the conclusion
of Section 1.4.

In this case the Grassmannian bundle Gr(n+1;F ) is equal to the product
X×Gr(n; P(V/W )=P

N−m) and the composition of s with the projection to
Gr(n; PN−m) is the Gauss map of j : X!P

N−m. It follows that X is the closure
of the graph of γ, hence γ (the projection of X to Gr(n; PN−m)) is the extended
Gauss map of j : X!P

N−m.

Part 2

In this part we are going to prove the theorem from the introduction.
We are going to use induction on m. For each integer m′ satisfying 1≤m′≤m

let Λm′ be a general linear subspace of dimension m′−1 in P
N . Without loss of
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generality we can assume that Λm′−1⊂Λm′ and once we have chosen a general
Λm′−1 we can assume that Λm′ is general for the condition of containing Λm′−1.
We write Λ=Λm. We obtain morphisms im′ : X!P

N−m′
, a Gauss map γm′ and an

extended Gauss maps γm′ . Clearly γ=γ0=γ0 is injective and we can assume γm−1

is injective. We need to prove that γm=γ is injective.

2.1. First we introduce some notation.
For q∈X we write Tq(X,m′) to denote the linear span of Tq(X) and Λm′ .

Clearly, the Gauss map γm′ is defined at q if and only if dim(Tq(X,m′))=n+m′.
In this case the value of the Gauss map γm′ at q corresponds to a linear n-space
in P

N−m′
denoted by Tq,m′(X) (it is the projection of Tq(X,m′) on P

N−m′
).

Let Zk,m′ be the closure of X×X of the set of pairs (q, q′) with q �=q′ such that
dim(Tq(X,m′))=dim(Tq′ (X,m′))=n+m′ and dim(Tq(X,m′)∩Tq′(X,m′))=m′+k
(this becomes equivalent to the fact that γm′ is defined at the points q and q′

and dim(Tq,m′(X)∩Tq′,m′(X))=k; we use the convention dim(∅)=−1). In case
Zn,m �=∅ and (q, q′) is a general point of Zn,m then q �=q′; γm is defined at the points
q and q′ but Tq,m(X)=Tq′,m(X) In this case the Gauss map γm is not injective. So
we need to prove that Zn,m=∅.

2.2. For each integer −1≤k≤n let zk,m′ :=2n+(k+1)(m′−N+2n−k). We are
going to prove the following claim:

If zk,m′<0 then Zk,m′ =∅.
If zk,m′≥0 then dim(Zk,m′)≤zk,m′.
Taking m′=m and k=n we have zn,m=2n+(n+1)(m−N+n) and using that

N−m≥n+2 we obtain zn,m≤2n+(n+1)(−2)<0. Hence proving the claim implies
that the Gauss map γm is injective. For k=−1 the claim is trivial. By assumption
(i.e.X⊂P

N has disjoint embedded tangent spaces) Zk,0=∅ for k≥0. We can assume
the claim to be true for m′=m−1.

Remark. For (q, q′) general on X×X one has dim(〈Tq,m′ (X)∪Tq′,m′(X)〉)≤
N−m′ hence dim(Tq(X,m′)∩Tq′(X,m′))≥2n−N+2m′. Therefore (q, q′)∈Zk,m′

for some k≥2n−N+m′. This implies that we can always assume that m′≤N+k
−2n. Under this assumption we obtain the natural inequality zk,m′≤2n.

Proof of the claim. Assume that Zk,m−1 �=∅ and let (q, q′) be a general element
of it. Then dim(〈Tq(X,m−1)∪Tq′(X,m−1)〉)=2n+m−1−k≤2n+N−2n+k−1
−k=N−1. Since Λ is a general linear (m−1)-space containing Λm−1 we find Λ �⊂
〈Tq(X,m−1)∪Tq′(X,m−1)〉, hence dim(〈Tq(X,m)∪Tq′(X,m)〉)=2n+m−k there-
fore dim(Tq(X,m)∩Tq′(X,m))=m+k. This implies that (q, q′)∈Zk,m, and hence
Zk,m−1⊂Zk,m.
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Since zk,m−1<zk,m for k≥0, we can assume that Zk,m �=Zk,m−1. Let (q, q′) be
a general point of Zk,m, hence dim(〈Tq(X,m)∪Tq′(X,m)〉)=2n+m−k. Since
(q, q′) /∈Zk,m−1 we need Λ⊂〈Tq(X,m−1)∪Tq′(X,m−1)〉, hence

〈Tq(X,m−1)∪Tq′(X,m−1)〉= 〈Tq(X,m)∪Tq′(X,m)〉
and therefore dim(Tq(X,m−1)∩Tq′(X,m−1))=(m−1)+(k−1). This proves that
(q, q′)∈Zk−1,m−1.

In case zk−1,m−1<0 we have Zk−1,m−1=∅, so this can be excluded. So assume
that zk−1,m−1≥0 and let I be the closure in Zk−1,m−1×P

N−m+1 (with P
N−m+1

parameterizing linear (m−1)-spaces containing Λm−1 in P
N ) of the subset of pairs

((q, q′),Λ) such that Λ⊂〈Tq(X,m−1)∪Tq′(X,m−1)〉 and (q, q′) /∈Zk,m−1. Consider
the projections p1 : I!Zk−1,m−1 and p2 : I!P

N−m+1. Components of Zk,m not
contained in Zk,m−1 are components of p1(p−1

2 (Λ)). On the other hand, the general
fibers of p1 have dimension 2n−k+1, hence dim(I)≤zk−1,m−1+(2n−k+1), hence
dim(Zk,m)≤dim(I)−(N−m+1)≤zk−1,m−1+(2n−k+1)−(N−m+1)=zk,m. This
finishes the proof of the claim. �

2.3. In order to prove the injectivity of the extended Gauss map we extend the
notation from Section 2.1. For integers −1≤e1≤n and −1≤e2≤n let Zk,m′,e1,e2⊂
X×X be the closure of the subset Z0

k,m′,e1,e2
⊂X×X equal to the set of the points

(q, q′)∈X×X satisfying q �=q′ and
(1) dim(Tq(X,m′))=n+m′−1−e1;
(2) dim(Tq′(X,m′))=n+m′−1−e2;
(3) dim(Tq(X,m′)∩Tq′(X,m′))=m′+k.
Let dq(im′) : Tq(X)!Tim′(q)(PN−m′

) be the tangent map of im′ at q (and simi-
lar for q′). Then condition (1) (resp. (2)) means that dq(im′) (resp. dq′(im′)) has
rank n−1−e1 (resp. n−1−e2). In particular im′ is not a local embedding at q
(resp. q′) if and only if e1≥0 (resp. e2≥0). Assuming conditions (1) and (2), condi-
tion (3) is equivalent to dim(〈Tq(X,m′)∪Tq′ (X,m′)〉)=2n+m′−2−e1−e2−k. In
particular we need 2n+m′−2−e1−e2−k≤N hence we can always assume that
m′≤N−2n+2+e1+e2+k.

Using the description of X and γ in Part 1, we obtain a contradiction to
the injectivity of the extended Gauss map γm′ if and only if we find two different
points q and q′ on X and an (n+m′)-dimensional linear subspace Γ of P

N such
that Γ⊃〈Tq(X,m′)∪Tq′ (X,m′)〉. In case (q, q′)∈Z0

k,m′,e1,e2
then such a subspace Γ

exists if and only if n+m′≥2n+m′−2−e1−e2−k, hence n≤e1+e2+k+2.
So in order to prove the injectivity of the extended Gauss map γm′ we need to

prove that Zk,m′,e1,e2 =∅ in case n≤e1+e2+k+2. In case m′=0 then this condition
is satisfied. We are going to assume that this condition holds for m′=m−1 and we
are going to prove that it holds for m′=m.
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In the proof we can assume that e1≥e2. In case e1=e2=−1 the condition
becomes Zk,m=∅ for n≤k. This is proved in Section 2.2, so we can assume that
e1≥0.

Using the induction we can assume that Λm−1 is a general hyperplane in Λ.
Let (q, q′) be a general element of Zk,m,e1,e2 . Since Zk,m,e1,e2 does not depend on
the choice of Λm−1 inside Λ we can consider Λm−1 to be general in Λ independent
of (q, q′). In particular, since e1≥0 we have dim(Tq(X)∩Λ)≥0 and so

dim(Tq(X)∩Λm−1)= dim(Tq(X)∩Λ)−1

and also

dim(〈Tq(X)∪Tq′(X)〉∩Λm−1)= dim(〈Tq(X)∪Tq′(X)〉∩Λ)−1.

This implies that Tq(X,m)=Tq(X,m−1) and

〈Tq(X,m)∪Tq′(X,m)〉= 〈Tq(X,m−1)∪Tq′(X,m−1)〉.

2.4. In the induction argument we are going to distinguish between two cases and
in both cases we are going to prove a dimension inequality between varieties Z for
the values m and m−1.

(A) In case e2≥0 we also have Tq′(X,m)=Tq′(X,m−1). In particular

Tq(X,m)∩Tq′(X,m)= Tq(X,m−1)∩Tq′(m−1).

It follows that (q, q′)∈Z0
k+1,m−1,e1−1,e2−1.

In this case we have Λ⊂Tq(X,m−1)∩Tq′(X,m−1).
(B) In case e2=−1 we have dim(Tq′ (X,m))=dim(Tq′ (X,m−1))+1. In par-

ticular dim(Tq(X,m−1)∩Tq′(X,m−1))=dim(Tq(X,m)∩Tq′(X,m))−1. It follows
that (q, q′)∈Z0

k,m−1,e1−1,−1=e2
.

In this case we have Λ �⊂Tq′(X,m−1).
Let T be an irreducible component of Zk,m,e1,e2 and let τ1 and τ2 be the re-

strictions to T of the projections of X×X on X . Let c=dim(T ) and ci=dim(τi(T ))
for i=1, 2.

In case (A) there exists an irreducible component T ′ of Zk+1,m−1,e1−1,e2−1

such that T⊂{(q, q′)∈T ′ :Λ⊂Tq(X,m−1)∩Tq′(X,m−1)}. Instead of starting with
Λ=Λm and considering Λm−1 as a general hyperplane in Λ, we can start with
a general linear subspace Λm−1 of dimension m−2 in P

N and consider Λ=Λm as
a general element of the space P

N−m+1 of (m−1)-dimensional linear subspaces
of P

N containing Λm−1. Let T ′ be an irreducible component of Zk+1,m−1,e1−1,e2−1

and let (q, q′) be a general point of T ′. The space of (m−1)-dimensional linear
subspaces of Tq(X,m−1)∩Tq′(X,m−1) containing Λm−1 has dimension k+1. For
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a suitable component T ′ the union of these spaces has to dominate P
N−m+1 and T

is a component of a general fiber of this union above P
N−m+1. Writing c′=dim(T ′)

we conclude that c′+k+1≥N−m+1, i.e. m≥N−c′−k. Under this condition we
find that c=c′+k−N+m.

In case (B) there exists an irreducible component T ′ of Zk,m−1,e1−1,−1 such
that T⊂{(q, q′)∈T ′ :Λ⊂Tq(X,m−1)}. Again, starting with a general linear sub-
space Λm−1 of dimension m−2 in P

N we consider an irreducible component T ′ of
Zk,m−1,e1−1,−1. Let P

N−m+1 be as before. Let c′ (resp. c′1) be the dimension of T ′

(resp. τ ′1(T ′)⊂X ; the projection on the first factor). For (q, q′) general on T ′ the
(m−1)-dimensional linear subspaces of Tq(X,m−1) containing Λm−1 give rise to
a linear subspace of P

N−m+1 of dimension dim(Tq(X,m−1))−(m−1)=n−e1. For
a suitable component T ′ the union of these spaces has to dominate P

N−m+1 and T
is a component of a general fiber of this union above P

N−m+1. This implies that
c′1+n−e1≥N−m+1 and c1≤c′1+n−e1+m−N−1.

In this situation, for q general on τ1(T )⊂τ ′1(T ′) we find that τ−1
1 (q)=τ ′−1

1 (q).
If we take Λ general in P

N−m+1 and q general in τ1(T ), then q is general in τ ′1(T ′).
This implies that dim(τ ′−1

1 (q))=c′−c′1. Hence

c= c1+dim(τ−1
1 (q))≤ c′1+n−e1+m−N−1+c′−c′1 = c′+n−e1+m−N−1.

2.5. From the inequalities between c and c′ we are going to finish the proof of the
theorem.

To make the computations easier, from now on we write N−m=2n−t, and
hence m=N+t−2n. Since we only have to consider Zk,m,e1,e2 in the case (e1, e2) �=
(−1,−1) and since im is a local embedding at each point of X in case N−m≥
2n we can assume that t≥0. Also, for t=0 we know that Zk,N−2n,e1,e2 =∅ if
(e1, e2) �=(−1,−1). We already proved that Zk,m,e1,−1⊂Zk,m−1,e1−1,−1 for e1≥0
and Zk,m,e1,e2⊂Zk+1,m−1,e1−1,e2−1 for e2≥0, hence Zk,N−2n+t,e1,e2 =∅ for e1≥t.
So we only have to consider Zk,N−2n+t,e1,e2 for t≥0 and e1≤t−1.

Claim. For −1≤e1≤t−1 one has

dim(Zk,N+t−2n,e1,−1)≤−k2+k(t−2−e1)−(e1+2)(e1+1)−(e1−1)n+(e1+2)t

= zk,t,e1,−1.

Proof. In case e1=−1 one has zk,t,−1,−1=zk,N−2n+t and we already have
proved the claim in this case. This proves the claim if t=0. So we can use in-
duction on t.

Assume that t>0 and e1≥0. From case (B) of Section 2.4 we concluded that

dim(Zk,N−2n+t,e1,−1)≤ dim(Zk,N−2n+(t−1),e1−1,−1)+n−e1+N−2n+t−N−1.
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Using the induction hypothesis we find that

dim(Zk,N−2n+t,e1,−1)≤ zk,t−1,e1−1,−1+t−n−e1−1 = zk,t,e1,−1.

Now we conclude that the sets Zk,m,e1,−1 cannot give a contradiction to the
injectivity of the extended Gauss map. From Section 2.3 we know that we need
to prove that zk,t,e1,−1<0 if n≤e1+k+1. Also 2n−t≥n+2, hence t≤n−2. So
n≤e1+k+1 implies that k≥t−e1+1.

Consider φ(k)=−zk,t,e1,−1. From e1≤t−1 we obtain t−e1+1≥(t−e1−2)/2,
hence φ(k)≥φ(t−e1+1). One has φ(t−e1+1)=(e1−1)(e1+1+n−t)+6. So in case
e1≥1, since t≤n−2, we find that φ(t−e1+1)>0. In case e1=0 we have φ(k)=k2−
(t−2)k+2−n+2t. We need to prove that φ(k)>0 if n≤k+1, hence k≥n−1. Since
n−1≥(t−2)/2 we find that φ(k)≥φ(n−1). But φ(n−1)=(n−1)2−(t−2)(n−1)+
2−n−2t and t≤n−2 hence, φ(n−1)≥(n−1)2−(n−4)(n−1)+2−n−2n+4=3>0.

From case (A) we know that

dim(Zk,N−2n+t,e1,0)≤ dim(Zk+1,N−2n+t−1,e1−1,−1)+k−2n+t.

From the previous claim we obtain that

dim(Zk,N−2n+t,e1,0)≤ zk+1,t−1,e1−1,−1+k−2n+t

=−k2+k(t−3−e1)+(e1+3)t−e1n−e1(e1+3)−4 :=−ψ(k).

For x>0, in order for Zk−x,N−2n+t+x,e1+x,x to be non-empty we need Zk,N−2n+t,e1,0

to be non-empty. From Section 2.3 we know that the injectivity of the extended
Gauss map would be contradicted by the non-emptiness of Zk−x,N−2n+t+x,e1+x,x

if and only if n≤(e1+x)+x+(k−x)+2=x+k+e1+2. On the other hand m≤N−
(n+2) implies that 2n−t−x≥n+2, hence x≤n−t−2. Thus, in case we obtain
a contradiction to the injectivity of the extended Gauss map we obtain n≤n−t−
2+k+e1+2, hence k≥t−e1.

It is enough to prove that ψ(k)>0 if k≥t−e1. One computes ψ(t−e1)=
e1(n−t+e1)+4. Since t≤n−2 one finds that ψ(t−e1)≥4. On the other hand, from
e1≤t−1 it also follows that t−e1≥(t−3−e1)/2, hence ψ(k)≥ψ(t−e1) for k≥t−e1
and so ψ(k)>0.

This finishes the proof of the injectivity of the extended Gauss map for N−m≥
n+2. �

References

1. Alzati, A. and Ottaviani, G., The theorem of Mather on generic projections in the
setting of algebraic geometry, Manuscripta Math. 74 (1992), 391–412.

2. Coppens, M. and De Volder, C., The existence of embeddings for which the Gauss
map is an embedding, Ann. Mat. Pura Appl. 181 (2002), 453–462.



The injectivity of the extended Gauss map of general projections 41

3. Harris, J., Algebraic Geometry, Grad. Texts in Math. 133, Springer, New York, 1992.
4. Hartshorne, R., Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York,

1977.
5. Hirschowitz, A., Rank techniques and jump stratifications, in Vector Bundles on Al-

gebraic Varieties (Bombay, 1984 ), Tata Inst. Fund. Res. Stud. Math. 11, pp.
159–205, Tata Inst. Fund. Res., Bombay, 1987.

6. Mather, J. N., Generic projections, Ann. of Math. 98 (1973), 226–245.
7. Zak, F. L., Tangents and Secants of Algebraic Varieties, Transl. Math. Monogr. 127,

Amer. Math. Soc., Providence, RI, 1993.

Marc Coppens
Katholieke Hogeschool Kempen
Departement Industrieel Ingenieur en Biotechniek
Kleinhoefstraat 4
BE-2440 Geel
Belgium
marc.coppens@khk.be

Received December 13, 2005
published online October 12, 2007



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


