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Weighted integral formulas on manifolds

Elin Götmark

Abstract. We present a method of finding weighted Koppelman formulas for (p, q)-forms

on n-dimensional complex manifolds X which admit a vector bundle of rank n over X×X, such

that the diagonal of X×X has a defining section. We apply the method to P
n and find weighted

Koppelman formulas for (p, q)-forms with values in a line bundle over P
n. As an application, we

look at the cohomology groups of (p, q)-forms over P
n with values in various line bundles, and

find explicit solutions to the �∂-equation in some of the trivial groups. We also look at cohomology

groups of (0, q)-forms over P
n×P

m with values in various line bundles. Finally, we apply our

method to developing weighted Koppelman formulas on Stein manifolds.

1. Introduction

The Cauchy integral formula provides a decomposition of a holomorphic func-
tion in one complex variable in simple rational functions, and is a cornerstone in
function theory in one complex variable. The kernel is holomorphic and works for
any domain. In several complex variables it is harder to find appropriate represen-
tations. The simplest multivariable analog, the Bochner–Martinelli kernel, is not as
useful since the kernel is not holomorphic. The Cauchy–Fantappiè–Leray formula is
a generalization which gives a holomorphic kernel in domains which admit a holo-
morphic support function. Henkin and Ramirez, in [16] and [22], obtained holo-
morphic kernels in strictly pseudoconvex domains G by finding such support func-
tions. Henkin also found solutions to the ∂̄-equation in such domains. This was
done by means of a Koppelman formula, which represents a (p, q)-form φ defined
in some domain D as a sum of integrals

φ(z)=
∫

∂D

K∧φ+
∫

D

K∧∂̄φ+∂̄z

∫
D

K∧φ+
∫

D

P∧φ,

by means of the current K and the smooth form P . If φ is a closed form and the
first and fourth terms of the right hand-side of Koppelman’s formula vanish, we get
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a solution of the ∂̄-problem for φ. Henkin’s result paved the way for the Henkin–
Skoda theorem (see [17] and [23]), which provided improved L1-estimates on ∂G for
solutions of the ∂̄-equation by weighting the integral formulas.

Andersson and Berndtsson [9] found a flexible method of generating weighted
formulas for representing holomorphic functions and solutions of the ∂̄-equation.
It was further developed by Berndtsson [6] to find solutions to division and inter-
polation problems. If V is a regular analytic subvariety of some domain D in Cn

and h is holomorphic in V , then Berndtsson found a kernel K such that

H(z)=
∫

V

h(ζ)K(ζ, z)

is a holomorphic function which extends h to D. If f=(f1, ..., fm) are holomorphic
functions without common zeros, he also found a solution to the division prob-
lem φ=f ·p for a given holomorphic function φ. Passare [19] used weighted inte-
gral formulas to solve a similar division problem, where the fi’s do have common
zeros, but the zero sets have a complete intersection. He also proved the duality
theorem for complete intersections (also proved independently by Dickenstein and
Sessa [13]). Since then weighted integral formulas have been used by a number of
authors to obtain qualitative estimates of solutions of the ∂̄-equation and of division
and interpolation problems, for example sharp approximation by polynomials [24],
estimates of solutions to the Bézout equation [5], and explicit versions of the funda-
mental principle [10]. More examples and references can be found in the book [4].
More recently, Andersson [3] introduced a method generalizing [9] and [6] which
is even more flexible and also easier to handle. It allows for some recently found
representations with residue currents, for applications to division and interpolation
problems, and also allows for f to be a matrix of functions.

There have been several attempts to obtain integral formulas on manifolds.
Berndtsson [8] gave a method of obtaining integral kernels on n-dimensional mani-
foldsX which admit a vector bundle of rank n overX×X such that the diagonal has
a defining section, but did not consider weighted formulas. Formulas on Stein mani-
folds were first treated in Henkin and Leiterer [18], where formulas for (0, q)-forms
are found, then in Demailly and Laurent–Thiébaut [11], where the leading term in
a kernel for (p, q)-forms is found, in Andersson [1], which is a generalization of [9]
following Henkin and Leiterer, and finally in Berndtsson [8], where the method de-
scribed therein is applied to Stein manifolds. Formulas on Pn have been considered
in [20], where they were constructed by using known formulas in Cn+1, and in [7],
where they were constructed directly on Pn. There is also an example at the end
of Berndtsson [8], where the method of that article is applied to Pn.

In this article, we begin in Section 2 by developing a method for generating
weighted integral formulas on Cn, following [2]. Section 3 describes a similar method
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which can be used on n-dimensional manifolds X which admit a vector bundle of
rank n overX×X such that the diagonal has a defining section. It has similar results
as the method described in [8], but with the added benefit of yielding weighted
formulas. The method of Section 3 is applied to the complex projective space Pn

in Section 4, where we find a Koppelman formula for differential forms with values
in a line bundle over Pn. In the Pn case we get formulas which coincide with
Berndtsson’s formulas in [7] in the case p=0, but they are not the same in the
general (p, q)-case.

As an application, in Section 5 we look at the cohomology groups of (p, q)-forms
over Pn with values in various line bundles, and find which of them are trivial
(though we do not find all the trivial groups). Berndtsson’s formulas in [7] give
the same result. The trivial cohomology groups of the line bundles over Pn are, of
course, known before, but our method gives explicit solutions of the ∂̄-equations.
In Section 6 we look instead at cohomology groups of (0, q)-forms over Pn×Pm

with values in various line bundles. Finally, in Section 7 we apply the method of
Section 3 to finding weighted integral formulas on Stein manifolds, following [18]
but also developing weighted formulas.

2. Weighted Koppelman formulas in Cn

As a model for obtaining representations on manifolds, we present the Cn case
in some detail. The material in this section follows the last section of [2]. The
article [2] is mostly concerned with representation of holomorphic functions, but in
the last section a method of constructing weighted Koppelman formulas in Cn is
indicated. We expand this material and give proofs in more detail. We begin with
some motivation from the one-dimensional case:

One way of obtaining a representation formula for a holomorphic function
would be to solve the equation

∂̄u= [z],

where [z] is the Dirac measure at z considered as a (1, 1)-current, since then one
would get an integral formula by Stokes’ theorem. Less obviously, note that the
kernel of Cauchy’s integral formula in C also satisfies the equation

δζ−zu= 1,

where δζ−z denotes contraction with the vector field 2πi(ζ−z)∂/∂ζ. These two can
be combined into the equation

∇ζ−zu= 1−[z],(1)



46 Elin Götmark

where ∇ζ−z :=δζ−z−∂̄. To find representation formulas for holomorphic functions
in Cn, we look for solutions to (1) in Cn, where δζ−z is contraction with

2πi
n∑

j=1

(ζj−zj)
∂

∂ζj
.

Since the right-hand side of (1) contains one form of bidegree (0, 0) and one of
bidegree (n, n), we must in fact have u=u1,0+u2,1+...+un,n−1, where uk,k−1 has
bidegree (k, k−1). We can then write (1) as the system of equations

δζ−zu1,0 = 1, δζ−zu1,2−∂̄u1,0 = 0, ..., ∂̄un,n−1 = [z].

In this case, un,n−1 will satisfy ∂̄un,n−1=[z] and will give a kernel for a representa-
tion formula. The advantage of this approach is that it easily allows for weighted
integral formulas, as we will see.

To get Koppelman formulas for (p, q)-forms, we need to consider z as a variable
and not a constant. If we find un,n−1 such that ∂̄un,n−1=[∆], where ∆={(ζ, z):
ζ=z} is the diagonal of Cn

ζ ×Cn
z and [∆] is the current of integration over ∆, then

un,n−1 will be the kernel that we seek. In fact, if we let φ be a (p, q)-form, and ψ

an (n−p, n−q) test form, we have
∫

Cn
z

(∫
C

n
ζ

φ(ζ)∧[∆]
)
∧ψ(z)=

∫
Cn

z ×C
n
ζ

φ(ζ)∧ψ(z)∧[∆] =
∫

Cn
z

φ(z)∧ψ(z)

so that
∫

C
n
ζ
φ(ζ)∧[∆]=φ(z) in the current sense.

In more detail: Let Ω be a domain in Cn and let η(ζ, z)=2πi(z−ζ), where
(ζ, z)∈Ω×Ω. Note that η vanishes to the first order on the diagonal. Consider the
subbundle E∗=Span{dη1, ..., dηn} of the cotangent bundle T ∗

1,0 over Ω×Ω. Let E
be its dual bundle, and let δη be an operation on E∗, defined as contraction with
the section

n∑
j=1

ηjej ,(2)

where {ej}n
j=1 is the dual basis to {dηj}n

j=1. Note that δη anticommutes with ∂̄.
Consider the bundle Λ(T ∗(Ω×Ω)⊕E∗) over Ω×Ω. An example of an element

of the fiber of this bundle at (ζ, z) is dζ1∧dz̄2∧dη3. We define

Lm =
n⊕

p=0

C∞(Ω×Ω,ΛpE∗∧Λp+mT ∗
0,1(Ω×Ω)).(3)
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Note that Lm is a subset of the space of sections of Λ(T ∗(Ω×Ω)⊕E∗). Let Lm
curr

be the corresponding space of currents. If f∈Lm and g∈Lk, then f∧g∈Lm+k.
We define the operator

∇=∇η = δη−∂̄,
which maps Lm to Lm+1. We see that ∇ obeys Leibniz’ rule, that is,

∇(f∧g)=∇f∧g+(−1)mf∧∇g,(4)

if f∈Lm. Note that ∇2=0, which means that

...
∇−−!Lm ∇−−!Lm+1 ∇−−! ...

is a complex. We also have the following useful property: If f(ζ, z) is a form of
bidegree (2n, 2n−1) and D⊂Ω×Ω, then∫

∂D

f =−
∫

D

∇f.(5)

This follows from Stokes’ theorem and the fact that
∫

D δηf=0. The operator ∇
is defined also for currents, since ∂̄ is defined for currents, and δη just amounts to
multiplying with a smooth function, which is also defined for a current.

As in the beginning of this section, we want to find a solution to the equation

∇ηu= 1−[∆].(6)

with u∈L−1
curr (since the left-hand side lies in L0

curr), so as before, we have u=
u1,0+u2,1+...+un,n−1, where uk,k−1 has degree k in E∗ and degree k−1 in T ∗

0,1.

Proposition 2.1. Let

b(ζ, z)=
1

2πi
∂|η|2
|η|2

and

uBM =
b

∇ηb
=

b

1−∂̄b = b+b∧∂̄b+...+b∧(∂̄b)n−1,(7)

where we get the right-hand side by expanding the fraction in a geometric series.
Then u solves (6).

The crucial step in the proof is showing that ∂̄(b∧(∂̄b)n−1)=[∆], which is
common knowledge, as b∧(∂̄b)n−1 is actually the well-known Bochner–Martinelli
kernel.

A form u which satisfies ∇ηu=1 outside ∆ is a good candidate for solving (6).
The following proposition gives us a criterion for when such a u in fact is a solution.
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Proposition 2.2. Suppose that u∈L−1(Ω×Ω\∆) solves ∇ηu=1, and that
|uk|�|η|−(2k−1). We then have ∇ηu=1−[∆].

Proof. Let uBM be the form defined by (7), and let u be a form satisfying
the conditions in the proposition. We know that ∇(u∧uBM)=uBM−u pointwise
outside ∆, in light of (4). We want to show that this also holds in the current sense,
i.e.

∫
Cn

∇(u∧uBM)∧φ=
∫

Cn

(uBM−u)∧φ,(8)

where φ is a test form in Ω×Ω. Using firstly that u∧uBM is locally integrable (since
u∧uBM=O(|η|−(2n−2)) near ∆), and secondly (5), we get that

∫
Cn

∇(u∧uBM)∧φ=− lim
ε!0

∫
|η|>ε

(u∧uBM)∧∇φ

= lim
ε!0

(∫
|η|=ε

u∧uBM∧φ+
∫
|η|>ε

∇(u∧uBM)∧φ
)
.(9)

The boundary integral in (9) will converge to 0 when ε!0, as u∧uBM=O(|η|−2n+2)
and Vol({η :|η|=ε}∩supp(φ))=O(ε2n−1). As for the last integral in (9), we get

lim
ε!0

∫
|η|>ε

∇(u∧uBM)∧φ= lim
ε!0

∫
|η|>ε

(uBM−u)∧φ=
∫

Cn

(uBM−u)∧φ,

since uBM−u is locally integrable. Thus ∇(u∧uBM)=uBM−u as currents. It follows
that ∇u=∇uBM since ∇2=0, and since uBM satisfies (6), u must also do so. �

Example 1. If s is a smooth (1, 0)-form in Ω×Ω such that |s|�|η| and |δηs|�|η|2,
we can set u=s/∇s. By Proposition 2.2, u will satisfy (6), and

un,n−1 =
s∧(∂̄s)n−1

(δηs)n

is the classical Cauchy–Fantappiè–Leray kernel.

We now introduce weights, which will allow us to get more flexible integral
formulas.

Definition 1. A form g∈L0(Ω×Ω) is a weight if g0,0(z, z)=1 and ∇ηg=0.

The form 1+∇Q is an example of a weight, if Q∈L−1. In fact, we have
considerable flexibility when choosing weights: if Q is a (1, 0)-form, g=1+∇Q, and
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G(λ) is a holomorphic function such that G(0)=1, then it is easy to see that

G(g)=
n∑

k=0

1
k!
G(k)(δηQ)(−∂̄Q)k

is also a weight. We can now prove the following representation formula.

Theorem 2.3. (Koppelman’s formula) Assume that D�Ω, φ∈Ep,q(�D), and
that the current K and the smooth form P solve the equation

∂̄K = [∆]−P.(10)

We then have

φ(z)=
∫

∂Dζ

K(ζ, z)∧φ(ζ)+
∫

Dζ

K(ζ, z)∧∂̄φ(ζ)(11)

+∂̄z

∫
Dζ

K(ζ, z)∧φ(ζ)+
∫

Dζ

P (ζ, z)∧φ(ζ).

Proof. First assume that φ has compact support in D, so that the first integral
in (11) vanishes. Take a test form ψ(z) of bidegree (n−p, n−q) in Ω. Then we have
∫

Cn
z

(∫
C

n
ζ

K∧∂̄φ+∂̄z

∫
C

n
ζ

K∧φ+
∫

C
n
ζ

P∧φ
)
∧ψ

=
∫

Cn
z ×C

n
ζ

K∧dφ∧ψ+(−1)p+q

∫
Cn

z ×C
n
ζ

K∧φ∧dψ+
∫

Cn
z ×C

n
ζ

P∧φ∧ψ

=
∫

Cn
z ×C

n
ζ

K∧d(φ∧ψ)+
∫

Cn
z ×C

n
ζ

P ∧φ∧ψ

=
∫

Cn
z ×C

n
ζ

dK∧φ∧ψ+
∫

Cn
z ×C

n
ζ

P∧φ∧ψ

=
∫

Cn
z

φ∧ψ,

where we use Stokes’ theorem repeatedly. If φ does not have compact support in D,
we can prove the general case, e.g., by replacing φ with χkφ, where χk!χD, and
let k!∞. �

It is easy to obtain K and P which solve (10): If we take g to be a weight and
u to be a solution of (6), then we can solve the equation

∇ηv= g−[∆]

by choosing v=u∧g. This means that K=(u∧g)n,n−1 and P=gn,n will solve (10).
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Example 2. Let

g(ζ, z)= 1−∇ 1
2πi

ζ̄ ·dη
1+|ζ|2 =

1+ζ̄ ·z
1+|ζ|2 −∂̄

i

2π
ζ̄ ·dη

1+|ζ|2 ,

then g is a weight for all (ζ, z). Take a (p, q)-form φ(ζ) which grows polynomially
as |ζ|!∞. If we let K=(u∧gk)n,n−1 and P=(gk)n,n, then

φ(z)=
∫
|ζ|=R

K∧φ+
∫
|ζ|≤R

K∧∂̄φ+∂̄z

∫
|ζ|≤R

K∧φ+
∫
|ζ|≤R

P∧φ.

If k is large enough, then the weight will compensate for the growth of φ, so that
the boundary integral will go to zero when R!∞. We get the representation

φ(z)=
∫

Cn

K∧∂̄φ+∂̄z

∫
Cn

K∧φ+
∫

Cn

P∧φ.

Note that if φ in (11) is a closed form and the first and fourth terms of the
right-hand side of Koppelman’s formula vanish, we get a solution of the ∂̄-problem
for φ. Note also that the proof of Koppelman’s formula works equally well over
X×X , where X is any complex manifold, provided that we can find K and P such
that (10) holds. The purpose of the next section is to find suchK and P for a special
type of manifold.

3. A method for finding weighted Koppelman formulas on manifolds

We will now describe a method which can be used to find integral formulas
on manifolds in certain cases, and which is modelled on the one in the previous
section. The method is similar to one presented in [8], see Remark 2 at the end of
this section for a comparison.

Let X be a complex manifold of dimension n, and let E!Xζ×Xz be a vector
bundle of rank n such that we can find a holomorphic section η of E that defines
the diagonal ∆={(ζ, z):ζ=z} of X×X . In other words, η must vanish to the first
order on ∆ and be non-zero elsewhere. Let {ej}n

j=1 be a local frame for E, and
{e∗j}n

j=1 the dual local frame for E∗. Contraction with η is an operation on E∗

which we denote by δη; if η=
∑n

j=1 ηjej then

δη

( n∑
j=1

σje
∗
j

)
=

n∑
j=1

ηjσj .

Set

∇η = δη−∂̄.
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Choose a Hermitian metric h for the vector bundle E, let DE be the Chern
connection on E, and DE∗ the induced connection on E∗. Consider GE =
C∞(X×X,Λ[T ∗(X×X)⊕E⊕E∗]). If A lies in C∞(X×X,T ∗(X×X)⊗E⊗E∗),
then we define Ã as the corresponding element in GE , arranged with the differen-
tial form first, then the section of E and finally the section of E∗. For example, if
A=dz1⊗e1⊗e∗1, then Ã=dz1∧e1∧e∗1.

To define a derivation D on GE , we first let Df=D̃Ef for a section f of E,
and Dg=D̃E∗g for a section g of E∗. We then extend the definition by

D(ξ1∧ξ2)=Dξ1∧ξ2+(−1)deg ξ1ξ1∧Dξ2,
where Dξi=dξi if ξi happens to be a differential form, and deg ξ1 is the total degree
of ξ1. For example, deg(α∧e1∧e∗1)=degα+2, where degα is the degree of α as
a differential form. We let

Lm =
n⊕

p=0

C∞(X×X,ΛpE∗∧Λp+mT ∗
0,1(X×X));

note that Lm is a subspace of GE . The operator ∇ will act in a natural way as
∇ : Lm!Lm+1. Notice also the analogy with the construction (3) in Cn. As before,
if f∈Lm and g∈Lk, then f∧g∈Lm+k. We also see that ∇ obeys Leibniz’ rule, and
that ∇2=0. Let End(E) denote the bundle of endomorphisms of E.

Proposition 3.1. If v is a differential form taking values in End(E), and
DEnd(E) is the induced Chern connection on End(E), then

˜DEnd(E)v=Dṽ.(12)

Proof. Suppose that v=f⊗g, where f is a section of E and g a section of E∗.
We prove first that

DEnd(E)v=DEf⊗g+f⊗DE∗g.(13)

In fact, if s takes values in E, we have

(DEnd(E)v).s=DE((g.s)f)−(g.(DEs))f = d(g.s)f+(g.s)DEf−(g.(DEs))f

= (g.s)DEf+(DE∗g.s)f = (DEf⊗g+f⊗DE∗g).s,

which proves (13). We have

˜DEnd(E)v= D̃Ef⊗g+ ˜f⊗DE∗g=Df∧g−f∧Dg=Dṽ

which proves (12). If v=α⊗f⊗g, where α is a differential form, we would have
DEnd(E)v=dα⊗f⊗g+(−1)degαα⊗DEnd(E)(f⊗g), so the result follows by an appli-
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cation of ∼. Since any differential form taking values in End(E) is a sum of such
elements, the result follows by linearity. �

Definition 2. For a form f(ζ, z) on X×X , we define
∫

E

f(ζ, z)∧e1∧e∗1∧...∧en∧e∗n = f(ζ, z).

Note that if I is the identity on E, then Ĩ=e∧e∗=e1∧e∗1+...+en∧e∗n. It follows
that Ĩn=e1∧e∗1∧...∧en∧e∗n, with the notation an=an/n!, so the definition above is
independent of the choice of frame.

Proposition 3.2. If F∈GE then

d

∫
E

F =
∫

E

DF.

Proof. If F=f∧Ĩn we have d
∫

E
F=df and

∫
E

DF =
∫

E

[df∧Ĩn±f∧D(Ĩn)].

It is obvious that DEnd(E)I=0, and by Proposition 3.1 it follows that DĨ=0, so we
are finished. �

We will now construct integral formulas on X×X . As a first step, we find
a section σ of E∗ such that δησ=1 outside ∆. For reasons that will become apparent,
we choose σ to have minimal pointwise norm with respect to the metric h, which
means that σ=

∑n
j,k=1 hjkη̄ke

∗
j/|η|2. Close to ∆, it is obvious that |σ|�1/|η|, and

a calculation shows that we also have |∂̄σ|�1/|η|2. Next, we construct a section u
with the property that ∇u=1−R, where R has support on ∆. We set

u=
σ

∇ησ
=

∞∑
k=0

σ∧(∂̄σ)k.(14)

Note that u∈L−1. By uk,k−1 we will mean the term in u with degree k in E∗ and
degree k−1 in T ∗

0,1(X×X). It is easily checked that ∇u=1 outside ∆.
We will need the following lemma.

Lemma 3.3. If Θ is the Chern curvature tensor of E, then

∇η

(
Dη

2πi
+
iΘ̃
2π

)
= 0.



Weighted integral formulas on manifolds 53

Proof. The lemma will follow from the more general statement that if v takes
values in End(E), then δηṽ=−v.η. In fact, let v=f⊗g, where f is a section of E
and g a section of E∗; then we have δη(f∧g)=−f∧η.g=−(f⊗g).η. Now, note that
∂̄Θ̃=0 since D is the Chern connection. We have

∇η

(
Dη

2πi
+
iΘ̃
2π

)
=− 1

2πi
[∂̄Dη+δηΘ̃] =− 1

2πi
[Θη−Θη] = 0.

In the calculations we use that η is holomorphic and that ∂̄θ=Θ, where θ is the
connection matrix of DE with respect to the frame e. �

The following theorem yields a Koppelman formula by Theorem 2.3.

Theorem 3.4. Let E!X×X be a vector bundle with a section η which defines
the diagonal ∆ of X×X. We have

∂̄K = [∆]−P,
where

K =
∫

E

u∧
(
Dη

2πi
+
iΘ̃
2π

)
n

and P =
∫

E

(
Dη

2πi
+
iΘ̃
2π

)
n

,(15)

and u is defined by (14).

Note that since Dη contains no ei’s, we have

P =
∫

E

(
iΘ̃
2π

)
n

= det
iΘ
2π

= cn(E),

i.e. the nth Chern class of E.

Proof. We claim that

1
(2πi)n

∫
E

R∧(Dη)n = [∆],(16)

where R is defined by ∇u=1−R. If this were true, we would have, by Lemma 3.3
and Proposition 3.2,

∂̄

∫
E

u∧
(
Dη

2πi
+
iΘ̃
2π

)
n

=
∫

E

∂̄

[
u∧

(
Dη

2πi
+
iΘ̃
2π

)
n

]
=−

∫
E

∇
[
u∧

(
Dη

2πi
+
iΘ̃
2π

)
n

]

=−
∫

E

(
Dη

2πi
+
iΘ̃
2π

)
n

+
1

(2πi)n

∫
E

R∧(Dη)n = [∆]−P.

We want to use Proposition 2.2 to prove the claim (16), so we need to express
the left-hand side of (16) in local coordinates. Since η defines ∆, we can choose
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η1, ..., ηn together with some functions τ1, ..., τn to form a coordinate system locally
in a neighborhood of ∆. We have

1
(2πi)n

∫
E

R∧(Dη)n = ∂̄
1

(2πi)n

∫
E

σ∧(∂̄σ)n−1∧(Dη)n,

and
∫

E

σ∧(∂̄σ)n−1∧(Dη)n = s∧(∂̄s)n−1+A,

where s=
∑n

j=1 σj dηj and A contains only terms which lack some dηj , i.e., every
term in A will contain at least one ηj . Note that both s and A are now forms in Cn.
Recall that we have |σ|�1/|η| and |∂̄σ|�1/|η|2 close to ∆ (this is why we chose σ
to have minimal norm). Thus, by Theorem 2.2 we know that

∂̄[s∧(∂̄s)n−1] = [∆],

so it suffices to show that ∂̄A=0 in the current sense. But since every term in
A contains at least one ηj , the singularities which come from the σj ’s and ∂̄σj ’s
will be partially cancelled out, and in fact we have A=O(|η|−2n+2). A calculation
shows also that ∂̄A=O(|η|−2n+1), and it follows that ∂̄A=0 (also cf. the proof of
Proposition 2.2).

It should be obvious from the proof that instead of u=σ/∇σ, we can choose
any u such that ∇u=1 outside ∆ and |uk,k−1|�|η|−2k+1.

We will obtain more flexible formulas if we use weights.

Definition 3. The section g∈L0 is a weight if we have ∇g=0 and g0,0(z, z)=1.

Theorem 3.4 goes through with essentially the same proof if we take

K =
∫

E

u∧g∧
(
Dη

2πi
+
iΘ̃
2π

)
n

and P =
∫

E

g∧
(
Dη

2πi
+
iΘ̃
2π

)
n

,(17)

as shown by the calculation

∂̄K =−
∫

E

∇u∧g∧
(
Dη

2πi
+
iΘ̃
2π

)
n

=−
∫

E

(g−R)∧
(
Dη

2πi
+
iΘ̃
2π

)
n

= [∆]−P,

which follows from the proof of Theorem 3.4 and the properties of weights. In the
next section we will make use of weighted formulas.
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Remark 1. If L is a line bundle over X , let Lζ denote the line bundle over
Xζ×Xz defined by π−1(L), where π : Xζ×Xz!Xζ. If we want to find formulas for
(p, q)-forms φ(ζ) taking values in some line bundle L over X , we can use a weight g
taking values in Lz⊗L∗

ζ. In fact, then K and P will also take values in Lz⊗L∗
ζ, so

that φ∧K and φ∧P take values in Lz. Integrating over ζ, we obtain φ(z) taking
values in L.

Remark 2. To obtain more general formulas, one can find forms K and P such
that

dK = [∆]−P(18)

by setting ∇′
η=δη−D and checking that the corresponding Lemma 3.3 and The-

orem 3.4 are still valid. The main difference lies in the fact that since (∇′)2 
=0, we
do not have ∇′u=1 outside ∆, but rather

∇′u= 1− σ

(∇′σ)2
∧(∇′)2σ.

A calculation shows that (∇′)2σ=δσ(Dη−Θ̃), where δσ operates on sections of E.
We have δσ(Dη−Θ̃)∧(Dη−Θ̃)n=δσ(Dη−Θ̃)n+1=0 for degree reasons, so that The-
orem 3.4 will still hold with ∇ replaced by ∇′. We can use weights in the same
way, if we require that a weight g has the property ∇′g=0 instead of ∇g=0. In this
article we are interested in applications which only require the formulas obtained
by using ∇.

In [8] Berndtsson obtains P and K satisfying (18) by different means, resulting
in the same formulas, but without weights. Also noteworthy is that ∇′ is a su-
perconnection in the sense of Quillen [21], and our ∇ is the (0, 1)-part of this
superconnection. Lemma 3.3 for ∇′ is a Bianchi identity for the superconnection.

4. Weighted Koppelman formulas on P
n

We will now apply the method of the previous section to X=Pn. We let [ζ]∈Pn

denote the equivalence class of ζ∈Cn+1. In order to construct the bundle E, we
first let F ′=Cn+1×(Pn

[ζ]×Pn
[z]) be the trivial bundle of rank n+1 over Pn

[ζ]×Pn
[z].

We next let F be the bundle of rank n over Pn
[ζ]×Pn

[z] which has the fiber Cn+1/(ζ)
at the point ([ζ], [z]); F is thus a quotient bundle of F ′. If α is a section of F ′, we
denote its equivalence class in F with [α]. We will not always bother with writing
out the brackets, since it will usually be clear from the context whether a section is
to be seen as taking values in F ′ or F . Let L−1 denote the tautological line bundle
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of Pn, that is,

L−1 = {([ζ], ξ)∈P
n×C

n+1 : ξ ∈Cζ}
We also define L−k=(L−1)⊗k, L1=(L−1)∗ and Lk=(L1)⊗k. Finally, let E=
F⊗L1

[z]!P
n
[ζ]×P

n
[z]. Observe that E is thus a subbundle of E′=F ′⊗L1

[z]. It fol-
lows that E∗=F ∗⊗L−1

[z] , where F ∗={ξ∈(F ′)∗ :ξ ·ζ=0}. Berndtsson has the same
setup in [8, Example 3, p. 337], but does not develop it as much (cf. Remark 2
above).

A remark on notation: we will write a differential form α([ζ]) on Pn that takes
values in Lk as a projective form on Cn+1 which is k-homogeneous. That is, α will
satisfy α(λζ)=α(ζ), where λ∈C, and δζα=δζ̄α=0, where δζ is contraction with the
vector field ζ ·∂/∂ζ and similarly for δz̄.

Let {ej}n
j=1 be an orthonormal basis of F ′. The section η (cf. Section 3) will

be η=z ·e=z0e0+...+znen. Note that η takes values in (F ′)⊗L1
[z], and will thus

define an equivalence class in F⊗L1
[z]=E. The section η defines the diagonal since

[η(ζ, ζ)]=[ζ ·e]=[0], so that η vanishes to the first order on ∆.
We will now choose a metric on E. On F ′ we choose the trivial metric, which

induces the trivial metric also on (F ′)∗ and F ∗. For [ω] taking values in F=
F ′/(ζ), the metric induced from F ′ is ‖[ω]‖F =‖ω−πω‖F ′, where π is the orthogonal
projection F ′!(ζ). We choose the metric on E=F⊗L1

[z] to be

‖α⊗[ω]‖E = ‖ω−πω‖F ′
|α|
|z|(19)

for α⊗[ω]∈E. We introduce the notation α·γ :=α0∧γ0+...+αn∧γn, where α and γ
are tuples containing differential forms or sections of a bundle.

Proposition 4.1. Let ω ·e be a section of E. The Chern connection and cur-
vature of E are

DE(ω ·e)= dω ·e−dζ ·e|ζ|2 ∧ζ̄ ·ω−∂ log |z|2∧ω ·e,(20)

Θ̃E = ∂∂̄ log |z|2∧e∗ ·e−∂̄ ζ̄ ·e
∗

|ζ|2 ∧dζ ·e,(21)

with respect to the metric (19) and expressed in the frame {ej}n
j=1 for F ′.

Proof. We begin with finding DF . Let ω̂ ·e=(ω ·ζ̄/|ζ|2)ζ ·e be the projection of
ω ·e onto (ζ ·e). Since the Chern connection DF ′ on F ′ is just d, it is easy to show
that DF [ω ·e]=[d(ω ·e−ω̂·e)]. We have

DF [ω ·e] = [d(ω ·e−ω̂·e)] =
[
dω ·e− dζ ·e

|ζ|2 ∧ζ̄ ·ω
]
,
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since if d does not fall on ζ in the second term we get something that is in the zero
equivalence class in F . If ω ·e is projective to start with, so will dω ·e be, and dζ ·e
is a projective form since δζ(dζ ·e)=ζ ·e=0 in F .

Since the metric on L1
[z] in the local frame z0 is |z0|2/|z|2, the local connection

matrix will be ∂ log(|z0|2/|z|2). If ξ takes values in L1
[z], we get

DL1
[z]
ξ=

[
d(ξ/z0)+

∂ log(|z0|2/|z|2)ξ
z0

]
z0 = dξ−∂ log |z|2ξ.

It is easy to see that d(ξ/z0)+∂ log(|z0|2/|z|2)ξ/z0 is a projective form, so
dξ−∂ log |z|2ξ is also projective. Combining the contributions from L1

[z] and F ,
we get (20), from which also (21) follows. �

We want to find the solution σ to the equation δησ=1, such that σ has minimal
norm in E∗. It is easy to see that the section z̄ ·e∗/|z|2 is the minimal solution
to δηv=1 in the bundle (E′)∗=(F ′)∗⊗L−1

[z] . The projection of z̄ ·e∗/|z|2 onto the
subspace E∗ is

s=
z̄ ·e∗
|z|2 − z̄ ·ζ

|ζ|2|z|2 ζ̄ ·e
∗.

Since z̄ ·e∗/|z|2 is minimal in (F ′)∗⊗L−1
[z] , s must be the minimal solution in E∗.

Finally, we normalize to get σ=s/δηs. According to the method of the previous
section, we can then set u=σ/∇σ and obtain the forms P and K which will give
us a Koppelman formula (see Theorem 3.4).

Remark 3. In local coordinates, for example where ζ0, z0 
=0, we have

|η|2 = δηs=
|ζ|2|z|2−|z̄ ·ζ|2

|ζ|2|z|2 =
(1+|ζ′|2)(1+|z′|2)−|1+z̄′·ζ′|2

(1+|ζ′|2)(1+|z′|2) ,

where ζ′=(ζ1/ζ0, ..., ζn/ζ0) and analogously for z′. For the denominator we locally
have (1+|ζ′|2)(1+|z′|2)≤C for some constant C. As for the numerator, we have

(1+|ζ′|2)(1+|z′|2)−|1+z̄′·ζ′|2 = 1+|ζ′|2+|z′|2+|ζ′|2|z′|2−(1+2 Re |z̄′ ·ζ′|+|z̄′·ζ′|2)
= |z′−ζ′|2+|ζ′|2|z′|2−|z̄′ ·ζ′|2 ≥ |z′−ζ′|2.

In all, we have δηs�|z′−ζ′|2.
To compute integrals of the type (17), we need the following proposition.

Lemma 4.2. Let A
id
↪!A′, where A′ is a given vector bundle with a given metric

and A={ξ taking values in A′ :f ·ξ=0} for a fixed f taking values in (A′)∗. Let s
be the dual section to f , and π be the orthogonal projection π : GA′!GA induced
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by the metric on A. If B′∈GA′ , and B=πB′, then

∫
A

B=
∫

A′
f∧s∧B′.

Proof. We can choose a frame for A′ so that e0=s, and then extend it to an
orthonormal frame for A′, so that A=Span(e1, ..., en). If we set e∗0=f , we have

∫
A′
f∧s∧B′ =

∫
A′
e0∧e∗0∧πB′ =

∫
A

B

and we are done, since the integrals are independent of the frame. �

Note that if E=A⊗L, where L is a line bundle, and B∈GE , then
∫

E
B=

∫
A
B.

At least, this is true if we interpret the latter integral to mean that if g is a local
frame for L and g∗ a local frame for L∗, then g and g∗ should cancel out. Since
there are as many elements from L as there are from L∗, there will be no line bundle
elements left.

We will apply Lemma 4.2 with A=E, A′=E′ and f=ζ ·e∗. We then have

P =
∫

E

(
Dη

2πi
+
iΘ̃
2π

)
n

=
∫

E′

ζ̄ ·e∧ζ ·e∗
|ζ|2 ∧

(
Dη

2πi
+
iΘ̃
2π

)
n

and similarly for K (this makes it easier to write down P and K explicitly).
By Theorem 3.4, we have

∂̄K = [∆]−P.

(These K and P are also found at the very end of [8].) We will now modify the
method slightly, since in the paper [15] we found formulas for (0, q)-forms (derived
in a slightly different way) which are more appealing than those we have just found,
in that we get better results when we use them to solve ∂̄-equations. We would
thus like to have formulas for (p, q)-forms that coincide with those of [15] in the
(0, q)-case.

The bundle F ∗ is actually isomorphic to T ∗
1,0(P

n
[ζ]), and an explicit isomorphism

is given by β=dζ ·e. In fact, if ξ ·e∗ takes values in F ∗, then β(ξ)=dζ ·ξ. Since ξ ·ζ=0,
the contraction of β(ξ) with the vector field ζ ·∂/∂ζ will be zero, so β(ξ)∈T ∗

1,0(P
n
[ζ]).

If ve∗ is a form with values in ΛnE∗, then it is easy to see that

∫
E

ve∗∧βn = vdζ,(22)
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where we get vdζ by replacing every instance of e∗j in ve∗ with dζj . For example, if
ve∗ =f(ζ, z)e∗0∧...∧e∗n, then vdζ =f(ζ, z)dζ0∧...∧dζn. We can use this to construct
integral formulas for (0, q)-forms with values in L−n

[ζ] , by setting

K =
∫

E

u∧βn.

The formulas we get from this are the same as in [15]. We will now combine these
formulas with the ones in (15).

Theorem 4.3. Let D⊂Pn. If φ(ζ) is a (p, q)-form with values in L−n+p
[ζ] and

Kp =
∫

E

u∧βn−p∧
(
Dη

2πi
+
iΘ̃
2π

)
p

,(23)

Pp =
∫

E

βn−p∧
(
Dη

2πi
+
iΘ̃
2π

)
p

,

with β=dζ ·e∗, we have the Koppelman formula

φ([z])=
∫

∂D

φKp∧φ+
∫

D

∂̄Kp∧φ+∂̄[z]

∫
D

Kp∧φ+
∫

D

Pp∧φ,

where the integrals are taken over the [ζ] variable.

Proof. We have

∫
E

∂̄u∧βn−p∧
(
Dη

2πi
+
iΘ̃
2π

)
p

= [∆],(24)

where [∆] should be integrated against sections of L−n+p with bidegree (p, q). This
follows from the proof of Theorem 3.4, since the singularity at ∆ comes only from u,
and is not affected by exchanging (Dη/2πi+iΘ̃/2π)n−p for βn−p.

Using (24), we get

dKp =−
∫

E

∇
[
u∧βn−p∧

(
Dη

2πi
+
iΘ̃
2π

)
p

]

=−
∫

E

(∇u)∧βn−p∧
(
Dη

2πi
+
iΘ̃
2π

)
p

= [∆]−Pp.

The Koppelman formula then follows as in Theorem 2.3. �
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To get formulas for other line bundles, we need to use weights (as defined in
the previous section). We will use the weight

α=
z ·ζ̄
|ζ|2 −2πi∂̄

ζ̄ ·e∗
|ζ|2 .

Note that the first term in α takes values in L1
[z]⊗L−1

[ζ] , and the second is a projective
form. We then get a Koppelman formula for (p, q)-forms φ with values in Lr by
using

Kp,r =
∫

E

u∧αn−p+r∧βn−p∧
(
Dη

2πi
+
iΘ̃
2π

)
p

,

Pp,r =
∫

E

αn−p+r∧βn−p∧
(
Dη

2πi
+
iΘ̃
2π

)
p

.

Remark 4. Let φ be a (p, q)-form. Since we cannot raise α to a negative power,
how can we get a Koppelman formula if φ takes values in Lr where r<p−n? In
fact, if we look at the proof of the Koppelman formula in Proposition 2.3, we see
that the roles of φ and ψ are symmetrical: we could just as well use the proof to get
a Koppelman formula for the (n−p, n−q)-form ψ which takes values in L−r, using
the kernels Kp,r and Pp,r in Theorem 4.3. This is a concrete realization of Serre
duality, which in our case says that

Hp,q(Pn, Lr)�Hn−p,n−q(Pn, L−r).

We will make use of this dual technique when we look at cohomology groups in the
next section.

Remark 5. In [7] Berndtsson constructs integral formulas for sections of line
bundles over P

n. These formulas coincide with ours in the case p=0, but they are
not the same in the general (p, q)-case. Nonetheless, they do give the same result
as our formulas when used to find the trivial cohomology groups of the line bundles
of P

n (see the next section). More precisely, his formulas can also be used to prove
Proposition 5.1 below, but no more, at least not in any obvious way.

5. An application: the cohomology of the line bundles of P
n

Let D in Theorem 4.3 be the whole of Pn; then the boundary integral will
disappear. The only obstruction to solving the ∂̄-equation is then the term con-
taining Pp,r. We will use our explicit formula for Pp,r to look at the cohomology
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groups of (p, q)-forms with values in different line bundles, and determine which of
them are trivial. We have

Pp,r =
∫

E

βn−p∧
(
Dη

2πi
+
iΘ̃
2π

)
p

∧αn−p+r

=
∫

E′

ζ̄ ·e∧ζ ·e∗
|ζ|2 ∧(dζ ·e)n−p

∧
(
dz ·e− z ·ζ̄

|ζ|2 ∧dζ ·e−
∂|z|2
|z|2 z ·e+ωze

∗ ·e− dζ̄ ·e∗∧dζ ·e
|ζ|2

)
p

∧
(
z ·ζ̄
|ζ|2 −∂̄

ζ̄ ·e∗
|ζ|2

)n−p+r

,

where ωz=∂∂̄ log |z|2. We can now prove the following result.

Proposition 5.1. From the formula for Pp,r above, it follows that the cohomo-
logy groups Hp,q(Pn, Lr) are trivial in the following cases :

(a) q=p 
=0, n and r 
=0;
(b) q=0, r≤p and (r, p) 
=(0, 0);
(c) q=n, r≥p−n and (r, p) 
=(0, n);
(d) p<q and r≥−(n−p);
(e) p>q and r≤p.

Unfortunately, these are not all the trivial cohomology groups; instead of (d)
and (e) we should ideally get that the groups are trivial for q 
=0, n, p (cf. [12, p. 397]).

Remark 6. Let ψ(ζ, z) be a differential form in P
n
[ζ]×P

n
[z] taking values in some

line bundle Lk
z , written as usual in homogeneous coordinates in C

n+1. In the proof
below, by the integral

∫
P

n
ζ
ψ(ζ, z) we mean the integral over P

n
[ζ] of the section ψ,

regarded as depending on the variables [ζ] and [z]. The point of this notation is to
avoid writing out the brackets as far as possible.

Proof. The general strategy is this: we take a ∂̄-closed form φ(z) of given bi-
degree and with values in a given line bundle, and then try to show that φ(z) is exact
by means of the Koppelman formula. One possibility of doing this is proving that∫

P
n
ζ
φ(ζ)∧Pp,r(ζ, z)=0, which can be either because the integrand is zero, or because

the integrand is ∂̄ζ-exact (since then Stokes’ formula can be applied). Another
possibility is proving that Pp,r is ∂̄z-exact, since then

∫
P

n
ζ
φ∧Pp,r will be ∂̄z-exact

as well.
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(a) Let r>0 and p=q 
=0, n; we must then look at the term in Pp,r with bidegree
(p, p) in z and (n−p, n−p) in ζ, it is equal to

C

∫
E′

ζ̄ ·e∧ζ ·e∗
|ζ|2 ∧(dζ ·e)n−p∧(ωz∧e∗ ·e)p∧

(
z ·ζ̄
|ζ|2

)r

∧
(
dζ̄ ·e∗
|ζ|2

)n−p

,(25)

where C is a constant. We will show that (25) is actually ∂̄z-exact. The factor
in (25) which depends on z is (z ·ζ̄)rωp

z , which is at least a ∂̄z-closed form. Can
we write (z ·ζ̄)rωp

z =∂̄zg(z), where g is a projective form? Actually, we have
∂̄z[(ζ̄ ·z)r∂|z|2/|z|2∧ωp−1

z ]=(z ·ζ̄)rωp
z , but (ζ̄ ·z)r∂|z|2/|z|2∧ωp−1

z is not a projective
form. This can be remedied by adding a ∂̄-closed term (ζ̄ ·z)r−1(ζ̄ ·dz)∧ωp−1

z , since
then we can take

g= (ζ̄ ·z)r−1

[
(ζ̄ ·z)∂|z|

2

|z|2 −ζ̄ ·dz
]
∧ωp−1

z .

As (25) is ∂̄z-exact, we have proved (a) when r>0. If −r<0, by Remark 4 in
the previous section we must look at Pn−p,r, which is again ∂̄z-exact, and then∫

Pn
z
φ(z)∧Pn−p,r=0 by Stokes’ theorem.
(b) Note that here we really want to prove that φ=0, since φ cannot be

∂̄-exact. To prove this we again use the dual case in Remark 4. We want to
show that

∫
Pn

z
φ(z)∧Pn−p,r(ζ, z)=0, when φ(z) has bidegree (p, 0) and takes values

in L−r
z . First assume that p>0, then we must look at the term in Pn−p,r of bi-

degree (n−p, n) in z. No term in Pn−p,r has a higher degree in dz̄ than in dz,
so

∫
Pn

z
φ(z)∧Pn−p,r(ζ, z)=0. If p=0, then we must look at the term in Pn,r with

bidegree (n, n) in z and (0, 0) in ζ. The z-dependent factor of this term is (z ·ζ̄)rωn
z ,

which is ∂̄z-exact in the same way as in the proof of (a). This proves the case
p=0, −r<0, but the proof breaks down when r=0, where there is a non-trivial
cohomology.

(c) First let p<n. There is no term in Pp,r with bidegree (p, n) in z, since there
are not enough dz̄’s, so

∫
P

n
ζ
φ(ζ)∧Pp,r(ζ, z)=0. If p=n, we look at the term in Pp,r

with bidegree (n, n) in z and (0, 0) in ζ. This is dealt with exactly as the case p=0
in the proof of (b).

(d) and (e) Let q 
=0, n, p. If p<q and r≥−(n−p), we look at the term in Pr

with bidegree (p, q) in z. It is zero, since we cannot have more dz̄’s than dz’s, so∫
P

n
ζ
φ(ζ)∧Pp,r =0. Similarly, if p>q we use the dual method: the term in Pn−p,r

with bidegree (n−p, n−q) in z is zero when n−p<n−q and r≥−p, again since we
cannot have more dz̄’s than dz’s. This shows that

∫
Pn

z
φ(z)∧Pn−p,r=0 for r≥−p,

where φ takes values in L−r and −r≤p. �
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6. Weighted Koppelman formulas on Pn×Pm

We will now find integral formulas on P
n×P

m. Let ([ζ], [ζ̃], [z], [z̃]) be a point in
(Pn×P

m)×(Pn×P
m). The procedure will be quite similar to that of Section 4, but

for simplicity we will limit ourselves to the case of (0, q)-forms. This corresponds
to using only β in the formula (23). According to (22), then, we can construct our
kernel directly, without any need to refer to the bundle E, in the following way (see
also [15]). Let ηζ =2πiz ·∂/∂ζ and η=ηζ +ηζ̃. We take δη to be contraction with η

and set ∇=δη−∂̄. Note that η=0 on ∆. Now set

sζ =
z̄ ·dζ
|z|2 − z̄ ·ζ

|z|2|ζ|2 ζ̄ ·dζ

and then s=sζ+sζ̃ . Observe that δηs is a scalar, which is zero only on ∆.

Proposition 6.1. If u=s/∇s, then u satisfies ∇u.φ=(1−[∆]).φ, where φ is
a form of bidegree (n+m,n+m) which takes values in L−n

[ζ] ⊗L−m

[ζ̃]
⊗Ln

[z]⊗Lm
[z̃] and

contains no dζi’s or dζ̃i’s.

Proof. The restriction on φ is another way of saying that our formulas only will
work for (0, q)-forms. The proposition will follow from Theorem 4.3 if we integrate
in Pn

[ζ]×Pn
[z] and Pm

[ζ̃]
×Pm

[z̃] separately. �

To obtain weighted formulas, let

α=
z ·ζ̄
|ζ|2 +2πi∂∂̄ log |ζ|2,

and let α̃ be the corresponding form in ([ζ̃], [z̃]). We have ∇α=∇α̃=0, so

∇(αn+k∧α̃m+l∧u)=αn+k∧α̃m+l∧∇u=αn+k∧α̃m+l−[∆],

where [∆] must be integrated against sections of Lk
[ζ]⊗Ll

[z̃]. The following theorem
follows from Theorem 2.3.

Theorem 6.2. If K=αn+k∧α̃m+l∧u and P=αn+k∧α̃m+l we get the
Koppelman formula

φ([z], [z̃])=
∫

∂D

φ([ζ], [ζ̃])∧K+
∫

D

∂̄φ([ζ], [ζ̃ ])∧K

+(∂̄z+∂̄z̃)
∫

D

φ([ζ], [ζ̃ ])∧K+
∫

D

φ([ζ], [ζ̃ ])∧P

for differential forms φ([ζ], [ζ̃ ]) on Pn×Pm with bidegree (0, q) which take values in
Lk

[ζ]⊗Ll
[ζ̃]

.
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Now assume that ∂̄φ=0. For which q, k and l is φ ∂̄-exact? To show that
a particular φ is ∂̄-exact, we need to show that the term

∫
Pn×Pm φ([ζ])∧P either is

zero, or is ∂̄-exact. Since P consists of two factors where one depends only on ζ

and the other only on ζ̃, we can write
∫

Pn×Pm

φ([ζ], [ζ̃])∧P =
∫

Pm

(∫
Pn

φ([ζ], [ζ̃ ])∧αn+k

)
∧α̃m+l.(26)

We get the following theorem.

Proposition 6.3. We look at differential forms φ([ζ], [ζ̃ ]) on Pn
[ζ]×Pm

[ζ̃]
with

bidegree (0, q), which take values in the line bundle Lk
[ζ]⊗Ll

[ζ̃]
. The cohomology

groups H(0,q)(Pn×Pm, Lk
[ζ]⊗Ll

[ζ̃]
) are trivial in the following cases :

(a) q 
=0, n,m, n+m;
(b) q=0 and k<0 or l<0;
(c) q=n and l<0 or k≥−n;
(d) q=m and k<0 or l≥−m;
(e) q=n+m and k≥−n or l≥−m.

Proof. To determine when (26) is zero, we use Theorem 5.1. Assume that
the form φ has bidegree (0, q1) in ζ and (0, q2) in ζ̃ and that q1+q2=q. If, for
some q1 and k, we know that H(0,q1)(Pn, Lk) is trivial, this means either that∫
[ζ] φ([ζ], [ζ̃ ])∧P ([ζ], [z])=0 or that

∫
[ζ] φ([ζ], [ζ̃ ])∧P ([ζ], [z])=∂̄za([z], [ζ̃]) for some

a([z], [ζ̃]). In the first case, it follows that the expression in (26) is also zero. In the
second case, we get

∫
Pm

(∫
Pn

φ([ζ], [ζ̃])∧αn+k

)
∧α̃m+l = ∂̄z

∫
Pm

a([z], [ζ̃])∧α̃m+l

= ∂̄

∫
Pm

a([z], [ζ̃])∧α̃m+l

since the integrand is holomorphic in [z̃]. The same holds ifH(0,q2)(Pm, Ll) is trivial.
The conclusion is that H(0,q1+q2)(Pn×Pm, Lk

[ζ]⊗Ll
[ζ̃]

)=0 either when q1 and k are

such that H(0,q1)(Pn, Lk)=0, or when q2 and l are such that H(0,q2)(Pm, Ll)=0.
Now, we really have a sum

φ=
∑

q1+q2=q

φq1,q2

of terms of the type above. For the cohomology group to be trivial, we must have∫
Pn×Pm φq1,q2∧P=0 for all of them. We know that q2=q−q1. If we have either

0<q1<n or 0<q2<m then
∫

Pn×Pm φq1,q2∧P=0 according to Theorem 5.1. The only
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ways to avoid this are if q=q1=q2=0; if q=q1=n and q2=0; if q1=0 and q=q2=m
or if q=n+m, q1=n and q2=m. Then (a)–(e) follow from Theorem 5.1. �

7. Weighted Koppelman formulas on Stein manifolds

If X is a Stein manifold it is, in general, impossible to find E!X×X and η

with the desired properties as described in Section 3. What is possible is to find
a section η of a bundle E such that η has good properties close to ∆, but then η

will in general have other zeroes as well. It turns out that it is possible to work
around this and still construct weighted integral formulas. This section relies on
the article [18] by Henkin and Leiterer, where such an η was constructed.

More precisely, let π be the projection from Xζ×Xz to Xζ , and E=
π∗(T1,0(Xζ)). Let {ej}n

j=1 be a local frame for E. By [18, Section 2.1] we have
the following result.

Theorem 7.1. There exists a holomorphic section η of E such that {(ζ, z):
η(ζ, z)=0}=∆∪F , where F is closed and ∆∩F=∅. Close to ∆ we have

η(ζ, z)=
n∑

j=1

[ζj−zj+O(|ζ−z|2)]ej .(27)

Moreover, there exists a holomorphic function φ such that φ(z, z)=1 and |φ|�|η|
on a neighborhood of F .

We define δη, ∇ etc. in the same way as in Section 2. Let s taking values in E∗

be the section satisfying δηs=1 outside ∆∪F which has pointwise minimal norm,
and define u=s/∇s. If we define

K =
∫

E

φMu∧
(
Dη

2πi
+
iΘ̃
2π

)
n

and P =
∫

E

φM

(
Dη

2πi
+
iΘ̃
2π

)
n

,

where M is large enough so that φMu has no singularities on F , then Theorem 3.4
applies and we have ∂̄K=[∆]−P . In this way, we recover the formula found
in [8, Example 2], except that our approach also allows for weights. We define
weights in the same way as before (note that φ is in fact a weight). If g is a weight,
we will get a Koppelman formula with

K =
∫

E

φMg∧u∧
(
Dη

2πi
+
iΘ̃
2π

)
n

and P =
∫

E

φMg∧
(
Dη

2πi
+
iΘ̃
2π

)
n

.(28)
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Note that since E is a pullback of a bundle onXζ , the connection and curvature
forms of E depend only on ζ. Hence P=cn(E) has bidegree (n, n) in ζ, and we have∫

Xζ
P (ζ, z)∧φ(ζ)=0 except in the case where φ has bidegree (0, 0). The last term

in the Koppelman formula thus presents no obstruction to solving the ∂̄-equation
on X .

Example 3. In [14] there is an example of weighted formulas on Stein manifolds,
which we can reformulate to fit into the present formalism. Let G⊂X be a strictly
pseudoconvex domain. By [14, Theorem 9] we can find a function ψ defined on
a neighborhood U of G which embeds G in a strictly convex set C⊂C

n. If σ is the
defining function for C, then ρ=σ�ψ is a strictly plurisubharmonic defining function
for G. On U we introduce the weight

g(ζ, z)=
(

1−∇ (∂ρ(ζ)/∂ζ)·e∗
2πiρ(ζ)

)−α

=
(
−v
ρ
−ω

)−α

,

where

v=
∂ρ(ζ)
∂ζ

·η−ρ(ζ) and ω= ∂̄

[
(∂ρ(ζ)/∂ζ)·e∗

2πiρ(ζ)

]
.

Note that g is holomorphic in z. If Reα is large enough, then g( · , ζ) will be zero
on ∂G, since σ(∂C)=0. This implies that if f is a holomorphic function and P is
defined by (28), then we will have

f(z)=
∫

G

f(ζ)P

for z∈G, by Koppelman’s formula. We also have the estimate

−ρ(ζ)−ρ(z)+ε|ζ−z|2≤ 2 Re v(ζ, z)≤−ρ(ζ)−ρ(z)+c|ζ−z|2,

where ε and c are positive and real. By means of this, we can get results in strictly
pseudoconvex domains G in Stein manifolds similar to ones which are known in
strictly pseudoconvex domains in Cn. For example, one can obtain a direct proof
of the Henkin–Skoda theorem which gives L1-estimates on ∂G for solutions of the
∂̄-equation.

Example 4. We can also solve division problems on X . Let D⊆X be a domain,
and take f(ζ)=(f1(ζ), ..., fm(ζ)), where fj∈O(D). Assume that f has no common
zeroes in D. We want to solve the division problem ψ=f ·p in D, where ψ is a given
holomorphic function, by means of integral formulas. We do this by a variant of
the weights used in [6].
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By Cartan’s Theorem B, we can find h(ζ, z)=(h1(ζ, z), ..., hm(ζ, z)), where hj

is a holomorphic section of E∗, such that δηhj(ζ, z)=φ(ζ, z)(fj(ζ)−fj(z)). We set

g1(ζ, z)= (φ−∇(h·σ(ζ)))µ = (φf(z)·σ+h·∂̄σ)µ,

where σ=f̄/|f |2 and µ=min(m,n+1). Then g1 is a weight. Now, f(z) is a factor
in g1, since (h·∂̄σ)µ=0. In fact, we have (h·∂̄σ)n+1=0 for degree reasons, and
(h·∂̄σ)m=0 since f ·σ=1 implies that f ·∂̄σ=0, so that ∂̄σ1, ..., ∂̄σm are linearly
dependent.

By the Koppelman formula we have

ψ(z)=
∫

∂D

ψφMK+
∫

D

ψφMP,

where K and P are defined by (28) using the weight g1. Since f(z) is a factor in g1,
we have ψ(z)=f(z)·p(z), where p(z) will be holomorphic if D is such that we can
find u holomorphic in z (for example if D is pseudoconvex).

Acknowledgements. The author would like to thank her supervisor Mats
Andersson for invaluable help in writing this article.
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