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Gorenstein injective and projective modules
and actions of finite-dimensional Hopf algebras

Juan Antonio López-Ramos

Abstract. We study the stability of Gorenstein preenvelopes and precovers in the cases of

H-extensions and smash products with H, where H is a Hopf algebra. We use these to define

Gorenstein dimensions and give new examples of the so-called Gorenstein categories.

1. Introduction

In 1966 (in [15]) Auslander, motivated by Tate’s observation on the existence
of a complete projective resolution for the ZG-module Z, introduced a class of
finitely generated modules having a certain complete resolution by projective mod-
ules. Then using these modules he defined the G-dimension (G ostensibly for Goren-
stein) of finitely generated modules. It seems appropriate then to call the modules
of G-dimension 0 the Gorenstein projective modules. In [8] Gorenstein projective
modules (whether finitely generated or not) were defined. In the same paper the
dual notion to that of a Gorenstein projective module was defined and so a relative
theory of Gorenstein injective and projective modules was initiated (cf. [2] and [9]
and their references). One of the main problems concerning Gorenstein injective
and projective modules is to study the existence of covers and envelopes by these
classes of modules, which allows one to study the so-called Gorenstein dimensions.
Although there is a very nice relative theory over noetherian rings with nice ho-
mological properties (cf. [13]), Gorenstein dimensions may be defined over a more
general class such as noetherian or coherent rings (cf. [10]) or those with a dualizing
complex ([14]). More recently, in [5], the authors show the existence of a bound
for the Gorenstein injective dimension in the category of quasi-coherent sheaves
on certain projective schemes, which motivates them to introduce the concept of
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Gorenstein category without involving projective objects and using the global fini-
tistic injective and projective dimensions (this one defined in terms of the vanishing
of the Ext’s). They show that a Grothendieck category with enough projectives is
Gorenstein if and only if the global Gorenstein injective and projective dimensions
are finite.

On the other hand, in [11], the authors began the study of the preserving covers
problem, i.e., given a functor between two categories Φ: A!B and an F -cover
f : F!A in A, determine whether Φ(f) : Φ(F )!Φ(A) is a Φ(F)-cover in B. Lately
this problem was treated (among others) for the case of relative injective covers
over Hopf extensions ([12]) and for Gorenstein modules over graded rings ([1]). In
the aforementioned works, separability conditions of the involved functors (cf. [17])
are very useful.

The aim of this paper is to continue the study of the preserving property of
covers for the case of H-extensions, where H is a Hopf algebra, and smash products
of H with an algebra. Given a finite-dimensional Hopf algebra H over a field k and
a k-algebra A, we show that the existence of Gorenstein injective preenvelopes and
Gorenstein projective precovers are equivalent in A-Mod and A#H-Mod under cer-
tain separability conditions of the extension A#H/A, or in other words, Gorenstein
injective and projective modules are, respectively, preenveloping and precovering
classes equivalently in A-Mod and A#H-Mod (Theorems 3.3 and 3.6). We also
derive Gorenstein injective preenvelopes and Gorenstein projective precovers to the
subalgebra of invariants AH (Theorems 4.1 and 4.2). Finally, and as a natural con-
sequence of the preserving of precovers and preenvelopes we define Gorenstein in-
jective and projective dimensions in A#H-Mod and AH-Mod in terms of resolutions
by these modules. Then we show that under some natural hypothesis, finiteness
of global Gorenstein injective and projective dimensions in A-Mod, A#H-Mod and
AH-Mod are equivalent, and thus obtaining new examples of Gorenstein categories
from a given one (Theorem 5.4).

2. Some preliminaries

Let us start by giving a short introduction to the rich theory of Hopf algebras
and their extensions. For more details and unexplained concepts we refer the reader
to [16] and [4].

Throughout this paper k will denote a field. A k-algebra may be defined
as a triple (A, M, u), where A is a vector space over k and M : A⊗A!A and
u : k!A are morphisms of k-vector spaces such that M �(IdA ⊗M)=M �(M⊗IdA)
and if sA and s′A denote the isomorphisms k⊗A∼=A and A⊗k∼=A, respectively, then
M �(u⊗IdA)=s and M �(IdA ⊗u)=s′. A k-coalgebra is defined dually, i.e., a triple
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(C,�, ε), where C is a k-vector space and � : C!C⊗C and ε : C!k are morphisms
of k-vector spaces such that (IdC ⊗�)��=(�⊗IdC)�� and (ε⊗IdC)��=sC and
(IdC ⊗ε)��=s′C. A bialgebra is then defined as a k-vector space H endowed with an
algebra structure Ha=(H, M, u) and a coalgebra structure Hc=(H,�, ε) and such
that � and ε are algebra morphisms. Now given the vector space Homk(Hc, Ha) we
may define an algebra structure on it given by the convolution product f ∗g defined
as (f ∗g)(c)=

∑
f(c1)g(c2), where �(c)=

∑
c(1)⊗c(2). Given a bialgebra H , a linear

morphism S : H!H is called an antipode if S is the inverse of the identity map
IdH with respect to the convolution product. A bialgebra H is then a Hopf algebra
if H has an antipode. So, from now on, H will denote a finite-dimensional Hopf
algebra over k with comultiplication � : H!H⊗H , counit ε : H!k and antipode
S : H!H .

A k-algebra A is called a left H-module algebra if A is a left H-module such
that h·(ab)=

∑
(h(1) ·a)(h(2) ·b) and h·1A=ε(h)1A for all a, b∈A and h∈H .

Given any left H-module M , the submodule of H-invariants is the set MH =
{m∈M :h·m=ε(h)m for all h∈H} and analogously for right H-modules. If A is an
H-module algebra, then AH is a subalgebra of A.

The smash product algebra (or semidirect product) of A with H , denoted by
A#H , is the vector space A⊗H , whose elements are denoted by a#h instead of
a⊗h, with multiplication given by (a#h)(b#l)=

∑
a(h(1) ·b)#h(2)l for a, b∈A and

h, l∈H . The unit of A#H is 1#1 and we usually view ah as a#h and ha as
(1#h)(a#1).

The dual notion of H-module algebra is H-comodule algebra. A right H-co-
module is a pair (M, ρ), where M is a k-vector space and ρ : M!M⊗H is a linear
morphism such that (IdM ⊗�)�ρ=(ρ⊗IdM )�ρ and (IdM ⊗ε)�ρ=s′M . An algebra
A is a right H-comodule algebra if it is a right H-comodule, with structure map
ρ such that ρ(ab)=

∑
a(0)b(0)⊗a(1)b(1)∈A⊗H for every a, b∈A. The category of

H-modules is equivalent to the category of H∗-comodules.
A map t∈H∗ is called a left integral of H if h∗t=h∗(1)t for any h∗∈H∗. Since

H is finite-dimensional then it is shown that it has a non zero left integral t, and
that the antipode S is bijective, with inverse S−1. There is a unique element λ∈H∗

called the distinguished element of H∗ such that th=λ(h)t for all h∈H . Now if
we denote by hλ the element λ⇀h=

∑
h(1)λ(h(2)) and B=AH then we get two

bimodule structures for a given H-module algebra A, namely, A#HAB given by
(a#h)⇀x=a(h·x) and x↼b=xb and BAA#H given by b⇀x=bx and x↼(a#h)=
S−1(hλ)·(xa).

We will say that B⊂A is an H-extension and we will denote it by A/B if A is
a right H-comodule algebra and B is the algebra of coinvariants, B=AcoH={a∈A:
ρ(a)=a⊗1}. Since we are considering H finite-dimensional, then we get that A/B is
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an H-extension if and only if A is an H∗-module algebra with B=AcoH=AH∗
. We

will say then that whenever A is an H-module algebra, then A/AH is an H∗-exten-
sion. An H-extension A/B is said to be Galois if the map β : A⊗BA!A⊗H given
by β(a⊗b)=

∑
ab(0)⊗b(1) is bijective.

If A is an H-module algebra, then A may be considered as an H∗-comodule al-
gebra. The category of Hopf modules AMH∗

consists of all those left A-modules M

with a right H∗-comodule structure satisfying the compatibility condition ρM (am)=
∑

a(0)m(0)⊗a(1)m(1) for all a∈A and m∈M . Since H is finite-dimensional we may
identify AMH∗

with the category A#H**-Mod=A#H-Mod.
Now we recall the definition of some functors: the induction functor

Ind: B-Mod!A#H-Mod given by Ind(M)= A#HA⊗BM , the coinduction functor
Coind: B-Mod!A#H-Mod given by Coind(M)=HomB(AA#H , M) and finally, if
we take invariants, we get the functor (−)0 : AMH∗!AH-Mod, where M0={m∈M :
ρM (m)=m⊗1}={m∈M :h·m=〈1, h〉m for all m∈H}. It can be checked that M0

∼=
HomH∗

A (A, M)∼=HomA#H(A, M), where HomH∗
A (A, M) denotes the group of left

A-module and right H∗-comodule homomorphisms.
We finish this section by recalling the notions of precover, preenvelope and

Gorenstein injective and projective modules. We refer to [9] for a general view
of the theory. Given a class of A-modules F , an F-precover of an A-module M

is a morphism F
ϕ−−!M with F∈F and such that if F ′ f−−!M is a morphism with

F ′∈F then there is a morphism F ′ g−−!F such that ϕg=f . F -preenvelopes are
defined dually.

A left A-module M is called Gorenstein injective if there exists an exact se-
quence ...!E−1!E0!E1!... of injective modules such that M =Ker(E0!E1)
and that it remains exact whenever HomA(E,−) is applied for every injective E.
Gorenstein projective modules are defined dually.

3. Gorenstein injective and projective modules and smash products

In this section we study the property of preserving Gorenstein preenvelopes
and precovers between a category of A-modules for a given H-module algebra and
the category of A#H-modules. We start with a natural result. In what follows,
A will always denote an H-module algebra. If M∈A#H-Mod then AM will denote
the image of M by the restriction of the scalars functor A(−) : A#H-Mod!A-Mod.

Lemma 3.1. (i) If M∈A-Mod is Gorenstein injective (resp. Gorenstein
projective) then A#H⊗AM is Gorenstein injective (resp. Gorenstein projective).

(ii) If M∈A#H-Mod is Gorenstein injective (resp. Gorenstein projective) then
AM is Gorenstein injective (resp. Gorenstein projective).
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Proof. (i) The functor A#H⊗A− is isomorphic to HomA(A#H,−) since H

is finite-dimensional and so we have a double adjunction (A#H⊗A−, A(−)) and
(A(−), A#H⊗A−). Now let ξ≡...E−1!E0!E1!... be exact in A-Mod with M =
Ker(E0!E1) and such that it remains exact whenever HomA(E,−) is applied for
every E∈A-Mod injective. Since A#H is free as a right A-module (cf. [4, Prop-
osition 6.1.7]) we get that A#H⊗Aξ is exact and A#H⊗AM =Ker(A#H⊗AE0!
A#H⊗AE1). We also get that A#H⊗AEi is injective for every i since A(−) is
exact and A#H⊗A− is a right adjoint. Let us suppose finally that E∈A#H-Mod
is injective. Then

HomA#H(E, A#H⊗Aξ)∼= HomA(AE, ξ)

But AE is injective since it is a right adjoint of A#H⊗A− which is exact. Thus we
get that HomA(AE, ξ) is exact since M is Gorenstein injective and so, A#H⊗AM

is also Gorenstein injective.
(ii) Let M∈A#H-Mod be Gorenstein injective and let ξ be a complete exact

sequence as above. Then Aξ is exact and AM =Ker(AE0!AE1) since A(−) is exact.
We also get from the above that AEi is injective for every i. Finally, let us assume
that E∈A-Mod is injective. Then

HomA(E, Aξ)∼= HomA#H(A#H⊗AE, ξ).

Now, since A#H⊗AE is injective, by the above we get that HomA#H(A#H⊗AE, ξ)
is exact and therefore AM is Gorenstein injective.

The corresponding proofs for Gorenstein projective modules are totally analo-
gous. �

The next result gives a relation between Gorenstein injective preenvelopes in
A-Mod and A#H-Mod. Using this we will show next that their existence are equiv-
alent in both categories.

Proposition 3.2. (i) If f : M!E is a Gorenstein injective preenvelope in
A#H-Mod, then Af : AM!AE is a Gorenstein injective preenvelope in A-Mod.

(ii) If f : M!E is a Gorenstein injective preenvelope in A-Mod, then
A#H⊗Af : A#H⊗AM!A#H⊗AE is a Gorenstein injective preenvelope in
A#H-Mod.

(iii) Let M∈A-Mod and assume that A#H/A is separable. If A#H⊗AM
f−−!

E is a Gorenstein injective preenvelope, then M
ηM−−!A(A#H⊗AM) Af−−!AE, where

ηM denotes the unit of the adjunction (A#H⊗A−, A(−)), is a Gorenstein injective
preenvelope in A-Mod.
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(iv) If A#H/A is separable and M∈A-Mod, then M has a Gorenstein injective
preenvelope if and only if A#H⊗AM has a Gorenstein injective preenvelope.

(v) Suppose that A#H/A is separable and A/AH is H∗-Galois and let

M∈A#H-Mod. If AM
f−−!E is a Gorenstein injective preenvelope, then M

ηM−−!
A#H⊗AAM

A#H⊗Af−−−−−−!A#H⊗AE, where ηM denotes the unit of the adjunction
(A(−), A#H⊗A−), is a Gorenstein injective preenvelope.

(vi) Under the same conditions as (v), M∈A#H-Mod has a Gorenstein injec-
tive preenvelope if and only if AM has a Gorenstein injective preenvelope.

Proof. (i) and (ii) follow from Lemma 3.1 and [1, Proposition 2.5].
(iii) Since A#H/A is separable, the functor A#H⊗A− is separable and then,

by [1, Proposition 2.6] using the adjunction (A#H⊗A, A(−)), we get the desired
result.

(iv) This is a consequence of (ii) and (iii).
(v) In this case A(−) is separable by [18, Corollary 4.7] and so it follows as (iii).
(vi) This is a consequence of (i) and (v). �

Now as a consequence we get that the class of Gorenstein injective modules is
preenveloping equivalently in the categories A-Mod and A#H-Mod. The proof is
analogous to that of [1, Theorem 2.9].

Theorem 3.3. Suppose that A#H/A is separable. Then every M∈A#H-Mod
has a Gorenstein injective preenvelope if and only if every M∈A-Mod has a Goren-
stein injective preenvelope.

Corollary 3.4. Let A be a k-algebra and G a finite group acting on A with
1∈tr(Z(A)). Then every A-module has a Gorenstein injective preenvelope if and
only if every A∗G-module has a Gorenstein injective preenvelope.

Proof. A is a kG-module algebra, A∗G=A#H and 1∈tr(Z(A)) is equivalent
to the fact that A∗G/A is separable. �

Dual arguments now give the following results about Gorenstein projective
precovers.

Proposition 3.5. (i) If P
g−−!N is a Gorenstein projective precover in

A#H-Mod, then AP
Ag−−!AN is a Gorenstein projective precover.

(ii) If P
g−−!N is a Gorenstein projective precover in A-Mod, then

A#H⊗AP
A#H⊗Ag−−−−−−! A#H⊗AN

is a Gorenstein projective precover in A#H-Mod.



Gorenstein injective and projective modules 355

(iii) Let N∈A-Mod and assume that A#H/A is separable. If P
g−−!A#H⊗AN

is a Gorenstein projective precover, then AP
Ag−−!A(A#H⊗AN) εN−−!N , where εN

denotes the counit of the adjunction (A(−), A#H⊗A−), is a Gorenstein projective
precover.

(iv) Let N∈A-Mod and assume that A#H/A is separable. Then N has a Goren-
stein projective precover if and only if A#H⊗AN has a Gorenstein projective pre-
cover.

(v) Suppose that A#H/A is separable and A/AH is H∗-Galois and let
N∈A#H-Mod. If P

g−−!AN is a Gorenstein projective precover, then

A#H⊗AP
A#H⊗Ag−−−−−−!A#H⊗AAN

εN−−!N,

where εN denotes the counit of the adjunction (A#H⊗A−, A(−)), is a Gorenstein
projective precover.

(vi) Under the same conditions as (v), N∈A#H-Mod has a Gorenstein pro-
jective precover if and only if AN has a Gorenstein projective precover.

Theorem 3.6. Let us suppose that A#H/A is separable. Then every
N∈A#H-Mod has a Gorenstein projective precover if and only if every N∈A-Mod
has a Gorenstein projective precover.

4. Gorenstein injective and projective modules and Hopf invariants

The aim of this section is to study how Gorenstein injective and projective
modules and preenvelopes and precovers by these classes of modules behave under
taking Hopf invariants.

Theorem 4.1. Suppose that A#H/A is separable, AH A is projective, AAH is
flat and that any injective E∈AH-Mod has finite projective dimension. If every
A-module has a Gorenstein injective preenvelope, then any AH-module has a Goren-
stein injective preenvelope.

Proof. By Theorem 3.3 every A#H-module has a Gorenstein injective preen-
velope.

On the other hand, by [18, Corollary 2.9], AH-Mod is equivalent to a quo-
tient category of A#H-Mod with respect to a localizing subcategory Λ. If A=
{HomAH (A, M):M∈AH-Mod}, then Coind(−)=HomAH (A,−) : AH-Mod!A is an
equivalence with inverse (−)0 : A!AH-Mod. Now, since an equivalence of categories
preserves Gorenstein injective preenvelopes, we only have to find a Coind(GI)-
preenvelope for any object in A, where GI denotes the class of Gorenstein injective
modules.
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So let Coind(M)∈A and f : Coind(M)!E be a Gorenstein injective preen-
velope in A#H-Mod and let E′∈AH-Mod be Gorenstein injective. Then there
is an exact sequence ξ≡...!E−1!E0!E1!... of injective AH -modules with E′=
Ker(E0!E1) and such that it remains exact when HomAH (I,−) is applied for every
injective I. Then Coind(ξ) is exact and Coind(E′)=Ker(Coind(E0)!Coind(E1)).
Furthermore Coind(Ei) is injective for every i since Coind(−) is a right adjoint
of (−)0 which is exact by [18, Proposition 2.2] and [18, Corollary 2.9]. Finally, if
I∈A#H-Mod is injective we get that HomA#H(I, Coind(ξ))∼=HomAH (I0, ξ) is ex-
act since I0 is injective and thus Coind(E′) is Gorenstein injective. Now, if we
consider g : Coind(M)!Coind(E′) we get h : E!Coind(E′) such that hf =g. But
by [3, Proposition 1.6] there is a unique morphism h′ : Coind(E0)!Coind(E′) such
that h′δE =h, where δE : E!Coind(E0) is the localization of E with respect to
the localizing subcategory Λ. Thus δEf : Coind(M)!Coind(E0) is a Coind(GI)-
preenvelope whenever E0 is Gorenstein injective.

So let E∈A#H-Mod be Gorenstein injective and let ξ≡...!E−1!E0

!E1!... be exact with E=Ker(E0!E1), Ei injective for every i and such that
HomA#H(I,−) leaves it exact for every injective I∈A#H-Mod. Then ξ0 is an ex-
act sequence of injective modules and E0=Ker(E0

0!E1
0). Finally HomAH (I, ξ0) is

exact since I has finite projective dimension. �

Remark 1. Gorenstein categories (cf. [5]) are an example where injective objects
have finite projective dimension. These include categories of modules over Iwanaga–
Gorenstein rings, i.e., left and right noetherian rings such that both left and right
injective dimensions of the ring are finite, [13]. In [7, Theorem 1.2] it is shown
that when R is Iwanaga–Gorenstein then the fixed ring RG by the action of a finite
group G is also Iwanaga–Gorenstein or more generally, in [12, Theorem 4.3], if
A is an H-module algebra which is Iwanaga–Gorenstein, then AH is Iwanaga–
Gorenstein.

Theorem 4.2. Let t be an integral in H and suppose that AtA=A#H,
A#H/A is separable and AH A is projective. If every finitely generated A-module
has a finitely generated Gorenstein projective precover, then every finitely generated
AH-module has a Gorenstein projective precover.

Proof. Let X∈AH-Mod be finitely generated. So there is an exact sequence
AH(n)!X!0 for some integer n. Then A(n)∼=A⊗AH A(n)!A⊗AH X!0 is exact
and since A is finitely generated in A#H-Mod, also A⊗AH X is finitely generated.
Now, by [4, Proposition 6.1.7] A#H is free in Mod-A and so A#H⊗A− is exact,
which gives that A(−) preserves projectives, and so, if (A#H)(n)!A⊗AH X!0 is
an exact sequence for some integer n, then A(A#H)(n)!A(A⊗AH X)!0 is also
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exact since A(−) is an exact functor and so A(A⊗AH X) is finitely generated. So let
f : P!A(A⊗AH X) be a finitely generated Gorenstein projective precover. Then,
by Lemma 3.1, A#H⊗AP is finitely generated Gorenstein projective. Therefore,
by [11, Proposition 6]

A#H⊗AP
1⊗Af−−−!A#H⊗AA⊗AH X

εA⊗AH 1−−−−−!A⊗AH X

is a Gorenstein projective precover in A#H-Mod. Now [11, Proposition 4] gives
that

(A#H⊗AP )0
εA⊗

AH 1�1⊗Af−−−−−−−−−−! (A⊗AH X)0 ∼=X

is a Gorenstein projective precover in AH-Mod whenever (A#H⊗AP )0 is Goren-
stein projective.

So let P be Gorenstein projective in A#H-Mod. Then we get an exact se-
quence ξ≡...!P−1!P 0!P 1!... of projective modules with P =Ker(P 0!P 1)
and such that it remains exact whenever HomA#H(−, F ) is applied for every projec-
tive F . Now, since (−)0 is exact by [18, Proposition 2.2] and [18, Corollary 2.9] and
HomAH (A,−) is exact by hypothesis, we get that (−)0 preserves projectives and so
ξ0 is an exact sequence of projective modules with P0=Ker(P 0

0!P 1
0 ).

On the other hand, by [16, Proposition 4.4.4] AH A is finitely generated and
projective by hypothesis and so AH(n)

=A⊕F , which gives that HomAH (A, AH) is
a direct summand of HomAH (AH(n)

, AH)∼=AH(n)
that is projective in A#H-Mod.

Therefore

HomAH (ξ0, A
H)∼=HomA#H(ξ, HomAH (A, AH))

is exact and so ξ0 remains exact whenever HomAh(−, F ) is applied for every pro-
jective F . Thus P0 is Gorenstein projective. �

We will finish this section by showing other situations where Gorenstein injec-
tive preenvelopes and Gorenstein projective precovers are preserved.

Proposition 4.3. Let us assume that A#H/A is separable and that A/AH

is H∗-Galois. Then every A-module has a Gorenstein injective preenvelope
(resp. Gorenstein projective precover) if and only if every AH-module has a Goren-
stein injective preenvelope (resp. Gorenstein projective precover).

Proof. By hypothesis, AH-Mod and A#H-Mod are equivalent categories. So
we only have to apply Theorems 3.3 and 3.6 and the fact that Gorenstein injective
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preenvelopes and Gorenstein projective precovers are preserved by equivalences of
categories. �

Corollary 4.4. Let A=
∑

g∈G Ag be a strongly graded k-algebra over a finite
group G. Suppose that A/Ae is separable. Then every Ae-module has a Goren-
stein injective preenvelope (resp. Gorenstein projective precover) if and only if every
A-module has a Gorenstein injective preenvelope (resp. Gorenstein projective pre-
cover).

Proof. A is a (kG)∗-module algebra. Since A is strongly graded, A/A(kG)∗ is
kG-Galois. Thus A#(kG)∗/A is separable if and only if A/Ae is separable by [18,
Corollary 4.7] and so Proposition 4.3 applies. �

5. Gorenstein dimensions

The existence of Gorenstein injective preenvelopes and Gorenstein projective
precovers for every module allows us to define Gorenstein injective and Gorenstein
projective dimensions naturally. Although these dimensions have been defined in [2]
over rings where Gorenstein projective precovers are not known to exist, their ex-
istence allows us to characterize these dimensions in terms of derived functors. So
we recall from [9] the following definition.

Definition 5.1. Let A be any ring and M∈A-Mod. We will say that M has
Gorenstein injective (resp. Gorenstein projective) dimension less than or equal to
n if there exists an exact sequence

0−!M −!E0 −!E1 −! ...−!En −! 0

(resp. 0−!Pn −!P1 −! ...−!P0 −!M −! 0)

with every Ei being Gorenstein injective (resp. every Pi being Gorenstein project-
ive). We will say that Gid(M)=n (resp. Gpd(M)=n) if there is no such shorter
sequence. In the case when there is no such finite sequence, we will say that
Gid(M)=∞ (resp. Gpd(M)=∞).

As was pointed out above, a consequence of the existence of Gorenstein inject-
ive and Gorenstein projective resolutions is that we can define right derived func-
tors of HomA(M,−) and HomA(−, N), respectively, (see comments in pp. 169–170
of [9]). Since they do not have to coincide on HomA(M, N), we will denote them
by GIExti

A(M,−) and GPExtiA(−, N).
Now we have the following relations between Gorenstein dimensions in A-Mod

and A#H-Mod for a given H-module algebra.
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Corollary 5.2. Let M∈A#H-Mod and N∈A-Mod. Then
(i) Gid(AM)≤Gid(M) (resp. Gpd(AM)≤Gpd(M));
(ii) Gid(A#H⊗AN)≤Gid(N) (resp. Gpd(A#H⊗AN)≤Gpd(N)).

Proof. (i) Let 0!M!E0!E1!...!En!0 be a Gorenstein injective reso-
lution of M∈A#H-Mod. Then by Lemma 3.1 and [1, Proposition 2.5] 0!AM!
AE0!AE1!...!AEn!0 is a Gorenstein injective resolution of AM .

(ii) This is analogous using that A#H⊗A− preserves Gorenstein injectives.
The proofs for Gorenstein projective dimensions are also analogous. �

Now global Gorenstein injective and global Gorenstein projective dimensions
of a ring A are defined as usual. We will denote them by glGid(A) and glGpd(A),
respectively.

Proposition 5.3. Let the extension A#H/A be separable. If glGid(A#H)<∞
(resp. glGpd(A#H)<∞) then glGid(A)<∞ (resp. glGid(A)<∞).

Proof. Let us suppose that glGid(A#H)=n and let M∈A-Mod. Then
Gid(A#H⊗AM)≤n. Then by Corollary 5.2, Gid(A(A#H⊗AM))≤n and so
GIExtn+1

A (L, A(A#H⊗AM))=0 for every L∈A-Mod. But now, (A(−), A#H⊗A

−) is an adjoint pair with A#H⊗A− separable and so, by [11, Proposition 5],
the epimorphism A(A#H⊗AM) εM−−!M splits. Then GIExtn+1

A (L, M)=0 for every
L∈A-Mod since GIExti

A(L,−) preserves finite direct sums and thus Gid(M)≤n.
The proof for the global Gorenstein projective dimension is analogous. �

Theorem 5.4. Let A#H/A be separable and suppose that A/AH is
H∗-Galois. Then glGid(A)<∞ if and only if glGid(A#H)<∞ which is true if
and only if glGid(AH)<∞ (resp. glGpd(A)<∞ if and only if glGpd(A#H)<∞
which is true if and only if glGpd(AH)<∞).

Proof. That glGid(A#H)<∞ if and only if glGid(AH)<∞ follows from the
fact that in this case AH-Mod and A#H-Mod are equivalent categories.

If glGid(A#H)<∞ then glGid(A)<∞ follows from Proposition 5.3.
Conversely, since A#H/A is separable and A/AH is H∗-Galois, we get by [18,

Corollary 4.7] that the functor A(−) is separable. If we consider the adjoint pair
(A(−), A#H⊗A−), then we get by [11, Proposition 5] that the natural map ηM :
M!A#H⊗AAM is a split monomorphism for every M∈A#H-Mod. Now, if
M∈A#H-Mod, then Gid(AM)≤k for an integer k, and so, by Corollary 5.2
Gid(A#H⊗AAM)≤k. Thus, analogously to the proof of Proposition 5.3 we get
that Gid(M)≤k. �
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Remark 2. In [5, Theorem 2.8] it is shown that a Grothendieck category with
enough projectives A is Gorenstein if and only if glGpd(A) and glGid(A) are both
finite. Therefore the last theorem gives new examples of Gorenstein categories from
a given one. An immediate example of a Gorenstein category is R-Mod with R an
Iwanaga–Gorenstein ring (cf. [9, Section 9.1]). In this way, the last result extends
[7, Theorem 1.2] and [12, Theorem 4.3]. Examples of non-noetherian Gorenstein
rings can be found in [6].
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