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Uniqueness of the group topology of some
homeomorphism groups

Adel A. George Michael

Abstract. In this paper, we generalize a theorem of Kallman [2, Theorem 1.1] and we re-

solve the unsettled case there.

Kallman [2, Theorem 1.1] shows that if X is a Hausdorff topological space with
a countable basis that does not have exactly two isolated points and if G is a group
of homeomorphisms of X such that:

(1) for any non-singleton open set U⊆X , there exists g∈G\{1} such that
g|X\U=1|X\U , and

(2) G has a Polish group topology such that ex : G!X defined by ex(g)=gx
is continuous for all x∈X ,
then if H is any Polish topological group and if θ : G!H is any group isomorphism,
it follows that θ is a topological isomorphism.

Note that condition (1) is the usual local movability condition for the recon-
structibility of topological spaces from their groups of homeomorphisms [4].

In this paper, we generalize this theorem of Kallman by dropping the require-
ment of the condition on the maps ex altogether (these functions are not even
required to be continuous) and also we replace the requirement that X has a count-
able basis by the weaker requirement that X has a countable dense set each point
of which has a countable fundamental system of neighbourhoods [1, Chapter IX,
p. 93, Example 12].

The case where X has exactly two isolated points was left unsettled in [2].
We show that in this case the conclusion of our generalized theorem holds
if and only if G/〈{g2 :g∈G}〉 is countable.

Recall that a topological space is Souslin if it is a Hausdorff space which is
a continuous image of a Polish space (i.e. a completely metrizable separable topo-
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logical space). The proof of our generalized theorem depends on the Souslin graph
theorem [1, Chapter IX, p. 69, Theorem 4] which replaces the theory of functions
with the Baire property [3] employed in [2]. The consideration of the case where
X has exactly two isolated points depends on a delicate argument in topological
groups involving the axiom of choice. This explains why it was left unsettled in [2].
We shall need two lemmas.

Lemma 1. Let G be a Souslin topological space and let {Ai :i≥1} be a count-
able family of Borel subsets of G such that for all g, g′∈G such that g �=g′, there
exists some i≥1 with g∈Ai and g′ /∈Ai. Then {Ai :i≥1} generates the σ-algebra of
Borel subsets of G.

Proof. Define ψ : G!{0, 1}N by ψ(g)=(Ci(g))i≥1, where Ci is the character-
istic function of Ai for i≥1. Note that ψ is an injective Borel map [1, Chapter IX,
p. 61, Proposition 9] by hypothesis.

Suppose that B is a Borel subset of G and let j : B!G be the canonical
injection, then (ψ�j)×1: B×{0, 1}N!{0, 1}N×{0, 1}N is a Borel map and Γψ�j=
((ψ�j)×1)−1(∆{0,1}N ) is a Borel subset ofB×{0, 1}N , where ∆{0,1}N is the diagonal
in {0, 1}N×{0, 1}N . Hence Γψ�j is Souslin and ψ(B)=pr2(Γψ�j) is a Souslin subset
of {0, 1}N . Applying the same argument to G\B, it follows that {ψ(B), ψ(G\B)}
is a partition of ψ(G) into Souslin subsets, hence ψ(B) is a Borel subset of ψ(G)
[1, Chapter IX, p. 66, Corollary 1]. Our assertion follows since {ψ(Ai):i≥1}
generates the σ-algebra of Borel sets of ψ(G) (since ψ(Ai)=ψ(G)∩p−1

i (1), where
pi : {0, 1}N!{0, 1} is the projection onto the ith factor, hence the σ-algebra gener-
ated by {ψ(Ai):i≥1} contains a basis of the ψ(G) topology). �

Lemma 2. Let G,H be Souslin topological groups and let ψ : G!H be a group
homomorphism which is a Borel map. Suppose that G is a Baire space. Then ψ is
continuous.

Proof. Note that ψ×1: G×H!H×H is a Borel map and that Γψ (the graph
of ψ) =(ψ×1)−1(∆H), where ∆H is the diagonal of H×H , so that Γψ is Souslin [1,
Chapter IX, p. 61, Proposition 10]. The continuity of ψ follows from the Souslin
graph theorem [1, Chapter IX, p. 69, Theorem 4]. �

Now we can establish our generalization of Kallman’s theorem [2, Theorem 1.1].

Theorem. Let X be a Hausdorff topological space that does not have exactly
two isolated points and that has a countable dense set D each point of which has
a countable fundamental system of neighbourhoods. Suppose also that G is a group
of homeomorphisms of X such that for any non-singleton open set U⊆X, there
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exists g∈G\{1} such that g|X\U=1|X\U . Suppose that G has a Polish group topol-
ogy. Then for any Polish topological group H, any group isomorphism θ : G!H
is a topological isomorphism. If X has exactly two isolated points, then the same
conclusion holds if and only if G/〈{g2 :g∈G}〉 is countable.

Proof. Let A be the set of isolated points of X . Then D⊇A and we set
A={wi :i∈I}, where I is at most countable. For all i, j∈I, i �=j, let (wiwj) be the
element of G that interchanges wi and wj and fixes all other points of X . Note
that (D\Ā)∪A⊂X is countable and dense, and we let D\Ā={ei:i∈J}, where J
is at most countable. By hypothesis, we may assume that {Vk(ei)⊆X\Ā:k≥1} is
a fundamental system of neighbourhoods of ei for i∈J . Define C={gik :i∈J, k≥1}
⊆G such that var(gik)⊆Vk(ei) for i∈J, k≥1, where var(g)={x∈X :g(x) �=x} for
g∈G.

Let C be enumerated as {gi :i≥1} and for gi, gj∈C define

C(gi, gj)= {g∈G : g(var(gi))∩var(gj)= ∅}
= {g∈G : var(ggig−1)∩var(gj)= ∅}
= {g∈G : [ggig−1, h] = 1 for all h∈G such that var(h)⊆ var(gj)}
=

⋂
{{g∈G : [ggig−1, h] = 1} :h∈G, var(h)⊆ var(gj)}.

To see the third equality, let V be a non-singleton open subset of var(ggig−1)∩
var(gj) such that ggig−1(V )∩V =∅, then there is h∈G\{1} such that var(h)⊆V
and hence [ggig−1, h] �=1.

Therefore C(gi, gj) (resp. θ(C(gi, gj))) is closed in G (resp. H). Note that if g,
g′∈G such that g|X\Ā �=g′|X\Ā, then there is gi∈C so that g(var(gi))∩g′(var(gi))=∅

and let gj∈C such that var(gj)⊆g′(var(gi)). Then g∈C(gi, gj) and g′ /∈C(gi, gj).

Case 1. |A|≤1
In this case {C(gi, gj):i, j≥1} (resp. its image under θ) satisfies the hypotheses

of Lemma 1 in G (resp. H), hence both θ and θ−1 are Borel maps and the theorem
follows from Lemma 2.

Case 2. |A|=2
In this case {1, (w1w2)}=Z(G), since {gw1, gw2}={w1, w2} for all g∈G, hence

g(w1w2)g−1=(w1w2) and if g∈Z(G), then g|X\A=1 (since if gx �=x for some
x∈X\A, then there is gi∈C such that g(var(gi))∩var(gi)=∅ and ∅=var(ggig−1)∩
var(gi)=var(gi) which is absurd). Let G1={f∈G:f |A=1|A}. Note that {g2 :g∈G}
is Souslin so that 〈{g2 :g∈G}〉=⋃

n≥1{g2 :g∈G}n is a Souslin subgroup of G.
Suppose that G/〈{g2 :g∈G}〉 is countable, then G1 (resp. θ(G1)) is a Souslin

subgroup of G (resp. H) [1, Chapter IX, p. 60, Proposition 7] and hence a Borel
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subgroup of G (resp. H) [1, Chapter IX, p. 66, Corollary 1]. We conclude that G1

(resp. θ(G1)) is an open subgroup of G (resp. H) [1, Chapter IX, p. 55, Theorem 1],
[1, Chapter IX, p. 69, Lemma 9]. Now θ|G1 : G1!θ(G1) is a topological isomorphism
by considering G1 as a group of homeomorphisms of X\A and appealing to Case 1,
and hence θ is a topological isomorphism as well.

Now, suppose that G/〈{g2 :g∈G}〉 is uncountable. Let L be a countable dense
subset of G1. Then there exists a dense subgroup G2 of G1 of index 2 such that
G2⊇{g2 :g∈G}∪L (this uses the axiom of choice which establishes the existence of
a basis of a vector space over Z/2Z). There exists a group homomorphism d : G1!
Z/2Z with ker(d)=G2. Note that G=G1×Z/2Z (as algebraic isomorphism). Define
ψ : G!G by ψ(g, y)=(g, d(g)+y). Then ψ is a group automorphism. Let τ be the
group topology on G such that ψ : G!Gτ is a topological isomorphism, so that Gτ
is a Polish topological group. Using the topological isomorphism ψ, observe that for
all x0∈G1\G2 we have ((xn, 0))n≥1⊂G2×{0} converges to (x0, 0)∈(G1\G2)×{0}
if and only if ((xn, 0))n≥1 τ -converges to (x0, d(x0)) and d(x0) �=0, so that neither
id: G!Gτ nor id: Gτ!G is continuous.

Case 3. 3≤|A|<∞
In this case, let G1={f∈G:f |A=1|A}=CG({(wiwj):i, j∈I, i �=j}). Then G1

(resp. θ(G1)) is closed in G (resp. H). If n=|A|≥3, let Sn={s∈G:s|X\A=1|X\A}
so that |Sn|=n!. Now the family {G1s:s∈Sn}∪{C(gi, gj):i, j≥1} (resp. its image
under θ) satisfies the hypotheses of Lemma 1 in G (resp. H), hence θ and θ−1 are
Borel maps and the theorem follows from Lemma 2.

Case 4. |A|=∞
In this case we define, for distinct i, j∈I and for distinct i′, j′, k′∈I,
M({i, j}, {i′, j′, k′})= {g∈G : g({wi, wj})∩{wi′ , wj′ , wk′}= ∅}

= {g∈G : [g(wiwj)g−1, (wrws)] = 1 for r, s∈{i′, j′, k′}}
=

⋂

r,s∈{i′,j′,k′}
{g∈G : [g(wiwj)g−1, (wrws)] = 1}.

We claim that the family

{M({i, j}, {i′, j′, k′}) : i, j ∈ I distinct and i′, j′, k′ ∈ I distinct}
∪{C(gi, gj) : i, j≥ 1} (resp. its image under θ)

satisfies the hypotheses of Lemma 1 in G (resp.H). Certainly, it is a family of closed
sets in G (resp. H). Suppose that g, g′∈G are distinct. If g|X\Ā �=g′|X\Ā, then
there exists gi, gj∈C such that g∈C(gi, gj) and g′ /∈C(gi, gj). On the other hand, if
g|X\Ā=g′|X\Ā assume gwi �=g′wi=wi′ and we may assume wi �=wi′ . Let i �=j∈I and
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choose j′, k′∈I such that i′, j′, k′ are distinct and g({wi, wj})∩{wi′ , wj′ , wk′}=∅,
then g∈M({i, j}, {i′, j′, k′}) and g′ /∈M({i, j}, {i′, j′, k′}). It follows from Lemma 1
that θ and θ−1 are Borel maps and the theorem follows again from Lemma 2. �
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