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1. Introduction

By a compactum, we mean a compact metric space, and by a continuum, we mean a
compact connected metric space. A continuum is non-degenerate if it contains more
than one point. We refer to the space R2, with the Euclidean topology, as the plane. By
a map we mean a continuous function.

A space X is (topologically) homogeneous if for every x, y∈X there exists a home-
omorphism h:X!X with h(x)=y. All homeomorphisms in this paper are onto.

The concept of topological homogeneity was first introduced by Sierpiński in [54].
Since the underlying/ambient space of many topological models is homogeneous, the
classification of homogeneous spaces has a long and rich history. For example, all con-
nected manifolds are homogeneous, and the Hilbert cube [0, 1]N, which contains a home-
omorphic copy of every compact metric space, is an example of an infinite-dimensional
homogeneous continuum. Even for low dimensions, the classification of homogeneous
Riemannian manifolds remains an active area of research today. Contrary to naive ex-
pectation, homogeneous continua do not necessarily have a simple local structure (in
particular, they do not need to contain a manifold). As a consequence, even the classifi-
cation of 1-dimensional homogeneous continua appears out of reach. This paper concerns
the classification of homogeneous compact subsets of the plane.

In the first volume of Fundamenta Mathematicae in 1920, Knaster and Kuratowski
[23] asked (Problème 2) whether the circle is the only (non-degenerate) homogeneous
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plane continuum. Mazurkiewicz [39] showed early on that the answer is yes if the con-
tinuum is locally connected. Cohen [6] showed that the answer is yes if the continuum
is arcwise connected or, equivalently, pathwise connected, and Bing [4] proved more
generally that the answer remains yes if the continuum simply contains an arc. A con-
tinuum X is decomposable if it is the union of two proper subcontinua and indecompos-
able otherwise. A continuum is hereditarily decomposable (hereditarily indecomposable)
if every non-degenerate subcontinuum is decomposable (indecomposable, respectively).
Hagopian [11] showed that the answer to the question of Knaster and Kuratowski is still
yes if the continuum merely contains a hereditarily decomposable subcontinuum.

Problème 2 by Knaster and Kuratowski was formally solved by Bing [2] who showed
in 1948 that the pseudo-arc, described in detail in §1.1, is another homogeneous plane
continuum. The pseudo-arc is a one-dimensional fractal-like hereditarily indecomposable
continuum (in particular it contains no arcs). This stunning example of a homogeneous
continuum shows that homogeneity is possible at two extremes: one where the local
structure is simple (e.g. for locally connected spaces) and one where the local structure
is not simple (e.g. for not locally connected spaces). Since Bing’s surprising solution,
the question has been: What are all homogeneous plane continua? A third homogeneous
plane continuum, called the circle of pseudo-arcs (since it admits an open map to the circle
whose point preimages are all pseudo-arcs), was added by Bing and Jones [5] in 1954.
We show in this paper that these three comprise the complete list of all homogeneous
non-degenerate plane continua.

Even though hereditarily indecomposable continua seem to be obscure objects, they
arise naturally in mathematics, for example as attractors in dynamical systems [21] (even
for an open set of parameters).

Another hereditarily indecomposable continuum, the pseudo-circle, was considered
to be a strong candidate to be an additional example of a homogeneous plane continuum.
However, it was proved to be non-homogeneous independently by Fearnley [10] and
Rogers [48].

This long-standing question of the classification of all homogeneous plane continua
has been raised and/or addressed in several papers and surveys, including [18], [19], [20],
[34], [35], [36], [51], [52], [53], and the “New Scottish Book” (Problem 920). The first
explicit statement concerning this problem that we could find is in [15].

There exists a rich literature concerning homogeneous continua (including several
excellent surveys, such as [37], [51], and [52]) so we will only briefly state some pertinent
highlights here.

In 1954, Jones proved the following result.
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Theorem A. ([16]) If M is a decomposable homogeneous continuum in the plane,
then M is a circle of mutually homeomorphic indecomposable homogeneous continua.

The conclusion of this theorem implies that there is an indecomposable homogeneous
continuum X (possibly a single point) and an open map from M to the circle all of whose
point preimages are homeomorphic to X. Bing and Jones [5] constructed in 1954 such
a continuum in the plane for which X is the pseudo-arc, and also proved that it is
homogeneous. This example is known as the circle of pseudo-arcs (see §1.1).

It follows from this theorem of Jones that every decomposable homogeneous con-
tinuum in the plane separates the plane. Rogers [49] proved that conversely, every
homogeneous plane continuum which separates the plane is decomposable.

Hagopian (see also [18]) obtained in 1976 the following result.

Theorem B. ([12]) Every indecomposable homogeneous plane continuum is heredi-
tarily indecomposable.

A map f :X!Y is called an ε-map if, for each y∈Y , diam(f−1(y))<ε. A continuum
X is arc-like (respectively, tree-like) provided that for each ε>0 there exists an ε-map
from X to an arc (respectively, tree). Bing [3] proved in 1951 that the pseudo-arc
is the only hereditarily indecomposable arc-like continuum. Hence, to show that an
indecomposable homogeneous plane continuum is homeomorphic to the pseudo-arc, by
the results of Hagopian and Bing, it suffices to show that it is arc-like.

The main idea of our proof is based on a generalization of the following simple fact,
which is central to much work done with the pseudo-arc.

• Let f : [0, 1]![0, 1] be a piecewise linear map. For any ε>0, if g: [0, 1]![0, 1] is a
sufficiently crooked map, then there is a map h: [0, 1]![0, 1] such that the composition
f �h is ε-close to g.

See §1.1 for a formal definition of “crookedness”. See also Theorems 8 and 20 below
for related properties.

We will prove a generalization of the above statement, where instead of [0, 1] we
consider graphs, and we restrict to a certain class of piecewise linear maps f . To describe
how this result pertains to the study of homogeneous plane continua, we provide some
context below.

It is in general a difficult task to prove that a given continuum is (or is not) arc-
like. A closely related notion, introduced by Lelek in 1964 [29], is that of span zero.
A continuum X has span zero if for any continuum C and any two maps f, g:C!X

such that f(C)⊆g(C), there exist p∈C with f(p)=g(p) (by [8] this is equivalent to the
traditional definition of span zero where the images of f and g coincide). It is easy to
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see that every arc-like continuum has span zero [29]. Moreover, in some cases it is easier
to show that a continuum X has span zero than to show that it is arc-like. For example,
the following theorem was obtained in the early 1980s.

Theorem C. ([45]) Every homogeneous indecomposable plane continuum has span
zero.

It was a long standing open problem whether each continuum of span zero is arc-like.
Unfortunately the answer was shown to be negative in [13]. The example given in [13]
relied heavily on the existence of patterns which required the continuum to contain arcs.
Such patterns are not possible for hereditarily indecomposable continua. Indeed, using
our generalization of the above result about crooked maps between arcs, we in this paper
prove the following theorem.

Theorem 1. A non-degenerate continuum X is homeomorphic to the pseudo-arc if
and only if X is hereditarily indecomposable and has span zero.

We suspect that this result will be useful in other contexts as well, for example, in
the classification of attractors in certain dynamical systems.

It follows immediately from Theorems B and C above and Theorem 1 that every
indecomposable non-degenerate homogeneous plane continuum is a pseudo-arc. Combin-
ing this with Theorem A above, we obtain the following classification of homogeneous
plane continua.

Theorem 2. Up to homeomorphism, the only non-degenerate homogeneous continua
in the plane are

(1) the circle,
(2) the pseudo-arc, and
(3) the circle of pseudo-arcs.

Finally, if Y is a homogeneous compactum then by [41] (see also [1] and [42]) Y is
homeomorphic to X×Z, where X is a homogeneous continuum and Z is a 0-dimensional
homogeneous compactum and, hence, either a finite set or the Cantor set. Thus we
obtain the following corollary.

Theorem 3. Up to homeomorphism, the only homogeneous compact spaces in the
plane are

(1) finite sets,
(2) the Cantor set, and
(3) the spaces X×Z, where X is a circle, a pseudo-arc, or a circle of pseudo-arcs,

and Z is either a finite set or the Cantor set.
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The paper is organized as follows. After fixing some definitions and notation in §2,
we draw a connection in §3 between the property of span zero and sets in the product
of a graph G and the interval [0, 1] which separate G×{0} from G×{1}. For the rest of
the paper after this, we focus our attention on these separators, rather than work with
span directly. In §4, we characterize hereditarily indecomposable compacta in terms of
simple piecewise linear functions between graphs.

In §5, we introduce a special type of separating set in the product of a graph with
the interval, and prove that such separators are in a certain sense dense in the set of
all separators. §6 is devoted to some technical results towards showing that such special
separators can be “unfolded” by simple piecewise linear maps. Finally, in §7 we bring
everything together and prove our main result, Theorem 1 above. §8 includes some
discussion and open questions.

1.1. The pseudo-arc

In this subsection we give a brief introduction to the pseudo-arc, and describe some of
its most important properties.

The pseudo-arc is the most well-known example of a hereditarily indecomposable
continuum. It is a very exotic and complex space with many remarkable and strange
properties, yet it is also in some senses ubiquitous and quite natural.

Most descriptions of the pseudo-arc involve some notion of “crookedness”. We will
appeal to the notion of a crooked map, as follows.

An onto map g: [0, 1]![0, 1] is considered crooked if, roughly speaking, as x travels
from 0 to 1, g(x) goes back and forth many times, on large and on small scales in [0, 1].
More precisely, given δ>0, we say g is δ-crooked if there is a finite set F⊂[0, 1] which is
a δ -net for [0, 1] (i.e. each point of [0, 1] is within distance δ from some point of F ), such
that whenever y1, y2, y3, y4 is an increasing or decreasing sequence of points in F , and
x1, x4∈[0, 1] with x1<x4, g(x1)=y1 and g(x4)=y4, there are points x2, x3∈[0, 1] such
that x1<x2<x3<x4 and g(x2)=y3, g(x3)=y2.

To construct the pseudo-arc, one should choose a sequence of onto maps gn: [0, 1]!
[0, 1], n=1, 2, ..., such that, for each n and each 16k6n, the composition gk �gk+1�...�gn

is (1/n)-crooked. The pseudo-arc is then the inverse limit of this sequence, lim←−([0, 1], gn).

The pseudo-arc, as constructed by this procedure, is a hereditarily indecomposable
arc-like continuum. According to Bing’s characterization theorem [3], any two continua
which are both hereditarily indecomposable and arc-like are homeomorphic. Thus the
pseudo-arc is the unique continuum with these properties. This also means that the
particular choices of maps gn in the above construction are not important—so long as
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the crookedness properties are satisfied, the resulting inverse limit will be the same space.

One can equivalently construct the pseudo-arc in the plane as the intersection of
a nested sequence of “snakes” (homeomorphs of the closed unit disk) which are nested
inside one another in a manner reminiscent of the crooked pattern for maps described
above.

Because of the enormous extent of crookedness inherent in the pseudo-arc, it is
impossible to draw an informative, accurate raster image of this space (see [38] for a
detailed explanation). Nevertheless, the pseudo-arc is in some sense ubiquitous: in any
manifold M of dimension at least 2, the set of subcontinua homeomorphic to the pseudo-
arc is a dense Gδ subset of the set of all subcontinua of M (equipped with the Vietoris
topology). The pseudo-arc is a universal object in the sense that it is arc-like, and every
arc-like continua is a continuous image of it.

The pseudo-arc has an interesting history of discovery. It was first constructed by
Knaster [22] in 1922 as the first example of a hereditarily indecomposable continuum.
Moise [43] in 1948 constructed a similar example, which has the remarkable property
that it is homeomorphic to each of its non-degenerate subcontinua. Moise named this
space the “pseudo-arc”, since the interval [0, 1]⊂R is the only other known space which
shares this same property. Also in 1948, Bing [2] constructed another similar example
which he proved was homogeneous, and thus answering the original question of Knaster
and Kuratowski about homogeneous continua in the plane. Shortly after this, in 1951
Bing published the characterization theorem stated above, from which it follows that all
three of these examples are in fact the same space.

Not only is the pseudo-arc homogeneous, but in fact it satisfies the following stronger
properties:

(1) given a collection of n points x1, ..., xn, no two of which belong to any proper
subcontinuum of the pseudo-arc, and given another such collection y1, ..., yn, there is a
homeomorphism h of the pseudo-arc to itself such that h(xi)=yi for each i=1, ..., n [27];

(2) given two points x and y and an open subset U , if there is a subcontinuum of the
pseudo-arc containing x and y which is disjoint from 
U , then there is a homeomorphism
h of the pseudo-arc to itself such that h(x)=y and h is the identity on U [33].

These properties should be compared with similar ones satisfied by the circle S1:
(1′) given two sets of n points x1, ..., xn, y1, ..., yn∈S1, both arranged in circular

order, there is a homeomorphism h of S1 to itself such that h(xi)=yi for each i=1, ..., n;
(2′) given two points x and y and an open subset U , if there is a subarc of S1

containing x and y which is disjoint from 
U , then there is a homeomorphism h of S1 to
itself such that h(x)=y and h is the identity on U .

In 1954, Bing and Jones [5] constructed a space called the circle of pseudo-arcs. This
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is a circle-like continuum which admits an open map to the circle whose point preimages
are pseudo-arcs (a continuum X is circle-like if for any ε>0 there exists an ε-map from
X to the circle S1). Bing and Jones proved that the circle of pseudo-arcs is homogeneous
and that it is unique, in the sense that it is the only continuum (up to homoemorphism)
with the above properties. The circle of pseudo-arcs should not be confused with the
product of the pseudo-arc with S1 (which is homogeneous but not embeddable in the
plane), or with another related space called the pseudo-circle (which is a hereditarily
indecomposable circle-like continuum in the plane, but is not homogeneous—see [10]
and [48]).

2. Definitions and notation

An arc is a space homeomorphic to the interval [0, 1]. A graph is a space which is the
union of finitely many arcs which intersect at most in endpoints. Given a graph G and a
point x∈G, x is an endpoint if x is not a cutpoint of any connected neighborhood of x in
G, and x is a branch point if x is a cutpoint of order >3 in some connected neighborhood
of x in G.

The Hilbert cube is the space [0, 1]N, with the standard product metric d. It has the
property that any compact metric space embeds in it. For this reason, we will assume
throughout this paper that any compacta we consider are embedded in [0, 1]N, and use
this same metric d for all of them.

Given two functions f, g:X!Y between compacta X and Y , we use the supremum
metric to measure the distance between f and g, defined by

dsup(f, g) = sup{d(f(x), g(x)) : x∈X}.

Given two non-empty subsets A and B of a compactum X, the Hausdorff distance
between A and B is

dH(A,B) = inf{ε > 0 :A⊂Bε and B⊂Aε},

where Aε (respectively, Bε) is the ε-neighborhood of A (respectively, B). It is well known
that the hyperspace of all non-empty compact subsets of X, equipped with the Hausdorff
metric, is compact.

3. Span and separators

In this section, we draw a correspondance between the property of span zero and the ex-
istence of certain separating sets in the product of a graph and an arc which approximate
a continuum.
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As in the introduction, a continuum X has span zero if whenever f, g:C!X are
maps of a continuum C to X with f(C)⊆g(C), there is a point p∈C such that f(p)=g(p).
This can equivalently be formulated as follows: X has span zero if every subcontinuum
Z⊆X×X with π1(Z)⊆π2(Z) meets the diagonal ∆X={(x, x):x∈X} (here π1 and π2

are the first and second coordinate projections X×X!X, respectively). By [8], this is
equivalent to the traditional definition of span zero where one insists that π1(Z)=π2(Z).

The proof of the following theorem is implicit in results of [46]. We include a self-
contained proof here for completeness.

We remark that in fact the property of “span zero” in this theorem could be replaced
by the weaker property of “surjective semispan zero”, which has the same definition as
span zero except that one insists that π1(Z)⊆π2(Z)=X [30].

Theorem 4. Let X⊂[0, 1]N be a continuum in the Hilbert cube with span zero. For
any ε>0, there exists δ>0 such that if G⊂[0, 1]N is a graph and I⊂[0, 1]N is an arc
with endpoints p and q, such that the Hausdorff distance from X to each of G and I is
less than δ, then the set M={(x, y)∈G×(I\{p, q}):d(x, y)<ε} separates G×{p} from
G×{q} in G×I.

Proof. If the theorem were false, then there would exist ε>0 and a sequence of graphs
〈Gn〉∞n=1 and arcs 〈In〉∞n=1 with endpoints pn and qn in [0, 1]N, both converging to X in the
Hausdorff metric, and such that the set Mn={(x, y)∈Gn×(In\{pn, qn}):d(x, y)<ε} does
not separate Gn×{pn} from Gn×{qn} for each n=1, 2, ... . This would mean (see e.g.
[44, Theorem 5.2]) that for every n=1, 2, ..., there is a continuum Zn⊂Gn×In meeting
Gn×{pn} and Gn×{qn} (hence the second coordinate projection of Zn is all of In), such
that d(x, y)>ε for all (x, y)∈Zn.

Since Gn×In converges to X×X, the sequence of continua Zn accumulates on a
continuum Z⊂X×X. Clearly d(x, y)>ε for all (x, y)∈Z, and the second coordinate
projection of Z is X since the second coordinate projection of Zn is In for each n=1, 2, ... .
This means that Z∩∆X=∅ and π1(Z)⊆π2(Z)=X, and hence X does not have span
zero, a contradiction.

4. Simple folds

Throughout the remainder of this paper, G will denote a (not necessarily connected)
graph. A subset A of G will be called regular if A is closed and has finitely many
components, each of which is non-degenerate. Note that a regular set always has finite
boundary.

The following definition is adapted from [47].
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F1

F2

F3

ϕ

G1\G2 G2 G3\G2

F3 F3

F2 F2

F1

ϕ

G3\G2 G2 G1\G2 G2 G3\G2

Figure 1. Two examples of simple folds ϕ: F!G, where F and G are arcs. In both cases, the
map ϕ is the vertical projection. Note that in the second example, the sets F2, F3, G2, and
G3 are all disconnected (each has two components).

Definition 5. A simple fold on G is given by a graph F =F1∪F2∪F3 and a function
ϕ:F!G, called the projection, which satisfy the following properties, where Gi=ϕ(Fi)
for i=1, 2, 3:

(F1) G1, G2, and G3 are non-empty regular subsets of G;
(F2) G1∪G3=G, and G2=G1∩G3;
(F3) G1\G2∩G3\G2=∅;
(F4) ϕ|Fi is a homeomorphism of Fi onto Gi for each i=1, 2, 3; and
(F5) ∂G1=ϕ(F1∩F2), ∂G3=ϕ(F2∩F3), and F1∩F3=∅.

Observe that property (F3) implies that G1∩G3⊆G2, so in (F2) we could replace
the condition G2=G1∩G3 with G2⊆G1∩G3.

See Figure 1 for two examples of simple folds, in which both graphs F and G are
arcs.

We record here some basic properties of simple folds. The proofs of these properties
are left to the reader.

Lemma 6. Let F =F1∪F2∪F3 be a simple fold on G with projection ϕ:F!G, and
let Gi=ϕ(Fi) for i=1, 2, 3. Then, the following facts hold :

(1) ∂G2=∂G1∪∂G3 and ∂G1∩∂G3=∅;
(2) ∂(G1\G2)=∂G3 and ∂(G3\G2)=∂G1;
(3) F1, F2, and F3 are regular subsets of F ;
(4) F1∩F2 and F2∩F3 are finite sets;
(5) ∂F1=F1∩F2, ∂F3=F2∩F3, and ∂F2=∂F1∪∂F3;
(6) ∂F1 separates F1\∂F1 from (F2∪F3)\∂F1 in F , and ∂F3 separates F3\∂F3

from (F1∪F2)\∂F3 in F ;
(7) ϕ|Fi\∂Fi

:Fi\∂Fi!G is an open map for each i=1, 2, 3.

To define a simple fold, it is enough to identify three subsets G1, G2, G3 of G satis-
fying properties (F1)–(F3). Indeed, take spaces E1, E2, and E3, with Ei≈Gi, and take
homeomorphisms ϕi:Ei!Gi. Define F =(E1tE2tE3)/∼, where ∼ identifies pairs of
the form p∈Ei, q∈E2 with ϕi(p)=ϕ2(q)∈∂Gi for i=1, 3. Define Fi to be the projec-
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tion of Ei in the quotient space F and define ϕ:F!G by ϕ|Fi =ϕi, for each i=1, 2, 3.
It is straightforward to see that this is a well defined simple fold, and if F ′ is another
simple fold on G with projection ϕ′ such that ϕ′(F ′

i )=Gi for i=1, 2, 3, then there is a
homeomorphism θ:F ′!F with θ(F ′

i )=Fi for i=1, 2, 3 and ϕ′=ϕ�θ.
In general, even if G is connected, a simple fold F on G need not be connected.

However, the next proposition shows that for connected G we can always reduce F to a
connected simple fold.

Note that if G is connected and ∂G1=∅, then G1=G, F is disconnected, and ϕ|F1

is a homeomorphism of F1 onto G. Likewise, if ∂G3=∅, then ϕ|F3 is a homeomorphism
of F3 onto G. In light of this, we will assume ∂G1 6=∅ 6=∂G3 in the following proposition.

Proposition 7. Let F =F1∪F2∪F3 be a simple fold on G with projection ϕ:F!G,
and let Gi=ϕ(Fi) for i=1, 2, 3. Suppose that G is connected, and that ∂G1 6=∅ 6=∂G3.
Then there is a component C of F such that ϕ(C) meets ∂G1 and ∂G3. Moreover,
for any such component, ϕ(C)=G, and if we let F ′

i =Fi∩C for i=1, 2, 3, then F ′=
F ′

1∪F ′
2∪F ′

3 is also a simple fold on G, with projection map ϕ|F ′ :F ′!G.

Proof. We first prove that there exists a component C of F such that ϕ(C) meets
∂G1 and ∂G3. By (F2) and (F3), and since G is connected, there is a component K of G2

which meets both G1\G2 and G3\G2. By Lemma 6 (2), it follows that K∩∂G1 6=∅ and
K∩∂G3 6=∅. Because ϕ|F2 is a homeomorphism of F2 onto G2 (by (F4)), we have that
there is a component C of F such that ϕ−1(K)∩F2⊂C. Then ϕ(C)⊇K, so ϕ(C)∩∂G1 6=
∅ and ϕ(C)∩∂G3 6=∅.

Now fix any such component C of F .

Claim 7.1. If C ′⊆C is any connected subset such that ϕ(C ′)⊂G2, ϕ(C ′)∩∂G1 6=∅
and ϕ(C ′)∩∂G3 6=∅ , then ϕ−1(ϕ(C ′))⊂C.

Proof. Let C ′⊆C be a connected subset such that ϕ(C ′)⊂G2, ϕ(C ′)∩∂G1 6=∅, and
ϕ(C ′)∩∂G3 6=∅. As G2=G1∩G3 (by (F2)), we have that the intersections

ϕ−1(ϕ(C ′))∩F1, ϕ−1(ϕ(C ′))∩F2, and ϕ−1(ϕ(C ′))∩F3

are all homeomorphic to ϕ(C ′) by (F4); in particular they are all connected. Moreover,
ϕ−1(ϕ(C ′))∩F1∩F2 6=∅ since ϕ(C ′)∩∂G1 6=∅ and ∂G1=ϕ(F1∩F2) by (F5). Likewise,
ϕ−1(ϕ(C ′))∩F2∩F3 6=∅. It follows that ϕ−1(ϕ(C ′)), which is the union of the sets

ϕ−1(ϕ(C ′))∩F1, ϕ−1(ϕ(C ′))∩F2, and ϕ−1(ϕ(C ′))∩F3,

is connected. Thus ϕ−1(ϕ(C ′))⊂C.
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Since C is closed, ϕ(C) is closed in G. To show that ϕ(C)=G, we will show that
ϕ(C) is also open; this suffices since G is connected. To this end, let x∈ϕ(C), and let
p∈C be such that ϕ(p)=x. If p /∈∂F2 then, by Lemma 6 (7), ϕ is a homeomorphism in a
neighborhood of p, so since C is open in F , ϕ(C) contains a neighborhood of x.

Suppose now that p∈∂F2. Then p∈∂F1∪∂F3 by Lemma 6 (5); say p∈∂F1. Let C ′

be the closure of the component of C\ϕ−1(∂G3) containing p. Then, by the boundary
bumping theorem (see e.g. [44, Theorem 5.4]), C ′∩ϕ−1(∂G3) 6=∅. Thus, by Claim 7.1, we
have ϕ−1(ϕ(C ′))⊂C. In particular, the point q=(ϕ|F3)

−1(x)∈C. But q /∈∂F3 (because
ϕ(q)=x∈∂G1 and, by (F5) and Lemma 6 (5), ϕ(∂F3)=∂G3, which is disjoint from ∂G1),
thus q /∈∂F2, and so again as above, ϕ(C) contains a neighborhood of ϕ(q)=x. The
argument for p∈∂F3 is similar.

Therefore ϕ(C)=G. It is straightforward to check from the definition of a simple fold
that if C⊂F is a component with ϕ(C)=G, then F ′=F ′

1∪F ′
2∪F ′

3, where F ′
i =Fi∩C for

i=1, 2, 3, is a simple fold on G with projection map ϕ|F ′ (note that it may well happen
that G′

i=ϕ(F ′
i ) is a proper subset of Gi for one or more i=1, 2, 3).

The next result is related to Theorem 2 of [47], and it is alluded to in that paper
though not treated in detail there. It should be considered as a translation to the setting
of simple folds of the following result of Krasinkiewicz and Minc [24]: A continuum X is
hereditarily indecomposable if and only if for any disjoint closed subsets A and B of X

and any open sets U and V containing A and B, respectively, there exist three closed sets
X1, X2, X3⊂X such that X=X1∪X2∪X3, A⊂X1, B⊂X3, X1∩X2⊂V , X2∩X3⊂U , and
X1∩X3=∅. We remark that one can replace “hereditarily indecomposable continuum”
with “hereditarily indecomposable compactum” in this result; the proof is unchanged.

Theorem 8. Let X be a compactum. Then the following are equivalent :
(1) X is hereditarily indecomposable;
(2) for any map f :X!G to a graph G, for any simple fold ϕ:F!G, and for any

ε>0, there exists a map g:X!F such that dsup(f, ϕ�g)<ε;
(3) for any map f :X![0, 1], for any simple fold ϕ:F![0, 1] where F is an arc,

and for any ε>0, there exists a map g:X!F such that dsup(f, ϕ�g)<ε.

Proof. To show that (1)⇒ (2), suppose that (1) holds. Let G be a graph, f :X!G

a map, ϕ:F!G be a simple fold, and fix ε>0. As in Definition 5, we set Gi=ϕ(Fi) for
i=1, 2, 3.

Suppose that ∂(Gi\G2)={yi
1, ..., y

i
m(i)} for i=1, 3. Each of these points yi

j is the
vertex point of a finite fan Y i

j ⊂G2 (meaning Y i
j is the union of finitely many arcs, each

having yi
j as one endpoint, and which are otherwise pairwise disjoint) such that Y i

j is the
closure of an open neighborhood Oi

J of yi
j in G2, and the diameter of Y i

j is less than ε.
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X1
U1 U3 X3

X2

f

Y 3
1

Y 1
1

Y 3
2

G1\G2 G2 G3\G2

Figure 2. An illustration of the situation in the proof of Theorem 8.

Let Ki=f−1(Gi\G2). Then K1∩K3=∅ by (F3) of Definition 5.
For i=1, 3, choose neighborhoods Ui of Ki so that f(Ui\Ki)⊂

⋃m(i)
j=1 Oi

j . By [24],
there exist closed sets Xi, i=1, 2, 3, such that

• X=X1∪X2∪X3,
• Ki⊂Xi for i=1, 3,
• X1∩X3=∅,
• X1∩X2⊂U3, and
• X2∩X3⊂U1.
See Figure 2 for an illustration. Let

A = [X1\U3]∪[X2\(U1∪U3)]∪[X3\U1],

and consider the restriction f |A. Observe that

X\A = [(X2∪X3)∩U1]∪[(X1∪X2)∩U3].

We extend f |A to a map h:X!G as follows. Observe that

f((X2∪X3)∩U1)⊂
m(1)⋃
j=1

Y 1
j .

In fact, for each j=1, ...,m(1), since [(X2∪X3)∩U1]∩X1=∅ and

f−1(y1
j )⊂ f−1(G1\G2) =K1⊂X1,
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we have that f((X2∪X3)∩U1)⊂
⋃m(1)

j=1 (Y 1
j \{y1

j }). Let L be an arc in Y 1
j with one end-

point y1
j and the other endpoint equal to an endpoint of the fan Y 1

j . Let

L′ = f−1(L)∩(X2∪X3)∩U1.

Then L′ is closed and open in (X2∪X3)∩U1. By the Tietze extension theorem, we
can define a continuous function hL: L̄′!L so that hL|∂L′=f |∂L′ and hL(x)=y1

j for all
x∈X2∩X3∩L′. We then let h|L̄′=hL, and do this for all such arcs L in the fans Y 1

j . We
proceed similarly to define h on (X1∪X2)∩U3.

In this way, we obtain a continuous function h:X!G such that
• h|A=f |A,
• h(Xi)⊆Gi for i=1, 2, 3,
• h(X1∩X2)⊂∂(G3\G2)=∂G1 (see Lemma 6 (2)), and
• h(X2∩X3)⊂∂(G1\G2)=∂G3 (see Lemma 6 (2)).
Observe that dsup(f, h)<ε since the diameters of the sets Y i

j are less than ε.
Now define g:X!F by g(x)=((ϕ|Fi)

−1
�h)(x) if x∈Xi, for i=1, 2, 3. This is well

defined and continuous because of the above properties of h and X1, X2, and X3. Then
g is as required so that (2) holds.

The implication (2)⇒ (3) is trivial.
To show that (3)⇒ (1), suppose that (3) holds. Let A,B⊂X be disjoint closed sets,

and let U be a neighborhood of A and V a neighborhood of B. By [24] it suffices to show
that X=X1∪X2∪X3 where X1, X2, and X3 are closed subsets of X such that A⊂X1,
B⊂X3, X1∩X3=∅, X1∩X2⊂U , and X2∩X3⊂V .

Let f :X![0, 1] be a map such that f−1(0)=A and f−1(1)=B. Choose 0<u<v<1
such that f−1([0, u])⊂U and f−1([v, 1])⊂V . Let u′∈(0, u) and v′∈(v, 1). Construct a
simple fold ϕ:F![0, 1], where F =F1∪F2∪F3 is an arc, such that ϕ(F1)=[0, v′], ϕ(F2)=
[u′, v′] and ϕ(F3)=[u′, 1]. Let ε>0 be small enough so that (u′−ε, u′+ε)⊂[0, u) and
(v′−ε, v′+ε)⊂[v, 1]. By (3), there is a map g:X!F such that dsup(f, ϕ�g)<ε.

Put Xi=g−1(Fi) for i=1, 2, 3. Then X=X1∪X2∪X3, and clearly X1∩X3=∅. To
see that X1∩X2⊂V , let x∈X1∩X2. Then (ϕ�g)(x)=v′, and since dsup(f, ϕ�g)<ε, we
have f(x)∈[v, 1] and, hence, x∈V . Similarly, X2∩X3⊂U . By [24], X is hereditarily
indecomposable.

We now introduce notions which will be relevant when considering structured sepa-
rators in the next section.

Definition 9. Let A⊂G be regular, and let B⊂∂A.
• A has consistent complement relative to B if for each component C of G\A, either

∂C⊆B or ∂C∩B=∅.
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• The A side of B, denoted σB(A), is the closure of the union of all components of
G\B meeting A.

If B is empty, then σB(A) is simply equal to the union of all components of G which
A intersects. In particular, if A=∅ then σB(A)=∅.

Suppose that A and B are both non-empty. Observe that if G is connected and
A has consistent complement relative to B, then in fact, for any neighborhood V of B,
σB(A) is equal to the closure of the union of all components of G\B meeting A∩V .
In fact, σB(A) can be characterized as the unique closed (regular) set D⊂G such that
∂D=B and D∩V =A∩V for some neighborhood V of B.

Proposition 10. Let G be connected, let A,A′⊂G be non-empty regular sets, and
let B⊆∂A∩∂A′. If A and A′ each have consistent complement relative to B, and if there
is a neighborhood V of B such that A∩V =A′∩V , then σB(A)=σB(A′). Moreover, if
C is a component of G\A with 
C∩B 6=∅, then C is also a component of G\A′.

Proof. The fact that σB(A)=σB(A′) follows immediately from the observations after
Definition 9. For the last statement, let C be a component of G\A with 
C∩B 6=∅. Since
C∩A=∅ and A∩V =A′∩V (where V is the neighborhood of B described in the statement
of this proposition), we have (C∩V )∩A′=∅. Let C ′ be a component of G\A′ meeting
C∩V .

Obviously C ′⊆C, since ∂C⊆B and C ′∩B=∅. If C ′ 6=C, then there must be a point
x∈∂C ′∩C. But since A′ has consistent complement relative to B, we must have x∈B,
so ∅ 6=C∩B⊂C∩A, a contradiction. Therefore C ′=C.

Proposition 11. Let G be connected, let A⊂G be regular and non-empty, and let
B1, B2⊆∂A with B1∪B2=∂A and B1∩B2=∅. Suppose A has consistent complement
relative to B1 and to B2. Let G1=σB1(A), G2=A, and G3=σB2(A). Then G1, G2,
and G3 define a simple fold on G (i.e. they satisfy properties (F1)–(F3)).

Proof. Note that if A=G, then G1=G2=G3=G, which define a simple fold. We
suppose therefore that A 6=G, in which case at least one of B1 and B2 is non-empty.

Clearly G1, G2, and G3 are all regular subsets of G, so (F1) holds.
Consider (F2). By definition, it is clear that A⊆σB1(A) and A⊆σB2(A), thus G2⊆

G1∩G3. For the reverse inclusion, suppose that x∈G\G2=G\A, and let C be the
component of G\A containing x. Because G is connected, 
C∩A 6=∅, and either ∂C⊆B1

or ∂C⊆B2, since A has consistent complement relative to B1 and to B2. In the former
case we have C∩σB1(A)=∅, and in the latter case we have C∩σB2(A)=∅. In either
case, x /∈G1∩G3. Thus G1∩G3⊆G2.

To see that G1∪G3=G, let x∈G, and assume that x /∈A (since A=G2=G1∩G3).
Let C be the component of G\A containing x. Again 
C∩A 6=∅, and either ∂C⊆B1 or
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∂C⊆B2. If ∂C⊆B1, then since σB2(A)⊃A⊃B1, it is clear that C⊂σB2(A). Similarly, if
∂C⊆B2, then C⊂σB1(A). Thus in any case, x∈G1∪G3.

For property (F3), let x∈G1\G2. If x∈A, then we must have x∈B2, and in this
case x /∈σB2(A)\A=G3\G2, since one can find a neighborhood of x which meets only
A and components of G\A whose closures meet B2. On the other hand, if x /∈A, then
x /∈σB2(A)=G3, as x∈σB1(A) and σB1(A)∩σB2(A)=A. Thus, in any case, x /∈G3\G2.
Therefore G1\G2∩G3\G2=∅.

We remark that, if ∂A=B1∪B2 and B1∩B2=∅, and if A has consistent complement
relative to B1, then A automatically has consistent complement relative to B2 as well.

5. Stairwells

We pause here to give an outline of the remainder of the proof of Theorem 1, which is
presented in full in §7. Beginning with a hereditarily indecomposable continuum X with
span zero, in the Hilbert cube [0, 1]N, we fix some ε>0 and let I≈[0, 1] be an arc which
is close to X in Hausdorff distance. Our task is to produce an ε-map from X to I, which
would imply X is arc-like, and hence X is homeomorphic to the pseudo-arc by Bing’s
characterization [3].

Because X has span zero, it is tree-like [31], so we can choose a tree T⊂[0, 1]N and a
map f :X!T such that d(x, f(x)) is small for all x∈X. According to Theorem 4, the set
M=

{
(x, y)∈T×I: d(x, y)< 1

2ε
}

separates T×{0} from T×{1} in T×I provided T and I

are chosen close enough to X. If we can find a map h:X!M , h(x)=(h1(x), h2(x)), such
that d(h1(x), f(x)) is small for all x∈X, then, by the definition of M and choice of f , it
follows that h2(x) is close to x for all x∈X, and so h2 will be an ε-map once appropriate
care is taken with constants.

To obtain this map h:X!M , we use our assumption that X is hereditarily inde-
composable. According to Theorem 8, the map f :X!T can be (approximately) factored
through any simple fold φ:F!T . Our method is to inspect the structure of the separator
M and use a sequence of simple folds to match the continuum X and map f with the
pattern of M and the first coordinate projection π1.

In order to accomplish this, we introduce in this section a special type of separator
(one with a “stairwell structure”) which has a positive integer measure of complexity
(the “height” of the stairwell). It follows from Theorem 15 below that M contains a
subset which is a separator with a stairwell structure. We then prove in the next section
that one can use a sequence of simple folds to effectively reduce the height of a stairwell.
The proof of Theorem 1 is then completed by induction (note from Definition 13 below
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H?

e1

e2

e3
e4

e5

S

Figure 3. An example of a straight set S in H?=H×[0, 1], where H is a graph homeomorphic
to the letter “H”. In this example, S has two connected components. The end set of S is
E(S)={e1, e2, e3, e4, e5}.

that if S has a stairwell structure of height 1, then π1|S is one-to-one and, hence, a
homeomorphism).

Given a set X, let X?=X×[0, 1]. Define π:X?!X by π(x, t)=x. Given a function
f :X!Y , define f?:X?!Y? by f?(x, t)=(f(x), t).

Definition 12. (1) A collection 〈B1, ..., Bn〉 of finite subsets of G is generic if Bi

is disjoint from the set of branch points and endpoints of G for each i, and Bi∩Bj =∅
whenever i 6=j.

(2) A subset S⊂G? is straight if S is closed, π is one-to-one on S, and π(S) is
regular. The end set of a straight subset S⊂G? is E(S)=S∩π−1(∂π(S)).

See Figure 3 for an example of a straight set and its end set.
Observe that, if S⊂G? is straight then π, restricted to S\E(S), is an open mapping

from S\E(S) to G (see Figure 3).

Definition 13. Let S⊂G?. A stairwell structure for S of height k is a tuple 〈S1, ..., Sk〉
satisfying the following properties:

(S1) S1, ..., Sk are non-empty straight subsets of G? with S=S1∪...∪Sk;
(S2) for each i=1, ..., k, E(Si)=αi∪βi, where αi and βi are disjoint finite sets, with

α1=∅=βk, and βi=αi+1 for each i=1, ..., k−1;
(S3) for each i=1, ..., k−1, there is a neighborhood V of π(βi)=π(αi+1) such that

π(Si)∩V =π(Si+1)∩V ;
(S4) for each i=1, ..., k, π(Si) has consistent comple ment relative to π(αi) and

to π(βi);
(S5) the family 〈π(α2), ..., π(αk)〉 (which is equal to 〈π(β1), ..., π(βk−1)〉) is generic

in G.

See Figure 4 for a simple example of a set with a stairwell structure.
Note that even though the sets S1, ..., Sk are all non-empty, we do allow for the

possibility that αi=∅ for some values of i∈{2, ..., k}.
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[0, 1]

S1

S2

S3S4

S5

G

Figure 4. An example of a set with a stairwell structure of height 5 in G?, where G is an arc.

We make the following observation: if S⊂G? is a set with a stairwell structure,
and if C is a component of G such that Si∩C? 6=∅ for each i=1, ..., k, then S∩C? has a
stairwell structure obtained by intersecting each of the sets Si, αi, and βi, with C?.

Note that there is no requirement that a set S⊂G? with a stairwell structure of
height k will satisfy π(S)=G. Indeed, if k is even this need not be the case. However,
it will follow from the next proposition (in fact from Claim 14.1) that if k is odd then
π(S)=G. Here it is crucial that α1=βk=∅ (see (S2)). The reader is encouraged to draw
a couple of examples of sets with stairwell structures of even and odd heights in G?, for
G a simple graph such as an arc, circle, or simple triod, to explore these possibilities.

Though we will not technically need the next proposition in the sequel, it serves to
clarify the connection between separators in G? and sets with stairwell structures.

Proposition 14. If G is a connected graph, then a set S⊂G×(0, 1) with a stairwell
structure of odd height separates G×{0} from G×{1} in G?.

Proof. Let 〈S1, ..., Sk〉 be a stairwell structure for S, where k is odd.

Claim 14.1. For each x∈G, the number of integers i∈{1, ..., k} such that x∈π(Si)
is odd.

Proof. Fix x∈G, and define f : {0, ..., k}!{0, 1} by

f(i) =
{

1, if i=0, i= k, or x∈σπ(βi)(π(Si)),
0, otherwise.

For each i=2, ..., k, by property (S3), Proposition 10, and the fact that βi−1=αi,
we have that σπ(βi−1)(π(Si−1))=σπ(βi−1)(π(Si))=σπ(αi)(π(Si)). By Proposition 11 and
property (F2), it follows that σπ(βi−1)(π(Si−1))∪σπ(βi)(π(Si))=G for each i=2, ..., k−1.
This means that there are no contiguous blocks of more than one integer in f−1(0).
Observe that x∈π(Si) if and only if f(i−1)=f(i)=1. It follows that if N1 is the number
of integers i∈{1, ..., k} such that x∈π(Si) and N2 is the number of integers i∈{1, ..., k}
such that f(i−1) 6=f(i), then N1+N2=k.
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Since f(0)=f(k)=1, we have that N2 is even. By hypothesis, k is odd. Thus N1

must be odd.

Given (x, t)∈G?\S, define N(x, t) as the number of integers i∈{1, ..., k} such that
(x, s)∈Si for some s>t. Let

V1 = {(x, t)∈G?\S :N(x, t) is odd} and V2 = {(x, t)∈G?\S :N(x, t) is even}.

From Claim 14.1, we have G×{0}⊂V1, and clearly G×{1}⊂V2 and V1∪V2=G?\S.

Claim 14.2. V1 and V2 are open in G?\S.

Proof. Fix (x, t)∈V1. Let W be a small connected open neighborhood of x in G,
and let δ>0 be such that U=W×(t−δ, t+δ) is a neighborhood of (x, t) in G? which is
disjoint from S.

If x /∈π(E(Si)) for each i, then we may assume that W is small enough so that,
for each i, either W∩π(Si)=∅ or W⊂π(Si). It follows easily that, for each (x′, t′)∈U ,
N(x′, t′)=N(x, t). Thus U⊂V1.

If x∈π(E(Si)) for some i, say x∈π(βi), then by (S5), x /∈π(E(Sj)) for each j /∈{i, i+
1}, and so we may assume that W is small enough so that, for each j /∈{i, i+1}, either
W∩π(Sj)=∅ or W⊂π(Sj). Moreover, we may assume that W is small enough so that
W∩π(Si)=W∩π(Si+1).

If there is no s>t such that (x, s)∈Si, then it is easy to see that N(x′, t′)=N(x, t) for
all (x′, t′)∈U . Suppose then that there exists s>t such that (x, s)∈Si (so that (x, s)∈βi).
Let (x′, t′)∈U . If x′∈π(Si) then x′∈π(Si+1) as well, and it is clear that N(x′, t′)=N(x, t).
If x′ /∈π(Si), then x′ /∈π(Si+1) as well, and so N(x′, t′)=N(x, t)−2. In any case, we have
(x′, t′)∈V1. Thus U⊂V1.

Therefore V1 is open. The proof that V2 is open is identical.

Thus S separates G×{0} from G×{1} in G?, and Proposition 14 is proved.

As a special case, consider a set S⊂G×(0, 1) with a stairwell structure of height 1.
In this case, π maps S homeomorphically onto G.

Theorem 15. Let G be a graph. For any set M⊆G×(0, 1) which separates G×{0}
from G×{1} in G?, and any open set U⊆G×(0, 1) with M⊆U , there exists a set S⊂U

with a stairwell structure of odd height.

Proof. Let M⊂G×(0, 1) separate G×{0} from G×{1} in G?, and fix an open set
U⊆G×(0, 1) with M⊆U .

We say that a set S⊂G×(0, 1) irreducibly separates G×{0} from G×{1} in G? if S

separates these two sets, but no proper subset of S does. It is well known (see e.g. [26,
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Theorems 46.VII.3 and 49.V.3]) that for any set S⊂G×(0, 1) which separates G×{0}
from G×{1}, there is a closed set S′⊆S which irreducibly separates G×{0} from G×{1}.

Let Z denote the set of all branch points and endpoints of G. Given a set L⊂G?

and a point (x, y)∈L such that x /∈Z, we say that L has a side wedge at (x, y) if there is
a closed disk D containing (x, y) in its interior such that L∩D=C1∪C2, where C1 and
C2 are arcs which both have x as an endpoint but are otherwise disjoint, π is one-to-one
on C1 and on C2, and π(C1)=π(C2).

Claim 15.1. There exists a set M ′⊂U such that
(1) M ′ is a graph;
(2) M ′ irreducibly separates G×{0} from G×{1} in G?;
(3) there is a finite set T⊂M ′ such that, for all (x, y)∈M ′\T , there is a neighbor-

hood V of (x, y) such that π maps M ′∩V homeomorphically onto a neighborhood of x

in G;
(4) for each (x, y)∈T , the set M ′ has a side wedge at (x, y);
(5) T∩Z?=∅;
(6) if (x1, y1) and (x2, y2) are two distinct points in T , then x1 6=x2.

Proof. We leave it to the reader to show that there exists a set M ′ having proper-
ties (1), (3), (5), and (6), and which separates G×{0} from G×{1}. Replacing M ′ by a
subset (which, by abuse of notation, we also denote by M ′) which irreducibly separates
G×{0} from G×{1} in G? accomplishes (2). Let G?\M ′=R0∪R1, where R0 and R1

are open in G?\M ′, G×{0}⊂R0, and G×{1}⊂R1.

To achieve property (4), consider a point (x, y)∈T . Note that (x, y) cannot be an
endpoint of M ′, because x is not an endpoint of G by (5), and π(M ′∩V ) is open for some
neighborhood V of (x, y) by (3). If (x, y) is not a branch point of M ′, then it is easy to
see that M ′ has a side wedge at (x, y), or else π is one-to-one on M ′ in a neighborhood
of (x, y) in which case we can remove (x, y) from T . Again, by abuse of notation, we
denote the resulting set by M ′.

Suppose now that (x, y) is a branch point of M ′. Let D be a small closed disk,
containing (x, y) in its interior, such that M ′∩D is the union of n arcs C1, ..., Cn, each
having (x, y) as an endpoint, and which are otherwise pairwise disjoint. Because M ′ is
an irreducible separator, the complementary regions of M ′ in D alternate between R0

and R1. It follows that n is even. Now we can modify M ′ inside D by replacing the arcs
C1, ..., Cn with 1

2n “wedges”, as depicted in Figure 5, and removing (x, y) from T . Some of
the resultant wedges may be side wedges, whose “tip” points we add to T . Obviously this
can be done without compromising properties (1), (5), and (6), and without leaving U .

Once this is carried out for all the branch points of M ′ which belong to T , one at a
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Figure 5. Modifying a graph separator M ′ in G? in a small neighborhood of an unwanted
branch point to remove the branch point. The two sides, R0 and R1, of G?\M ′ are indicated
using wavy lines and dots, respectively.

Figure 6. Partitioning the graph into small arcs above each of which the separator M ′ has at
most one side wedge.

time, the resultant set satisfies property (4). It is easy to see that the resultant M ′ still
irreducibly separates G×{0} from G×{1} in G?.

We now proceed with the proof of Theorem 15. Given a finite set B⊂G, we say that
two points a, b∈B are adjacent if there is a component of G\B whose closure contains
both a and b.

Let M ′ be a set as described in Claim 15.1. Because of property (6), there exists a
finite set Z ′⊂G such that

• Z⊆Z ′, Z ′∩π(T )=∅ and the closure of every component of G\Z ′ is an arc;
• if a, b∈Z ′ are adjacent, then there is exactly one component of G\Z ′ whose closure

contains both a and b and we will denote this arc by [a, b];
• if a, b∈Z ′ are adjacent, then [a, b]?∩T contains at most one point.
Figure 6 illustrates what the set M ′∩π−1(A) might look like over some component

A of G\Z ′.
Observe that since Z ′∩π(T )=∅ and since M ′ irreducibly separates G×{0} from

G×{1}, for each point a∈Z ′, the set M ′∩{a}? contains an odd number of points. Let k

be the maximum cardinality of M ′∩{a}? among all a∈Z ′. Then, in particular, k is odd.
Fix two adjacent points a, b∈Z ′. Let M ′∩{a}?={(a, y1), ..., (a, yj)}, where j6k is
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J4 J5

Figure 7. Adding “zig-zags” to two components of M ′∩[a, b]?, above the arcs J4 and J5, in
order to obtain a set with a stairwell structure.

odd, and y1<y2<...<yj . For each i=1, ..., j, let Ci be the component of M ′∩[a, b]?
containing the point (a, yi).

If there is no side wedge in M ′∩[a, b]?, then define S
[a,b]
i =Ci for each i=1, ..., j.

On the other hand, suppose that M ′∩[a, b]? has a component W which has a side
wedge. Assume without loss of generality that a∈π(W ), so that b /∈π(W ). Clearly
W∩{a}? consists of two consecutive points, say (a, ym) and (a, ym+1) of M ′∩{a}?. Then
Cm=Cm+1=W . Observe that M ′∩{b}? contains exactly j−2 points.

For each i=m+2, ..., j, let Ji⊂[a, b] be a closed subarc such that Ji∩π(W )=∅, and
Ji+1 is between Ji and b for each i=m+2, ..., j−1. For each i=m+2, ..., j, in a small
neighborhood of Ci in U , define three arcs C1

i , C2
i , and C3

i such that
• π is one-to-one on Cp

i for each p=1, 2, 3;
• C1

i and C2
i have a common endpoint, and C2

i and C3
i have a common endpoint,

but these three arcs are otherwise pairwise disjoint;
• C1

i ∩{a}?=Ci∩{a}? and C3
i ∩{b}?=Ci∩{b}?;

• π(C2
i )=Ji=π(C1

i )∩π(C3
i ).

We call this procedure “adding a zig-zag” to Ci. Refer to Figure 7 for an illustration.
Now for each i=1, ...,m−1, define S

[a,b]
i =Ci. For i=m, ..., k, we define S

[a,b]
i by

defining the components of these sets in steps, as follows.
Decompose the side wedge W into two arcs Wm and Wm+1, where π is one-to-one

on each of Wm and Wm+1, and Wi contains (a, yi) for both i=m,m+1. We start with
S

[a,b]
i =Wi for both i=m,m+1. Then, for each i=m+2, ..., j, in order, we start with

S
[a,b]
i =C1

i , and we add C2
i to S

[a,b]
i−1 and add C3

i to S
[a,b]
i−2 . Finally, for i=j+1, ..., k, let

S
[a,b]
i =∅.

Define, for each i=1, ..., k,

Si =
⋃

a,b∈Z′

adjacent

S
[a,b]
i ,

and let S=
⋃k

i=1 Si. Observe that S is in U , and clearly S irreducibly separates G×{0}
from G×{1}, because M ′ does.
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It is clear that S
[a,b]
i is straight for each adjacent pair a, b∈Z ′ and each i=1, ..., k.

Moreover, if a∈Z ′ and S∩{a}?={(a, y1), ..., (a, yj)}, where j6k and y1<...<yj , then
from the construction we see that S

[a,x]
i ∩{a}?={(a, yi)} for any x∈Z ′ adjacent to a

and each i=1, ..., j (and S
[a,x]
i ∩{a}?=∅ if i>j). It follows that Si is straight for each

i=1, ..., k. Thus property (S1) holds.
Let α1=βk=∅, and for each i=1, ..., k−1, let βi=αi+1=Si∩Si+1. The points of the

sets Si∩Si+1 are exactly the tips of side wedges and the zig-zag turning points. Clearly
all such points belong to the end sets of the sets Si, and there are no other points in the
end sets of the Si’s because S irreducibly separates G×{0} from G×{1} in G?. Thus
property (S2) holds.

Properties (S3) and (S5) are immediate from the construction.
For property (S4), let C be a component of G\π(Si) for some i∈{1, ..., k}. Note that

if z∈C∩Z ′, then |M ′∩{z}∗|<i. If C⊂[a, b] for some adjacent pair a, b∈Z ′, then it is clear
from the construction (refer to the right side of Figure 7) that ∂C⊂π(αi) or ∂C⊂π(βi).
Suppose, on the other hand, that x1, x2∈∂C do not belong to the same component of
G\Z ′. Let a1, ..., an∈Z ′ be such that ap and ap+1 are adjacent for each p=1, ..., n−1,
x1∈[a1, a2], x2∈[an−1, an], and [ap, ap+1]⊂C for all p=2, ..., n−2. For p=1, ..., n, let jp

be the number of points in S∩{ap}?. Then jp is odd for all p=1, ..., n. Since ai∈C

for p=2, ..., n−1, jp<i for p=2, ..., n−1 and, as |jp−jp+1|∈{0, 2} for each p=1, ..., n−1,
i6j16i+1 and i6jn6i+1. Moreover, since |jp−jp+1|∈{0, 2} for each p=1, ..., n−1, we
must have that j1 and jn have the same parity and, hence, j1=jn. It is now easy to
see that each of x1 and x2 corresponds to the tip point of a side wedge or a turning
point of a zig-zag joining Sj1−1 and Sj1 . Hence, if i=j1=jn, {x1, x2}⊂π(αi) and, if
i=j1−1=jn−1, then {x1, x2}⊂π(βi) and it follows that (S4) holds.

Since (S1)–(S5) hold 〈S1, ..., Sk〉 is a stairwell structure of odd height k for S.

To illustrate that the procedure indicated in Figure 5 may indeed be needed, we offer
an example in Figure 8 of a set S in G?, where G is a simple triod with legs T1, T2, and T3;
that is, G is the union of three arcs T1, T2, and T3 which have one common endpoint and
are otherwise pairwise disjoint. In this case, G? is a “3-page book”, whose three “pages”
are the squares drawn in Figure 8. The left edges of the three squares are identified.
We leave it to the reader to observe that this set S irreducibly separates G×{0} from
G×{1}. The reader may find it informative to remove the unwanted branch point using
the procedure indicated in Figure 5 (note that there are two essentially different ways to
do this), and then to nudge the set so that all the turning points have distinct projections,
and add zig-zags as in Figure 7, to obtain a set with a stairwell structure.
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[0, 1]

T1 T2 T3

Figure 8. An example of an irreducible separator in G?, for G a simple triod, with an extra
unwanted branch point.

6. Unfolding stairwells

In this technical section, we develop the machinery we need to simplify a set with a
stairwell structure by taking its inverse image under a simple fold. As will be seen below,
one can reduce the height of a stairwell by taking inverse images under a sequence of
simple folds. In the intermediate stages of this process, the resultant sets will not have
a stairwell structure; however, they will exhibit a structure very close to it, which is
captured by the next definition of a broken stairwell structure.

A broken stairwell structure differs from a stairwell structure in that it contains
an additional “detour” (which we call a pit) at one of the levels. We will observe in
Proposition 17 that a set with a stairwell structure of height k can be relabeled so as to
have a broken stairwell structure of height k−2, with a pit at the first level. We will then
prove in Proposition 19 that given a broken stairwell structure, we can take the inverse
image under a simple fold to obtain a new set with a broken stairwell structure of the same
height in which the pit is at the next level up. This procedure can be repeated to move
the pit up to the highest level. Then, once the pit is at the highest level, applying this
procedure once more removes the pit altogether, leaving a set with a stairwell structure
(not broken). This will be carried out formally in the proof of Theorem 20 in the next
section.

Definition 16. Let S⊂G?. A broken stairwell structure for S of height k with a pit
at level i0 is a tuple 〈S1, ..., Sk;P1, P2〉 such that

(S1′) S1, ..., Sk, P1, P2 are non-empty straight subsets of G? with S=S1∪...∪Sk∪
P1∪P2;

(S2′) property (2) above holds for S1, ..., Sk, except that E(Si0) is decomposed into
three disjoint finite sets: E(Si0)=αi0∪βi0∪γi0 . Additionally, E(P2)=E(P1)∪γi0 , and
E(P1)∩γi0 =∅;

(S3′) property (3) above holds for S1, ..., Sk, and additionally, there is a neighbor-
hood V of π(E(P1)) such that π(P1)∩V =π(P2)∩V , and a neighborhood W of π(γi0)
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β2=α3

[0, 1]

S1

S2 S2

S3

P1

P2 P2

β1=α2

G

Figure 9. An example of a set with a broken stairwell structure of height 3 with a pit at level
2 in G?, where G is an arc. The points marked with grey dots comprise the set γ2, and the
points marked with black dots comprise the set E(P1).

such that π(P2)∩W =π(Si0)∩W ;
(S4′) property (4) above holds for S1, ..., Sk, and additionally, π(Si0) has consistent

complement relative to π(γi0), and π(P2) has consistent complement relative to π(E(P1))
and to π(γi0);

(S5′) the family 〈π(α2), ..., π(αk), π(E(P1)), π(γi0)〉 (which is the same as the family
〈π(β1), ..., π(βk−1), π(E(P1)), π(γi0)〉) is generic in G;

(S6′) π(αi0)∩π(P1∪P2)=∅.

See Figure 9 for a simple example of a set with a broken stairwell structure.
Note that even though the sets S1, ..., Sk, P1, and P2 are all non-empty, we do allow

for the possibilities that αi=∅ for some values of i∈{2, ..., k}, that E(P1)=∅, and that
γi0 =∅. See also the remarks immediately following Proposition 17 below.

We make the following observation: if S⊂G? is a set with a broken stairwell structure
with a pit at level i0, and if C is a component of G such that Si∩C? 6=∅ for each i=1, ..., k

and Pj∩C? 6=∅ for j=1, 2, then S∩C? has a broken stairwell structure with a pit at level
i0 obtained by intersecting each of the sets Si, P1, P2, αi, βi, and γi0 with C?.

Proposition 17. Every set S⊂G? which has a stairwell structure of height k has
a broken stairwell structure of height k−2 with a pit at level 1.

Proof. Suppose that S⊂G? has a stairwell structure 〈S1, ..., Sk〉 of height k. Let
P1=S1, P2=S2, and for each i=1, ..., k−2, let S′

i=Si+2. For each i=2, ..., k−2, let
α′

i=αi+2 and β′i=βi+2. Let α′
1=∅, β′1=β3, and γ′1=α3.

It is now easy to verify that 〈S′
1, ..., S

′
k−2;P1, P2〉 is a broken stairwell structure for

S of height k−2 with a pit at level 1.
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[0, 1]
S

G1\G2 G2 G3\G2

[0, 1]
ϕ−1

? (S)

F1 F2 F3

∗

Figure 10. On top, a straight set S in G? with end set E(S) marked with black dots. Under-

neath, the preimage of S under the map ϕ?, with the set ϕ−1
? (E(S)) marked with dots, and

only those points in E(ϕ−1
? (S)) are in black. The point marked with ∗ belongs to the end set

of ϕ−1
? (S)∩(F1∪F2)?, even though it does not belong to ϕ−1

? (E(S)).

We remark that though it may appear at a glance that we could equally well make
the pit at level k−2 in the above proposition instead of at level 1, property (S6′) prevents
us from doing so in general.

If 〈S1, ..., Sk;P1, P2〉 is a broken stairwell structure for S⊂G? of height k with a
pit at level i0, and if γi0 =∅, then in fact 〈S1, ..., Sk〉 is a stairwell structure for S′=
S1∪...∪Sk⊆S. Along the same lines, if E(P1)=∅ and G is connected, then π(P1)=G,
and so 〈P1〉 is itself a stairwell structure of height 1 for P1⊂S. For these reasons, we will
assume in Proposition 19 below that we start with a broken stairwell structure in which
γi0 6=∅ and E(P1) 6=∅.

Our next major task is to prove Proposition 19. Because this is a crucial and delicate
part at the heart of the results of this paper, we will treat all the details meticulously.
We begin with a lemma to break up and simplify the somewhat involved and tedious
proof.

Lemma 18. Let F =F1∪F2∪F3 be a simple fold on a graph G with projection
ϕ:F!G, and let S⊂G? be straight. Suppose that either ∂π(S)∩∂ϕ(F2)=∅, or there
is a neighborhood V of ∂π(S)∩∂ϕ(F2) in G such that ϕ(F2)∩V ⊆π(S)∩V . Then, the
following properties hold :

(1) S′=ϕ−1
? (S) is straight and E(S′)=ϕ−1

? (E(S))\(∂F2)?;
(2) S′′=ϕ−1

? (S)∩(F1∪F2)? is straight and

E(S′′) = ([ϕ−1
? (E(S))∩(F1∪F2)?]\(∂F1)?)∪(S′′∩(∂F3)?).

Refer to Figure 10 for an illustration of the situation described in Lemma 18.
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Proof. First, we claim that if x∈ϕ−1
? (S)∩(∂F2)?, then there is a neighborhood W

of π(x) such that ϕ(W )⊂π(S). To see this, we may assume that x∈ϕ−1
? (S)∩(∂F1)?.

By hypothesis, there is a neighborhood V of ϕ(π(x)) such that ϕ(F2)∩V ⊆π(S)∩V .
We may assume that V is small enough so that if we let W =ϕ−1(V )∩(F1∪F2), then
W is a neighborhood of π(x) and ϕ(F1∩W )=ϕ(F2∩W )=ϕ(F2)∩V . It follows that
ϕ(W )⊂π(S). The argument is similar for x∈ϕ−1

? (S)∩(∂F3)?.

For (1), note that clearly S′ is closed and π is one-to-one on S′, since S is closed
and π is one-to-one on S. For x∈S′\(∂F2)?, ϕ is one-to-one in a neighborhood of π(x),
and so the component of x in S′ is non-degenerate since the component of ϕ?(x) in S is
non-degenerate. For x∈S′∩(∂F2)?, the component of x in S′ is non-degenerate by the
above claim. Thus S′ is straight.

It is straightforward to see that, for x /∈(∂F2)?, we have that x∈E(S′) if and only if
ϕ?(x)∈E(S), since ϕ is one-to-one on a neighborhood of π(x). Moreover, by the above
claim, clearly E(S′)∩(∂F2)?=∅. This establishes (1).

For (2), it can be argued similarly that S′′ is a straight. As for the end set of S′′,
clearly E(S′′)⊂(F1∩F2)? since S′′⊂(F1∩F2)?. As in (1), it is straightforward to see
that for x∈S′′\(∂F2)?, we have x∈E(S′′) if and only if ϕ?(x)∈E(S), and, by the claim,
E(S′′)∩(∂F1)?=∅. Finally, if x∈S′′∩(∂F3)?, then clearly any neighborhood of π(x)
meets both π(S′′) and the complement of π(S′′) (since it meets the interior of F3), and
therefore x∈E(S′′). This establishes (2).

Proposition 19. Let G be a connected graph, and let S⊂G? have a broken stairwell
structure 〈S1, ..., Sk;P1, P2〉 of height k with a pit at level i06k, in which γi0 6=∅ and
E(P1) 6=∅. Then there exists a simple fold ϕ:F!G such that F is connected, and ϕ−1

? (S)
contains a set S′ with a broken stairwell structure of height k with a pit at level i0+1 if
i0<k, or simply a stairwell structure of height k if i0=k.

The proof of Proposition 19 will occupy the rest of this section. Recall from the
comment immediately following Lemma 6 that to uniquely define a simple fold, it suffices
to choose three subsets G1, G2, and G3 of G satisfying properties (F1)–(F3). We will
define a simple fold in this way, relying on Proposition 11 to verify these properties.

Define the simple fold F =F1∪F2∪F3 by F1≈G1=π(P1), F2≈G2=π(P2), and F3≈
G3=σπ(γi0 )(π(Si0)), and let ϕ:F!G be the projection. Hence, F is the union of F1, F2

and F3, with F1 glued to F2 along the part corresponding to E(P1), and F2 glued to F3

along the part corresponding to π(γi0). Note that, since G is connected, we have, by the
remarks following Definition 9 and by Proposition 10 and (S3′) for S, that

π(P1) =σπ(E(P1))(π(P2)) and σπ(γi0 )(π(Si0))= σπ(γi0 )(π(P2)).
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So, by (S2′) and Proposition 11, the three sets G1, G2, and G3 do indeed define a simple
fold.

We record the following basic observations for reference below:

∂ϕ(F1) =ϕ(∂F1) =π(E(P1)); (19.1)

∂ϕ(F3) =ϕ(∂F3) =π(γi0); (19.2)

∂ϕ(F2) = ∂ϕ(F1)∪∂ϕ(F3) =π(E(P1))∪π(γi0). (19.3)

We now describe the set S′⊆ϕ−1
? (S) and its (broken) stairwell structure piece by

piece. The reader will find it helpful to refer to Figure 11 when reading the following
definitions.

For each i /∈{i0, i0+1}, define

S′
i =ϕ−1

? (Si), α′
i =ϕ−1

? (αi), β′i =ϕ−1
? (βi).

For level i0, define

S′
i0 = [ϕ−1

? (P1)∩(F1)?]∪[ϕ−1
? (P2)∩(F2)?]∪[ϕ−1

? (Si0)∩(F3)?]

and
α′

i0 =ϕ−1
? (αi0), β′i0 =ϕ−1

? (βi0)∩(F3)?.

If i0<k, then further define

S′
i0+1 =ϕ−1

? (Si0+1),

α′
i0+1 =ϕ−1

? (αi0+1)∩(F3)?,

β′i0+1 =ϕ−1
? (βi0+1),

γ′i0+1 =ϕ−1
? (αi0+1)∩(F1∪F2)?,

as well as
P ′

1 =ϕ−1
? (P2)∩(F1∪F2)? and P ′

2 =ϕ−1
? (Si0)∩(F1∪F2)?.

We now proceed with confirming that the above sets comprise a (broken) stairwell
structure. We begin by showing that the sets S′

1, ..., S
′
k, P ′

1, P
′
2 are all straight, and

computing their end sets.

Straightness and end sets

For i 6=i0, we have by (S2′) and (S5′) for S that ∂π(Si)=π(αi)∪π(βi) is disjoint from
∂ϕ(F2)=π(E(P1))∪π(γi0) (by (19.3)). Therefore, by Lemma 18, S′

i=ϕ−1
? (Si) is straight,

and
E(S′

i) =ϕ−1
? (E(Si)) for i 6= i0. (19.4)
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β2=α3

[0, 1]

γi0 =γ1
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E(P1)
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3

[0, 1]

S′
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γ′i0+1=γ′2 S′
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P ′
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Figure 11. On top, a set S with a broken stairwell structure of height 3 with a pit at level 1.
Underneath, the preimage of S under the map ϕ?, with the subset S′ with a broken stairwell
structure of height 3 with a pit at level 2 in black. Note that S′1 and P ′

1 overlap in a segment
in (F2)?.

Observe that ϕ−1
? (E(Si)) is disjoint from (∂F2)?.

We now consider S′
i0

. Because ϕ(F1)=π(P1), ϕ(F2)=π(P2), and

ϕ(F3) =σπ(γi0 )(π(Si0))⊇π(Si0),

clearly each of ϕ−1
? (P1)∩(F1)?, ϕ−1

? (P2)∩(F2)?, and ϕ−1
? (Si0)∩(F3)? is straight, as P1,

P2, and Si0 are straight. From the equalities

ϕ−1
? (P1)∩(∂F1)? =ϕ−1

? (E(P1))∩(∂F1)? =ϕ−1
? (P2)∩(∂F1)?

and
ϕ−1

? (P2)∩(∂F3)? =ϕ−1
? (γi0)∩(∂F3)? =ϕ−1

? (Si0)∩(∂F3)?

it follows that π is one-to-one on S′
i0

. Thus S′
i0

is straight.
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For the end set of S′
i0

, observe that, since π(S′
i0

)⊃F1∪F2, one has E(S′
i0

)⊂(F3)?.
Moreover, E(S′

i0
)∩(∂F3)?=∅, because π(Si0) agrees with ϕ(F3)=σπ(γi0 )(π(Si0)) near

π(γi0) in G. Thus

F1∪F2⊂ int(π(S′
i0)) and E(S′

i0)⊂ int(F3)?. (19.5)

By the definition of S′
i0

, we have S′
i0
∩(F3)?=ϕ−1(Si0)∩(F3)?, and it follows that

E(S′
i0) =ϕ−1

? (E(Si0))∩int(F3)?. (19.6)

Looking at both cases (i 6=i0 and i=i0) above, we see that

E(S′
i)∩(∂F2)? = ∅ for each i=1, ..., k. (19.7)

Next, we consider P ′
1=ϕ−1

? (P2)∩(F1∪F2)?. Observe that ϕ(F2)=π(P2), so Lemma 18
applies, and we conclude that P ′

1 is straight. For the end set of P ′
1, we have by Lemma 18

that
E(P ′

1) = ([ϕ−1
? (E(P2))∩(F1∪F2)?]\(∂F1)?)∪(P ′

1∩(∂F3)?).

We simplify this expression using the following straightforward observations:
• ϕ−1(π(E(P1)))∩(F1∪F2)=∂F1, so we can replace E(P2)=E(P1)∪γi0 by γi0 in the

above expression;
• ϕ−1(π(γi0))⊂F1∪F2 and ϕ−1(π(γi0))∩∂F1=∅ (by (19.1) and (S5′) for S), so

[ϕ−1
? (γi0)∩(F1∪F2)?]\(∂F1)?=ϕ−1

? (γi0); and
• P ′

1∩(∂F3)?=ϕ−1
? (γi0) by (19.2), so ϕ−1

? (γi0)∪(P ′
1∩(∂F3)?)=ϕ−1

? (γi0).
We thus have

E(P ′
1) =ϕ−1

? (γi0)⊂ (F1∪F2)?. (19.8)

Lastly, we consider P ′
2=ϕ−1

? (Si0)∩(F1∪F2)?. By (S5′) for S, we have that

∂ϕ(F1)∩∂π(Si0) =π(E(P1))∩∂π(Si0) = ∅,

which means by (19.3) that ∂ϕ(F2)∩∂π(Si0)=∂ϕ(F3)=π(γi0). By (S3′) for S, the sets
π(Si0) and ϕ(F2)=π(P2) agree in a neighborhood of π(γi0), and hence Lemma 18 applies,
and we have that P ′

2 is straight.
For the end set of P ′

2, we have by Lemma 18 that

E(P ′
2) = ([ϕ−1

? (E(Si0))∩(F1∪F2)?]\(∂F1)?)∪(P ′
2∩(∂F3)?).

We simplify this expression using the following straightforward observations:
• ∂F3⊂ϕ−1(π(γi0))⊂F1∪F2 and ϕ−1(π(γi0))∩∂F1=∅ (as above), and hence, since

E(Si0)=αi0∪βi0∪γi0 , we obtain

E(P ′
2) = ([ϕ−1

? (αi0∪βi0)∩(F1∪F2)?]\(∂F1)?)∪ϕ−1
? (γi0);
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• ϕ−1(π(αi0))∩(F1∪F2)=∅ by (S6′) for S, so we can replace αi0∪βi0 by βi0 in the
above expression;

• ϕ−1(π(βi0))∩∂F1=∅, so

[ϕ−1
? (βi0)∩(F1∪F2)?]\(∂F1)? =ϕ−1

? (βi0)∩(F1∪F2)? =ϕ−1
? (αi0+1)∩(F1∪F2)? = γ′i0+1.

We thus have, by (19.8), that

E(P ′
2) = E(P ′

1)∪γ′i0+1. (19.9)

We now continue with the remaining properties to show that the above sets comprise
a (broken) stairwell structure.

(S2) / (S2′)

For i /∈{i0, i0+1}, we have E(S′
i)=ϕ−1

? (αi)∪ϕ−1
? (βi)=α′

i∪β′i by (S2′) for S, and clearly
α′

i∩β′i=∅ since αi∩βi=∅. Similarly, if i0<k, then, by (19.4),

E(S′
i0+1) =ϕ−1

? (E(Si0+1))

=ϕ−1
? (αi0+1)∪ϕ−1

? (βi0+1)

= [ϕ−1
? (αi0+1)∩(F1∪F2)?]∪[ϕ−1

? (αi0+1)∩(F3)?]∪ϕ−1
? (βi0+1)

= γ′i0+1∪α′
i0+1∪β′i0+1.

We claim that the sets α′
i0+1, β′i0+1, and γ′i0+1 are pairwise disjoint. Indeed, because

αi0+1∩βi0+1=∅, we immediately have from the definitions of the sets α′
i0+1, β′i0+1, and

γ′i0+1 that α′
i0+1∩β′i0+1=∅=β′i0+1∩γ′i0+1. Moreover, also from these definitions we see

that α′
i0+1∩γ′i0+1⊆(F3)?∩(F1∪F2)?=(∂F3)?⊆(∂F2)?. But also α′

i0+1, γ
′
i0+1⊆E(S′

i0+1),
and E(S′

i0+1)∩(∂F2)?=∅ by (19.7). Thus α′
i0+1∩γ′i0+1=∅.

For S′
i0

, we have by (19.6) and the fact that ϕ−1
? (γi0)∩int(F3)?=∅ that

E(S′
i0) =ϕ−1

? (E(Si0))∩int(F3)? = [ϕ−1
? (αi0)∩(F3)?]∪[ϕ−1

? (βi0)∩(F3)?].

Moreover, by (S6′) for S and since ϕ(F1∪F2)=π(P1∪P2), we have ϕ−1
? (αi0)⊂(F3)?,

so that ϕ−1
? (αi0)∩(F3)?=ϕ−1(αi0)=α′

i0
. Therefore we have that E(S′

i0
)=α′

i0
∪β′i0 . Again,

clearly α′
i0
∩β′i0 =∅ since αi0∩βi0 =∅.

It is straightforward to see that β′i=α′
i+1 for each i=1, ..., k−1, since βi=αi+1 for

each i=1, ..., k−1 by (S2′) for S. The only standout case is when i=i0 (if i0<k), and
here we have β′i0 =ϕ−1

? (βi0)∩(F3)?=ϕ−1
? (αi0+1)∩(F3)?=α′

i0+1. Obviously, α′
1=∅=β′k

since α1=∅=βk.
We have already deduced in (19.9) that E(P ′

2)=E(P ′
1)∪γ′i0+1, and clearly the sets

E(P ′
1)=ϕ−1

? (γi0) and γ′i0+1=ϕ−1
? (αi0+1)∩(F1∪F2)? are disjoint, since, by (S5′) for S,

γi0∩αi0+1=∅.
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(S3) / (S3′)

Since π(E(S′
i))∩∂F2=∅ for each i=1, ..., k (by (19.7)), we have that ϕ is one-to-one

in a neighborhood of each point of π(E(S′
i)). It is then straightforward to see from

property (S3′) for S and from the definition of S′
i that there exists a neighborhood

V of π(β′i)=π(α′
i+1) such that π(S′

i)∩V =π(S′
i+1)∩V . Again, the only standout case

is when i=i0, and here π(E(S′
i0

))⊂int(F3), and π(S′
i0

)∩F3=ϕ−1(π(Si0))∩F3, so the
neighborhood of βi0 =αi0+1 in G in which π(Si0) and π(Si0+1) agree, pulls back under
(ϕ|F3)

−1 to a neighborhood of β′i0 =α′
i0+1 in which π(S′

i0
) and π(S′

i0+1) agree.
If i0<k, then by (19.7), we in particular have that π(γ′i0+1)∩∂F2=∅, and so ϕ

is one-to-one in a neighborhood of each point of π(γ′i0+1). Then as above we have
that there is a neighborhood of π(γ′i0+1)⊂F1∪F2 on which π(S′

i0+1)=ϕ−1(π(Si0+1)) and
P ′

2=ϕ−1(π(Si0))∩(F1∪F2) agree.
For P ′

1 and P ′
2, recall from (19.8) that E(P ′

1)=ϕ−1
? (γi0), which is contained in

(F1∪F2)?. Let z∈π(E(P ′
1)). Note that z /∈∂F1 since ϕ(∂F1)=π(E(P1)) by (19.1), and

π(E(P1))∩π(γi0)=∅ by (S5′) for S. If z /∈∂F3, then ϕ is one-to-one in a neighborhood
of z, so as above there is a neighborhood of z on which π(P ′

1) and π(P ′
2) agree.

If z∈∂F3, then by (S5′) for S, ϕ(z) is not a branch point of G, so there is a neighbor-
hood of z in F which is homeomorphic to an open arc J . Note that J \{z} is the union
of two open arcs J1 and J2, where J1⊂int(F1∪F2) and J2⊂int(F3). Since P ′

1 and P ′
2 are

contained in (F1∪F2)? and z∈π(E(P ′
1))⊂π(E(P ′

2)) (by (19.9)), there is a neighborhood
W⊂J of z in F such that W∩(F1∪F2)⊂π(P ′

1)∩π(P ′
2). On the other hand, W∩int(F3)

is disjoint from π(P ′
1) and from π(P ′

2). Thus π(P ′
1)∩W =π(P ′

2)∩W .

(S4) / (S4′)

Given i /∈{i0, i0+1}, let C be a component of F \π(S′
i)=F \ϕ−1(π(Si)). Then ϕ(C) is

contained in a component of G\π(Si), and hence ϕ(C) meets at most one of π(αi) and
π(βi). It follows that ∂C⊆π(α′

i)=ϕ−1(π(αi)) or ∂C⊆π(β′i)=ϕ−1(π(βi)).
For level i0, let C be a component of F \π(S′

i0
). By (19.5), F1∪F2⊂int(π(S′

i0
)), and

hence 
C⊂int(F3). Also, we have C⊂F3\ϕ−1(π(Si0)), since S′
i0
∩(F3)?=ϕ−1(Si0)∩(F3)?.

Therefore again ϕ(C) is contained in a component of G\π(Si0), and hence ϕ(C) meets
at most one of π(αi0), π(βi0), and π(γi0). Note however that ϕ(C)∩π(γi0)=∅, since
ϕ−1(π(γi0))∩F3=∂F3 and 
C∩∂F3=∅. As a consequence, we have that 
C meets at most
one of π(α′

i0
)=ϕ−1(π(αi0)) and π(β′i0)=ϕ−1(π(βi0))∩F3.

Now suppose that i0<k, and consider the level i0+1. Let C be a component of
F \π(S′

i0+1). Since S′
i0+1=ϕ−1

? (Si0+1) and β′i0+1=ϕ−1
? (βi0+1), we have as above that, if

∂C∩π(β′i0+1) 6=∅, then ∂C⊂π(β′i0+1).
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Suppose, on the other hand, that ∂C∩π(α′
i0+1) 6=∅ or ∂C∩π(γ′i0+1) 6=∅. Then

∂ϕ(C)∩π(αi0+1) 6=∅. It follows that ϕ(C) is contained in a component C̃ of G\π(Si0+1)
whose boundary is contained in π(αi0+1). By Proposition 10, C̃ is also a component
of G\π(Si0) whose boundary is contained in π(βi0), because π(Si0+1) and π(Si0) agree
in a neighborhood of π(αi0+1)=π(βi0), and π(Si0) has consistent complement relative
to π(βi0).

Observe that ϕ(∂F3)=π(γi0)⊂π(Si0) and C̃⊆G\π(Si0), so C∩∂F3=∅. Because C

is connected, by Lemma 6 (6) this means that C⊆F1∪F2 or C⊆F3. Therefore, by the
definitions of α′

i0+1 and γ′i0+1, either ∂C⊂π(α′
i0+1) or ∂C⊂π(γ′i0+1).

Now let D be a component of F \π(P ′
2). Note that

∂F3⊂ϕ−1(π(γi0))∩(F1∪F2)⊂ϕ−1(π(Si0))∩(F1∪F2) =π(P ′
2),

so D∩∂F3=∅. By Lemma 6 (6), this means that D⊂F1∪F2 or D⊂F3.
If D⊂F3, then since F3∩π(P ′

2)=∂F3, we have ∂D⊂∂F3⊂π(E(P ′
1)). If D⊂F1∪F2,

then since π(P ′
2)=ϕ−1(π(Si0))∩(F1∪F2), we have that ϕ(D) is contained in a component

D̃ of G\π(Si0). Moreover, ϕ(D)⊂π(P1∪P2), so ∂D̃∩π(αi0)=∅ by (S6′) for S. This
means that either ∂D̃⊂π(βi0) or ∂D̃⊂π(γi0). Then because E(P ′

1)=ϕ−1
? (γi0) and

γ′i0+1 =ϕ−1
? (αi0+1)∩(F1∪F2)? =ϕ−1

? (βi0)∩(F1∪F2)?,

it follows that ∂D⊂π(E(P ′
1)) or ∂D⊂π(γ′i0+1).

(S5) / (S5′)

Since ∂π(P2) is disjoint from the set Z of branch points and endpoints of G, we have
that the set of branch points and endpoints of F is ϕ−1(Z). It is then trivial to see from
the definitions of the sets α′

2, ..., α
′
k, γ′i0+1, E(P ′

1), and from property (S5′) for S, that
the family 〈π(α′

2), ..., π(α′
k), π(γ′i0+1), π(E(P ′

1))〉 (or simply 〈π(α′
2), ..., π(α′

k)〉 in the case
i0=k) is generic.

(S6′)

Recall that α′
i0+1=β′i0⊂int(F3)? by (19.5), which means that α′

i0+1∩(F1∪F2)?=∅. Thus
π(α′

i0+1)∩π(P ′
1∪P ′

2)=∅, since P ′
1 and P ′

2 are contained in (F1∪F2)?.

This completes the proof of all the properties required to prove that 〈S′
1, ..., S

′
k;P ′

1, P
′
2〉

is a broken stairwell structure for S′=S′
1∪...∪S′

k∪P ′
1∪P ′

2 of height k with a pit at level
i0+1, or, in the case that i0=k, that 〈S′

1, ..., S
′
k〉 is a stairwell structure for S′=S′

1∪...∪S′
k.
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Finally, to obtain a connected simple fold, we observe that since E(P1) 6=∅ and
γi0 6=∅ (by assumption), and since G is connected and π(P2) has consistent complement
relative to π(E(P1)) and to π(γi0), there is a component K of π(P2)=ϕ(F2) such that K

meets both π(E(P1))=∂ϕ(F1) and π(γi0)=∂ϕ(F3).

By Proposition 7, (ϕ|F2)
−1(K) is contained in a component C of F such that

ϕ(C)=G, and F ′=F ′
1∪F ′

2∪F ′
3, where F ′

i =Fi∩C for each i=1, 2, 3, is a connected simple
fold. For i 6=i0, since ϕ(C)=G and S′

i=ϕ−1
? (Si), we have S′

i∩C? 6=∅. Also, all three of
S′

i0
, P ′

1, and P ′
2 contain ϕ−1

? (γi0)∩(∂F3)?, and clearly C meets ∂F3 by Lemma 6 (6). Thus
S′

i0
∩C?, P ′

1∩C?, and P ′
2∩C? are all non-empty as well. Therefore, by the remarks fol-

lowing Definitions 13 and 16, the (broken) stairwell structure on S′⊂F? yields a (broken)
stairwell structure on S′∩C?.

This concludes the proof of Proposition 19.

7. Applications

We are now in a position to state and prove our main technical theorem.

Theorem 20. A compactum X is hereditarily indecomposable if and only if for
any map f :X!G to a graph G, any set M⊆G×(0, 1) separating G×{0} from G×{1}
in G×[0, 1], any open set U⊆G×[0, 1] with M⊆U , and any ε>0, there exists a map
h:X!U such that dsup(f, π1�h)<ε (where π1:G×[0, 1]!G is the first coordinate pro-
jection).

Proof. Suppose that X is a hereditarily indecomposable compactum. Let f :X!G

be a map to a graph G, let M⊂G×(0, 1) separate G×{0} from G×{1} in G×[0, 1],
and let U be a neighborhood of M in G×[0, 1]. By treating the components of G one
at a time, and because the inverse image of any component under f is a hereditarily
indecomposable closed and open subset of X, we may assume without loss of generality
that G is connected.

By Theorem 15, there is a set S⊂U with a stairwell structure of odd height k0. We
claim that there is a finite sequence G=F 0, F 1, ..., Fn of connected graphs such that,
for each i=1, ..., n, F i is a simple fold on F i−1 with projection ϕi:F i!F i−1, and the
preimage ((ϕn)?�...�(ϕ1)?)−1(S) contains a set S′ with a stairwell structure of height 1.
We construct this sequence by induction as follows. Let F 0=G.

Step 1. Assume we have a set S⊂(F j)? with a stairwell structure of height k. If
k=1, then we are done. Otherwise, by Proposition 17, S has a broken stairwell structure
of height k−2 with a pit at level 1.
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Step 2. Assume that S⊂(F j)? and that 〈S1, ..., Sk−2, P1, P2〉 is a broken stairwell
structure on S of height k−2 with a pit at level i0. As per the remarks following
Proposition 17, if γi0 =∅, then in fact S has a stairwell structure of height k−2, and we
may return to Step 1 with this stairwell structure. Similarly, if E(P1)=∅, then in fact
S′=P1⊆S itself has a stairwell structure of height 1, and we are done.

Suppose now that γi0 6=∅ and E(P1) 6=∅. If i0<k−2, then by Proposition 19, there
is a simple fold ϕj :F j+1!F j , where F j+1 is a connected graph, and a set S′⊆ϕ−1

j (S)
with a broken stairwell structure of height k−2 with a pit at level i0+1, and we may
repeat Step 2 for S′⊂(F j+1)?. If i0=k−2, then by Proposition 19, there is a simple fold
ϕj :F j+1!F j , where F j+1 is a connected graph, and a set S′⊆ϕ−1

j (S) with a stairwell
structure of height k−2, and we may repeat the entire process starting at Step 1 for
S′⊂(F j+1)?.

In this way, after a sequence of at most (k0−1)+(k0−3)+...+1 simple folds, we
obtain the desired sequence G=F 0, F 1, ..., Fn and desired set S′⊂(Fn)?. Clearly the
first coordinate projection π1:Fn×[0, 1]!Fn carries S′ one-to-one onto Fn, so there is
an inverse θ:Fn!S′.

Let g0=f . By Theorem 8, for each i=1, ..., n, there is a map gi:X!F i such that
dsup(ϕi�gi, gi−1)<εi, where the numbers εi>0 are chosen small enough so that if we let
g=ϕ1�...�ϕn�gn, then dsup(f, g)<ε.

Define h:X!G? by h=(ϕ1)?�...�(ϕn)?�θ�gn. We further assume that the numbers
εi are chosen small enough so that h(X)⊂U . Then π1�h=g, and hence dsup(f, π1�h)<ε.

For the converse, assume that X is compact and that the right side of the “if and
only if” statement holds. Let f :X![0, 1] be a map, and let ϕ:F![0, 1] be a simple fold
such that F is an arc. Consider a “zig-zag” set S⊂[0, 1]×(0, 1) which is the union of three
straight sets S1, S2, S3⊂[0, 1]×(0, 1) such that π1(Si)=ϕ(Fi) for i=1, 2, 3, S1∩S2=E(S1),
S2∩S3=E(S3), and S1∩S3=∅. Clearly S separates [0, 1]×{0} from [0, 1]×{1} in the
square [0, 1]×[0, 1]. Note also that there is a homeomorphism %:S!F such that ϕ�%=π1

on S.

Fix ε>0, and let U be a small neighborhood of S in [0, 1]×[0, 1] for which there is
a 1

2ε-retraction r:U!S—in particular, such that on U we have dsup(π1�r, π1)< 1
2ε. By

hypothesis, there is a map h:X!U such that dsup(f, π1�h)< 1
2ε. Let g=%�r�h:X!F .

Observe that ϕ�g=π1�r�h. Then we have dsup(ϕ�g, π1�h)=dsup(π1�r�h, π1�h)< 1
2ε and

dsup(f, π1�h)< 1
2ε, and hence dsup(f, ϕ�g)<ε.

Therefore, by Theorem 8, X is hereditarily indecomposable.

We now recall and prove Theorem 1, from which the classification of homogeneous
plane continua (and compacta) follows as detailed in the Introduction above.
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Theorem 1. A continuum X is homeomorphic to the pseudo-arc if and only if X

is hereditarily indecomposable and has span zero.

Proof. The pseudo-arc is hereditarily indecomposable and arc-like, and all arc-like
continua have span zero [29], hence the pseudo-arc has span zero.

For the converse, let X be a hereditarily indecomposable continuum in the Hilbert
cube [0, 1]N with span zero, and fix ε>0. We will show there is an ε-map from X to an
arc.

By Theorem 4, there exists δ>0 small enough so that if G⊂[0, 1]N is a graph and
I⊂[0, 1]N is an arc with endpoints p and q, such that the Hausdorff distance from X to
each of G and I is less than δ, then the set

M =
{
(x, y)∈G×(I\{p, q}) : d(x, y) < 1

6ε
}

separates G×{p} from G×{q} in G×I. We may assume δ6 1
6ε.

Let I⊂[0, 1]N be an arc with endpoints p and q such that dH(X, I)<δ. Since X has
span zero, by [31] we have that X is tree-like. Therefore, there exists a tree T⊂[0, 1]N

and a map f :X!T such that dsup(f, idX)<δ. It follows that dH(X, T )<δ. Hence, by
choice of δ, the set

M =
{
(x, y)∈T×(I\{p, q}) : d(x, y) < 1

6ε
}

separates T×{p} from T×{q} in T×I.
Let π1:T×I!T and π2:T×I!I denote the first and second coordinate projec-

tions, respectively. Since M is open, by Theorem 20 there is a map h:X!M such that
dsup(f, π1�h)< 1

6ε.
We claim that π2�h:X!I is such that dsup(π2�h, idX)< 1

2ε, which means that π2�h

is an ε-map. Indeed, given x∈X, we have

d(x, π2�h(x))6 d(x, f(x))+d(f(x), π1�h(x))+d(π1�h(x), π2�h(x))<δ+ 1
6ε+ 1

6ε 6 1
2ε,

where the second inequality follows from dsup(f, idX)<δ, dsup(f, π1�h)< ε
6 , and h(x)∈M ,

and the last inequality holds since δ6 1
6ε.

Therefore X is arc-like. Because X is hereditarily indecomposable and arc-like, it is
homeomorphic to the pseudo-arc [3].

8. Discussion and questions

A closely related classification problem of significant interest is: What are all the homo-
geneous hereditarily indecomposable continua? This question was asked by Jones in [17].
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It is known, by results of Prajs and Krupski [25], and of Rogers [50], that a homoge-
neous continuum is hereditarily indecomposable if and only if it is tree-like. Thus far,
the pseudo-arc is the only known example of a non-degenerate homogeneous tree-like
continuum.

Question 1. If X is a homogeneous tree-like (equivalently, hereditarily indecompos-
able) continuum, must X be homeomorphic to the pseudo-arc?

By the results of this paper, if there is another such continuum, it would necessarily
be non-planar. An affirmative answer to this question would follow if one could prove that
every homogeneous tree-like continuum has span zero. The question of whether every
homogeneous tree-like continuum has span zero was raised by Ingram in [7, Problem 93].

Theorem 20 can also be applied to the study of hereditarily equivalent spaces. A
continuum X is hereditarily equivalent if X is homeomorphic to each of its non-degenerate
subcontinua. In a forthcoming paper [14], the authors use Theorem 20 to show that the
only non-degenerate hereditarily equivalent plane continua are the arc and the pseudo-
arc.

Recall from the comments immediately preceding Theorem 4 that a continuum X

has surjective semispan zero [30] if every subcontinuum Z⊆X×X with π2(Z)=X meets
the diagonal ∆X={(x, x):x∈X}. It is proved in [46] that any continuum with surjective
semispan zero is tree-like. Our proof of Theorem 1 in fact establishes the following
slightly stronger characterization of the pseudo-arc.

Theorem 1′. A continuum X is homeomorphic to the pseudo-arc if and only if X

is hereditarily indecomposable and has surjective semispan zero.

It is clear that every continuum with span zero has surjective semispan zero, but it
is not known whether these two properties are equivalent.

Question 2. (Cf. [7, Problem 59]) Does every continuum with surjective semispan
zero have span zero?

Besides the property of span zero, another property related to arc-likeness is weak
chainability: a continuum is weakly chainable if it is the continuous image of an arc-
like continuum. This concept was introduced by Lelek [28] who used an equivalent
formulation involving weak chain covers. Lelek [28] and Fearnley [9] independently proved
the equivalence of these two notions, and observed that every arc-like continuum is the
continuous image of the pseudo-arc, which means that a continuum is weakly chainable
if and only if it is the continuous image of the pseudo-arc.
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It is known that all arc-like continua have span zero [29], and all span zero continua
are weakly chainable [46]. Therefore, if the answer to the following question is affirmative,
it would yield a still stronger characterization of the pseudo-arc than our Theorem 1.

Question 3. If X is a hereditarily indecomposable and weakly chainable continuum,
must X be homeomorphic to the pseudo-arc?

It is known (see e.g. [32] and [40]) that a hereditarily indecomposable and weakly
chainable continuum must be tree-like.

It is possible to formulate a version of Theorem 20 without any mention of separators
in the product of a graph with an arc, which more directly generalizes Theorem 8. To
this end, we give a generalization of the notion of a simple fold (Definition 5), which is
inspired by our definition of a stairwell structure (Definition 13).

Definition 21. A folding map on G is given by a graph F =F1∪...∪Fk and a function
ϕ:F!G, called the projection, which satisfy the following properties, where Gi=ϕ(Fi)
for i=1, ..., k:

(FM1) k is odd, and G1, ..., Gk are regular subsets of G;
(FM2) for each i=1, ..., k, ∂Gi=Ai∪Bi, where Ai and Bi are disjoint finite sets,

A1=Bk=∅, and Bi=Ai+1 for each i=1, ..., k−1;
(FM3) for each i=1, ..., k−1 there exists a neighborhood V of Bi=Ai+1 such that

Gi∩V =Gi+1∩V ;
(FM4) for each i=1, ..., k, Gi has consistent complement relative to Ai and to Bi;
(FM5) ϕ|Fi is a homeomorphism Fi!Gi for each i=1, ..., k;
(FM6) ϕ(Fi∩Fi+1)=Bi=Ai+1 for i=1, ..., k−1, and Fi∩Fj =∅ whenever |i−j|>1.

It is straightforward to see that given a folding map ϕ:F!G to a connected graph
G, one can construct a set S⊂G×(0, 1) with a stairwell structure corresponding to ϕ as
in the proof of Theorem 20. In this way, one can prove the following result.

Theorem 22. A compactum X is hereditarily indecomposable if and only if for any
map f :X!G to a connected graph G, any folding map ϕ:F!G, and any ε>0, there
exists a map g:X!F such that dsup(f, ϕ�g)<ε.

Observe that the linear ordering of the sets F1, ..., Fk, where each of these sets meets
only its immediate successor and predecessor, is an essential feature which causes the
correspondance between folding maps and sets in G×(0, 1) with stairwell structures (for
connected graphs G). However, inspired by the notion of a broken stairwell structure,
one could formulate a more general concept of a folding map, in which the adjacency
relation on the sets F1, ..., Fk (here we say that Fi and Fj are adjacent if Fi∩Fj 6=∅) is
a tree (or more generally any graph), instead of an arc (linear order).
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Question 4. Can one prove a version of Theorem 8 (and Theorem 22) which pertains
to a notion of folding maps ϕ:F!G for which the subgraphs of F on which ϕ is one-
to-one are allowed to have an adjacency relation which is a tree? More generally, under
what conditions on this adjacency relation does there exist, for any map f :X!G from
a hereditarily indecomposable compactum X and any ε>0, a map g:X!F such that
dsup(f, ϕ�g)<ε?
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