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1. Introduction

In this paper we study the Betti cohomology H�(S) of a smooth projective connected
Shimura variety S associated with a standard unitary group. Before stating our main
results we recall the construction of these Shimura varieties.

1.1. Shimura varieties associated with standard unitary groups

Let F be a totally real field and E be an imaginary quadratic extension of F . Let V be
a vector space defined over E and let ( · , ·) be a non-degenerate Hermitian form on V .
We shall always assume that the Hermitian space (V, ( · , ·)) is anisotropic, of signature
(p, q), with p, q>0, at one Archimedean place and positive definite at all other infinite
places. Note that if p+q>2 this forces F 6=Q.

Let G be the Q-reductive group obtained from the group of isometries of ( · , ·) on V ,
by restricting scalars from F to Q. The real group G(R) is isomorphic to the product∏d
j=1 U(Vτj ) where the Vτj ’s are the completions of V with respect to the different

complex embeddings τj of E considered up to complex conjugation. By hypothesis,
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we therefore have G(R)∼=U(p, q)×U(m)d−1. We denote by K∞ the maximal compact
subgroup of G.

A congruence subgroup of G(Q) is a subgroup Γ=G(Q)∩K, where K is a compact
open subgroup of G(Af ) of the finite adelic points of G. The (connected) Shimura
variety S=S(Γ)=Γ\X is obtained as the quotient of the Hermitian symmetric space
X=G/K∞=U(p, q)/(U(p)×U(q)) by the congruence subgroup Γ. We will refer to these
Shimura varieties as associated with a standard unitary group U(p, q) (associated with a
matrix algebra rather than a general simple algebra). We will be particularly interested
in the case q=1, when X identifies with the unit ball in Cp.

Since ( · , ·) is supposed to be anisotropic, the Shimura variety S is a projective
complex manifold; it has a canonical model, defined over a finite abelian extension of F ,
that fixes a choice of polarization. See §6 for more details.

1.2. Refined Hodge–Lefschetz decomposition of H�(S,C)

Let p0 be the tangent space of X associated with the class of the identity in U(p, q) and
let p be its complexification.

The group GL(p,C)×GL(q,C), seen as the complexification of the maximal compact
subgroup U(p)×U(q) of U(p, q), acts naturally on p. As first suggested by Chern [10] the
corresponding decomposition of

∧
�

p∗ into irreducible modules induces a decomposition
of the exterior algebra

∧
�(T ∗

CS) =Γ\U(p, q)×U(p)×U(q)

∧
�(p∗). (1.1)

This decomposition commutes with the Laplacian, giving birth to a decomposition of the
cohomology H�(S,C) refining the Hodge-Lefschetz decomposition, compare [10, bottom
of p. 105]. We refer to these spaces of sections as refined Hodge types.

The symmetric space X, being of Hermitian type, contains an element c belonging
to the center of U(p)×U(q) such that Ad(c) induces multiplication by i=

√
−1 on p0.

Let
g= k⊕p′⊕p′′

be the associated decomposition of g=glp+q(C)—the complexification of u(p, q). Thus
p′={X∈p:Ad(c)X=iX} is the holomorphic tangent space. The exterior algebra

∧
�

p

decomposes as ∧
�

p =
∧
�

p′⊗
∧
�

p′′. (1.2)

In the case q=1 (then X is the complex hyperbolic space of complex dimension p) it
is an exercise to check that the decomposition of (1.2) into refined Hodge type recovers
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the usual Hodge–Lefschetz decomposition. But in general the decomposition is much
finer and it is hard to write down the full decomposition of (1.2) into irreducible mod-
ules. Indeed: as a representation of GL(p,C)×GL(q,C) the space p′ is isomorphic to
V+⊗V ∗

− where V+=Cp (resp. V−=Cq) is the standard representation of GL(p,C) (resp.
GL(q,C)) and the decomposition of

∧
�

p′ is already quite complicated (see [16, equation
(19), p. 121]): ∧R(V+⊗V ∗

− )∼=
⊕
λ`R

Sλ(V+)⊗Sλ∗(V−)∗. (1.3)

Here we sum over all partitions of R (equivalently Young diagrams of size |λ|=R) and
λ∗ is the conjugate partition (or transposed Young diagram).

However, it follows from Vogan–Zuckerman [71] that very few of the irreducible
submodules of

∧
�

p∗ can occur as refined Hodge types of non-trivial coholomogy classes.
The ones which can occur (and do occur non-trivially for some Γ) are understood

in terms of cohomological representations of U(p, q). We review these cohomological
representations in §3. We recall in particular how to associate to each cohomological
representation π of U(p, q) a strongly primitive refined Hodge type. This refined Hodge
type corresponds to an irreducible representation V (λ, µ) of U(p)×U(q) which is uniquely
determined by some special pair of partitions (λ, µ) with λ and µ as in (1.3), see [4]; it
is an irreducible submodule of

Sλ(V+)⊗Sµ(V+)∗⊗Sµ∗(V−)⊗Sλ∗(V−)∗.

The first degree where such a refined Hodge type can occur is R=|λ|+|µ|. We will use
the notation Hλ,µ for the space of the cohomology in degree R=|λ|+|µ| corresponding
to this special Hodge type; more precisely, it occurs in the subspace H |λ|,|µ|.

The group SL(q)=SL(V−) acts on
∧
�

p∗. In this paper we shall concentrate on the
subring SH�(S,C) of the cohomologyH�(S,C) associated with the subalgebra (

∧
�

p∗)SL(q)

of
∧
�

p∗—that is elements that are trivial on the V−-side. We will refer to the refined
Hodge types occurring in SH�(S,C) as special refined Hodge types.

In §3.10 we introduce an element

cq ∈
(∧2q

p∗
)U(p)×SL(q)

,

which defines an invariant form on X and a class in SH2q(S,C); we shall refer to it as
the Chern class/form. The class cq∈H2q(S,C) is the qth power of the class associated
with our choice of polarization of S; see e.g. [4].

In particular note that if q=1 we have that SH�(S,C)=H�(S,C) and c1∈H2(S,C)
is the class associated with the polarization.
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In general if λ is the partition q+...+q (a times) then Sλ∗(V−) is the trivial repre-
sentation of SL(V−) and Sλ(V+)⊗Sλ∗(V−)∗ occurs in (

∧aq
p+)SL(q); in that case we use

the notation λ=a×q and it follows from Proposition 3.12 that(1)

SH�(S,C) =
p⊕

a,b=0

min{p−a,p−b}⊕
k=0

ckqH
a×q,b×q(S,C). (1.4)

(Compare with the usual Hodge–Lefschetz decomposition.) We set

SHaq,bq(S,C) =Haq,bq(S,C)∩SH�(S,C)

so that SH�(S,C)=
⊕p

a,b=0 SHaq,bq(S,C). Wedging with cq corresponds to applying the
qth power of the Lefschetz operator associated with our choice of polarization, it therefore
follows that the (usual) primitive part of SHaq,bq(S,C) is exactly Ha×q,b×q(S,C).

1.3. Main results

Vaguely stated our main result (Theorem 1.1) below asserts that the special cohomology
SHn(S,C) is generated, for n small enough by cup products of three types of classes:

� special classes of type (q, q), that is classes in SHq,q(S,C);
� holomorphic and anti-holomorphic special cohomology classes, that is classes in

SH�,0(S,C) and SH0,�(S,C);
� cycle classes of the special cycles of Kudla and Millson [46] (these are certain

rational linear combinations of Hecke translates of Shimura subvarieties of S).
To state the precise result recall that we may associate to an n-dimensional totally

positive Hermitian subspace of V a special cycle of complex codimension nq in S which
is a Shimura subvariety associated with a unitary group of type U(p−n, q) at infinity.
Since these natural cycles do not behave particularly well under pull-back for congruence
coverings, we, following Kudla [43], introduce weighted sums of these natural cycles and
show that their cohomology classes form a subring

SC�(S) =
p⊕

n=0

SC2nq(S)

of H�(S,Q). We shall show (see Theorem 8.2) that for each n, with 06n6p, we have

SC2nq(S)⊂SHnq,nq(S,C)∩H�(S,Q).

(1) In the body of the paper we will rather write b×q, a×q in order to write U(a, b) instead of
U(b, a).
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Note that, in particular, this gives strong restrictions on the possible refined Hodge types
that can occur in the cycle classes of special cycles. We furthermore give an intrinsic
characterization of the primitive part of the subring SC�(S) in terms of automorphic
representations. For quotients of the complex 2-ball (i.e. q=1 and p=2) this was already
obtained by Gelbart, Rogawski and Soudry [21]–[23].

We can now state our main theorem.

Theorem 1.1. Let a and b be integers such that 3(a+b)+|a−b|<2(p+q). First
assume that a 6=b. Then the image of the natural cup product map

SC2 min{a,b}q(S)×(SH|a−b|q,0(S,C)⊕SH0,|a−b|q(S,C))−!H(a+b)q(S,C)

spans a subspace whose projection into the direct factor Ha×q,b×q(S,C)⊕Hb×q,a×q(S,C)
is surjective. If a=b this is no longer true but the image of the natural cup product map

SC2(a−1)q(S)×SHq,q(S,C)−!H2aq(S,C)

spans a subspace whose projection into the direct factor Ha×q,a×q(S,C) is surjective.

Remark. We shall see that the subrings SH�,0(S,C), resp. SH0,�(S,C), are well un-
derstood. These are spanned by certain theta series associated with explicit cocyles.

The most striking case of Theorem 1.1 is the case where S is a ball quotient (q=1).
In this case SH�(S,C)=H�(S,C), and moreover, we prove that if a and b are integers
such that 3(a+b)+|a−b|<2(p+1), then the space Ha+b(S,Q) contains a polarized Q-
sub-Hodge structure X such that

X⊗QC =Ha,b(S,C)⊕Hb,a(S,C)

(see Corollary 6.2). In particular, not only the direct sum Ha,b(S,C)⊕Hb,a(S,C) is
defined over Q but

� if a 6=b the direct sum H |a−b|,0(S,C)⊕H0,|a−b|(S,C) is also defined over Q, and
� if a, b>1 the subspace H1,1(S,C) is also defined over Q.

Theorem 1.1 therefore implies that every rational class in Ha,b(S,C)⊕Hb,a(S,C) is a
rational linear combination of cup-products of rational (1, 1)-classes and push-forwards
of holomorphic or anti-holomorphic classes of special cycles.

Remarks. (i) This result cannot hold in degree close to p (the middle degree) as
there are not enough cycles. In fact we expect the condition 3(a+b)+|a−b|<2(p+1) to
be optimal.

(ii) We want to emphasize that the situation here is in two ways much more subtle
than in the orthogonal case studied in [7]. First the cohomology groups Ha,b(S,C) are in
general non-trivial for all possible bi-degrees (a, b). Secondly special cycles do not span,
even in codimension 1, and one has to consider arbitrary (1, 1)-classes.
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Now recall that the Lefschetz (1, 1) theorem implies that any rational (1, 1)-class is a
rational linear combination of classes of codimension one subvarieties of S. As a corollary
we obtain the strong form of the generalized Hodge conjecture for S in the corresponding
degrees: if c is an integer such that 2n−c<p+1 then

N cHn(S,Q) =Hn(S,Q)∩

( ⊕
a+b=n
a,b>c

Ha,b(S,C)

)
. (1.5)

Here N � is the coniveau filtration so that by definition N cH�(S,Q) is the subspace of
H�(S,Q) which consists of classes that are pushforwards of cohomology classes on a
subvariety of S of codimension at least c.

Remarks. (1) The inclusion ⊂ in (1.5) always holds. In particular N cHn(S,Q) is
trivial if n<2c.

(2) Equation (1.5) confirms Hodge’s generalized conjecture in its original formula-
tion (with coefficients in Q). Note however that—as it was first observed by Grothendieck
[28]—the right-hand side of (1.5) is not always a Hodge structure. Grothendieck has cor-
rected Hodge’s original formulation but in our special case it turns out that the stronger
form holds.

Observe that it is a consequence of the hard Lefschetz theorem [27, p. 122], that
N cH�(S,Q) is stable under duality (the isomorphism given by the hard Lefschetz theo-
rem). Indeed the projection formula states that cohomological push-forward commutes
with the actions of H�(S,C) on the cohomologies of a subvariety V of S and S, and hence
with the operators LV and LS of the hard Lefschetz theorem. Thus, if β∈Hk(S,C) is
the push-forward of a class α∈Hk−2c(V,C) for a subvariety V of codimension c, then the
dual class Lp−kS (β) is the push-forward of Lp−kV (α). In conclusion, we have the following
result.

Theorem 1.2. Let S be a connected compact Shimura variety associated with a
standard unitary group U(p, 1). Let n and c be non-negative integers such that 2n−c<
p+1 or 2n+c>3p−1, or equivalently n∈[0, 2p]\

]
p− 1

2 (p−c), p+ 1
2 (p−c)

[
. Then, we have

N cHn(S,Q) =Hn(S,Q)∩

( ⊕
a+b=n
a,b>c

Ha,b(S,C)

)
.

In particular, we have the following corollary.

Corollary 1.3. Let S be a connected compact Shimura variety associated with a
standard unitary group U(p, 1) and let n∈[0, p]\

]
1
3p,

2
3p
[
. Then every Hodge class in

H2n(S,Q) is algebraic.
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Tate [68] investigated the `-adic analogue of the Hodge conjecture. Recall that S
is defined over a finite abelian extension M of E. Fix a separable algebraic closure �M
of M . Seeing S as a projective variety over M , we put 	S=S×M �M . Given any prime
number ` we denote the `-adic étale cohomology of 	S by

H�

` (	S) =H�(	S,Q`).

Recall that fixing an isomorphism of C with the completion C` of an algebraic closure

Q` of Q` we have an isomorphism

H�

` (	S)⊗C`∼=H�(S,C). (1.6)

Given any finite separable extension L⊂�M of M we let GL=Gal(�M/L) be the corre-
sponding Galois group. Tensoring with Q` embeds L in 
Q`. The elements of GL then
extend to continuous automorphisms of C`. For j∈Z, let C`(j) be the vector space C`
with the semi-linear action of GL defined by (σ, z) 7!χ`(σ)jσ(z), where χ` is the `-adic
cyclotomic character. We define

H�

` (	S)(j) = lim−→(H�

` (	S)⊗C`(j))GL ,

where the limit is over finite degree separable extensions L of M . The `-adic cycle map

Zn(S)−!H2n
` (	S)

maps a subvariety to a class in H2n
` (	S)(n); the latter subspace is the space of Tate classes.

The Tate conjecture states that the `-adic cycle map is surjective, i.e. that every Tate
class is algebraic.

Now recall that Faltings [13] has proven the existence of a Hodge–Tate decomposition
for the étale cohomology of smooth projective varieties defined over number fields. In
particular, the isomorphism (1.6) maps Hm

` (	S)(j) isomorphically onto Hj,m−j(S,C).
From this, Theorem 1.2 and the remark following it, we get the following result.

Corollary 1.4. Let S be a neat connected compact Shimura variety associated
with a standard unitary group U(p, 1) and let n∈[0, p]\

]
1
3p,

2
3p
[
. Then every Tate class

in H2n(S,Q`) is algebraic.

Proof. It follows from the remark following Theorem 1.2 (and Poincaré duality) that
the whole subspaceHn,n(S,C) is spanned by algebraic cycles as long as n∈[0, p]\

]
1
3p,

2
3p
[
.

The corollary is then a consequence of the following commutative diagram.

H`(	S)(n) // Hn,n(	S,C)

Zn(S).

``AAAAAAAA

==zzzzzzzz
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The horizontal arrow is an isomorphism and the two diagonal arrows are the cycle maps.
We have proved that the image of the right diagonal arrow spans, and hence the image
of the left diagonal arrow spans.

1.4. General strategy of proof

The proof of Theorem 1.1 relies on the dictionary between cohomology and automor-
phic forms specific to Shimura varieties. This dictionary allows to translate geometric
questions on Shimura varieties into purely automorphic problems.

The first step consists in obtaining an understanding, in terms of automorphic forms,
of the special cohomology groups SHn(S,C) for n small enough: it is generated by projec-
tions of theta series. In other words, we prove the low-degree cohomological surjectivity
of the general theta lift (for classes of special refined Hodge type). See Theorem 7.2
which is deduced from Proposition 13.4. The proof goes through the following steps:

� One first argues at the infinite places. By Matsushima’s formula the cohomol-
ogy groups H�(S,C) can be understood in terms of the appearance in L2(Γ\U(p, q))
of certain—called cohomological—representations π∞ of U(p, q). It follows from the
Vogan–Zuckerman classification of these cohomological representations that the only co-
homological representations π∞ contributing to SH�(S,C) are of very simple type (see
Proposition 3.12). We denote by A(a×q, b×q), 06a, b6p, these representations; they
define the direct factors Ha×q,b×q(S,C) of SHaq,bq(S,C) and induce the refined Hodge–
Lefschetz decomposition (1.4).

� Second, one proves that for n=(a+b)q small enough—more precisely for 3(a+b)+
|a−b|<2(p+q)—any cuspidal automorphic representation of G(A) whose local compo-
nent at infinity is A(a×q, b×q) is in the image of the theta correspondence from a smaller
unitary group (Proposition 13.4). The proof proceeds as follows: we first prove a precise
criterion for a cuspidal automorphic representation π of G(A) whose local component at
infinity is sufficiently non-tempered to be in the image of the theta correspondence from
a smaller unitary group (Theorem 10.1). This criterion is analogous to a classical result
of Kudla and Rallis for the orthogonal-symplectic dual pair (relying on the doubling
method of Piatetskii–Shapiro and Rallis, and Rallis’ inner product formula). However in
the unitary case this criterion does not seem to have been fully worked out. Building on
Ichino’s regularized Siegel–Weil formula, we prove this criterion in §10. Second, one has
to show that the cuspidal automorphic π whose components at infinity are A(a×q, b×q),
with 3(a+b)+|a−b|<2(p+q), do satisfy this criterion. This relies on Arthur’s recent
endoscopic classification of automorphic representations of classical groups. Arthur’s
theory relates the classification of G to the classification of the non-connected group
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GL(N)o〈θ〉 (where θ is some automorphism of GL(N)) through the stabilization of the
twisted trace formula recently obtained by Moeglin and Waldspurger [58]. This is the
subject of §12 and §13.

The second step shows that not only is Ha×q,b×q(S,C) generated by theta lifts,
but by special theta lifts, where the special theta lift restricts the general theta lift to
(vector-valued) Schwartz functions that have, at the distinguished infinite place where
the unitary group is non-compact, a very explicit expression ϕaq,bq (see Theorem 9.1,
which depends crucially on Theorem 5.24).(2) The Schwartz functions at the other
infinite places are (scalar-valued) Gaussians and at the finite places are scalar-valued
and otherwise arbitrary. The main point is that the special Schwartz function ϕaq,bq

is a relative Lie algebra cocycle for the unitary group allowing one to interpret the
special theta lift cohomologically. In fact we work with the Fock model for the Weil
representation and with the cocycle ψaq,bq with values in the Fock model. This cocycle
corresponds to the cocycle ϕaq,bq with values in the Schrödinger model under the usual
intertwiner from the Fock model to the Schrödinger model.

The third step consists, if b=a+c, c>0, in showing that ψaq,bq factors as a cup
product ψaq,0∧ψ0,bq of the holomorphic and anti-holomorphic cocycles ψaq,0 and ψ0,bq.
This factorization does not hold for the cocycles ϕaq,bq—see Appendix C. These are local
(Archimedean) computations in the Fock model; see Propositions 5.4 and 5.19.

One concludes the proof of Theorem 1.1 by using the result of Kudla–Millson [46]
stating that the subspace of the cohomology of S generated by the cycle classes of special
cycles is exactly the one obtained from the special theta lift starting with ϕnq,nq at the
distinguished infinite place.

In the paper we do not follow the above order. We rather start with the local com-
putations (describing the cohomological representations and constructing the cocycles
ψaq,bq). We then discuss the geometry of the Shimura varieties and reduce the proofs
of our main results to purely automorphic statements. We conclude with the proofs of
these automorphic results. This will hopefully help a reader willing to accept them to
follow more easily the overall structure of the proofs of our main results.

Acknowledgements. We would like to thank Claire Voisin for suggesting that we
look at the generalized Hodge conjecture and Don Blasius and Laurent Clozel for useful
references. We thank the referees for their work. Their remarks and suggestions helped
us improve the exposition.

(2) This step generalizes a special case of a result of Hoffmann and He [32].
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Part 1. Local computations

2. Hermitian vector spaces over C

We begin with some elementary linear algebra that will be important to us in what
follows. The results we prove are standard, the main point is to establish the notation
that will be useful later. For this section the symbol ⊗ will mean tensor product over R,
in the rest of the paper it will mean tensor product over C.

2.1. Notation

Let V be a complex vector space equipped with a non-degenerate Hermitian form ( · , ·).
Our Hermitian forms will be complex linear in the first argument and complex anti-
linear in the second. We will often consider V as a real vector space equipped with the
almost complex structure J given by Jv=iv. When there are several vector spaces under
consideration we write JV instead of J . We will give V ∗ the transpose almost complex
structure (not the inverse transpose almost complex structure) so

(Jα)(v) =α(Jv). (2.1)

We will sometimes denote this complex structure by JV ∗ .
Finally recall that we have a real-valued symmetric form B and a real-valued skew-

symmetric form 〈 · , · 〉 on V considered as a real vector space associated with the Her-
mitian form ( · , ·) by the formulas

B(v1, v2) =Re(v1, v2) and 〈v1, v2〉=− Im(v1, v2),

so that we have
B(v1, v2) = 〈v1, Jv2〉. (2.2)

2.2. The complexification of a Hermitian space and the subspaces of type
(1, 0) and (0, 1) vectors

We now form the complexification V ⊗C=V ⊗RC of V , where V is considered as real
vector space. The space V ⊗C has two commuting complex structures namely J⊗1 and
IV ⊗i. We define the orthogonal idempotents p′ and p′′ in EndR(V ⊗C) by

p′ = 1
2 (IV ⊗1−JV ⊗i) and p′′ = 1

2 (IV ⊗1+JV ⊗i). (2.3)

One readily verifies the equations

p′�p′ = p′, p′′�p′′ = p′′ and p′�p′′ = p′′�p′ =0. (2.4)
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In what follows if v∈V is given we will abbreviate p′(v⊗1) by v′ and p′′(v⊗1) by v′′. We
will write zv′ for (1⊗z)v′ and zv′′ for (1⊗z)v′′. We note the formulas

p′(zv) = zp′(v) and p′′(zv) = z̄p′′(v). (2.5)

We define V ′=p′(V ⊗C) and V ′′=p′′(V ⊗C). From (2.4) we obtain V ⊗C=V ′⊕V ′′.
An element of V ′ is said to be of type (1, 0) and an element of V ′′ is said to be of type
(0, 1). We will identify V with the subspace V ⊗1 in V ⊗C.

2.3. Coordinates on V and the induced coordinates on V ′ and V ′′

In this subsection only we will assume that the Hermitian form ( · , ·) on V is positive
definite. Let {v1, ..., vn} be an orthonormal basis for V over C. Then we obtain induced
bases {v′1, ..., v′n} and {v′′1 , ..., v′′n} for V ′ and V ′′, respectively. For 16j6n, we let zj(v)
be the jth coordinate of v∈V relative to the basis {v1, ..., vn}, z′j(v′) be the j coordinate
of v′∈V ′ relative to the basis {v′1, ..., v′n} and z′′j (v′) be the jth coordinate of v′′∈V ′′

relative to the basis {v′′1 , ..., v′′n}. Let v∈V . Then, by applying p′ and p′′ to the equation
v=
∑n
j=1 zj(v)vj and using equation (2.5) we get the following result.

Lemma 2.1. We have
(1) z′j(v

′)=zj(v)=(v, vj);
(2) z′′j (v′′)=zj(v)=(vj , v).

2.4. The induced Hodge decomposition of V ∗

There is a corresponding decomposition V ∗⊗C=(V ∗)′⊕(V ∗)′′ induced by the almost
complex structure JV ∗ . The complexified canonical pairing (V ∗⊗C)⊗C(V ⊗C)!C given
by (α⊗z)⊗C(v⊗w)!(α(v))(zw) induces isomorphisms (V ∗)′!(V ′)∗ and (V ∗)′′!(V ′′)∗.
We will therefore make the identifications

(V ∗)′ =(V ′)∗ and (V ∗)′′ =(V ′′)∗

without further mention. In particular, if {v1, ..., vn} is a basis for V and {f1, ..., fn} is
the dual basis for V ∗, then {f ′1, ..., f ′n} is the basis for (V ∗)′ dual to the basis {v′1, ..., v′n}
for V ′.

2.5. The positive almost complex structure J0 associated with a Cartan
involution

We now assume that (V, ( · , ·)) is an indefinite Hermitian space of signature (p, q). We
choose once and for all an orthogonal splitting of complex vectors spaces V =V+⊕ V− of
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V such that the restriction of ( · , ·) to V+ is positive definite and the restriction to V− is
negative definite. Such a splitting is determined by the choice of V− and consequently
corresponds to a point in the symmetric space of V . We can obtain a positive definite
Hermitian form ( · , ·)0 depending on the choice of V− by changing the sign of ( · , ·) on V−.
The positive definite form ( · , ·)0 is called (in classical terminology) a minimal majorant
of ( · , ·). Let θV− be the involution which is equal to IV+ on V+ and to −IV− on V−. Since
V+ and V− are complex subspaces J and θV− commute. Then θV− is a Cartan involution
of V in the sense that it is an order two isometry of ( · , ·) such that its centralizer in
U(V ) is a maximal compact subgroup. All Cartan involutions are of the form θV− for
some splitting of V =V+⊕V− as above. We note that, for v1, v2, v∈V , we have

(v1, v2)0 =(v1, θV−v2) and |(v, v)|6 (v, v)0. (2.6)

For this reason ( · , ·)0 is called a (minimal) majorant of ( · , ·).
By taking real and imaginary parts of ( · , ·)0 we obtain a positive definite symmetric

form B0( · , ·) and a symplectic form 〈· , ·〉0 such that

(v1, v2)0 =B0(v1, v2)−i〈v1, v2〉0.

Define a new complex structure J0 by

J0 = θV− �J =J �θV− .

We note that the new form ( · , ·)0 is still Hermitian with respect to the old complex
structure J ,(3) that is

(Jv1, v2)0 = i(v1, v2)0 and (v1, Jv2)0 =−i(v1, v2)0,

and that J0 is an isometry of ( · , ·)0, that is

(J0v1, J0v2)0 =(v1, v2)0.

We claim that
B0(v1, v2) = 〈v1, J0v2〉. (2.7)

Indeed we have

B0(v1, v2) =Re(v1, v2)0 =Re(v1, θV−v2) = Im i(v1, θV−v2) = Im(−(v1, JθV−v2))

=−Im(v1, JθV−v2) = 〈v1, JθV−v2)〉= 〈v1, J0v2〉.

The claim follows.
It follows from (2.7) that J0 is a positive definite almost complex with respect to the

symplectic form 〈· , ·〉. For the convenience of the reader we recall this basic definition.

(3) However ( · , ·)0 is not Hermitian with respect to the new complex structure J0.
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Definition 2.2. Given a symplectic form 〈· , ·〉 and an almost complex structure J0,
we say that 〈· , ·〉 and J0 are compatible if J0 is an isometry of 〈· , ·〉. We say that J0 is
positive (definite) with respect to 〈· , ·〉 if J0 and 〈· , ·〉 are compatible and moreover the
symmetric form B0(v1, v2)=〈v1, J0v2〉 is positive definite.

It now follows from the above discussion that there is a one-to-one correspondence
between minimal Hermitian majorants of ( · , ·), positive almost complex structures J0

commuting with J such that the product J0J is a Cartan involution and points of the
symmetric space of U(V ) (subspaces Z of dimension q such that the restriction of ( · , ·)
to Z is negative definite). Henceforth, we will call such positive complex structures J0

admissible.

We will therefore have to deal with two different almost complex structures and
hence two notions of type (1, 0) vectors. To deal with this we use the following notation.

Definition 2.3. (1) If U is a subspace of V which is J-invariant then U ′, resp. U ′′,
will denote the subspace of type (1, 0), resp. type (0, 1), vectors for the indefinite almost
complex structure J acting on U⊗C, for example V ′

+ is the eigenspace, corresponding to
the eigenvalue i, of J acting on V+⊗C.

(2) If U is a subspace of V which is J0-invariant then U ′0 , resp. U ′′0 , will denote the
subspace of type (1, 0), resp. type (0, 1), vectors for the definite almost complex structure
J0 acting on U⊗C.

3. Cohomological unitary representations

3.1. Notation

Keep the notation as in §2 and let m=p+q. In this section G=U(V )∼=U(p, q) and K∼=
U(p)×U(q) is a maximal compact subgroup of G associated with the Cartan involution
θ=θV− defined in the previous subsection. We let g0 be the real Lie algebra of G and
g0=k0⊕p0 be the Cartan decomposition associated with the Cartan involution θ. If l0 is
a real Lie algebra, we denote by l its complexification l=l0⊗C.

3.2. Cohomological representations

A unitary representation π of G is cohomological if it has non-zero (g,K)-cohomology
H�(g,K;Vπ).

Cohomological representations are classified by Vogan and Zuckerman in [71]. Let
t0 be a Cartan subalgebra of k0. A θ-stable parabolic subalgebra q=q(X)⊂g is associated
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with an element X∈it0 and defined as the direct sum

q = l⊕u

of the centralizer l of X and the sum u of the positive eigenspaces of ad(X). Since
θX=X, the subspaces q, l and u are all invariant under θ, so

q =(q∩k)⊕(q∩p),

and so on. Let R=dim(u∩p).
Let h be a theta-stable Cartan subalgebra in l (and hence a Cartan subalgebra in g)

containing t. Choose a system of positive roots ∆+(l) for the roots of h in l. Then the
union of the roots in ∆+(l) and the positive roots in u is a positive system of roots for the
theta-stable Cartan subalgebra h. We may assume that the resulting system of positive
roots for the pair (g, h) includes a positive system for the pair (k, t).

Associated with q there is a well-defined and irreducible unitary representation Aq

of G, which is characterized by the following properties. Let e(q) be a generator of the
line

∧R(u∩p); we shall refer to such a vector as a Vogan–Zuckerman vector. Then e(q)
is the highest weight vector of an irreducible representation V (q) of K contained in

∧R
p

(and whose highest weight is thus necessarily 2%(u∩p)). The representation Aq is then
uniquely characterized by the following two properties:

(1) Aq is unitary with trivial central character and with the same infinitesimal
character as the trivial representation;

(2) HomK(V (q), Aq) 6=0.
Note that (the equivalence class of) Aq only depends on the intersection u∩p so that

two θ-stable parabolic subalgebras q=l⊕u and q′=l′⊕u′ which satisfy u∩p=u′∩p yield
the same (equivalence class of) cohomological representation. Moreover, V (q) occurs
with multiplicity 1 in Aq and

∧R
p, and

H�(g,K;Aq)∼=HomL∩K
(∧

�−R(l∩k),C
)
. (3.1)

Here L is the connected subgroup of G with complexified Lie algebra l.
In the next paragraphs we give a more explicit parametrization of the cohomological

modules of G.

3.3. The Hodge decomposition of the complexified tangent space p of the
symmetric space of U(p, q) at the basepoint

We first give the standard development of the Hodge decomposition of p. In what follows
we will use a subscript zero to denote a real algebra (subspace of a real algebra) and omit
the subscript zero for its complexification. For example we have g0=u(p, q) and g=g0⊗C.
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We start by making the usual identification g∼=End(V ) given by

A⊗z 7−! zA, A∈ g0. (3.2)

Rather than using pairs of numbers between 1 and p+q (for example ej,k) to denote the
usual basis elements of End(V ) we will use the isomorphism End(V )∼=V ⊗V ∗; see below.
We then have

g=V ⊗V ∗ =(V+⊗V ∗
+ )⊕(V+⊗V ∗

− )⊕(V−⊗V ∗
+ )⊕(V−⊗V ∗

− ).

In terms of the above splitting (and identification) we have

k =(V+⊗V ∗
+ )⊕(V−⊗V ∗

− ) and p =(V+⊗V ∗
− )⊕(V−⊗V ∗

+ ). (3.3)

3.4. Now consider a basis {v1, ..., vm} for V adapted to the decomposition V =V+⊕V−.
The following index convention will be useful in what follows. We furthermore suppose
that

(vα, vβ) = δα,β and (vµ, vν) =−δµ,ν .

Then the matrix of the Hermitian form ( · , ·) on V with respect to the basis {vj}mj=1 is
the diagonal matrix

( 1p

−1q

)
. We therefore end up with the usual matrix realization of

the Lie algebra g0 of U(p, q), where an m×m complex matrix
(
A B
C D

)
belongs to g0 if and

only if A∗=−A, D∗=−D and B∗=C. In that realization we have
(1) k0=

(
A 0
0 D

)
, with A and D skew-Hermitian;

(2) k=
(
A 0
0 D

)
, with A, resp. D, being an arbitrary p×p, resp. q×q, complex matrix;

(3) p0=
(

0 B
B∗ 0

)
, with B being an arbitrary p×q complex matrix;

(4) p=
(

0 B
C 0

)
, with B, resp. C, being an arbitrary p×q, resp. q×p, complex matrix.

3.5. For v∈V we define v∗∈V ∗ by

v∗(u) = (u, v), (3.4)

and v1⊗v∗2∈V ⊗V ∗=End (V )∼=g by

(v1⊗v∗2)(v) = (v, v2)v1. (3.5)

If f∈V ∗ and v∈V one can define v⊗f∈End (V ) in the same way and obtain the canonical
identification between V ⊗V ∗ and End(V ). However, in what follows it will be more
useful for us to use the identification of equation (3.5).
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We next note that we may identify V ∗⊗V with (V ⊗V ∗)∗=End(V )∗=End(V ∗) by
the formula

〈f1⊗v1, v2⊗f2〉= f1(v2)f2(v1).

We will denote by tA the element of End(V ∗) corresponding to A∈End(V ), and hence
tA(f)=f �A. Using the above identifications, we have

t(v⊗f) = f⊗v.

The adjoint map A!A∗ relative to the Hermitian form ( · , ·) is the anti-linear map given
by

(u⊗v∗)∗ = v⊗u∗.

Note that A∈End(V ) is in g0 if and only if A∗=−A. Hence the conjugation map σ0 of
End(V ) relative to the real form g0 is given by σ0(u⊗v∗)=−v⊗u∗. From either of the
two previous sentences we get the following result.

Lemma 3.1. Let x, y∈V . Then x⊗y∗−y⊗x∗ and i(x⊗y∗+y⊗x∗) are in g0.

We now define a basis for p0 by defining the basis vectors eα,µ and fα,µ, 16α6p

and p+16µ6p+q. We will not need a basis for k0. By Lemma 3.1, it follows that the
elements below are in fact in g0. Here the matrices only show the action on the pair of
basis vectors vj , vk in the formula immediately to the left of the matrix in the order in
which they are given. All other basis vectors are sent to zero

eα,µ =−vα⊗v∗µ+vµ⊗v∗α =
(

0 1
1 0

)
and fα,µ = i(−vα⊗v∗µ−vµ⊗v∗α) =

(
0 i

−i 0

)
.

We now describe the Ad(K)-invariant almost complex structure Jp acting on p

that induces the structure of Hermitian symmetric space on U(p, q)/(U(p)×U(q)). Let
ζ=eiπ/4. Then ζ satisfies ζ2=i. Let a(ζ) be the diagonal m×m block matrix given by

a(ζ) =
(
ζ 0
0 ζ−1

)
.

Then a(ζ) is in the center of U(p)×U(q) and the adjoint action of Ad(a(ζ)) on p induces
the required almost complex structure, that is we have

Jp =Ad(a(ζ)). (3.6)

We have

a(ζ)vα = ζvα, a(ζ)vµ = ζ−1vµ, a(ζ)v∗α = ζ−1v∗α and a(ζ)v∗µ = ζv∗µ. (3.7)

In particular, for 16α6p and p+16µ6p+q, we have

Jpeα,µ = fα,µ and Jpfα,µ =−eα,µ.
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3.6. We define elements xα,µ in p′ and yα,µ in p′′, and thus also in g, by

xα,µ = −vα⊗v∗µ =
(

0 1
0 0

)
, whence Jpxα,µ = ixα,µ,

yα,µ =σ0(xα,µ) = vµ⊗v∗α =
(

0 0
1 0

)
, whence Jpyα,µ =−iyα,µ.

The set {xα,µ :16α6p and p+16µ6p+q} is a basis for p′. In the corresponding
matrix realization we have

p′ =V+⊗V ∗
− =

{(
0 B

0 0

)
:B ∈Mp×q(C)

}
.

Similarly, the set {yα,µ :16α6p, p+16µ6p+q} is a basis for p′′ and we have

p′′ =V−⊗V ∗
+ =

{(
0 0
C 0

)
:C ∈Mq×p(C)

}
.

Hence we have
σ0(p′) = p′′.

As a consequence of the above computation, we note that we have isomorphisms of
K=U(p)×U(q) modules

p′∼=Mp×q(C) and p′′∼=Mq×p(C),

and the above splitting into B and C blocks corresponds to the splitting p=p′⊕p′′.
Using the identification (U⊗U∗)∗=U∗⊗U we have

(p′)∗ =V ∗
+ ⊗V− and (p′′)∗ =V ∗

−⊗V+. (3.8)

Hence the transpose φ:V ⊗V ∗!V ∗⊗V given by t(v⊗f)=f⊗v induces isomorphisms
p′′!(p′)∗ and p′!(p′′)∗. On the above basis these maps are given by

tyα,µ = t(vµ⊗v∗α) = v∗α⊗vµ and txα,µ = t(−vα⊗v∗µ) =−v∗µ⊗vα. (3.9)

We set ξ′α,µ=v∗α⊗vµ and ξ′′α,µ=−v∗µ⊗vα.
We now give two definitions that will be important in what follows. The notation

below is chosen to help clarify that the adjoints of the cocycles ψbq,aq, of degree (a+b)q,
that we construct and study in §5 are completely decomposable in the sense that their
values at a point of x∈V a+b are wedges of (a+b)q elements of p∗.



18 n. bergeron, j. millson and c. moeglin

Definition 3.2. Let x∈V+. Then we define x̃∈
∧q

p′=
∧q(V+⊗(V−)∗) by

x̃=(−1)q(x⊗v∗p+1)∧...∧(x⊗v∗p+q). (3.10)

Remark. By [17, p. 80], there is an equivariant embedding

fq: Symq(V+)⊗
∧q(V−)∗−!

∧q(V+⊗(V−)∗),

and hence x̃=f(x⊗q⊗(v∗p+1∧...∧v∗p+q)).

Suppose now that f∈V ∗
+ . We give the following definition.

Definition 3.3. We define f̃∈
∧q

p′′=
∧q(V−⊗(V+)∗) by

f̃ =(vp+1⊗f)∧...∧(vp+q⊗f). (3.11)

Using the transpose maps of equation (3.9) we obtain tf̃∈
∧q(p′)∗=∧q((V+)∗⊗V−)

given by
tf̃ =(f⊗vp+1)∧...∧(f⊗vp+q) (3.12)

and tx̃∈
∧q((p′′)∗)=∧q((V−)∗⊗V+) is given by

tx̃=(−1)q(v∗p+1⊗x)∧...∧(v∗p+q⊗x). (3.13)

3.7. Theta-stable parabolic subalgebras

Fix the Borel subalgebra of k to be the algebra of matrices in k=u(p)×u(q) (block diago-
nal), which are upper-triangular on V+=Cp and lower-triangular on V−=Cq with respect
to these bases. We may take it0 as the algebra of diagonal matrices (t1, ..., tp+q).

The roots of t occuring in p′ are the linear forms tα−tµ. We now classify all the
θ-stable parabolic subalgebras q of g. Let X=(t1, ..., tp+q) be such that its eigenvalues
on the Borel subalgebra are non-negative. Therefore

t1 > ...> tp and tp+q > ...> tp+1.

In [4] we associate two Young diagrams λ+ and λ− to X:
� The diagram λ+ is the subdiagram of p×q which consists of the boxes of coordi-

nates (α, µ) such that tα>tµ.
� The diagram λ− is the subdiagram of p×q which consists of the boxes of coordi-

nates (α, µ) such that tp−α+1<tq−µ+1.
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A description of the possible pairs (λ+, λ−) that can occur is given in [4, Lemma 6].(4)
Recall that we have associated with the parabolic subalgebra q=q(X) the represen-

tations V (q) and Aq. The equivalence classes of both these representations only depend
on the pair (λ+, λ−). We will therefore denote by V (λ+, λ−) and A(λ+, λ−) these repre-
sentations.

3.8. To any Young diagram λ, we associate the irreducible K-representation

V (λ) =Sλ(V+)⊗Stλ(V−)∗.

Here Sλ( ·) denotes the Schur functor (see [17]) and tλ⊂q×p is the transposed diagram.
The K-representation V (λ) occurs with multiplicity one in

∧|λ|(V+⊗V ∗
− ), where |λ| is the

size of λ. The K-representation V (λ+, λ−) is the Cartan product of V (λ+) and V (λ−)∗.
We recall that the Cartan product of V (λ+) and V (λ−)∗ is the irreducible submodule of
V (λ+)⊗V (λ−)∗ generated by the tensor product of a highest weight vector for V (λ+) and
a highest weight vector for V (λ−). Hence the highest weight of the Cartan product is the
sum of the two highest weights of the factors. In our special situation—that of Vogan–
Zuckerman K-types—V (λ+, λ−) occurs with multiplicity 1 in

∧R
p, where R=|λ+|+|λ−|.

Note that if λ⊂p×q is a Young diagram, we have

Sλ(V+)∗∼=Sλ∨(V+)⊗(
∧p
V+)−q,

where λ∨=(q−λp, ..., q−λ1) is the complementary diagram of λ in p×q. We conclude
that we have

V (λ+, λ−)∼=(Sλ++λ∨−
(V+)⊗(

∧p
V+)−q)⊗(Stλ−+tλ∨+

(V−)⊗(
∧q
V−)−p). (3.14)

3.9. Recall that, as a GL(V+)×GL(V−)-module, we have

∧R(V+⊗V ∗
− )∼=

⊕
λ`R

Sλ(V+)⊗Stλ(V−)∗ =
⊕
λ`R

V (λ) (3.15)

see [16, equation (19), p. 121]. Here we sum over all partitions of R (equivalently Young
diagrams of size |λ|=R). We will see that, as far as we are concerned with special
cycles, we only have to consider the subalgebra (

∧
�

p)special of
∧
�

p generated by the
submodules

∧
�(V+⊗V ∗

− )SL(V−) of
∧
�

p′, resp.
∧
�((V+⊗V ∗

− )∗)SL(V−) of
∧
�

p′′. This amounts

(4) Beware that in this reference µ refers to a subdiagram of p×q which—in our current notation—
corresponds to the complementary diagram of λ− in p×q.
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to considering the submodule of (3.15) which corresponds to the λ of type b×q=(qb).
We conclude that

(
∧
�

p)special =
p⊕

a,b=0

Sb×q(V+)⊗Sa×q(V+)∗⊗(
∧q
V−)a−b

=
p⊕

a,b=0

Sb×q(V+)⊗S(p−a)×q(V+)⊗(
∧p
V+)−q⊗(

∧q
V−)a−b.

(3.16)

This singles out certain parabolic subalgebras that we describe in more detail below.
Before that we recall the description of the invariant forms.

3.10. The Chern form

Let λ⊂p×q be a Young diagram. Given a basis {z`}` of V (λ) we denote by {z∗` }` the
dual basis of V (λ)∗ and set

Cλ =
∑
`

z`⊗z∗` ∈V (λ)⊗V (λ)∗⊂
∧|λ|,|λ|

p.

Here
∧|λ|,|λ|

p denotes the subspace of
∧∗

p of elements of Hodge bidegreee (|λ|, |λ|).
The element Cλ is independent of the choice of basis {z`}` and belongs to (

∧
�

p)K .
Now Cλ belongs to (

∧
�

p)special if and only if λ=n×q, for some n=0, ..., p, and Cn×q=Cnq
in
∧
�

p, where Cq=C(q) is the Chern class. We conclude the following result.

Proposition 3.4. The subspace of K-invariants in (
∧
�

p)special is the subring gen-
erated by the Chern class Cq.

The (q, q)-invariant form on the symmetric space X associated with the Chern class
is called the Chern form in [46] where it is expressed in terms of the curvature 2-forms
Ωµ,ν=

∑p
α=1 ξ

′′
αν∧ξ′αν by the formula

cq =
(
−i
2π

)q 1
q!

∑
σσ̄∈Sq

sgn(σσ̄)Ωp+σ(1),p+σ̄(1)∧...∧Ωp+σ(q),p+σ̄(q) ∈
∧q,q

p∗. (3.17)

We now give a detailed description of the modules occuring in (3.16).

3.11. The theta-stable parabolic Qb,0 and the Vogan–Zuckerman vector
e(bq, 0)

We first define the theta-stable parabolics Qb,0 which will be related to the cohomology
of type (bq, 0). These parabolics will be maximal parabolics. Suppose that b is a positive
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integer such that b<p. Let Eb⊂V+ be the span of {v1, ..., vb}. We define Qb,0 to be the
stabilizer of Eb. Equivalently, Qb,0 is the theta-stable parabolic corresponding to

X =(1, 1, ..., 1︸ ︷︷ ︸
b

, 0, ..., 0)∈ it0.

We now compute the nilradical of the Lie algebra qb,0 of Qb,0.
Let Fb be the orthogonal complement of Eb in V+, whence Fb=Span{vb+1, ... vp}.

Hence, since V =V+⊕V−, we have

V =Eb⊕Fb⊕V−. (3.18)

Put Cb=Fb⊕V−. Thus we have decomposed V into the subspace Eb and its orthogonal
complement Cb in V . Let ub,0 be the nilradical of the Lie algebra qb,0 of the Lie group
Qb,0. We now have the following lemma.

Lemma 3.5. Using the identification End(V )∼=V ⊗V ∗,

ub,0∩p∼=Eb⊗V ∗
− ⊂ p′.

Hence {−vα⊗v∗µ :16α6b and p+16µ6p+q} is a basis for ub,0∩p.

Proof. It is standard that the nilradical of the maximal parabolic subalgebra which
is the stabilizer of a complemented subspace Eb, is the space of homomorphisms from
the given complement Cb into Eb whence, using the above identification,

ub,0 =Eb⊗C∗
b =(Eb⊗F ∗

b )⊕(Eb⊗V ∗
− ).

Clearly we have
ub,0∩k =Eb⊗F ∗

b and ub,0∩p =Eb⊗V ∗
− .

The next lemma follows immediately from Lemma 3.5.

Lemma 3.6. The vector e(bq, 0)∈
∧bq,0

p∼=
∧bq

p′ associated with qb,0 by

e(bq, 0) = (−1)bq ṽ1∧...∧ṽb (3.19)

is a Vogan–Zuckerman vector for the theta stable parabolic qb,0.

Note that Sb×q(V+) is the irreducible representation for Aut(V+) which has highest
weight q$b, where $b is the bth fundamental weight (i.e. the highest weight of the bth
exterior power of the standard representation). From Lemma 3.6 and the general theory
of Vogan–Zuckerman, we get the following lemma.
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Lemma 3.7. The Vogan–Zuckerman vector e(bq, 0) is a highest weight vector of the
irreducible KC∼=GL(V+)×GL(V−)-submodule

V (b×q) :=V (b×q, 0) =Sb×q(V+)⊗(
∧q(V ∗

− ))b in
∧bq,0

p.

Remark. As a representation of KC=GL(p)×GL(q) the representation

V (b×q)∼=Sb×q(Cp)⊗(
∧q(Cq))−b

has highest weight
(q, ..., q︸ ︷︷ ︸

b

, 0, ..., 0︸ ︷︷ ︸
p−b

;−b, ...,−b︸ ︷︷ ︸
q

).

3.12. The theta-stable parabolic Q0,a and the Vogan–Zuckerman vector
e(0, aq)

Suppose that a is a positive integer such that a<p. Once again we let Ea be the span of
{v1, ..., va} and Fa be the span of {va+1, ..., vp}. Let F ∗

a be the span of {v∗p−a+1, ..., v
∗
p}.

We define Q0,a to be the stabilizer of F ∗
a⊂V ∗. We note that the stabilizer of F ∗

a is the
same as the stabilizer of its annihilator (F ∗

a )⊥=Ea+V−⊂V . Thus Q0,a is the theta-stable
parabolic corresponding to

X =(1, 1, ..., 1︸ ︷︷ ︸
a

, 0, 0, ..., 0︸ ︷︷ ︸
p−a

, 1, 1, ..., 1︸ ︷︷ ︸
q

)∈ it0.

The proof of the following lemma is similar to that of Lemma 3.5. Let u0,a be the
nilradical of the Lie algebra q0,a of the parabolic Q0,a.

Lemma 3.8. We have
u0,a∩p∼=V−⊗F ∗

a ⊂ p′′.

Hence {vµ⊗v∗α :p−a+16α6p and p+16µ6p+q} is a basis for u0,a∩p.

Using (3.12), we obtain the Vogan–Zuckerman vector e(0, aq)∈
∧0,aq

p=
∧aq

p′′ as

e(0, aq) = ṽ∗p−a+1∧...∧ṽ∗p.

We observe that
e(0, aq) =±w̃0σ0(e(aq, 0))

where w̃0 is the element of U(p) that exchanges the basis vectors vα and vp+1−α, 16α6p.
The reader will also observe that e(0, aq) is a weight vector for the diagonal Cartan
subalgebra in u(p)C with weight

(0, ..., 0︸ ︷︷ ︸
p−a

,−q, ...,−q︸ ︷︷ ︸
a

),
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that is a highest weight of the representation Sa×q((Cp)∗). From Lemma 3.8 we have the
following result.

Lemma 3.9. The Vogan–Zuckerman vector e(0, aq) is a generator for
∧aq(u0,aq∩p).

As such it is a highest weight vector for Q0,a and (from the above weight formula) it is the
highest weight vector for the irreducible KC-submodule V (0, a×q)=S(a×q)(V ∗

+ )⊗(
∧q
V−)a

in
∧0,aq

p.

Remark. As a representation of KC=GL(p)×GL(q) the representation

Sa×q((Cp)∗)⊗(
∧qCq)a

has highest weight
(0, ..., 0︸ ︷︷ ︸
p−a

,−q, ...,−q︸ ︷︷ ︸
a

; a, ..., a︸ ︷︷ ︸
q

).

3.13. The theta-stable parabolic Qb,a and the Vogan–Zuckerman vector
e(bq, aq)

We now define the theta-stable parabolics Qb,a, which will shortly be related to the cocy-
cles of Kudla–Millson and their generalization. Here we assume that a and b are positive
integers satisfying a+b6p, and hence b6p−a. The associated theta-stable parabolics
will be next-to-maximal parabolics, that is stabilizers of 2-step flags.

As before, we let Eb⊂V+ be the span of {v1, ..., vb} and Ep−a=F ∗
p−a⊂V+ be the span

of {v1, ..., vp−a}. Since b6p−a, we find that Eb⊂Ep−a and we obtain the 2-step flag

Fb,a =Eb⊂Ep−a+V−⊂V.

Let Qb,a be the stabilizer of the flag Fb,a. Thus Qb,a is the theta-stable parabolic corre-
sponding to

X =(1, 1, ..., 1︸ ︷︷ ︸
a

, 0, 0, ..., 0︸ ︷︷ ︸
p−a

,−1,−1, ...,−1︸ ︷︷ ︸
q

)∈ it0.

Since Qb,a is the intersection of stabilizers of the subspaces Eb and Ep−a+V− comprising
the flag Fb,a, the group Qb,a is the intersection of the two previous ones.

Lemma 3.10. We have
Qb,a =Qb,0∩Q0,a.

Let ub,a be the nilradical of the Lie algebra qb,a of the Lie group Qb,a. It is a standard
result that if two parabolic subalgebras q1 and q2 intersect in a parabolic subalgebra q

then the nilradical of q is the sum of the nilradicals of q1 and q2. Hence, we have

ub,a∩p∼=(Eb⊗V ∗
− )⊕(V−⊗F ∗

a ) = (ub,0∩p)+(u0,a∩p). (3.20)
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We obtain as a corollary that

{vα⊗v∗µ, vµ⊗v∗β : 1 6α6 b, p−a+1 6β6 p and p+1 6µ6 p+q}

is a basis for ub,a∩p.

Remark. We have

ub,a∩p′ =Eb⊗V ∗
− and ub,a∩p′′ =V−⊗F ∗

a .

We then define the Vogan–Zuckerman vector

e(bq, aq)∈
∧bq,aq

pC ∼=(
∧bq

p′)⊗(
∧aq

p′)

associated with Qb,a by

e(bq, aq) = e(bq, 0)∧e(0, aq)

= (−1)bq(ṽ1∧...∧ṽb)∧(ṽ∗p−a+1∧...∧ṽ∗p)∈
∧bq(V+⊗(V−)∗)⊗

∧aq(V−⊗(V+)∗).

(3.21)

For the following lemma, we recall that the Cartan product of two irreducible rep-
resentations was defined in §3.8. In the case considered below it has highest weight

(q, ..., q︸ ︷︷ ︸
b

, 0, ..., 0,−q, ...,−q︸ ︷︷ ︸
a

; a−b, ..., a−b︸ ︷︷ ︸
q

).

Lemma 3.11. The Vogan–Zuckerman vector e(bq, aq) is a generator for∧(a+b)q(ub,a∩p).

As such it is the highest weight vector of the irreducible KC-submodule V (b×q, a×q)⊂∧bq,aq
p, which is isomorphic to the Cartan product of the representations

Sb×q(V+)⊗(
∧q(V ∗

− ))b and Sa×q(V ∗
+ )⊗(

∧q(V−))a.

3.14. Wedging with the Chern class defines a linear map in

HomK

(
(
∧
�

p)special, (
∧
�

p)special
)
.

We denote by Cq also the linear map. It follows from [4, Proposition 10] that Ckq (V (b×
q, a×q)) is a non-trivial K-type in (

∧(b+k)q,(a+k)q
p)special if and only if k6p−(a+b).

This leads to the following result.
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Proposition 3.12. The irreducible K-types V (b×q, a×q), with a+b6p, are the
only Vogan–Zuckerman K-types that occur in the subring (

∧
�

p)special. Moreover,

HomK(V (b×q, a×q), (
∧nq

p)special) =
{

C·Ckq , if n−(a+b) = 2k,
0, otherwise.

Here k is any integer in {0, ..., p−(a+b)}.

Proof. The Vogan–Zuckerman K-types are the representations V (λ+, λ−). Now it
follows from (3.14) that if such a K-type occurs in (

∧
�

p)special then Stλ−+tλ∨+
(V−) is

isomorphic to a power of
∧q
V− but this can only happen if the diagram tλ−+ tλ∨+ has

shape q×c for some c. This forces both tλ− and tλ∨+ to be of this shape. We conclude
that there exist integers a and b such that λ+=b×q and λ−=a×q. This proves the first
assertion of the proposition.

We now consider the decomposition (3.16) into irreducibles. It follows from the
Littlewood–Richardson rule (see e.g. [16, Corollary 2, p. 121]) that

dim HomGL(V+)(S((2q)b,qp−a−b)(V+), S(qB)(V+)⊗S(qp−A)(V+))

equals the number of Littlewood–Richardson tableaux of shape ((2q)b, qp−a−b)/(qB) and
of weight (qp−A). The latter is 0 if A6a or B6b. If A>a the shape ((2q)b, qp−a−b)/(qB) is
the disjoint union of two rectangles and it is immediate that there is at most one semistan-
dard filling of ((2q)b, qp−a−b)/(qB) of content (qp−A) that satisfies the reverse lattice word
condition; see [16, §5.2, p. 63] (the first row must be filled with ones, the second with twos
etc.). We conclude that the multiplicity of S((2q)b,qp−a−b)(V+) in S(qB)(V+)⊗S(qp−A)(V+)
equals 1 if A=a+k and B=b+k for some k=0, ..., p−(a+b), and 0 otherwise. Since, in
the former case

Ckq (V (b×q, a×q))∼=S((2q)b,qp−a−b)(V+)⊗(
∧p
V+)−q⊗(

∧q
V−)a−b

in (
∧(a+b+2k)q

p)special, this concludes the proof.

Remark. Proposition 3.12 implies the decomposition (1.4) of the introduction.

The following proposition shows that the Vogan–Zuckerman types V (b×q, a×q) are
essentially the only K-types to give small degree cohomology.

Proposition 3.13. Consider a cohomological module Aq and let V (q)=V (λ+, λ−)
be the corresponding Vogan–Zuckerman K-type. Suppose that R=dim(u∩p) is strictly
less than p+q−2. Then either (λ+, λ−)=(b×q, a×q), for some non-negative integers a
and b such that a+b6p, or (λ+, λ−)=(p×b, p×a) for some non-negative integers a and
b such that a+b6q.
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Proof. See [4, Fait 30].

Remark. The cohomological modules corresponding to the second case of Propo-
sition 3.13 correspond to the very same module where we just exchange the roles of p
and q.

4. The action of U(p)×U(q)×U(a)×U(b) in the twisted Fock model

In this section we review the construction of the Fock model for the the Weil represen-
tation of the dual pair U(p, q)×U(a, b). We will thereby explain the reversal of a and b

in the notation of the preceding sections: relative Lie algebra cohomology for u(p, q) of
Hodge bidegree (bq, aq) comes from the dual pair U(p, q)×U(a, b).

It is an important point in what follows that to detect the twist part of the action
of U(p)×U(q) on the Fock model it is enough to determine the action of U(p)×U(q) on
the vacuum vector ψ0 (the constant polynomial 1 in the Fock model). Thus Lemmas 4.7
and 4.10 and their accompanying corollaries and remarks, which give formulas for the
action of the restriction of the Weil representation to U(p)×U(q) (actually their covers)
on ψ0, will play an important role in what follows.

4.1. The square root of the determinant

In what follows we will need the square root of the determinant and its properties for
various unitary groups. Let U(V ) be the isometry group of a Hermitian space V and let
u(V ) be its Lie algebra. Hence we have a Lie algebra homomorphism Tr: u(V )!C (the
trace). We define the covering group Ũ(V ) of U(V ) to be the pull-back by det of the
covering π:S1!S1 given by π(z)=z2. Hence

Ũ(V ) = {(g, z) : g ∈U(V ) and z ∈S1with det(g) = z2}.

We then define det1/2: Ũ(V )!S1 by

det1/2((g, z))= z.

For k∈Z we define the character detk/2U(V ) by detk/2U(V )=(det1/2U(V ))
k. We leave the proofs

of the two following lemmas to the reader.

Lemma 4.1. Suppose f :H!U(V ) is a homomorphism. Then the pull-back by f to
H of the cover Ũ(V )!U(V ) is equal to the pull-back of the cover π:S1!S1 above by
det �f :H!S1. In particular the pull-back of the cover by f is trivial if and only if H has
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a character χ:H!S1 such that χ(h)2=det �f(h), h∈ H. There is a lift f̃ : H̃!Ũ(V ) of
f such that

det1/2
Ũ(V )

�f̃ =(detU(V )�f)1/2.

We will also need the following result.

Lemma 4.2. Define χ to be the unique character of the universal cover of U(V )
with derivative 1

2kTr. Then χ descends to the cover Ũ(V ) of U(V ) and the descended
character is detk/2U(V ).

Remark. We see from the lemma that det1/2U(V ) has the same functorial properties as
the half-trace.

There are three results concerning the behaviour of det1/2U(V ) under homomorphisms
which we will need below. The first two are special cases of Lemma 4.1. The first result
is the following.

Lemma 4.3. Let V1⊂V2 be a subspace of a Hermitian space such that the restriction
of the form on V2 to V1 is non-degenerate. Then we have an inclusion Ũ(V1)!Ũ(V2)
and

det1/2U(V2)
|Ũ(V1)

=det1/2U(V1)
.

The second result concerns the behaviour under the diagonal action of U(V ) on the
direct sum V a.

Lemma 4.4. Let V be a Hermitian space and a be a positive integer. Let f :U(V )⊂
U(V a) be the diagonal inclusion. Then we have detU(V a)�f=detaU(V ). Hence the cover
Ũ(V a)!Ũ(V a) pulls back to the non-trivial covering group Ũ(V ) if and only if a is odd.
Furthermore we have

det1/2U(V a)|Ũ(V ) =deta/2U(V ).

The third result we need the behaviour of det1/2U(V ) under complex conjugation. Sup-
pose we have chosen a basis {v1, v2, ..., vn} for V such that (vj , vk)∈R for all j and k.
Let V0⊂V be the real form of V given by V0=spanR{v1, ..., vn}. Let τV0

be complex con-
jugation of V relative to the real form V0. The above assumption on the inner products
of basis vectors is equivalent to

(τV0
(x), τV0

(y))= (x, y), x, y ∈V. (4.1)

Equation (4.1) implies that, if g∈U(V ), then τV0
�g�τV0

∈U(V ) and hence τV0
induces a

conjugation map τ0:U(V )!U(V ) given by τ0(g)=τV0
�g�τV0

. We note that the matrix
of τ0(g) relative to the basis {v1, ..., vn} is the conjugate of the matrix of g and hence

det(τ0(g))= det(g) =det−1(g). (4.2)
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It then follows that τ0 induces a map of coverings τ̃0: Ũ(V )!Ũ(V ) given by

τ̃0(g, z) = (τ0(g), z̄).

The next elementary lemma will be important in what follows.

Lemma 4.5. Let V and V0 be as above. Then we have

det1/2U(V )�τ̃0 =det−1/2
U(V ).

Proof. We have

det1/2(τ̃0(g, z))= det1/2((τ0(g), z̄))= z̄= z−1 =(det1/2(g, z))−1.

4.2. The Fock model of the oscillator representation associated with a point
in the symmetric space of U(p, q)

We now recall the description of the Fock model of the Weil representation and the
associated polynomial Fock space. We keep the notation of §2. There is one Fock model
for each positive definite complex structure. However, since we will be concerned only
with the restriction to the unitary group U(V ) we will limit ourselves to the positive
definite structures coming from the symmetric space of U(V ). We will see below that
there is one such model (structure) for each point (splitting V =V++V−) in the symmetric
space of the unitary group. In what follows we will assume that dimV+=p and dimV−=q,
and set m=p+q.

Recall that there is a canonical positive almost complex structure J0 associated with
the Hermitian majorant ( · , ·)0 of ( · , ·) corresponding to the decomposition V =V++V−,
which is given by the formula

J0 =J �θV− .

The eigenspace V ′0 corresponding to the eigenvalue i of J0 acting on V ⊗C is V ′
++V ′′

− .
We define the Gaussian ϕ0 on V ′0 associated with the majorant ( · , ·)0 by

ϕ0(v′0) = exp(−π(v′0 , v′0)0).

Here we have transferred the majorant ( · , ·)0 from V to V ′ using the canonical iso-
morphism v 7!v′0 = 1

2 (v⊗1−J0v⊗i). We finally define the Gaussian measure µ on V ′0

by
µ=Cϕ0µ0,

where µ0 is Lebesgue measure on V ′0 and C is chosen so that the measure of V ′0 is 1.
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We define the Fock space F(V ) to be the space of J0-holomorphic functions (techni-
cally the half-forms) on V ′0 which are square integrable for the Gaussian measure.

We define the polynomial Fock space P(V ) to be the subspace of F(V ) consisting of
J0-holomorphic polynomials. Identifying as usual polynomial functions on a space with
the symmetric algebra on its dual, we conclude that

Pol(V ′0)∼=Sym((V ′0)∗) =Sym((V ′
++V ′′

− )∗)∼=Sym((V ′
+)∗)⊗Sym((V ′′

− )∗).

It will be important in what follows to note that since V ′ and V ′′ are dually paired
by (the complex bilinear extension of) the symplectic form A, we have

Sym((V ′
+)∗)∼=Sym(V ′′

+ ) and Sym((V ′′
− )∗)∼=Sym(V ′

−).

Hence
P(V ) =Sym((V ′

+)∗)⊗Sym((V ′′
− )∗)∼=Sym(V ′′

+ )⊗Sym(V ′
−). (4.3)

Note that the spaces F(V ) and P(V ) depend on the choice of positive almost complex
structure J0.

The point of the previous construction is that there is a unitary representation of the
metaplectic group ω:Mp(V, 〈· , ·〉)!U(F(V )). This action provides a model of the Weil
representation called the Fock model. In what follows we will abbreviate Mp(V, 〈· , ·〉) to
Mp and its maximal compact subgroup, given by the 2-fold cover of the unitary group of
the positive Hermitian space (V, ( · , ·)0), to Ũ0. Here, we recall that 〈· , ·〉 is the symplectic
form on V . In case we have chosen a basis for V then we will write Mp(2m,R) in place
of Mp.

The polynomial Fock space P(V ) is precisely the space of Ũ0-finite vectors of the
Weil representation ω (see e.g. [35] and [9]) and the action of Ũ0 on the polynomial Fock
space is given by the following formula (see [15, Proposition 4.39, p. 184]). If k∈Ũ0 and
P∈P(V ) then

(ω(k)P )(v′) =detU0(k)
−1/2P (k−1v′). (4.4)

Remark. The determinant factor comes from the fact we should have multiplied P

in the above by the half-form (square root of the complex volume form)√
dz1∧dz2∧... dzm.

We note that the constant polynomial 1 satisfies

ω(k)·1 =detU0(k)
−1/2 ·1.

In general for each model of the Weil representation there is a unique vector ψ0 which cor-
responds to 1 traditionally called the vacuum vector. The vacuum vector then transforms
according to

ω(k)ψ0 =detU0(k)
−1/2ψ0.
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4.3. The restriction of the Fock model to Ũ(p, q) and its half-determinant
twists

In this section we will study the “restriction of the Weil representation of Mp(2m,R) to
Ũ(p, q)”. We use quotation marks since the map U(p, q)!Sp(2m,R) involves a conjuga-
tion.

4.3.1. The inclusion ̃U(p,q) of Ũ(p, q) in Mp(2m,R)

The conjugation alluded to above comes about because the matrix M ′ of the symplectic
form A relative to the natural basis B={v1, ..., vm, iv1, ..., ivm} for the real vector space
VR underlying V is given by

M ′ =
(

0 Ip,q

−Ip,q 0

)
instead of M =

(
0 Im

−Im 0

)
. (4.5)

Here Ip,q is the m×m matrix given by

Ip,q =
(
Ip 0
0 −Iq

)
.

Hence, the basis B′ is not a symplectic basis. Accordingly, we let B′ be the new basis
given by

B′ = {v1, ..., vp,−vp+1, ...,−vp+q, iv1, ..., ivm}.

Then B′ is a symplectic basis and the change of basis matrix Zp,q is given by

Zp,q =
(
Ip,q 0
0 Im

)
. (4.6)

In what follows we let Sp′(2m,R), resp. sp′(2m,R), denote the group of isometries of
the formM ′ (so gM ′g∗=M ′), resp. the Lie algebra of this group. We find then that under
the canonical map iB: GL(n,C)!GL(2n,R) (associated with the map GL(V )!GL(VR)
in the basis B) the image of U(p, q) lies in Sp′(2m,R). Note that

iB(a+ib) =
(
a −b
b a

)
.

We let B be the restriction of iB to U(p, q). We define Fp,q: Sp′(2m,R))!Sp(2m,R) by
Fp,q=Ad(Zp,q) and U(p,q) by

U(p,q) =Fp,q �B.
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We find that U(p,q) maps U(p, q) into Sp(2m,R).
We let Ũ(p, q) be the pull-back of the metaplectic cover of Sp(2m,R) by the embed-

ding U(p,q). It is well known that Ũ(p, q) is the cover obtained by taking the square root
of det:U(p, q)!S1; see for example [61, §1.2].

We let Mp′(2m,R) be the pull-back by Fp,q of the metaplectic covering of Sp(2m,R).
Hence we have a lift F̃p,q of Fp,q such that F̃p,q:Mp′(2m,R)!Mp(2m,R). Since the
covering Ũ(p, q) of U(p, q) is pulled back from the metaplectic covering of Sp(2m,R) by
the composition Fp,q �B, we also have lifts ̃B of jB and ̃U(p,q) of U(p,q). Since two
coverings of a map that agree at a point agree everywhere (here the point is the identity)
we have

̃U(p,q) = F̃p,q � ̃B. (4.7)

4.3.2. The action of Ũ(p)×Ũ(q) on the vacuum vector ψ0

Let τV− be the real linear transformation that is the negative of complex conjugation on
V−. Then in terms of the basis B the matrix of IV+⊕τV− is Zp,q. Note that τq=AdτV−
acting on U(q) is complex conjugation and lifts to the operator τ̃q on Ũ(q) given by

τ̃q(g, z) = (τq(g), z̄).

In what follows we will need the multiplication map µ̃p,q :Ũ(p)×Ũ(q)!Ũ(p, q) given by

µ̃p,q(((k1, 1), z1)((1, k2), z2) = ((k1, k2), z1z2).

Note that µ̃p,q factors through the inclusion ˜U(p)×U(q)!Ũ(p, q) and that it has kernel
Z/2. We have an analogous map µ̃p+q: Ũ(p)×Ũ(q)!Ũ(p+q).

We claim that the diagram below commutes. First the induced diagram of maps on
the base space commutes; see equation (4.11). Hence the diagram of homomorphisms of
covering groups commutes; see the sentence preceding equation (4.7).

Ũ(p)×Ũ(q)
µ̃p,q

//

1×τ̃q

��

Ũ(p, q)
̃U(p,q)

// Mp′(2m,R)

F̃p,q

��

Ũ(p)×Ũ(q)
µ̃p+q

// Ũ(p+q)
̃U(p+q)

// Mp(2m,R).

Remark. In the diagram we are comparing two different mappings of Ũ(p)×Ũ(q)
into Mp(2m,R). The top mapping factors through Ũ(p, q) and the bottom mapping
factors through Ũ(p+q).
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By Lemma 4.3 we have the following result.

Lemma 4.6. We have

det1/2U(p,q)|Ũ(p)×Ũ(q) =det1/2U(p)⊗det1/2U(q).

We now use Lemmas 4.1 and 4.5, and the above diagram to prove the following
result.

Lemma 4.7. For k1∈Ũ(p) and k2∈Ũ(q) we have

ω(µ̃p,q(k1, k2))(ψ0) = (det−1/2
U(p) (k1)⊗det1/2U(q))(k2)ψ0.

Proof. Let k=(k1, k2)∈K. In what follows we will abbreviate τ̃q(k2) to k̄2.
Recall that ψ0 is the vacuum vector (so 1 in the Fock model). Going around the top

of the diagram and noting that the composition of the top right horizontal arrow with
the right vertical arrow is ̃U(p,q)(k1, k2), we obtain by definition

ω(̃U(p,q)(k1, k2))ψ0 =ω(k1, k2)ψ0.

Going around the diagram the other way we obtain

ω((k1, k2))ψ0 =(ω|Ũ(p+q)((1⊗τ̃q)(k1, k2)))ψ0

=(ω|Ũ(p+q)(k1, k̄2))ψ0

=det−1/2
U(p+q)(k1, k̄2)ψ0

=det−1/2
U(p) (k1)det−1/2

U(q) (k̄2)ψ0

=det−1/2
U(p) (k1)det+1/2

U(q) (k2)ψ0.

Here the second last equality is Lemma 4.3 and the last one is Lemma 4.5. We now
have the following consequence.

Corollary 4.8. We have

(ω⊗det1/2U(p,q))|K(ψ0) =detU(q)(k2)ψ0. (4.8)

Remark. Lemma 4.7 and its corollary give the formula for the twist of the standard
action of U(p)×U(q) in the polynomial Fock model that we will need in §4.6. In particular
we need the case a=1, b=0, where W=W+ is a complex line equipped with a positive
unary Hermitian form. Note that in this case a−b=1.
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We conclude this subsection with the formula for the action of Ũ(p)×Ũ(q) on ψ0 we
will need in §4.6. In particular we need the case a=0, b=1, where W=W− is a complex
line equipped with a negative unary Hermitian form. In this case tensoring with W

has the effect of changing the Hermitian form ( · , ·) on V to its negative ( · , ·)′=−( · , ·).
The matrix M ′′ of the symplectic form associated with ( · , ·)′ relative to the standard
basis B={v1, ..., vm, iv1, ..., ivm} is the negative of the matrix M ′ above. We identify
the isometry groups of the two Hermitian forms ( · , ·) and ( · , ·)′ with U(p, q) using the
standard basis. We obtain a new embedding jU(q,p) of U(p, q) into Sp(2m,R) which is
given by

jU(q,p) =AdWp,q �jB,

where

Wp,q =
(
−Ip,q 0

0 Im

)
. (4.9)

We let ω′ be the pull-back of the Weil representation to U(p, q) using the embedding
jU(q,p).

Recall that τ0:U(p, q)!U(p, q) is complex conjugation and τ̃0 is its lift to Ũ(p, q).

Lemma 4.9. We have
ω′ =ω�τ̃0.

Proof. Note first that Zp,q �Wp,q=Im,m, where

Im,m =
(
−Im 0

0 Im

)
. (4.10)

Hence the two embeddings are related by

jU(q,p) =AdIm,m�jU(p,q).

But the embedding jB: GL(m,C)!GL(2m,R) satisfies

jB�τ0 =AdIm,m�jB, (4.11)

and hence the two embeddings are related by

jU(q,p) = jU(p,q)�τ0.

The lemma follows by lifting the previous identity to the 2-fold covers.

It follows from Lemma 4.5 that the action of ω′|K on the vaccum vector is given
by the conjugate of the character for the action of ω|K and hence from Lemma 4.7 we
obtain the following result.
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Lemma 4.10. We have

ω′|K(ψ0) = (det1/2U(p)⊗det−1/2
U(q) )ψ0.

Corollary 4.11. The following identity holds:

(ω′⊗det−1/2
U(p,q))|K(ψ0) =det−1

U(q)(k2)ψ0. (4.12)

Remark. Lemma 4.10 and its corollary give the formula for the twist of the standard
action of U(p)×U(q) in the polynomial Fock model. In §4.6 we will need the case a=0,
b=1. Note that in this case a−b=−1.

4.4. The tensor product of Hermitian vector spaces

Let V be a complex vector space of dimension m=p+q equipped with a Hermitian form
( · , ·)V of signature (p, q) and let W be a complex vector space of dimension a+b equipped
with a Hermitian form ( · , ·)W of signature (a, b). We will regard V as a real vector space
equipped with the almost complex structure JV and W as a real vector space equipped
with the almost complex structure JW . We may regard the tensor product V ⊗CW as
the quotient of the tensor product V ⊗RW by the relations

(JV (v))⊗w= v⊗(JW (w))

for all pairs of vectors v∈V and w∈W . Thus we have an almost complex structure JV⊗W
on V ⊗CW given by

JV⊗W =JV ⊗IW = IV ⊗JW . (4.13)

From now on all tensor products will be over C unless the contrary is indicated. We will
acccordingly abbreviate V ⊗CW to V ⊗W .

We let S denote the algebra C[z1, z2]/(z2
1+1, z2

2+1). An action of S on a vector
space V is given by the choice of two commuting complex structures on V . Hence given
a complex vector space V the complexification of V is an S-module and the subspaces
V ′ and V ′′ are S-submodules.

Let ι: (V ⊗W )⊗RC!(V ⊗RC)⊗S(W⊗RC) be the map given by

ιV (v⊗w⊗z) = (v⊗1)⊗(w⊗z).

Remark. Note that the map ι is well defined:

ι(JV (v)⊗w⊗1) = ι(v⊗JW (w)⊗1)

because we tensored over S.
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The following lemma is clear.

Lemma 4.12. We have

V ′⊗SW
′′ =0 and V ′′⊗SW

′ =0.

Accordingly, we have

(V ⊗RC)⊗S(W⊗RC) = (V ′⊗W ′)+(V ′′⊗W ′′).

We now have the following result.

Proposition 4.13. The map ι is an isomorphism and consequently induces an iso-
morphism, which we again denote by ι: (V ⊗W )⊗RC∼=V ′⊗W ′+V ′′⊗W ′′.

Proof. Since both the domain and the range of ι have dimension 2 dimV dimW it
suffices to prove that ι is onto. But given (v⊗z1)⊗(w⊗z2)∈(V ⊗RC)⊗S(W⊗RC) we
have

(v⊗z1)⊗(w⊗z2) = (v⊗1)⊗(w⊗z1z2) = ι(v⊗w⊗z1z2).

The tensor product (( · , ·))=( · , ·)V ⊗( · , ·)W is a Hermitian form on V ⊗W . We let
〈〈· , ·〉〉 denote the symplectic form on the real vector space underlying V ⊗W (which we
will again denote by V ⊗W ); it is given by the negative of the imaginary part of (( · , ·)).
Hence we have

〈〈· , ·〉〉= 〈· , ·〉V ⊗BW+BV ⊗〈· , ·〉W . (4.14)

Clearly we have an embedding U(V )×U(W )!Aut(V ⊗W, 〈〈· , ·〉〉). It is standard that
this product is a dual reductive pair, that is each factor is the full centralizer of the other
in the symplectic group Aut(〈〈· , ·〉〉).

We can now use the direct sum decompositions V =V+⊕V− and W=W+⊕W−, and
the considerations of §2.5 to change the indefinite almost complex structure JV⊗W to
an admissible positive almost complex structure (JV⊗W )0 on V ⊗W . Indeed we can
split V ⊗W into a sum of the positive definite space V+⊗W++V−⊗W− and the negative
definite space V+⊗W−+V−⊗W+. The corresponding Cartan involution is θV ⊗θW . The
Cartan involution θV ⊗θW allows us to define a positive definite Hermitian form (( · , ·))0
(the corresponding majorant of (( · , ·))) by

((v1⊗w1, v2⊗w2))0 =((v1⊗w1, θV (v2)⊗θW (w2))) = (v1, θV (v2))V (w1, θW (w))W .

We define the positive definite complex structure (JV⊗W )0 corresponding to the
previous splitting by

(JV⊗W )0 =(JV⊗W )�(θV ⊗θW ) = (JV ⊗IW )�(θV ⊗θW ) = (IV ⊗JW )�(θV ⊗θW ). (4.15)
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We emphasize that the definite complex structure (JV⊗W )0 depends on the choice of
splittings of V and W .

We can now compute the spaces (V ⊗W )′0 of type (1, 0) vectors and (V ⊗W )′′0 of
type (0, 1) vectors for (JV⊗W )0 acting on (V ⊗W )⊗RC.

Note that

dimC((V ⊗W )′0) =dimC(V ⊗W ) = (a+b)(p+q).

Lemma 4.14. We have (U(p)×U(q))×(U(a)×U(b))-equivariant isomorphisms of
complex vector spaces

(V ⊗W )′0 ∼=(V ′
+⊗W ′

+)⊕(V ′′
+ ⊗W ′′

−)⊕(V ′′
− ⊗W ′′

+ )⊕(V ′
−⊗W ′

−),

(V ⊗W )′′0 ∼=(V ′′
+ ⊗W ′′

+ )⊕(V ′
+⊗W ′

−)⊕(V ′
−⊗W ′

+)⊕(V ′′
− ⊗W ′′

−).

Under the pairing of (V ⊗W )′0 with (V ⊗W )′′0 induced by the symplectic form each of
the four subspaces on the right is dually paired with the space immediately below it.

Proof. The space (V ⊗W )⊗RC is the quotient of the space (V ⊗RC)⊗C(W⊗RC) by
the relation that makes the action of JV ⊗1⊗1⊗1 equal to that of 1⊗1⊗JW⊗1. The
operation of passing to the quotient corresponds to setting all tensor products of spaces
with superscript prime factors with spaces with superscript double prime factors equal
to zero according to Lemma 4.12. Before passing to the quotient we have a direct sum
decomposition with 4×4=16 summands, after passing to the quotient we have a direct
sum decomposition with eight summands. With the above identification we have

(V ⊗W )⊗RC = [(V ′
+⊗W ′

+)⊕(V ′
+⊗W ′

−)⊕(V ′
−⊗W ′

+)⊗(V ′
−⊗W ′

−)︸ ︷︷ ︸
+i

]

⊕[(V ′′
+ ⊗W ′′

+ )⊕(V ′′
+ ⊗W ′′

−)⊕(V ′′
− ⊗W ′′

+ )⊗(V ′′
− ⊗W ′′

−)︸ ︷︷ ︸
−i

].

Here the subscript ±i indicates the eigenvalue of JV⊗W on the summand. Thus the
first four summands comprise the subspace of type (1, 0) vectors for JV⊗W and the
last four summands comprise the subspace of type (0, 1) vectors for JV⊗W . Now the
involution θV ⊗θW is also diagonal relative to the above eight summand decomposition
with the corresponding eigenvalues (+1,−1,−1,+1,+1,−1,−1,+1). Since (JV⊗W )0=
JV⊗W �(θV ⊗θW ), the second and third summands above move into the space of type
(0, 1) vectors for (JV⊗W )0 and the sixth and seventh summands move into the space of
type (1, 0) vectors for (JV⊗W )0.
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4.5. The polynomial Fock model for a unitary dual pair

Our goal in this subsection is to describe the polynomial Fock space P(V ⊗W ). Our main
interest will be the subspace P(V+⊗W )⊂P(V ⊗W ) and its description as the algebra of
polynomials on the space of p×(a+b) complex matrices

Mp×(a+b)(C) =Mp×a(C)⊕Mp×b(C).

By Lemma 4.14, we have

P(V ⊗W ) =Pol((V ′
+⊗W ′

+)⊕(V ′′
+ ⊗W ′′

−))⊗Pol((V ′
−⊗W ′

−)⊕(V ′′
− ⊗W ′′

+ )). (4.16)

We will abbreviate the first factor in the tensor product on the right to P+ and the
second factor to P−. We now choose an orthonormal basis {w1, ..., wa} for W+ and a
basis {wa+1, ..., wa+b} for W− which is orthonormal with respect to the restriction of
−( · , ·)W to W−.

In this paper we will be primarily concerned with the space P+. Accordingly we will
suppose that u∈(V+⊗W )′0 . Then there exist unique x′1, ..., x

′
a∈V ′

+ and y′′1 , ..., y
′′
b ∈V ′′

+

such that

u=
a∑
j=1

x′j⊗w′
j+

b∑
k=1

y′′k⊗w′′
a+k. (4.17)

We may accordingly represent the element u of (V+⊗W )′ by

(x′1, ..., x
′
a; y

′′
1 , ..., y

′′
b ) = (x′;y′′)∈ (V ′

+)a⊕(V ′′
+ )b.

Then, by using the basis {v′1, ..., v′p, v′′1 , ..., v′′p}, we may finally represent an element of
(V+⊗W )′0 as a p×(a+b) matrix with complex entries. Thus we have

(V+⊗W )′0 ∼=Mp×a(C)⊕Mp×b(C).

We will think of a point on the right as a p×(a+b) matrix Z(x′;y′′) divided into a left
p×a block Z ′(x′)=(z′α,j(x

′)) and a right p×b block Z ′′(y′′)=(z′′α,k(y
′′)). We will use

these matrix coordinates henceforth (at times we will drop the arguments x′ and y′′).
By Lemma 2.1, we have

z′α,j(x
′) = (xj , vα), 1 6 j6 a, 1 6α6 p and z′′α,k(y

′′) = (vα, yj), 1 6 k6 b, 1 6α6 p.

Here we have used Greek letter(s) α for the indices belonging to V and Roman letters
j, k for the indices belonging to W .

The polynomial Fock model is then the space of polynomials in z′α,j and z′′α,k as
above. From now on, we will usually work with this matrix description of the polynomial
Fock space, and hence we will identify

P+ =Pol((V ′
+⊗W ′

+)⊕(V ′′
+ ⊗W ′′

−))∼=Pol(Mp×a(C)⊕Mp×b(C)).
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4.6. The twisted action of (U(p)×U(q))×(U(a)×U(b))

Recall that we have a unitary representation of the metaplectic group

ω:Mp(V ⊗W, 〈〈· , ·〉〉)−!U(F(V ⊗W )).

As above we use Ũ0 to denote the maximal compact subgroup Ũ(V ⊗W, (( · , ·))0) of
Mp(V ⊗W, 〈〈· , ·〉〉). The space of Ũ0-finite vectors of the Weil representation ω is pre-
cisely the polynomial Fock space P(V ⊗W )=P+⊗P−, we refer to [35] and [61] for more
details. We review how certain subgroups (subalgebras) of Ũ(V )×Ũ(W ) act in this
model.

We have natural inclusion maps

U(V )×U(W )−!U(V ⊗W ) and U(V ⊗W )−!Sp(V ⊗W, 〈〈· , ·〉〉).

We have previously described 2-fold covers Ũ(V ), Ũ(W ) and Ũ(V ⊗W ) of U(V ), U(W )
and U(V ⊗W ), repspectively, with their respective characters det1/2U(V ), det1/2U(W ) and

det1/2U(V⊗W ). Lemmas 4.3 and 4.4 then imply that

det1/2U(V⊗W )|Ũ(V ) =det(a+b)/2U(V ) and det1/2U(V⊗W )|Ũ(W ) =det(p+q)/2U(W ) . (4.18)

If (k, `)∈Z2 the restriction of the Weil representation ω to Ũ(V )×Ũ(W ) twisted by
the characters detk/2U(V )⊗det`/2U(W ) will be denoted ωk,`. Since the Weil representation of

Ũ(V ⊗W ) twisted by det1/2 descends to U(V ⊗W ), it follows from equation (4.18) that
ωk,` descends to U(V )×U(W ) if and only if k≡a+b (mod 2) and `≡p+q (mod 2).

Note that it follows from (4.4) that the compact subgroup Ũ(p)×Ũ(q)×Ũ(a)×Ũ(b)
acts on P by the usual action up to a central character. The explicit computation of this
central character is given by the following proposition.

Proposition 4.15. The group Ũ(p)×Ũ(q)×Ũ(a)×Ũ(b) acts on the line Cψ0 (so
the constant polynomials in the Fock model) under the twisted Weil representation ωk,`

by the character det(k+b−a)/2U(p) ⊗det(k+a−b)/2U(q) ⊗det(`+q−p)/2U(a) ⊗det(`+p−q)/2U(b) .

The Proposition will follow from Lemma 4.3 and the next lemma (which will be seen
to follow from Lemmas 4.7, 4.4 and 4.10).

First by applying Lemma 4.3 to the “block inclusions” U(W+)×U(W−)⊂U(W ) and
U(V+)×U(V−)⊂U(V ) we get

detk/2U(V )|Ũ(V+)×Ũ(V−) =detk/2U(V+)⊗detk/2U(V−),

det`/2U(W )|Ũ(W+)×Ũ(W−) =det`/2U(W+)⊗det`/2U(W−).
(4.19)

Now the proposition follows from the next lemma.
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Lemma 4.16. The group Ũ(p)×Ũ(q)×Ũ(a)×Ũ(b) acts on the line Cψ0 under the
(untwisted) Weil representation ω by the character

det(b−a)/2U(p) ⊗det(a−b)/2U(q) ⊗det(q−p)/2U(a) ⊗det(p−q)/2U(b) .

Proof. By the symmetry between V and W it is sufficient to compute the action
of Ũ(p)×Ũ(q) under the untwisted Weil representation on Cψ0. Considering the tensor
product of V with a Hermitian space of signature (a, b) amounts to looking at the diagonal
action of U(V ) on the direct sum of a copies of V and b copies of V with the sign of the
Hermitian form changed. Hence, by Lemma 4.4, we are reduced to the special cases a=1,
b=0 and a=0, b=1. The first case is Lemma 4.7 and the second one is Lemma 4.10.

4.7. From now on we will always assume that k=a−b and `=p+q and will now use
the symbol ω to denote the (twisted) representation ωa−b,p+q. The choice of k will turn
out to be very important: indeed it follows from Proposition 4.15 that the restriction of
ω to the group U(p)×U(q) then acts on the line Cψ0 (the constant polynomials in the
Fock model) by the character 1⊗deta−bU(q). As a consequence the group U(p)×U(q) acts

on P+ by the tensor product of the standard action of U(p) and the character deta−bU(q).
We will later see that the above twist is the correct one to ensure our cocycle ψbq,aq is
(U(p)×U(q))-equivariant; see Lemma 5.18.

To summarize, if we represent the action of the Weil representation ω restricted to
U(p)×U(q)×U(a)×U(b) on the subspace P+ of the Fock model for U(p, q)×U(a, b), in
terms of the p×(a+b) matrix (sub)representation of the Fock model (see §4.5)

P+ =Pol(Mp×a(C)⊕Mp×b(C)),

we have the following result.

Theorem 4.17. (1) The action of the group U(a)×U(b) induced by the twisted Weil
representation ωa−b,p+q on polynomials in the matrix variables is the tensor product of
the character detqU(a)⊗detpU(b) with the action induced by the natural action on the rows
(i.e. from the right) of the matrices. Note that each row has a+b entries. The group
U(a) acts on on the first a entries of each row and U(b) acts on the last b entries of
each row.

(2) The action of the group U(p) is induced by the natural action on the columns
(i.e. from the left) of the matrices, acting on the left half of the matrix by the standard
action and on the right half by the dual of the standard action so there is no determinant
twist.

(3) The group U(q) simply scales all polynomials by the central character deta−bU(q).



40 n. bergeron, j. millson and c. moeglin

The representation ω yields a correspondence between certain equivalence classes
of irreducible admissible representations of U(a, b) and U(p, q). The correspondence
between K-types is explicitly described in [61] using the Fock model (and following
Howe [35]), we also refer to [39].

5. The special (u(p, q),K)-cocycles ψbq,aq

In this section we introduce special cocycles

ψbq,aq ∈HomK(
∧bq,aq

p,P(V ⊗W ))

with values in the polynomial Fock space.

We will first define the cocycles ψbq,0 of Hodge bidegree (bq, 0), and similarly ψ0,aq

of Hodge bidegree (0, aq). We will give formulas for their dual maps ψ∗bq,0, resp. ψ∗0,aq,
as the values of these dual maps at x∈(V ⊗W )′0 are decomposable as exterior products
of bq, resp. aq, elements of p∗ depending on x.

5.1. Harmonic and special harmonic polynomials

In this subsection we review the lowering operators coming from the action of the space
p′′U(a,b). We leave to the reader the task of writing out the formulas for u(W ) analogous to
those of §3.3 for u(V ), in particular of proving p′′U(W )

∼=W−⊗W ∗
+ . Hence, in the notation

of §3.3 we have a basis {wj⊗w∗
a+k :16j6a and 16k6b} for p′′U(a,b). We define

∆j,k =∆+
j,k =

p∑
α=1

∂2

∂z′α,j∂z
′′
α,k

for 16 j6 a and 1 6 k6 b.

Thus ∆j,k is a second-order differential operator. Then we have (up to a scalar multiple)
the following result.

Proposition 5.1. We have

ω(wj⊗w∗
a+k) =∆+

j,k.

Here ω is the (infinitesimal) oscillator representation for the dual pair u(p)×u(a, b).
The proposition is a straightforward computation and is implicit in [39, equation 5.1].

Remark. We have analogous Laplace operators ∆−
j,k on Pol((V ′

−⊗W ′
−)⊕(V ′′

− ⊗W ′′
+ )).
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We define the subspace of harmonic polynomials

Harm((V ′
+⊗W ′

−)⊕(V ′′
+ ⊗W ′′

−))⊂Pol((V+⊗W )′0) =Pol((V ′
+⊗W ′

+)⊕(V ′′
+ ⊗W ′′

−))

to be the subspace of polynomials annihilated by the Laplace operators ∆j,k, 16j, k6n.
We will henceforth abbreviate Harm((V ′

+⊗W ′
−)⊕(V ′′

+ ⊗W ′′
−)) to H+. The subspace

H−=Harm((V ′
−⊗W ′

−)⊕(V ′′
− ⊗W ′′

+ ))⊂Pol((V ′
−⊗W ′

−)⊕(V ′′
− ⊗W ′′

+ )) is defined analogously
to H+ as the simultaneous kernels of the operators ∆−

j,k. We emphasize that H+ and H−

are not closed under multiplication.
Note however that the subalgebra Pol(V ′

+⊗W ′
+) of P(V ′

+⊗W ′) is contained in the
subspace of harmonic polynomials,

Pol(V ′
+⊗W ′

+)⊂Harm((V ′
+⊗W ′

−)⊕(V ′′
+ ⊗W ′′

−)).

We will call an element of Pol(V ′
+⊗W ′

+) a special harmonic polynomial.
Following Kashiwara–Vergne [39] we define elements

∆k ∈P(V+⊗W ) and ∆̃` ∈P(V+⊗W )

for 16k, `6p and a, b6p, by

∆k(x′,y′′) =∆k(y′′) =det(z′′α,j) =det((vα, yj)), 1 6α6 k and 1 6 j6 k,

∆̃`(x′,y′′) = ∆̃`(x′) =det(z′α,j) =det((xj , vα)), p−`+1 6α6 p and 1 6 j6 `.

We note that ∆k and ∆̃` are special harmonic, and hence any power of ∆k or ∆̃` is also
special harmonic. One easily verifies the following lemma.

Lemma 5.2. Suppose k+`6p. Then for any natural numbers `1 and `2 the product
∆`1
k ·(∆̃`)`2 is harmonic.

5.2. Some special cocyles

We now give formulas for cocycles which will turn out to be generalizations of the special
cocyles constructed by Kudla–Millson.

The domain of the relative Lie algebra cochains is the exterior algebra
∧∗

p, which
factors according to∧∗

p =(
∧∗

p′)⊗(
∧∗

p′′) =
∧∗(V+⊗V ∗

− )⊗
∧∗(V−⊗V ∗

+ ). (5.1)

We will consider only very special cochains whose range is the positive definite Fock
model Pol((V+⊗W )′0)=P+. Recall that the space Pol((V+⊗W )′0) factors according to

Pol((V+⊗W )′0) =Pol(V ′
+⊗W ′

+)⊗Pol(V ′′
+ ⊗W ′′

−). (5.2)
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The key point is that each of the two factorizations has a strong “disjointness prop-
erty”. On the right-hand side of equation (5.1) the only irreducible U(p)-representation
common to each of the two factors in the tensor product is the trivial representation and
the same for equation (5.2).

5.2.1. A restriction on Hodge types

Note that

Pol(V ′
+⊗W ′

+)∼=Sym(V ′′
+ ⊗W ′′

+ ) and Pol(V ′′
+ ⊗W ′′

−)∼=Sym(V ′
+⊗W ′

−).

Then, since any cochain ψk,` is U(p)-equivariant, we obtain the following result.

Lemma 5.3. Suppose that ψk,0 is a cochain of bidegree (k, 0) taking values in P+.
Then it must take values in the second factor of the tensor product in (5.2), namely in

Pol(V ′′
+ ⊗W ′′

−)∼=Sym(V ′
+⊗W ′

−)∼=Sym((V ′
+)b).

Equivalently, suppose that ψ0,` is a cochain of bidegree (0, `) taking values in P+.
Then it must take values in the first factor of (5.2), namely in

Pol(V ′
+⊗W ′

+)∼=Sym(V ′′
+ ⊗W ′′

+ )∼=Sym((V ′′
+ )a).

Remark. If we insist on the standard convention dimW+=a and dimW−=b (as we
are going to do) then the Hodge degrees of the special cocycles we construct will be of the
form (bq, aq). Thus in our previous notation the cocycle ψbq,0 gives rise to a polynomial
function of y′′1 , ..., y

′′
b (the right half of the matrix) and the cocycle ψ0,aq gives rise to a

polynomial function of x′1, ..., x
′
a (the left half of the matrix).

5.3. Our immediate goal now is to give the definitions and establish some properties
of the cocycles ψbq,0, of Hodge bidegree (bq, 0), and ψ0,aq, of Hodge bidegree (0, aq). As
pointed out above, these cocycles have the following special properties:

(1) ψbq,0:
∧bq(V+⊗V ∗

− )=
∧bq

p′!Symbq((V ′′
+ ⊗W ′′

−)∗);
(2) ψ0,aq:

∧aq(V−⊗V ∗
+ )=

∧bq
p′′!Symaq((V ′

+⊗W ′
+)∗).

As stated above, if we first evaluate the cocycles ψbq,0 and ψ0,aq at points in V ′′
+ ⊗W ′′

−

and V ′
+⊗W ′

+, respectively, the resulting elements of
∧
�

p∗ are completely decomposable.
To formalize this decomposability property (which will be very useful for computations)
and also to understand how the cocycles transform under Ũ(p)×Ũ(q)×Ũ(a)×Ũ(b) it is
better to give formulas for the the dual maps ψ∗bq,0 and ψ∗0,aq. These maps will satisfy

(1) ψ∗bq,0: Symbq(V ′′
+ ⊗W ′′

−)!
∧bq(V ∗

+ ⊗V−)=
∧bq(p′)∗;

(2) ψ∗0,aq: Symaq(V ′
+⊗W ′

+)!
∧aq(V ∗

−⊗V+)=
∧bq(p′′)∗.
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Remark. Note that

ψbq,0 ∈Symbq((V ′′
+ ⊗W ′′

−)∗)⊗
∧bq(p′)∗ and ψ∗bq,0 ∈

∧bq(p′)∗⊗Symbq((V ′′
+ ⊗W ′′

−)∗)

are interchanged by the map that switches the polynomial and exterior factors.

The defining formula for ψ∗bq,0 is then the following. Let y′′=(y′′1 , ..., y
′′
b ). Then we

have

ψ∗bq,0(y
′′) = tỹ∗1∧ tỹ∗2∧...∧ tỹ∗b ∈

∧bq(V ∗
+ ⊗V−). (5.3)

Remark. It is important to observe that the above tensor is a wedge product of bq
vectors in (p′)∗ depending on y′′, that is

ψ∗bq,0(y
′′) = [(y∗1⊗vp+1)∧...∧(y∗1⊗vp+q)]∧...∧[(y∗b⊗vp+1)∧...∧(y∗b⊗vp+q)].

We have a similar formulas for ψ∗0,aq. Let x′=(x′1, ..., x
′
a). Then we have

ψ∗0,aq(x
′) = tx̃1∧...∧ tx̃a ∈

∧aq(V ∗
−⊗V+) =

∧aq(p′)∗. (5.4)

It is immediate from the above defining formulas that the holomorphic and anti-
holomorphic cocycles factor according to the following lemma.

Lemma 5.4. Let a=u+v and b=r+s. Then we have the following factorizations:
(1) ψbq,0=ψrq,0∧ψsq,0;
(2) ψ0,aq=ψ0,uq∧ψ0,vq.

The exterior product ∧ in Lemma 5.4 is the outer exterior product associated with
the product in the coefficient ring (in which the cocycles take values)

Pol((V ′
+⊗W ′

+)⊗Pol((V ′′
+ ⊗W ′′

−)−!Pol((V ′
+⊗W ′

+)⊕(V ′′
+ ⊗W ′′

−)).

Here we note that if V =A⊕B then we have a multiplication map (isomorphism)

Pol(A)⊗Pol(B)−!Pol(V ).

5.3.1. The cocycles of Hodge type (bq, 0)

We now give a coordinate formula for ψq,0. Recall that ξ′α,µ∈(p′)∗=V ∗
+ ⊗V− is given by

ξ′α,µ=v∗α⊗vµ, 16α6p and p6µ6p+q.

Lemma 5.5. We have

ψq,0 =
∑

16α1,...,αq6p

(z′′α1
z′′α2

... z′′αq
)⊗(ξ′α1,p+1∧...∧ξ′αq,p+1).
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Proof. Let y=
∑p
α=1 zαvα and hence y∗=

∑p
α=1 z̄αv

∗
α. Therefore

tỹ∗ =
∑

16α1,...,αq6p

((v∗α1
⊗vp+1)∧...∧(v∗αq

⊗vp+1))⊗(z̄α1 z̄α2 ... z̄αq )

=
∑

16α1,...,αq6p

(ξ′α1,p+1∧...∧ξ′αq,p+1)⊗(z′′α1
z′′α2

... z′′αq
).

Here the last equation is justified by Lemma 2.1 which states that we have z(y)=z′′(y′′).
The lemma then follows because ψq,0 and ψ∗q,0 are related by switching the polynomial
and exterior tensor factors.

One can now derive a coordinate formula for ψbq,0 by taking the b-fold outer exterior
power of the formula above. We will see later (Proposition 5.19) that ψbq,0 is non-zero.

We will now prove that ψq,0 is closed and hence, by Lemma 5.4, ψbq,0 is closed since
the differential d is a graded derivation of the outer exterior product. In this case we
have a=0 and b=1. Hence we let W=W− be a 1-dimensional complex vector space
with basis w1 equipped with a Hermitian form ( · , ·) such that (w1, w1)=−1. We apply
equation (4.16) with W+=0 to conclude that the Fock model P(V ⊗W ) for the dual pair
U(V )×U(W ) is given by

P(V ⊗W ) =Pol(V ′′
+ ⊗W ′′

−)⊗Pol(V ′
−⊗W ′

−).

We will use z′′α for the coordinates on V ′′
+ ⊗W ′′

− relative to the basis {v′′α⊗w′′
1}
p
α=1, and

z′µ for the coordinates on V ′
−⊗W ′

− relative to {v′µ⊗w′
1}
p+q
α=p+1. As usual, we let ω denote

the (infinitesimal) Weil representation. We then have the following result.

Lemma 5.6. We have

ω(xα,µ) = z′′αz
′
µ and ω(yα,µ) =

∂2

∂z′′α∂z
′
µ

. (5.5)

As usual we define ∂, resp. ∂̄, to be the bidegree (1, 0), resp. (0, 1), parts of the
differential d. It is then an immediate consequence of Lemma 5.6 that

∂=
p∑

α=1

p+q∑
µ=p+1

z′′αz
′
µ⊗A(ξ′αµ) and ∂̄=

p∑
α=1

p+q∑
µ=p+1

∂2

∂z′′α∂z
′
µ

⊗A(ξ′′αµ). (5.6)

It is then clear that ∂̄ψq,0=0.

Lemma 5.7. We have dψ0,q=∂ψq,0=0.
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Proof. We have

∂ψq,0 =
p∑

β=1

p+q∑
µ=p+1

∑
16α1,...,αq6p

(z′′βz
′
µ)(z

′′
α1
... z′′αq

)⊗ξ′β,µ∧ξ′α1,p+1∧...∧ξ′αq,p+q.

Fix a value µ=p+k in the second sum. We then have the subsum

Sµ =
p∑

β=1

∑
16α1,...,αq6p

z′′βz
′′
α1
... z′′αq

⊗ξ′β,µ∧ξ′α1,p+1∧...∧ξ′αq,p+q.

Clearly Sµ may be factored according to

Sµ =
( p∑
β=1

p∑
αk=1

z′′βz
′′
αk
⊗ξ′β,µ∧ξ′αk,µ

)
∧ω

for a certain (q−2)-form ω. Clearly the first factor is zero.

We now study the transformation properties of ψ∗bq,0, and hence those of ψbq,0. From
formula (5.3) we see that ψ∗bq,0 is a homogeneous (of degree q in each y′′j , 16j6b, and
hence of total degree bq) assignment of an element ψ∗bq,0(y

′′) in
∧bq(V ∗

+ ⊗V−) to a b-
tuple y′′=(y′′1 , ..., y

′′
b )∈(V ′′

+ )b∼=V ′′
+ ⊗W ′′

− . From the above formula it is clear that ψ∗bq,0 is
a U(V+)-equivariant map.

Recall, see [17, p. 80], that there are quotient maps of U(V+)-modules

Symbq(V+⊗W ′′
−)−!Sb×q(V ′′

+ )⊗Sb×q(W ′′
−)∼=Sb×q(V ′′

+ )⊗(
∧b
W ′′

−)q

and ∧bq(V ∗
+ ⊗V−)−!Sb×q(V ∗

+ )⊗Sq×b(V−)∼=Sb×q(V ∗
+ )⊗

∧q(V−)b.

Now note that (
∧b
W ′′

−)q and (
∧q
V−)b are 1-dimensional and hence as U(V+)-modules

we have
Sb×q(V ′′

+ )⊗(
∧b
W ′′

−)q ∼=Sb×q(V ∗
+ )⊗(

∧q
V−)b. (5.7)

We now prove that ψ∗bq,0 induces the above isomorphism (the lower horizontal arrow
in the next diagram). In what follows we will use the symbols U(V+) and U(p) and U(V−)
and U(q) interchangeably.

Lemma 5.8. The map ψ∗bq,0 induces a commutative diagram of U(V+)-modules

Symbq(V ′′
+ ⊗W ′′

−)
ψ∗bq,0

//

��

∧bq(V ∗
+ ⊗V−)

��

Sb×q(V ′′
+ )⊗

(∧b
W ′′

−

)⊗q ψ∗bq,0
// Sb×q(V ∗

+ )⊗
(∧q

V−
)⊗b

.
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Proof. We first note that the inclusion map (corresponding to the special case b=1
of the above quotient map) ι:Sq(V ∗

+ )⊗
∧q(V−)!

∧q(V ∗
+ ⊗V−) is given by

ι(f⊗q⊗vp+1∧...∧vp+q) = (f⊗vp+1)∧...∧(f⊗vp+q) = f̃ .

Hence
ι((y∗)⊗q⊗vp+1∧...∧vp+q) = tỹ∗.

Thus tỹ∗ transforms under U(V−) according to detU(V−), and hence tỹ∗1∧...∧ tỹ∗b trans-
forms under U(V−) according to detbU(V−).

Now recall from (1.3) that we have∧bq(V ∗
+ ⊗V−) =

⊕
Sλ(V ∗

+ )⊗Sλ′(V−).

But in order for ỹ∗1∧...∧ỹ∗b to transform under U(V−) according to detbU(V−) the Young
diagram λ′ must be a q×b rectangle, and hence λ must be a b×q rectangle. But again
by [17, p. 80] we have

Sbq(V ∗
+ ⊗W−) =

⊕
Sλ(V ∗

+ )⊗Sλ(W−),

where the sum is over all Young diagrams λ with bq boxes and at most min{p, b} rows.
Since the map ψbq,0 is U((V+)∗)-equivariant, it must factor through the summand where
λ is a b×q rectangle.

We obtain the following result.

Lemma 5.9. We have

ψbq,0 ∈Sb×q((V ′′
+ )∗)⊗(

∧b((W ′′
−)∗)⊗q)⊗Sb×q(V ∗

+ )⊗(
∧q(V−))⊗b.

Proof. By dualizing the result of the previous lemma we obtain

ψbq,0 ∈Hom(Sb×q(V+)⊗(
∧q(V ∗

− ))⊗b, Sb×q((V ′′
+ )∗)⊗(

∧b((W ′′
−)∗)⊗q).

We then use the isomorphism Hom(U1, U2)∼=U2⊗U∗
1 .

Corollary 5.10. The cochain ψbq,0 is invariant under U(p) acting by the standard
action and transforms under U(q)×U(b) according to detbU(q)⊗detqU(b).

5.3.2. The cocycles of Hodge type (0, aq)

We first give a coordinate formula for ψq,0. Recall that ξ′′α,µ∈(p′′)∗=V ∗
−⊗V+ is given by

ξ′′α,µ=v∗µ⊗vα, 16α6p and p6µ6p+q. Let x∈V+ be given by x=
∑
α zαvα.

The next lemma is proved in the same way as Lemma 5.5.
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Lemma 5.11. We have

ψ0,q(x′) =
∑

16α1,...,αq6p

(z′α1
z′α2

... z′αq
)⊗(ξ′′α1,p+1∧...∧ξ′′αq,p+1).

We will now prove that ψ0,q is closed and hence, as before, by Lemma 5.4, ψ0,aq is
closed. In this case we have a=1 and b=0. Hence we let W=W+ be a 1-dimensional
complex vector space with basis w1 equipped with a Hermitian form ( · , ·) such that
(w1, w1)=1. We apply equation (4.16) with W−=0 to conclude that the Fock model
P(V ⊗W ) for the dual pair U(V )×U(W ) is given by

P(V ⊗W ) =Pol(V ′
+⊗W ′

+)⊗Pol(V ′′
− ⊗W ′′

+ ).

We will use z′α for the coordinates on V ′
+⊗W ′

+ relative to the basis {v′α⊗w′
1}
p
α=1 and z′′µ

for the coordinates on V ′′
− ⊗W ′′

+ relative to {v′′µ⊗w′′
1}
p+q
µ=p+1. As usual, we let ω be the

action of the (infinitesimal) Weil representation.

Lemma 5.12. We have

ω(xα,µ) =
∂2

∂z′α∂z
′′
µ

and ω(yα,µ) = z′αz
′′
µ. (5.8)

It is then an immediate consequence of Lemma 5.12 that we have

∂=
p∑

α=1

p+q∑
µ=p+1

∂2

∂z′α∂z
′′
µ

⊗A(ξ′αµ) and ∂̄=
p∑

α=1

p+q∑
µ=p+1

z′αz
′′
µ⊗A(ξ′′αµ). (5.9)

It is then clear that ∂ψq,0=0.
The next lemmas are proved in the same way as Lemmas 5.7–5.9.

Lemma 5.13. We have dψ0,q=∂̄ψ0,q=0.

Lemma 5.14. The map ψ∗0,aq induces a commutative diagram

Symaq(V ′
+⊗W ′

+)

��

ψ∗0,aq
//
∧aq(V+⊗V ∗

− )

��

Sa×q(V ′
+)⊗(

∧a
W ′

+)⊗q
ψ∗0,aq

// Sa×q(V+)⊗(
∧q
V ∗
− )⊗a.

Lemma 5.15. We have

ψ0,aq ∈Sa×q(V+)⊗(
∧q(V ∗

− ))⊗a⊗Sa×q((V ′
+)∗)⊗(

∧a((W ′
+)∗)⊗q).



48 n. bergeron, j. millson and c. moeglin

We then have as before the following consequence.

Corollary 5.16. The cochain ψ0,aq is invariant under U(p) acting by the standard
action and transforms under U(q)×U(a) according to det−aU(q)⊗det−qU(a).

We now define the general special cocycles ψbq,aq of type (bq, aq) by

ψbq,aq =ψbq,0∧ψ0,aq.

Since these cocycles are wedges of cocycles they are themselves closed. We now summarize
the properties of the special cocycles.

Proposition 5.17. Let x1, x2, ..., xa, y1, ..., yb∈V+ be given. Put

x′ =(x′1, x
′
2, ..., x

′
a) and y′′ =(y′′1 , y

′′
2 , ..., y

′′
b ).

Then we have
(1) ψ∗bq,0(x

′,y′′)=ψ∗bq,0(y
′′)= tỹ∗1∧ tỹ∗2∧...∧ tỹ∗b∈

∧bq(V ∗
+ ⊗V−)∼=

∧bq(p′)∗.
(2) ψ0,aq(x′,y′′)=ψ∗aq,0(x

′)= tx̃1∧ tx̃2∧...∧ tx̃a∈
∧aq(V ∗

−⊗V+)∼=
∧aq(p′′)∗.

(3) ψ∗bq,aq(x
′,y′′)=( tỹ∗1∧ tỹ∗2∧...∧ tỹ∗b )∧( tx̃1∧ tx̃2∧...∧ tx̃a), which belongs to

∧aq(V ∗
+ ⊗V−)⊗

∧bq(V ∗
−⊗V+)∼=

∧aq(p′)∗⊗∧bq(p′′)∗.
(4) The cochain ψbq,aq is a cocycle.
(5) The cocycle ψaq,aq is the representation in the Fock model of the cocycle ϕaq,aq

in the Schrödinger model of Kudla and Millson.
(6) The cocycle ψbq,aq transforms under U(q) according to detb−aU(q).
(7) The cocycle ψbq,aq is invariant under SL(q).
(8) The cocycle ψbq,aq transforms under U(a)×U(b) according to det−qU(a)⊗detqU(b).

Proof. The only item that is not yet proved is (5). Note that (6) and (7) follow from
Corollaries 5.10 and 5.16. We will prove (5) in Appendix C.

Remark. By Lemma 5.4 the general cocycle ψbq,aq factors as a product of the basic
holomorphic and anti-holomorphic coycles ψq,0 and ψ0,q.

5.4. In §4.6 we pointed out that if a and b had opposite parity then to descend the
Weil representation restricted to Ũ(p, q) we needed to twist by an odd power of det1/2U(p,q).
The following lemma shows that this odd power is uniquely determined by the condition
that the special cocycles ψbq,aq is a relative Lie algebra cochain with values in the Weil
representation. (This holds even in the case where a and b have the same parity.)
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Lemma 5.18. The cocycle ψbq,aq, considered as a linear map from
∧∗

p to P+, is
(U(p)×U(q))-equivariant if and only if we twist the restriction of the Weil representation
to Ũ(p, q) by the character det(a−b)/2U(p,q) . In this case the action of Ũ(p) on polynomials
will factor through the action induced by the standard action of U(p) on V+, and the
action of Ũ(V−) will simply scale all polynomials by detb−aU(q).

Proof. It is clear that there exists at most one twist such that ψbq,aq is equivariant.
Hence, it suffices to prove the if part of the lemma. The if part follows from Theorem 4.17
and (6) of Proposition 5.17.

5.5. The values of the special cocycles on e(bq, 0), e(0, aq) and e(bq, aq)

We now evaluate our special cocycles in the Vogan–Zuckerman vectors.

Proposition 5.19. We have
(1) ψbq,0(e(bq, 0))(x′,y′′)=∆b(y′′)q=∆b(z′′α,k)

q;
(2) ψ0,aq(e(0, aq))(x′,y′′)=∆̃a(x′)q=∆̃a(z′α,j)

q;
(3) ψbq,aq(e(bq, aq))(x′,y′′)=ψbq,0(e(bq, 0))(y′′) ψ0,aq(e(0, aq))(x′)=∆̃a(x′)q ∆b(y′′)q

=∆̃a(z′α,k)
q∆b(z′′α,k)

q.

Proof. We first prove (1). By equation (3.21), we have

e(bq, 0) = (−1)bq ṽ1∧ṽ2∧...∧ṽb.

Combining this formula with the first formula in Proposition 5.17, we have

ψbq,0(e(bq, 0))(x′,y′′) = (ψ∗bq,0(x
′,y′′))(e(bq, 0))

= (−1)bq( tỹ∗1∧ tỹ∗2∧...∧ tỹ∗b )(ṽ1∧ṽ2∧...∧ṽb).
(5.10)

Recall the definitions

tỹ∗1∧ tỹ∗2∧...∧ tỹ∗b = [(y∗1⊗vp+1)∧...∧(y∗1⊗vp+q)]∧...∧[(y∗b⊗vp+1)∧...∧(y∗b⊗vp+q)]

and

ṽ1∧ṽ2∧...∧ṽb = [(v1∧v∗p+1)∧...∧(v1∧v∗p+q)]∧...∧[(va∧v∗p+1)∧...∧(vb∧v∗p+q)].

From equation (5.10) and the two equations immediately above, we see that

(−1)bqψbq,0(e(bq, 0))(y′′)
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is the determinant of the bq×bq matrix A(y′′) with entries

(y∗i ∧vp+j)(vk∧v∗p+`) = (vk, yi)δj,`

arranged in some order (with more work we could show that A(y′′)=−Iq⊗Z ′′(y′′) but we
prefer to avoid this computation and procede more invariantly). By definition, (vk, yi)=
z′′i,k(y

′′). Hence the above matrix entry is either z′′i,k or zero, and hence ψbq,0(e(bq, 0))(y′′)
is a polynomial of degree at most bq in the entries z′′i,k of the b×b matrix Z ′′(y′′). Hence
ψbq,0(e(bq, 0))(y′′) is a polynomial p(Z ′′) on the space of b×b matrices Z ′′. But by
Corollary 5.10 and Proposition 5.17 we have, for g∈U(b),

ψbq,0(e(bq, 0))(y′′g) =detqU(b)(g)ψbq,0(e(bq, 0))(y′′),

and hence
p(Z ′′g) =detqU(b)(g)p(Z

′′).

Thus, in case det(Z ′′(y′′)) 6=0, we have

p(Z ′′(y′′))= p(Ib) det(Z ′′(y′′))q.

By Zariski density of the invertible matrices (and the fact that every n×n matrix Z ′′ may
be written as Z ′′(y′′) for a suitable y′′) the above equation holds for all b×b matrices
Z ′′. It remains to evaluate the value of p on the identity matrix Ib. This follows by
setting yj=vj , 16j6b, and observing that each successive term in the bq-fold product
tỹ∗1∧ tỹ∗2∧...∧ tỹ∗b is the negative of the dual basis vector for the corresponding term in
e(bq, 0)=ṽ1∧ṽ2∧...∧ṽb. Hence we obtain the determinant of −Ibq.

The proof of (2) is similar.
We now observe that formula (3) follows from (1) and (2). By equation (3.21) we

have
e(bq, aq) = e(bq, 0)∧e(0, aq),

and by Proposition 5.17 we have

ψbq,aq(x′,y′′) =ψbq,0(y′′)∧ψ0,aq(x′).

Hence we have

ψbq,aq(e(bq, aq))(x′,y′′) = (ψbq,0(y′′)∧ψ0,aq(x′))(e(bq, 0)∧e(0, aq))

=ψbq,0(e(bq, 0))(y′′)ψ0,aq(e(0, aq))(x′).

The proposition follows.
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We conclude that the polynomials ψbq,0(e(bq, 0)) and ψ0,aq(e(0, aq)) are (special) har-
monic for all a and b, and if a+b6p then ψbq,aq(e(bq, aq)) is harmonic. The polynomial
ψbq,0(e(bq, 0)) transforms under U(a)×U(b) according to the 1-dimensional representa-
tion 1⊗det−q. The polynomial ψ0,bq(e(0, aq)) transforms under U(a)×U(b) according to
the 1-dimensional representation detq ⊗1. The polynomial ψbq,aq(e(bq, aq)) transforms
under U(a)×U(b) according to the 1-dimensional representation detq ⊗det−q.

5.6. The cocycle ψbq,0 generates the Sb×q(V+)⊗(
∧q
V ∗

− )b isotypic component
for the action of U(p)×U(q) on the polynomial Fock space

In this section we will abbreviate the space of harmonic polynomials Harm(V+⊗W ) to
H+, and the space Harm(V−⊗W ) to H−. The goal of this subsection is to prove the
following theorem.

Theorem 5.20. We have

HomK(Sb×q(V+)⊗(
∧q
V ∗
− )b,P(V ⊗W ))= U(u(a, b)C)ψbq,0.

Theorem 5.20 will be a consequence of the next three lemmas. We will henceforth
abbreviate the representation Sb×q(Cp)⊗(

∧q
V ∗
− )b to V (bq).

Recall that e(bq, 0)=ṽ1∧...∧ṽb∈
∧bq(V+⊗V ∗

− ) is the Vogan–Zuckerman vector. We
have seen in Proposition 5.19 that

ψbq,0(e(bq))= ∆b(y′′)q,

and consequently the value of ψbq,0 on the Vogan Zuckerman vector e(bq, 0) is a (special)
harmonic polynomial, that is

ψbq,0(e(bq, 0))∈Pol(V ′′
+ ⊗W ′′

−)⊂H+.

We now have the following lemma.

Lemma 5.21. We have

HomK(V (bq),H+⊗H−) = Cψbq,0.

Clearly Lemma 5.21 follows from the following one.

Lemma 5.22. The representation V (bq) of U(p) occurs once in H+. Moreover, the
1-dimensional representation det−bU(q) of U(q) occurs once in H−. Hence

HomU(p)×U(q)(V (bq),H+⊗H−) = Cψbq,0.
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Proof. We first prove that Sb×q(V+) of U(p) occurs once in H+. Indeed, the actions
of the groups U(p) and U(a)×U(b) on H+ form a dual pair. Furthermore the correspon-
dence of unitary representations τ :U(p)∨!U(a)∨×U(b)∨ is given in [39, Theorem 6.3].
From their formula we see that λ=b×q corresponds to the 1-dimensional representation
1⊗detq of U(a)×U(b). Since the multiplicity of the representation with highest weight
λ of U(p) corresponds to the dimension of the corresponding representation τ(λ), which
is 1 in this case, we have proved that Sb×q(V+) occurs once as claimed. We note that we
may realize this occurrence explicity as follows. First note that

Symbq(V ′
+⊗W ′

−)∼=Pbq(V ′′
+ ⊗W ′′

−)⊂H+.

But by [17, p. 80], we have

Sb×q(V ′
+)⊗Sb×q(W ′

−)⊂Symbq(V ′
+⊗W ′

−).

We note that, since dim(W−)=b, the bth exterior power of W ′
− is the top exterior

power and we have
Sb×q(W ′

−)∼=(
∧b
W ′

−)q.

Consequently U(W−) acts on the second factor by detqU(b).

It remains to prove that the representation det−bU(q) of U(q) occurs once in the oscil-
lator representation action on the harmonic polynomials H− in

P− =Pol((V ′
−⊗W ′

−))⊗Pol((V ′′
− ⊗W ′′

+ )).

Since the oscillator representation action of U(q) is the standard action twisted by det−bU(q),
this is equivalent to showing that the trivial representation of U(q) occurs once in the
standard action of U(q) on H−. It occurs at least once because the constant polynomials
are harmonic. But as above, by [39, Theorem 6.3], the trivial representation of U(q) cor-
responds to the trivial representation of U(a)×U(b) and consequently it has multiplicity
1 and the lemma follows.

Theorem 5.20 is now a consequence of the following result of Howe, see [35, Propo-
sition 3.1].

Lemma 5.23. We have

HomK(V (bq),P(V ⊗W ))= U(u(a, b)C) HomK(V (bq),H+⊗H−).

Hence, combining Lemmas 5.23 and 5.21, we obtain

HomK(V (bq),P(V ⊗W ))= U(u(a, b)C)ψbq,0.

Theorem 5.20 is now proved.
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Remark. Applying reasoning similar to that immediately above, one deduces that
the cocycle ψ0,aq generates (over U(u(a, b)C)) the Sa×q(V ∗

+ )⊗(
∧q
V−)a isotypic component

of the polynomial Fock space.

5.7. The cocycle ψbq,aq generates the V (bq, aq) isotypic component of the
polynomial Fock space

We recall that V (bq, aq) is the representation of U(p)×U(q) with highest weight being
the sum of the two previous highest weights:

(q, q, ..., q︸ ︷︷ ︸
b

, 0, 0, ..., 0,−q,−q, ...,−q︸ ︷︷ ︸
a

; a−b, a−b, ..., a−b︸ ︷︷ ︸
q

).

We also note that this representation is the Cartan product of Sb×q(Cp)⊗det−bU(q) and
Sa×q((Cp)∗)⊗detaU(q). The Cartan product was defined in §3.8.

Theorem 5.24. We have

HomK(V (bq, aq),P(V ⊗W ))= U(u(a, b)C)ψbq,aq.

Theorem 5.24 is proved the same way as Theorem 5.20. Once again we have a
multiplicity one result in H+⊗H−.

Lemma 5.25. We have

HomK(V (bq, aq),H+⊗H−) = Cψbq,aq.

Proof. The product group U(p)×(U(a)×U(b)) acts as a dual pair on

H(V+⊗(W ′
+⊕W ′′

−)).

Hence the dual representation of U(a)×U(b) has highest weight

(q, q, ..., q︸ ︷︷ ︸
a

,−q,−q, ...,−q︸ ︷︷ ︸
b

),

and hence it is detq ⊗det−q. Thus, it is 1-dimensional so the Cartan product of Sb×q(Cp)
and Sa×q(Cp)∗ has multiplicity 1 in H+.

We leave the proof that the 1-dimensional representation deta−bU(q) of U(q) has multi-
plicity 1 in H− to the reader (once again the constant polynomials transform under U(q)
by this twist). The lemma follows.

Now Theorem 5.24 follows from the result of Howe; see Lemma 5.23.
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5.8. The polynomial Fock space

We refer the reader to Appendix C for the notation used in the following paragraph and
further details.

In the study of the global theta correspondence beginning in §10 we will need to
consider the cocycles ϕbq,aq with values in the Schrödinger model for the oscillator repre-
sentation of U(V )×U(W ) corresponding to the cocycles ψbq,aq defined above with values
in the Fock model. In order to give a precise statement of the relation between them
we recall there is an intertwining operator, the Bargmann transform BV⊗W , from the
Schrödinger model of the oscillator representation of U(V )×U(W ) to the Fock model;
see [15, p. 40 and p. 180]. We define the polynomial Fock space S(V ⊗E)⊂S(V ⊗E) to be
the image of the holomorphic polynomials in the Fock space under the inverse Bargmann
transform B−1

V⊗W . Here S(V ⊗E) is the Schwartz space. We then have

ϕbq,aq =(B−1
V⊗W⊗1)ψbq,aq. (5.11)

Part 2. The geometry of Shimura varieties

6. Shimura varieties and their cohomology

6.1. Notation

Let E be a CM-field with totally real maximal subfield F satisfying [F :Q]=d. We assume
that d>1. We denote by AQ the ring of adèles of Q, and by A the ring of adèles of F .
We fix d non-conjugate complex embeddings τ1, ..., τd:E!C, and denote by x 7!x̄ the
non-trivial automorphism of E induced by the complex conjugation of C with respect to
any of these embeddings. We identify F , resp. E, with a subfield of R, resp. C, via τ1.

Let (V, ( · , ·)) be a non-degenerate anisotropic Hermitian vector space over E with
dimE V =m. We let Vτj

=V ⊗E,τj
C be the complex Hermitian vector space obtained as

the completion of V with respect to the complex embedding τj . Choosing a suitable
isomorphism Vτj

∼=Cm, we may write

(u, v) = tuHpj ,qj v̄ for all u, v ∈Cm,

where

Hpj ,qj =
(

1pj

−1qj

)
,

and (pj , qj) is the signature of Vτj . We will consider in this paper only those (V, ( · , ·))
such that q2=...=qd=0 and let (p, q)=(p1, q1). By replacing ( · , ·) with −( · , ·) we can,
and will, assume that p>q.
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6.2. Unitary group (of similitudes) of V

We view the unitary group in m variables U(V ) as a reductive algebraic group over F .
We let G1=ResF/Q U(V ), so that for any Q-algebra A

G1(A) = {g ∈EndE(V )⊗QA : (gu, gv) = (u, v) for all u, v ∈V ⊗QA}

= {g ∈EndE(V )⊗QA : gg∗ =1}.

The embeddings τj :E!C in particular induce an isomorphism

G1(R) =U(p, q)×U(m)d−1.

The group of unitary similitudes GU(V ) is the algebraic group over F whose points
in any F -algebra A are given by

GU(V )(A) = {g ∈EndE(V )⊗FA : (g ·, g ·) =λ(g)( · , ·) for some λ(g)∈A×}

= {g ∈EndE(V )⊗FA : gg∗ =λ(g)∈A×}.

Here λ is the similitude norm. We let G=ResF/Q GU(V ).(5) Consider the rational
torus ResF/Q GmF whose group of rational points is F×. By abuse of notation, we let
λ:G!ResF/Q GmF be the homomorphism of algebraic groups over Q induced by the
similitude norm. Set

GU(a, b) = {A∈GLa+b(C) : tAHa,bĀ= c(A)Ha,b and c(A)∈R×}.

The embeddings τj :E!C induce an isomorphism

G(R)∼=GU(p, q)×GU(m)d−1.

It is useful to point out that the group of E-points in GU(V ) is isomorphic to GL(V )×E×,
inside which the F -group GU(V ) is defined as

{(g, t)∈GL(V )×E×: (t(g∗)−1, t̄ ) = (g, t)}.

In this formulation the similitude norm λ is the projection on the second factor. The
determinant on U(V ) induces—by restriction of scalars—a character

det:G1 −!ResE/Q GmE .(6)

By the above discussion λ and det generate the character group of G, and on the rational
group these characters are related by λ(g)m=NE/F (det(g)).

(5) We warn the reader that in this part of the paper G refers to the unitary similitude group and
that we now refer to the usual unitary group as G1.

(6) Here, by definition, the group of rational points of ResE/Q(GmE) is E×.
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6.3. Shimura data

The symmetric space X associated with Gder(R)—or equivalently the symmetric space
associated with G(R) (modulo its center)—is also the space

X =U(p, q)/(U(p)×U(q))

of negative q -planes in Vτ1 . It is isomorphic to a bounded symmetric domain in Cpq.
Following the general theory of Deligne [12], [53]—see also Kottwitz [40] for our par-
ticular case—the pair (G,X) defines a Shimura variety Sh(G,X) which has a canonical
model over the reflex field E(G,X). More precisely, let S be the real algebraic group
ResC/R GmC, so that S(R)=C×, and define a homomorphism of real algebraic groups
h0: S!G as follows. Since

G(R)∼=GU(p, q)×GU(m)d−1,

it suffices to define the components hj , j=1, ..., d, of h0.
For j>1, we take hj to be the trivial homomorphism. For j=1, fix a base point

x0∈X; then x0 corresponds to a negative q -plane V− in Vτ1 . Let us simply write V for Vτ1
in the remaing part of this paragraph. Now let V+⊂V denote the orthogonal complement
of V− with respect to ( · , ·). As in §2, we associate with the decomposition V =V++V− a
positive definite Hermitian form ( · , ·)x0—the associated minimal majorant—by changing
the sign of ( · , ·) on V−. By taking the real part of ( · , ·)x0 we obtain a positive definite
symmetric form B( · , ·)x0 . Let θx0 be the Cartan involution which acts as the identity on
V+ and as − id on V−, and let Jx0 =θx0 �J be the corresponding positive almost complex
structure on V . We then have

B(u, v)x0 = 〈Jx0u, v〉=−〈u, Jx0v〉.

For a+ib∈C, let
h(a+ib) = a+bJx0 ∈End(V ).

The map h defines an R-algebra homomorphism such that
� h(z)∗=h(z̄), where again ∗ is the involution on End(V ) determined by ( · , ·),
� the form 〈h(i)u, v〉 is symmetric and positive definite on V .

Note that h(z)h(z)∗=|z|2. We conclude that the restriction of h to C× defines a homo-
morphism of real algebraic groups h1: C×!GU(V ).

Let h0=(h1, ..., hd). Then h0 defines a homomorphism of real algebraic groups
h0: S!G. The space X may then be viewed as the space of conjugates of h1 by GU(V )
or, equivalently, of h0 by G(R).
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Now we have S(C)=C××C×, where we order the factors such that the first factor
corresponds to the identity embedding C!C. Recall that we have decomposed V =Vτ1
as V =V+⊕V−, so that h1(z) acts by z, resp. z̄, on V+, resp. V−. With respect to this
decomposition the Hermitian matrix of ( · , ·) is diagonal and equal to Hp,q. Identify-
ing the complexification of GU(V ) with GLm(C)×Cd, the complexified homomorphism
h1: S(C)!GLm(C)×Cd is given by

h1C(z, w) =
(
z1p

w1q

)
×zw.

Let µ: C×!G(C)∼=(GLm(C)×C×)d be the restriction of the complexification h0C of h0

to the first factor. Up to conjugation, we may assume that the image of µ is contained
in a maximal torus of G defined over Q. Therefore it defines a cocharacter of G. By
definition the reflex field E(G,X)=E(G, h0) is the subfield of 
Q corresponding to the
subgroup of Gal(
Q/Q) of elements fixing the conjugacy class of µ. It is a subfield of
any extension of Q over which G splits. In particular E(G,X) is a subfield of E. We
can decompose V =Vτ1 as V =V+⊕V−, so that h(z) acts by z, resp. z̄, on V+, resp. V−,
and E(G,X) is precisely the field of definition of the representation V+ of E. Since the
Hermitian space V is F -anisotropic, we conclude that E(G,X)=E.

6.4. The complex Shimura variety

The pair (G,X), or (G, h0), gives rise to a Shimura variety Sh(G,X) which is defined
over the reflex field E. In particular if K=

∏
pKp⊂G(AfQ), with Kp⊂G(Qp), is an open

compact subgroup of the finite adelic points of G, we can consider ShK(G,X). This is a
projective variety over E whose set of complex points is identified with

S(K) =ShK(G,X)(C) =G(Q)\(X×G(AfQ))/K. (6.1)

We will always choose K to be neat in the following sense: For every k∈K, there exists
some prime p such that the semisimple part of the p-component of k has no eigenvalues
which are roots of unity other than 1. Every compact open subgroup of G(AfQ) contains
a neat subgroup of finite index.

In general S(K) is not connected, but instead a disjoint union of spaces of the
type S(Γ) discussed in the introduction, for various arithmetic subgroups Γ⊂G1(Q)=
U(V )(F ). Since we have assumedK to be neat, these arithmetic subgroups are all torsion
free.

The connected components of S(K) can be described as follows. Write

G(AfQ) =
⊔
j

G(Q)gjK, (6.2)
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with gj∈G(Af ). Then
S(K)∼=

⊔
j

S(Γj), (6.3)

where S(Γj)=Γj\X and Γj is the image in the adjoint group Gad(R) of the subgroup

Γ′j = gjKg
−1
j ∩G(Q) (6.4)

of G(Q) (see [53, Lemma 5.13]).

6.5. The structure of S(K)

In this paragraph we provide some more details on the structure of the connected com-
ponents of S(K). Let Gder=ResF/Q SU(V ) be the derived subgroup of G. This subgroup
is connected and simply connected as an algebraic group. It therefore follows, from e.g.
[53, p. 311], that the set of connected components of the complex Shimura variety S(K)
can be identified with the double coset

T (Q)\(Y ×T (AfQ))/ν(K).

Here T=G/Gder is the maximal torus quotient of G, ν is the projection G!T and we
define

Y =T (R)/ Im(Z(R)!T (R)),

where Z is the center of G and the homomorphism Z!T is obtained by composing the
inclusion Z↪!G with ν.

Let us finally describe the group T . First consider the rational torus

ResE/Q GmE×ResF/Q GmF ,

whose group of rational points is E××F×. The group T can be described as the rational
subtorus defined by the equation NE/F (x)=tm, with x∈ResE/Q GmE and t∈ResF/Q GmF .
See Kottwitz [40, §7] for a slightly different situation.

Let T1 be the rational group defined as the kernel of the norm homomorphism
NE/F=ResE/Q GmE!ResF/Q GmF . Then T1=G1/Gder is the maximal abelian quotient
of G1 and the quotient map G1!T1 is induced by det.

If m is even, say m=2k, then the torus T is isomorphic to T1×ResF/Q GmF , the
isomorphism being given by (x, t) 7!(xt−k, t) for (x, t)∈T .

If m is odd, say m=2k+1, then T is isomorphic to ResE/Q GmE , the isomorphism
being given by (x, t) 7!xt−k for (x, t)∈T .

In any case the quotient T/T1 is isomorphic to the rational torus ResF/Q GmF .
It follows that T (R)=(C×)d if m is odd, and T (R)=(R××U1)d if m is even, with U1

being the complex unit circle. The image of Z(R) is (C×)d, resp. (R>0×U1)d. Therefore,
Y ={1} if m is odd, and Y ={±1}d if m is even.
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6.6. Cohomology of Shimura varieties

We are interested in the cohomology groups H�(S(K), R) where R is a Q-algebra. If
K ′⊂K is another compact subgroup of G(AfQ) we let pr:S(K ′)!S(K) be the natural
projection. It induces a map

pr∗:H�(S(K), R)−!H�(S(K ′), R).

Passing to the direct limit over K via the maps pr∗, we obtain

H�(Sh(G,X), R) = lim
−!
K

H�(S(K), R).

The cohomology groups H�(Sh(G,X),C) are G(AfQ)-modules. For any character ω
of Z(AfQ), we denote by H�(Sh(G,X),C)(ω) the ω -eigenspace. Denote also by ω̃ the
character of Z(AQ) trivial on Z(R)Z(Q) and with finite part ω. Then one knows (see
e.g. [9]) that

H�(Sh(G,X),C)(ω)∼=H�(g,K∞;L2(G, ω̃)), (6.5)

where g is the Lie algebra of G(R), K∞ is the stabilizer of a point in the symmetric
space X and L2(G, ω̃) is the Hilbert space of measurable functions f on G(Q)\G(AQ)
such that, for all g∈G(AQ) and z∈Z(AQ), f(gz)=f(g)ω̃(z) and |f | is square-integrable
on G(Q)Z(AQ)\G(AQ).

Since G is anisotropic each L2(G, ω̃) decomposes as a direct sum of irreducible
unitary representations of G(AQ) with finite multiplicities. A representation π which
occurs in this way is called an automorphic representation of G and is factorizable as a
restricted tensor product of admissible representations [14]. We shall write π=π∞⊗πf ,
where π∞ is a unitary representation of G(R) and πf is a representation of G(AfQ). We
denote by χ(π), resp. χ(πf ), its central character ω̃, resp. ω, and by m(π) its multiplicity
in L2(G, ω̃).

6.7. Representations with cohomology

Let Coh∞ be the set of unitary representations π∞ of G(R) (up to equivalence) such that

H�(g,K∞;π∞) 6=0, (6.6)

where g is the Lie algebra of G(R) and K∞ is the stabilizer of a point in the symmetric
space X. Note that K∞ is the centralizer in G of the maximal compact subgroup K1 of
G1(R). Given a representation π of G, we denote by π1 its restriction to G1 and say that
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π is essentially unitary if π1 is unitary. Recall from §3 that cohomological representations
of G1(R) are classified by Vogan and Zuckerman in [71].

The representation theory of G is substantially identical to that of G1. Let Z and Z1

denote the centers or G and G1, respectively. Then G=ZG1, and every representation
(local or global) of G1 extends to G; it suffices to extend its central character.

Since we only consider cohomological representations of G(R) having trivial central
character the classification of Coh∞ amounts to the Vogan–Zuckerman classification. In
particular, the set Coh∞ is finite. For any πf , set

Inf(πf ) = {π∞ ∈Coh∞ :m(π∞⊗πf ) 6=0}.

Let Cohf be the set of πf such that Inf(πf ) is non-empty.
We will be particularly interested in the cohomological representations A(b×q, a×q).

We denote by Cohb,af the set of πf such that Inf(πf ) contains A(b×q, a×q).

6.8. Let HK be the Hecke algebra of Q-linear combinations of K-double cosets in
G(AfQ). If πf is a representation of G(AfQ), we let πKf denote the representation of HK

on the space of K-fixed vectors of πf .
Over C it follows from Matsushima’s formula (see [52], [9]) that there is an HK-

isomorphism
H�(S(K),C)−!

⊕
πf∈Cohf

H�(πf ,C)⊗πKf , (6.7)

where
H�(πf ,C) =

⊕
π∞∈Inf(πf )

m(π∞⊗πf )H�(g,K∞;π∞).

Given two integers a and b, we denote byHb×q,a×q(S(K),C) the part ofH�(S(K),C)
which corresponds to the cohomological representation π∞=A(b×q, a×q), so that the
HK-isomorphism induces the isomorphism

Hb×q,a×q(S(K),C)!
⊕

πf∈Cohb,a
f

m(A(b×q, a×q)⊗πf )H(a+b)q(g,K∞;A(b×q, a×q))⊗πKf .

(6.8)

6.9. Rational subspaces of the cohomology groups

Since the action of HK is defined on H�(S(K),Q), we obtain a 
Q-form of (6.7):

H�(S(K),
Q)−!
⊕

πf∈Cohf

H�(πf ,
Q)⊗πKf (
Q), (6.9)
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where H�(πf ,
Q) and πKf (
Q) are 
Q-forms of H�(πf ,C) and πKf , respectively. By consid-
ering arbitrary small K, we obtain a 
Q-form πf (
Q) of any πf∈Cohf . Moreover, since
Gal(
Q/Q) acts on H�(S(K),
Q) via its action on the coefficients 
Q, it permutes the
summands in (6.9) and therefore induces an action (σ, πf ) 7!πσf of Gal(
Q/Q) on Cohf .
We let A(πf )={σ∈Gal(
Q/Q):πσf ∼=πf} be the stabilizer of πf and denote by Q(πf ) the
corresponding number field. Given [πf ]∈Cohf/Gal(
Q/Q), we define

W ([πf ])=
⊕

σ∈Gal(	Q/Q)/A(πf )

H�(πσf ,
Q)⊗πσf (
Q)

=
⊕

σ∈Hom(Q(πf ),	Q)

HomG(Af
Q)(π

σ
f ,H

�(S(K),
Q))⊗πσf (
Q),

so that

H�(S(K),
Q)∼=
⊕

[πf ]∈Cohf/Gal(	Q/Q)

W ([πf ])K .

Theorem 6.1. Suppose that πf∈Cohf contributes to H�(S(K),C). Then the fol-
lowing conditions hold :

(1) The subspace W ([πf ])K⊂H�(S(K),
Q) is a polarized Q-sub-Hodge structure of
H�(S(K),Q).

(2) If moreover πf∈Cohb,af with 3(a+b)+|a−b|<2m, then we have(7)

(W ([πf ])K⊗QC)∩SH(a+b)q(S(K),C)⊂Hb×q,a×q(S(K),C)⊕Ha×q,b×q(S(K),C).

Proof. The first part is classical. It follows from the fact that the Hecke algebra HK

acts as algebraic correspondences on S(K) which yield morphisms of the rational Hodge
structure H�(S(K),Q). The polarization then comes from the cup product and Poincaré
duality, both of which are functorial for algebraic correspondences.

We postpone the proof of the second part until §13. One important ingredient is the
global theta correspondence that we review in the next section.

In the special q=1 case we have SH�(S(K),C)=H�(S(K),C), and we get the fol-
lowing result.

Corollary 6.2. Let q=1 and let a and b be integers such that 3(a+b)+|a−b|<2m.
Then, the space Ha+b(S(K),Q) contains a polarized Q-sub-Hodge structure X such that

X⊗QC =Ha,b(S(K),C)⊕Hb,a(S(K),C).

(7) Recall that SH� is defined in the introduction.
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Remark. In particular, the subspace H1,1(S(K),C)⊂H2(S(K),C) is defined over Q
as long as p>2. Note that this is not the case if p=2; see [8]. We will see that, when p>2,
the subspaceH1,1(S(K),C)⊂H2(S(K),C) is generated by theta lifts from unitary groups
of signature (1, 1) at infinity. This is no more true when p=2, but the subspace which
is generated by classes obtained by theta lifts—or equivalently the subspace associated
with endoscopic representations—is indeed defined over Q; see [8]. Granted this, another
proof that H1,1(S(K),C)⊂H2(S(K),C) is defined over Q when p>2 was proposed to us
by M. Harris. Indeed classes obtained by theta lift restrict to classes obtained by theta
lifts to any sub-Shimura variety associated with the smaller unitary group U(2, 1). The
general result now reduces to the theorem of Blasius and Rogawski via Oda’s trick using
the restriction theorem of Harris and Li [31].

7. The global theta correspondence

7.1. The theta correspondence

We keep F , E, V and ( · , ·) as in §6.1 and let W be an n-dimensional vector space over E
equipped with a skew-Hermitian 〈· , ·〉, which is conjugate linear in the first argument. We
take V to be a left E vector space and W to be a right E vector space. These conventions
come into play when considering the tensor product W=W⊗EV ; as an F -vector space,
it is endowed with the symplectic form

[ · , · ] = trE/F (〈· , ·〉⊗( · , ·)),

where trE/F denotes the usual trace of E over F . We let Sp(W) be the corresponding
symplectic F -group. Then (U(V ), U(W )) forms a reductive dual pair in Sp(W), in the
sense of Howe [34].

Remark. We can define a Hermitian space W ′ by W ′=W (viewed as a left E vector
space via aw=wa) and

(w1, w2) =α−1〈w2, w1〉.

We will sometimes abusively refer to W as a Hermitian space; note however that this
involves the choice of α made in §6.1.

Let Mp(W) be the metaplectic 2-fold cover of Sp(W) (see Weil [76]). Fix a choice of
a non-trivial character ψ of A/F and denote by ω=ωψ the corresponding (automorphic)
Weil representation of Mp(W), as in [34].

A complete polarization W=X+Y, where X and Y are maximal totally isotropic
subspaces of W, leads to the realization of ω on L2(X). This is known as the Schrödinger
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model for ω; see Gelbart [19]. In that way ω is realized as an automorphic representation
of Mp(W). The maximal compact subgroup of Sp(W) is U=Unm, the unitary group in
nm variables. We denote by Ũ its preimage in Mp(W). The associated space of smooth
vectors of ω is the Bruhat–Schwartz space S(X(A)). The (sp, Ũ)-module associated with
ω is made explicit by the realization of ω in the Fock model. Using it, one sees that the
subspace of Ũ -finite vectors in ω is the subspace S(X(A))⊂S(X(A)) obtained by replacing,
at each infinite place, the Schwartz space by the polynomial Fock space S(X)⊂S(X), i.e.
the image of holomorphic polynomials on Cnm under the intertwining map from the Fock
model of the oscillator representation to the Schrödinger model.

7.2. We denote by Um(A), Un(A), Sp2nm(A) and Mp2nm(A) the adelic points of U(V ),
U(W ), Sp(W) and Mp(W), respectively. According to Rao, Perrin and Kudla [42], for
any choice of a pair of characters χ=(χ1, χ2) of A×

E/E
× whose restrictions to A× sat-

isfy χ1|A×=εmE/F and χ2|A×=εnE/F , where we denote by εE/F the character of A×/F×

associated with the quadratic extension E/F by classfield theory, there exists a homo-
morphism

ı̃χ:Um(A)×Un(A)−!Mp2nm(A) (7.1)

lifting the natural map
ı:Um(A)×Un(A)−!Sp2nm(A),

and so, we obtain a representation ωχ of Um(A)×Un(A) on S(X(A)).(8)
The global metaplectic group Mp2nm(A) acts on S(X(A)) via ω and preserves the

dense subspace S(X(A)). For each φ∈S(X(A)) we form the theta function

θψ,φ(x) =
∑

ξ∈X(F )

ωψ(x)(φ)(ξ) (7.2)

on Mp2nm(A). Pulling the oscillator representation ωψ back to Um(A)×Un(A) using
the map (7.1) we get a a smooth, slowly increasing function (g, g′) 7!θψ,χ,φ(g′, g)=
θψ,φ(̃ıχ(g′, g)) on U(V )\Um(A)×U(W )\Un(A); see [76], [34].

Remark. Let χ′=(χ′1, χ
′
2) be another pair of characters of A×

E/E
× whose restrictions

to A× satisfy χ′1|A×=εmE/F and χ′2|A×=εnE/F , and put µ=χ′1χ
−1
1 and ν=χ′2χ

−1
2 . Since

µ|A×=ν|A×=1, we can define characters µ′ and ν′ of A1
E—the adelic points of the kernel

of the norm NE/F—by setting µ′(x/x̄)=µ(x) and ν′(x/x̄)=ν(x). Let µn=µ′�det and

(8) At infinity the choices of χ1 and χ2 correspond to the choice of a pair of integers (k, `) with
k≡m (mod 2), and `≡n (mod 2) and ωχ yields ωk,` as in §4.6.
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νm=ν′�det be the associated characters of Un(A) and Um(A), respectively. Then it
follows from the explicit formulas contained in [42] that

ωψ (̃ıχ′(g, g′))=ωψ (̃ıχ(g, g′))νm(g)µn(g′).

7.3. The global theta lifting

We denote by Ac(U(W )) the set of irreducible cuspidal automorphic representations
of Un(A), which occur as irreducible subspaces in the space of cuspidal automorphic
functions in L2(U(W )\Un(A)). As in [47] we will denote by [Un] the quotient U(W )\
Un(A). For a π′∈Ac(U(W )), the integral

θfψ,χ,φ(g) =
∫

[Un]

θψ,χ,φ(g, g′)f(g′) dg′, (7.3)

with f∈Hπ′ (the space of π′), defines an automorphic function on Um(A): the inte-
gral (7.3) is well defined, and determines a slowly increasing function on U(V )\Um(A).
We denote by ΘV

ψ,χ,W (π′) the space of the automorphic representation generated by all
θfψ,χ,φ(g) as φ and f vary, and call ΘV

ψ,χ,W (π′) the (ψ, χ)-theta lifting of π′ to Um(A).
Note that, since S(X(A)) is dense in S(X(A)) we may as well let φ vary in the subspace
S(X(A)).

We can similarly define Ac(U(V )) and ΘW
ψ,χ,V the (ψ, χ)-theta correspondence from

U(V ) to U(W ).

Definition 7.1. We say that a representation π∈Ac(U(V )) is in the image of the
cuspidal ψ-theta correspondence from a smaller group if there exists a skew-Hermitian
space W with dimW6m, a representation π′∈Ac(U(W )) and a pair of characters χ such
that

π=ΘV
ψ,χ,W (π′).

7.4. Local signs

Given a representation π∈Ac(U(V )) in the image of the cuspidal ψ -theta correspondence
from a smaller group U(W ), we associate with π local signs in the following way: Let v
be a finite place of F . We first assume that E⊗F Fv is a field. By a theorem of Landherr
[49], for each n there are exactly two different classes of isomorphism of n-dimensional
Hermitian spaces over Ev:

(1) For n=2r+1 odd, let Wr,r denote the Hermitian space of dimension 2r over Ev
with maximal isotropic subspaces of dimension r, then the two classes are represented
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by W±=Wr,r⊕W±
1 where W±

1
∼=Ev is the 1-dimensional Hermitian space over Ev with

Hermitian form (x, y)=αx̄y, where α∈F×
v with εEv/Fv

(α)=±1.
(2) For n=2r even, then the two classes are represented by W+=Wr,r and W−=

Wr−1,r−1⊕W−
2 , where W−

2 is an anisotropic space of dimension 2.
Now we associate to π the local sign ε(πv)=±1 depending on whether W⊗F Fv∼=W+ or
W⊗F Fv∼=W−.

If E⊗F Fv is not a field, we define ε(πv)=1.
The conservation relation conjecture of Harris, Kudla and Sweet [30, Speculations

7.5 and 7.6]—whose relevant part to us has been proved by Gong and Grenié [26]—implies
that this local sign is well defined and only depends on π.

Note that the local sign ε(πv) is equal to 1 at all but finitely many places and that
we have ∏

v<∞
ε(πv) = 1.

7.5. Extension of the theta correspondence to similitude groups

The extension of the theta correspondence to unitary similitude groups has been worked
out in details by Michael Harris in [29, §3.8]. It is based on the observation that the map

i: GU(W )×GU(V )−!GL(W⊗EV ), i(g′, g)(w⊗v) =wg′⊗g−1v

takes the algebraic subgroup

G(U(V )×U(W )) := {(g, g′)∈GU(V )×GU(W ) :λ(g) =λ(g′)}

into Sp(W⊗EV ).
Note that an automorphic representation π of G is in the image of the extension to

unitary similitude groups of the theta correspondence from a smaller group GU(W ) if π1

is in the image of the ψ -theta correspondence from U(W ). In that case we will loosely
say that π is in the image of the ψ -theta correspondence from U(W ).

The main automorphic ingredient of our paper is the following theorem. It is a
corollary of Proposition 13.4 below whose proof is the goal of Part 3.

Theorem 7.2. Let a and b be integers such that 3(a+b)+|a−b|<2m and let πf∈
Cohb,af . Set π=A(b×q, a×q)⊗πf . Then π is in the image of the ψ-theta correspondence
from a smaller group U(W ) of signature (a, b) at infinity.

Reduction to Proposition 13.4. Proposition 13.4 implies that π1 is in the image of
the ψ -theta correspondence from U(W ), where W is some (a+b)-dimensional skew-
Hermitian space over E. It remains to prove that over the infinite place v of F such
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that U(V )(Fv)∼=U(p, q), the signature of W is (a, b). But this follows from the explicit
description of the Archimedean theta correspondence obtained by Annegret Paul [61]: the
cohomological representation A(b×q, a×q) is the image of the local theta correspondence
from a group U(W,C/R) with dimW=a+b if and only if the signature of W is (a, b).

Since Z(AfQ) maps into T (AfQ) via the map ν, it acts on the disconnected Shimura
variety S(K) by permuting the connected components as described in §6.5. We conclude
with the following corollary.

Corollary 7.3. Let S be any connected component of S(K) and let a and b be
integers such that 3(a+b)+|a−b|<2m. Then Hb×q,a×q(S,C) is generated by classes of
theta lifts from unitary groups of signature (a, b) at infinity.

8. Special cycles

8.1. Notation

We keep the notation as in §6.1 and follow the adelization [43] of the work of Kudla–
Millson. Let n be an integer with 06n6p. Given an n-tuple x=(x1, ..., xn)∈V n we let
U=U(x) be the F -subspace of V spanned by the components of x. We write (x,x) for the
n×n Hermitian matrix with (j, k) entry equal to (xj , xk). Assume that (x,x) is totally
positive semidefinite of rank t, i.e. over each infinite place the Hermitian matrix (x,x)
is semidefinite and non-negative. Equivalently, as a sub-Hermitian space U⊂V is totally
positive definite of dimension t. In particular, 06t6p (and t6n). The constructions
of the preceding section can therefore be made with the space U⊥ in place of V . Set
H=ResF/Q G(U(U)×U(U⊥)). There is a natural morphism H!G and (the image of)
H is isomorphic to GU , the stabilizer of U in G. By abuse of notation, we will use both
H and GU to denote the stabilizer of U in G. Recall that we can realize the symmetric
space X as the set of negative q -planes in Vv0 . We then let XH be the subset of X
consisting of those q -planes which lie in U⊥

v0 .

8.2. Shimura subvarieties

There is a natural morphism iU : Sh(H,XH)!Sh(G,X) which is defined over the reflex
field E. If K is an open compact subgroup of G(AfQ) we set KH=H(AfQ)∩K. The variety
ShKH

(H,XH) is projective, defined over E and the set of its complex points identifies
with

SH(KH) =H(Q)\(XH×H(AfQ))/KH .
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Now given an element g∈G(AfQ), we may shift the natural morphism iU by g to get

iU,g,K :H(Q)\(XH×H(AfQ))/KH,g −!G(Q)\(X×G(AfQ))/K,

H(Q)(z, h)KH,g 7−!G(Q)(z, hg)K,
(8.1)

where KH,g=H(AfQ)∩gKg−1.

8.3. Connected cycles

Suppose that K is neat and let g∈G(AfQ). Set

Γ′g = gKg−1∩G(Q) and Γ′g,U = gKg−1∩H(Q) =Γ′g∩H(Q).

Now let Γg, resp. Γg,U , denote the image of Γ′g, resp. Γ′g,U , in the adjoint group Gad(R),
resp. Had(R). Then the natural map Γg,Uz 7!Γgz yields a (totally geodesic) immersion of
Γg,U \XH into Γg\X. We will denote the corresponding (connected) cycle by c(U, g,K).

We now introduce composite cycles that may be seen as composed of the connected
cycles c(U, g,K).

8.4. Special cycles

Given β∈Hern(E) an n×n totally positive Hermitian matrix—we use the notation β�0
for such a Hermitian matrix—we define

Ωβ =
{
x∈V n : 1

2 (x,x) =β
}
. (8.2)

The natural action of G(AfQ) on V (AfQ)n restricts to an action on Ωβ(AfQ). Then, any
K-invariant compact subset of Ωβ(AfQ) decomposes as a union of at most finitely many
disjoint K-orbits.

Now let ϕ∈S(V (AfQ)n) be a K-invariant Schwartz function on V (AfQ)n with values
in C. For β as above, with Ωβ(F ) 6=∅, let

Z(β, ϕ,K) =
∑
j

∑
x∈Ωβ(F )

mod Γ′gj

ϕ(g−1
j x)c(U(x), gj ,K). (8.3)

Here the gj ’s in G(AfQ) are those in (6.2).
Write g 7!ω(g) for the natural action of g∈G(AfQ) on S(V (AfQ)n) given by

(ω(g)ϕ)(x) =ϕ(g−1x).

As in [43, Propositions 5.9 and 5.10], we have the following result.
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Proposition 8.1. (1) For any g∈G(AfQ), we have

Z(β, ω(g)ϕ, gKg−1) =Z(β, ϕ,K)g−1.

(2) Suppose that K ′⊂K is another open compact subgroup of G(AfQ), and let

pr:S(K ′)−!S(K)

be the natural projection. Then we have pr∗(Z(β, ϕ,K))=Z(β, ϕ,K ′).

It follows from (2) that Z(β, ϕ,K) gives a well-defined element Z(β, ϕ) in Sh(G,X).

8.5. The ring of special cycles

Let S(V (AfQ)n)Z be the space of locally constant functions on V (AfQ)n with compact
support and values in Z. For any commutative ring R, let

S(V (AfQ)n)R =(S(V (AfQ)n)Z)⊗ZR.

Note that the natural action ω turns it into a G(AfQ)-module. It follows from Proposi-
tion 8.1 that for any Hermitian n×n matrix β�0 we get a G(AfQ)-equivariant map

S(V (AfQ)n)Q −!H2qn(Sh(G,X),Q),

ϕ 7−! [β, ϕ] := [Z(β, ϕ)].
(8.4)

Following Kudla [43], in order to study the G(AfQ)-submodule which is the image of
this map, we first extend this construction to the case where β is only totally positive
semidefinite. The expression (8.3) is still well defined. Denoting by t the rank of β, one
obtains a class

[β, ϕ]0 = [Z(β, ϕ)]∈H2qt(Sh(G,X),Q).

Now recall that the symmetric domain X has a natural Kähler form Ω and that, for
any compact open subgroup K⊂G(AfQ), (1/2πi)Ω induces a (1, 1)-form on S(K) which
is the Chern form of the canonical bundle of S(K). The cup product with Ωq—or
equivalently with the Chern form cq introduced above—induces the qth power of the
Lefschetz operator:

Lq:H�(Sh(G,X),Q)−!H�+2q(Sh(G,X),Q)

on cohomology which commutes with the action of G(AfQ). We then set

[β, ϕ] =Lq(n−t)([β, ϕ]0)∈H2qn(Sh(G,X),Q). (8.5)
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For each n, with 06n6p, let

SC2nq(Sh(G,X))⊂H2qn(Sh(G,X),Q)

be the subspace spanned by the classes [β, ϕ], where β is any Hermitian (totally) posi-
tive semidefinite n×n matrix (β>0). The subspace SC2nq(Sh(G,X)) is defined over Q
and is Hecke stable. We therefore have a direct sum decomposition into πf -isotypical
components:

SC2nq(Sh(G,X))=
⊕

πf∈Cohf

SC2nq(Sh(G,X), πf ). (8.6)

We can now state our main result on special cycles.

Theorem 8.2. The following statements hold : (1) The space

SC�(Sh(G,X))=
p⊕

n=0

SC2nq(Sh(G,X))

is a subring of H�(Sh(G,X),Q).
(2) For each n, with 06n6p, we have

SC2nq(Sh(G,X))⊂SHnq,nq(Sh(G,X),C)∩H2qn(Sh(G,X),Q).

(3) If we furthermore assume that 3n<p+q, then the subspace SC2nq
prim(Sh(G,X))

spanned by the projection of SC2nq(Sh(G,X)) into the primitive part

SHn×q,n×q(Sh(G,X),C)

of SHnq,nq(Sh(G,X),C) is defined over Q and we have a direct sum decomposition

SC2nq
prim(Sh(G,X))=

⊕
πf

H2nq(πf ,C)⊗πf , (8.7)

where the sum runs over all πf∈Cohn,nf such that ε(πv)=1 for all finite places v.

Remark. The proof of Theorem 8.2 is based on Kudla–Millson’s theory [44]–[46]
that give an explicit construction of Poincaré dual forms to the special cycles. The first
part of Theorem 8.2 immediately follows from their theory as was already pointed out
by Kudla in [43]. The last part is the real new part; it will follow from Theorem 7.2 and
the results of §5.

Before proving Theorem 8.2, which we do in the next section, we review the relevant
results of the Kudla–Millson theory.
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8.6. The forms of Kudla–Millson

Recall that in equation (5.11) of §5 we have defined an element

ϕnq,nq ∈HomK(
∧nq,nq

p,S(V n))

for each n such that 06n6p. Here V =Vτ1 is the completion of V with respect to the
τ1-embedding. With G=GU(p, q) and K denoting the stabilizer of a fixed base point
x0∈X, we have

X ∼=G/K ∼=U(p, q)/(U(p)×U(q)),

and the space of differential forms on X of type (a, b) is

Ωa,b(X)∼=HomK(
∧a,b

p, C∞(G)).

Evaluation at x0 therefore yields an isomorphism

[S(V n)⊗Ωnq,nq(X)]G∼=HomK(
∧nq,nq

p,S(V n)).

We will abusively denote by ϕnq,nq the corresponding element in [S(V n)⊗Ωnq,nq(X)]G.

8.7. Let V be a positive definite Hermitian space of dimension m=p+q over C. Let

ϕ0(x) = exp(−π trace(x,x))

be the standard Gaussian. Then, under the Weil representation ω of U(n, n) associated
with V, we have

ω(k′, k′′)ϕ0 =det(k′)m det(k′′)−mϕ0, (k′, k′′)∈U(n)×U(n).

If x∈V n with 1
2 (x,x)=β, then for g′∈U(n, n) we set

Wβ(g′) =ω(g′)ϕ0(x). (8.8)

8.8. Now we return to the global situation. Let n be an integer with 16n6p. For
ϕ∈S(V (AfQ)n), we define

φ=ϕnq,nq⊗
( d⊗
j=2

ϕ0

)
⊗ϕ∈ [S(V (AQ)n)⊗Ωnq,nq(X)]G(R), (8.9)

where ϕnq,nq is the Schwartz form for Vτ1 and ϕ0 is the Gaussian for Vτj , j>1.
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Let W be a 2n-dimensional vector space over E equipped with a split ι-skew-
Hermitian form and let G′=ResF/Q U(W ). The splitting of W gives rise to a polarization
X+Y of W⊗EV with X∼=V n. The global group G′(AQ) acts in S(V (AQ)n) via the global
Weil representation associated with this polarization, our fixed additive character ψ of
A/F and some choice character χ of A×

E/E
× whose restrictions to A× satisfy χ|A×=εmE/F .

If ϕ is K-invariant, then for g′∈G′(AQ) and g∈G(AQ) we may then form the theta func-
tion θψ,χ,φ(g, g′) as in §7.3. As a function of g, it defines a closed (nq, nq)-form on S(K)
which we abusively denote by θn(g′, ϕ). Let [θn(g′, ϕ)] be the corresponding class in

Hnq,nq(S(K),R)⊂Hnq,nq(Sh(G,X),R).

For g′=(g′1, ..., g
′
d)∈G′(R)=U(n, n)d⊂G′(AQ) and for β>0 Hermitian in Hern(E),

we set

Wβ(g′) =
d∏
j=1

Wβτj (g′j).

The following result is the main theorem of [46], rephrased here in the adelic language
following Kudla [43]. It relates the cohomology class [θn(g′, ϕ)] to those of the algebraic
cycles Z(β, ϕ) via Fourier decomposition as in the classical work or Hirzebruch–Zagier
[33].

Proposition 8.3. For g′∈G′(R)⊂G′(AQ) and ϕ∈S(V (AfQ)n), the Fourier expan-
sion of g′ 7![θn(g′, ϕ)] is given by

[θn(g′, ϕ)]=
∑
β>0

[β, ϕ]Wβ(g′).

8.9. Proof of Theorem 8.2 I

We first prove Theorem 8.2 (1). Let 06n1, n26p and choose W1 and W2 split skew-
Hermitian vector spaces over E of dimensions 2n1 and 2n2. Write G′

nj
=ResF/Q U(Wj),

j=1, 2. Given two Schwartz functions ϕj∈S(V (AfQ)nj ) and two Hermitian matrices βj>0
in Hernj (E), j=1, 2, we want to prove that the cup product of [β1, ϕ1] and [β2, ϕ2]
belongs to SC2nq(Sh(G,X)) where n=n1+n2. It is now natural to introduce the skew-
Hermitian vector space W=W1⊕W2, the group G′

n=ResF/Q U(W ) and the Schwartz
function ϕ=ϕ1⊗ϕ2∈S(V (AfQ)n). We then have a natural homomorphism

G′
n1

(AQ)×G′
n2

(AQ) ι−−!G′
n(AQ),

and the local product formula (Propositions 5.4 and 5.19) implies that for g′j∈G′
nj

(R),
j=1, 2, we have

θn(ι(g′1, g
′
2), ϕ) = θn1(g

′
1, ϕ1)∧θn2(g

′
2, ϕ2). (8.10)
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Taking cohomology classes, applying Proposition 8.3 and comparing Fourier coefficients
yields that [β1, ϕ1]∪[β2, ϕ2] decomposes as the sum

∑
β>0[β, ϕ] over the β’s such that

Wβ(ι(g′1, g
′
2))=Wβ1(g

′
1)Wβ2(g

′
2).

This proves the first part of Theorem 8.2.
To prove the second part it is enough to prove that the cohomology classes [θn(g′, ϕ)]

belong to SHnq,nq(Sh(G,X),R). This in turn follows from the fact that ϕnq,nq, seen as
an (nq, nq)-form on X with values in S(V n) is SL(q)-invariant. But this can be read out
from the explicit formula for ϕnq,nq; see Proposition 5.17 and Appendix C.

The last part of Theorem 8.2 will be deduced from our main theorem, which we
state and prove in the next section.

9. Main theorem

9.1. Notation

We keep the notation as in the previous section except that we will now always assume
that a and b are integers such that 3(a+b)+|a−b|<2m (we recall that m=dimV =p+q).

9.2. The special lift

It follows from Theorem 7.2 that if πf∈Cohb,af then π=A(b×q, a×q)⊗πf is in the image
of the ψ -theta correspondence from a smaller group U(W ) of signature (a, b) at infin-
ity. In particular the whole cohomology group Hb×q,a×q(Sh(G),C) is generated by the
automorphic functions θfψ,χ,φ as in (7.3) where φ and f vary. Here f is an automor-
phic function of GU(W ) and φ is a Schwartz function in the space S(X(A)) associated
with a choice of a complete (global) polarization of the symplectic space W. We may
furthermore restrict to functions φ that are decomposable as φ∞⊗φf .

Now at infinity the Schwartz space S(X(F∞)) is a model for the Weil representation.
We will abuse notation and denote by ϕbq,aq the Schwartz function in S(X(F∞)) which
is the tensor product of ϕbq,aq of §5, equation (5.11), at the infinite place where the real
group is non-compact and Gaussians at the other infinite places. We finally denote by
Hb×q,a×q(Sh(G),C)special the subspace of special lifts that are generated by the projec-
tions in Hb×q,a×q(Sh(G),C) of the automorphic functions θfψ,χ,ϕbq,aq⊗φf

as φf , χ and f

vary.
We now prove that special lifts span the whole refined Hodge type a×q, b×q in the

cohomology of Sh(G).
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Theorem 9.1. We have

Hb×q,a×q(Sh(G),C)special =Hb×q,a×q(Sh(G),C).

Proof. The proof follows the same lines as that of [7, Theorem 10.5]. First recall
the following simple general observation. Let K be a group and let A, B, U and V be
K-modules. Suppose that we have K-module homomorphisms Φ:U!V and Ψ:B!A.
Then we have a commutative diagram

HomK(A,U)
Φ∗ //

Ψ∗

��

HomK(A, V )

Ψ∗

��

HomK(B,U)
Φ∗ // HomK(B, V ).

(9.1)

Here Φ∗ is postcomposition with Φ and Ψ∗ is precomposition with Ψ.
In what follows K will be the group K∞. We now define K∞-module homomor-

phisms Φ and Ψ that will concern us here. We begin with the (g,K∞)-module homo-
morphism Φ. Let πf∈Cohb,af . Denote by Hπf

the A(b×q, a×q)⊗πf -isotypical subspace
in L2(G,χ(πf )) and let

H =
⊕

πf∈Cohb,a
f

Hπf
.

Recall that we have

Hb×q,a×q(Sh(G),C)∼=H(a+b)q(g,K∞;H)∼=HomK∞(V (b, a),H). (9.2)

Theorem 7.2 implies that each automorphic representation π=A(b×q, a×q)⊗πf ,
with πf∈Cohb,af is in the image of the ψ -theta correspondence from a smaller group
U(W ) of signature (a, b). We realize the oscillator representation as a (g,K∞)×G(Af )-
module in the subspace

S(X(Fv0))×S(X(Af ))⊂S(X(A)).

Here the inclusion maps an element (ϕ∞, ϕ) of the right-hand side to

φ=ϕ∞⊗

(⊗
v|∞
v 6=v0

ϕ0

)
⊗ϕ,

where the factors ϕ0, at the infinite places v not equal to v0, denote the unique elements
(up to scalar multiples) that are fixed by the compact group U(m). We abusively write
elements of S(X(Fv0))×S(X(Af )) as ϕ∞⊗ϕ.
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Fix some pair of characters χ as in §7.3 and let H ′ be the direct sum of the spaces
of cuspidal automorphic representations π′ of GU(W ) such that

ΘV
ψ,χ,W (π′) =A(b×q, a×q)⊗πf

for some πf∈Cohb,af . From now on, we abbreviate

S=S(X(Fv0))×S(X(Af )).

It follows from the definition of the global theta lift (see §7.3) that for any f∈H ′ and φ∈S
the map f⊗φ 7!θfψ,χ,φ is a (g,K∞)-module homomorphism from H ′⊗S to the space H.
And Theorem 7.2 implies that the images of these, as χ and ψ vary, span the whole
space H. We will drop the dependence of ψ and χ henceforth and abbreviate this map
to θ, whence f⊗φ 7!θ(f⊗φ). Then in the diagram (9.1) we set U=H ′⊗S and V =H
and Φ=θ.

We now define the map Ψ. We will take A as above to be the vector space
∧nq

p, the
vector space B to be the submodule V (b, a) and Ψ to be the inclusion ib,a:V (b, a)!

∧nq
p

(note that there is a unique embedding up to scalars and the scalars are not important
here).

From the general diagram (9.1) we obtain the desired commutative diagram

H ′⊗HomK∞

(∧nq
p,S
) θ∗ //

i∗b,a

��

HomK∞

(∧nq
p,H

)
i∗b,a

��

H ′⊗HomK∞(V (b, a),S)
θ∗ // HomK∞(V (b, a),H) =Hb×q,a×q(Sh(G),C).

(9.3)

We now examine the diagram. Since V (b, a) is a summand, the map on the left is onto.
Also, by (3.1), the map on the right is an isomorphism.

We now define Uϕbq,aq
to be the 1-dimensional subspace of HomK∞(

∧nq
p,S) gener-

ated by ϕ∞=ϕbq,aq.
The theorem will then follow from the equation

i∗b,a�θ∗(H
′⊗Uϕbq,aq

) = Image(i∗b,a�θ∗). (9.4)

Since the above diagram is commutative, equation (9.4) holds if and only if we have

θ∗�i
∗
b,a(H

′⊗Uϕbq,aq
) = Image(i∗b,a�θ∗). (9.5)

Put 
Uϕbq,aq
=i∗b,a(Uϕbq,aq

). As the left vertical arrow i∗b,a is onto, equation (9.5) holds if
and only if

θ∗(H ′⊗
Uϕbq,aq
) = θ∗(H ′⊗HomK∞(V (b, a),S)). (9.6)
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We now prove equation (9.6). To this end let ξ∈θ∗(H ′⊗HomK∞(V (b, a),S)). Hence,
by definition, there exists φ=ϕ∞⊗ϕ∈HomK∞(V (b, a),S) and f∈H ′ such that

θ∗(f⊗φ) = ξ. (9.7)

We claim that in equation (9.7) (up to replacing the component fv0) we may replace
the factor ϕ∞ of φ by ϕbq,aq without changing the right-hand side ξ of equation (9.7).
Indeed by Theorem 5.24 there exists Z∈U(u(b, a)C) such that

ϕ∞ =Zϕbq,aq. (9.8)

Now by [32, Lemma 6.9] (with slightly changed notation) we have

θ∗(f⊗Zφ) = θ∗(Z∗f⊗φ). (9.9)

Here Z 7!Z∗ is the involution of U(u(b, a)C) induced by the map g 7!g−1 of U(a, b).
Hence setting f ′=Z∗f we obtain, for all f∈H ′,

ξ= θ∗(f⊗(ϕ∞⊗ϕ))= θ∗(f⊗(Zϕbq,aq⊗ϕ))

= θ∗(Z∗f⊗(ϕbq,aq⊗ϕ))= θ∗(f ′⊗(ϕbq,aq⊗ϕ)).
(9.10)

We conclude that the image of the space H ′⊗Uϕbq,aq
under θ∗ coincides with the image

of H ′⊗HomK∞(Vbq,aq,S) as required.

We now prove the last part of Theorem 8.2.

Proposition 9.2. Let n be an integer such that 3n<m. We then have a direct sum
decomposition

SC2nq
prim(Sh(G,X))=

⊕
πf

H2nq(πf ,C)⊗πf ,

where the sum runs over all πf∈Cohn,nf such that ε(πv)=1 for all finite places v.

Proof. As 3n<m, it follows from Theorem 7.2 that, if πf∈Cohn,nf , the automorphic
representation π=A(qn, qn)⊗πf is in the image of the ψ -theta correspondence from a
smaller group U(W ) of signature (n, n) at infinity. By local theta dichotomy the global
Hermitian space is completely determined by π; it is split if and only if ε(πv)=1 for every
finite place v. By Theorem 9.1, we may, in the statement of Proposition 9.2, therefore
replace the right-hand side by the subspace of Hn×q,n×q(Sh(G),C) generated by the
projections of the cohomology classes [θn(g′, ϕ)], where ϕ∈S(V (AfQ)n) and g′∈G′(AQ).
Let us denote this subspace by H.
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Denote by 〈· , ·〉 the Petersson scalar product restricted to the primitive part of
H2nq(Sh(G),C). Letting SC2nq

prim(Sh(G),C)⊥ and H⊥ denote the respective annihilators
in H2nq

prim(Sh(G),C) it suffices to prove

SC2nq
prim(Sh(G),C)⊥ =H⊥. (9.11)

Now consider η∈H2nq
prim(Sh(G),C). Assume η is K-invariant for some level K. It follows

from proposition 8.3 that for g′∈G′(R)⊂G′(AQ) the Fourier expansion of the modular
form

θϕ(η) := 〈[θn(g′, ϕ)], η〉
(

=
∫
XK

θn(g′, ϕ)∧∗η
)

is given by
θϕ(η) =

∑
β>0

〈[β, ϕ], η〉Wβ(g′) =
∑
β�0

〈[β, ϕ], η〉Wβ(g′),

since η is primitive. In particular, the form η is orthogonal to SCnqprim(Sh(G),C) if and
only if all the Fourier coefficients of all the modular forms θϕ(η) vanish and therefore
θϕ(η)=0.

On the other hand, since G is anisotropic, the theta lift

ΘW
ψ,χ,V (A(n×q, n×q)⊗πf )

is well defined for each πf∈Cohn,nf , and we get an automorphic representation of the
group U(W ). The latter is isotropic (recall that W is split) but it follows from a general
principle—see e.g. Lemma 11.3 below—that ΘW

ψ,χ,V (A(n×q, n×q)⊗πf ) is either {0} or a
cuspidal automorphic representation of U(W ). Indeed by Rallis’ theta tower property if
ΘW
ψ,χ,V (A(n×q, n×q)⊗πf ) is non-zero and non-cuspidal, there exists a proper subspace

W ′⊂W such that ΘW ′

ψ,χ,V (A(n×q, n×q)⊗πf ) is non-zero and cuspidal. Localizing at the
place at infinity we get a contradiction: the cohomological representation A(b×q, a×q)
is not in the image of the local theta correspondence from a group U(W,C/R) with
dimW<a+b; see [61].

In particular, each modular form θϕ(η) is either zero or a cuspidal automorphic form.
Now η belongs to H⊥ if and only if, for any f∈Hσ′ (σ′∈Ac(U(W ))), we have∫

XK

θ(f, ϕ)[ϕnq,nq]∧∗η=0.

Since ∫
XK

θ(f, ϕ)[ϕnq,nq]∧∗η=
∫

[U(W )]

θϕ(η)f(g′) dg′,

we get that η belongs to H⊥ if and only if θϕ(η)=0. This concludes the proof.
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We can now prove our main theorem.

Theorem 9.3. Assume that b=a+c with c>0. Then the natural cup product map

SC2aq(Sh(G),C)×SHcq,0(Sh(G),C)−!Hb×q,a×q(Sh(G),C)

is surjective. If c=0, this is no longer true but the natural cup product map

SC2(b−1)q(Sh(G),C)×SHq,q(Sh(G),C)−!Hb×q,b×q(Sh(G),C)

is surjective.

Remark. There is a similar statement when a=b+c with c>0 except that the natural
cup product map becomes

SC2bq(Sh(G),C)×H0,cq(Sh(G),C)−!Hb×q,a×q(Sh(G),C).

Theorem 1.1 follows.

Proof. Write b=a+c with c>0. It follows from Theorem 9.1 thatHb×q,a×q(Sh(G),C)
is generated by the automorphic functions θfψ,χ,ϕbq,aq⊗φf

as φf , χ and f vary. These data
depend on a global Hermitian space W of signature (a, b) at infinity. Recall from §7.4
that if v is a finite place of F the local Hermitian space W=Wv decomposes as a sum

W =
{
Wa,a⊕Wc, if c> 0,
Wa−1,a−1⊕W2, otherwise,

(9.12)

where Wr,r denotes the Hermitian space of dimension 2r with maximal isotropic sub-
spaces of dimension r, and Wk denotes the unique Hermitian space of dimension k with
the same local sign as W .(9) Since the Wv are localizations of a global space, there
exists a corresponding global Wc, or W2 in case c=0, and the corresponding decom-
position (9.12) holds globally. If c>0, resp. c=0, we write G′

1=ResF/Q U(Wb,b), resp.
G′

1=ResF/Q U(Wb−1,b−1), and G′
2=ResF/Q U(Wc), resp. G′

2=ResF/Q U(W2). We have a
natural homomorphism

G′
1(AQ)×G′

2(AQ) ι−−!G′(AQ).

We may now decompose the space W=W⊗EV accordingly:

W =
{

(Wa,a⊗EV )⊕Wc, if c> 0,
(Wa−1,a−1⊗EV )⊕W2, otherwise.

(9.13)

(9) At infinite places one should require that Wc is positive definite if c>0, and that W2 is of
signature (1, 1) if c=0.
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Here Wk=Wk⊗EV . We finally choose a complete polarization

Wk = Xk+Yk,

and consider the associated polarization X+Y of W, where

X∼=
{
V a⊕Xc, if c> 0,
V a−1⊕X2, otherwise.

(9.14)

The polynomial Fock space S(X(A)) then contains

S(V (A)a)⊗S(Xc(A)), resp. S(V (A)a−1)⊗S(X2(A)),

as a dense subspace. The local product formula at infinity (Propositions 5.4 and 5.19)
decomposes ϕbq,aq as a cup product ϕaq,aq∧ϕcq,0, resp. ϕ(a−1)q,(a−1)q∧ϕq,q. As in the
proof of Theorem 8.2 (1) (see in particular (8.10)), we conclude that if φf=φ1f⊗φ2f

belongs to S(V (A)a)⊗S(Xc(A)), resp. S(V (A)a−1)⊗S(X2(A)), we have the following
cup product of differential forms:

θψ,χ,ϕbq,aq⊗φf
(ι(g′1, g

′
2), ·) =

{
θa(g′1, φ1f )∧θψ,χ,ϕcq,0⊗φ2f

(g′2, ·), if c> 0,
θa−1(g′1, φ1f )∧θψ,χ,ϕq,q⊗φ2f

(g′2, ·), otherwise.
(9.15)

Recall that Hb×q,a×q(Sh(G),C) is generated by the projections of the cohomology
classes of the differential forms θψ,χ,φ(g′, ·). Since θψ,χ,ω(g′1)φ

(g′, ·)=θψ,χ,φ(g′1g′, ·) and
the space S(V (A)a)⊗S(Xc(A)), resp. S(V (A)a−1)⊗S(X2(A)), is a dense subspace of
S(X(A)), we get that Hb×q,a×q(Sh(G),C) is generated by the projections of the coho-
mology classes of the differential forms (9.15). Theorem 9.3 now follows from Proposi-
tion 9.2.

Part 3. Automorphic forms

10. On the global theta correspondence

10.1. In this part of the paper we prove Proposition 13.4 that was used in the proof of
Theorem 7.2. We keep the notation as in §3. The main technical point is to prove that
if π∈Ac(U(V )) is such that its local component at infinity is sufficiently non-tempered
(this has to be made precise), then the global representation π is in the image of the
cuspidal ψ -theta correspondence from a smaller group.

As usual we encode local components of π into an L-function. In fact we only
consider its partial L-function LS(s, π)=

∏
v/∈S L(s, πv) where S is a sufficiently big finite
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set of places such that πv is unramified for each v /∈S. For such a v we define the local
factor L(s, πv) by considering the Langlands parameter of πv.

We may generalize these definitions to form the partial (Rankin–Selberg) L-functions
LS(s, π×η) for any automorphic character η.

The goal of this and the next section is to prove the following theorem, which is
a first important step toward the proof that a sufficiently non-tempered automorphic
representation is in the image of the cuspidal ψ -theta correspondence from a smaller
group. A large part of it is not new. The proof follows the pioneering work of Kudla and
Rallis for the usual orthogonal-symplectic dual pair (see also [55] and [24, Theorem 1.1 (1)]
and generalized in [18]). Most of the steps that appear to be different in the unitary case
can now be found in the literature; in that respect one key ingredient is due to Ichino [36].

Theorem 10.1. Let π∈Ac(U(V )) and let η be a character of A×
E/E

×. We as-
sume that there exists some integer a>1 such that the partial L-function LS(s, π×η) is
holomorphic in the half-plane Re(s)> 1

2 (a−1) and has a pole at s= 1
2 (a−1).

Then, we have η|A×=εm−a
E/F and there exists some n-dimensional skew-Hermitian

space over E, with n=m−a, such that π is in the image of the cuspidal ψ-theta corre-
spondence from the group U(W ).

Remark. It will follow from the proof that letting χ2=η and fixing some arbitrary
choice of character χ1 such that χ1|A×=εmE/F , there exists a representation π′∈Ac(U(W ))
such that

π=ΘV
ψ,χ,W (π′).

Note that the remark on p. 63 implies that changing our choice of χ1 amounts to twisting
π′ by a character of A1

E . Similarly, replacing ψ by any other additive character ψt(x)=
ψ(tx) for some t∈F , amounts to rescaling the Hermitian space W .

10.2. Strategy of proof of Theorem 10.1

The proof of Theorem 10.1 is based on Rallis’ inner product formula. Let π be as in
Theorem 10.1. We want to construct an n-dimensional skew-Hermitian space W over E
and some pair of characters χ=(χ1, χ2) of A×

E/E
× (as in §7.1) such that

ΘW
ψ,χ,V (π) 6=0. (10.1)

Theorem 10.1 will then follow by duality. Such a W will be of the form

W =Wr =W0⊕Hr,
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where H denotes the hyperbolic plane, i.e. the split skew-Hermitian space of dimen-
sion 2 and W0 is anisotropic. According to this decomposition we write n=n0+2r. One
says that the family of spaces {Wr :r>0} forms a Witt tower of non-degenerate skew-
Hermitian spaces. Replacing W=Wr by Wr−1, we may assume that ΘWr−1

ψ,χ,V (π)=0, so
that θfψ,χ,φ is a cusp form (possibly zero). To prove (10.1), we shall compute the square
of its Petersson norm

‖θfψ,χ,φ‖
2 =
∫

[Un]

θfψ,χ,φ(g
′)θfψ,χ,φ(g

′) dg′ (10.2)

using Rallis’ inner product formula. In our range n6m the latter takes the rough form

‖θfψ,χ,φ‖
2 = cRess=(m−n)/2 L

S
(
s+ 1

2 , π×η
)
,

where c is a non-zero constant involving local coefficients of the oscillator representation.
We will now provide the details of the proof.

We first recall the doubling method introduced by Piatetskii–Shapiro and Rallis [20]
in order to relate L-functions, as the function LS(s, π×η) in Theorem 10.1, to the Weil
representation.

10.3. Doubling the group

Equip V ⊕V with the split form ( · , ·)⊕−( · , ·). Let U(V ⊕V ) be the corresponding
isometry group. We denote the subspace V ⊕{0} by V and the subspace {0}⊕V by −V .
There is a canonical embedding

:U(V )×U(−V )−!U(V ⊕V ).

Let P be the Siegel parabolic of U(V ⊕V ) preserving the maximal isotropic subspace

V d = {(v, v) : v ∈V }⊂V ⊕V.

Let P=MU be the Levi decomposition of P . Here U is the unipotent radical of P , and
M is the subgroup which preserves both V d and

Vd = {(v,−v) : v ∈V }⊂V ⊕V.

Thus M(F ) is isomorphic to GLm(E) via restriction to Vd∼=Em, and we write µ(a)∈M
for the element corresponding to a∈GLm(E). Note that

P∩(U(V )×U(−V ))=U(V )d,

where U(V )d is the image of U(V ) under the diagonal embedding U(V ) 7!U(V )×U(−V ).
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10.4. Siegel Eisenstein series

Define the homomorphism det:M(F )!E× by µ(a) 7!det a and denote by | · |E the norm
map E×!F×. Then det and |det|E uniquely extend to homomorphisms det:M(A)!A×

E

and |det|E :M(A)!A×. Given a character η of E×\A×
E , we define the quasi-character

η| · |s, s∈C, of M(A) by
µ 7−! η(det(µ))|det(µ)|sE .

Then define the induced representation

I(s, η) = IndUm,m(A)

P (A) η| · |s, (10.3)

where we denote by Um,m(A) the adelic points of U(V ⊕V ) and the induction is normal-
ized. (Note that the modular character δ:P!F× is equal to µ 7!|det(µ)|mE .) Starting
with a section Φ( · , s)∈I(s, η) we may form the Eisenstein series

E(h, s,Φ) =
∑

γ∈P (F )\U(V⊕V )

Φ(γh, s). (10.4)

The group U(V ⊕V ) being quasi-split, we may fix a standard maximal compact subgroup
K=U(V ⊕V )(OF ) of Um,m(A). We then say that Φ( · , s)∈I(s, η) is standard if it is
holomorphic in s and its restriction to K is independent of s. It follows from [77, p. 56]
that, if Φ( · , s) is holomorphic in s, the Siegel Eisenstein series (10.4) converges absolutely
for Re(s)> 1

2m and has a meromorphic continuation to the whole s-plane. If Φ( · , s) is
standard, Tan [67] proves that E(h, s,Φ) is entire in the half-plane Re(s)>0 if η 6=η̄−1. If
η=η̄−1, then η|A∗=εjE/F , with j=0 or j=1, and the poles of E(h, s,Φ) in the half-plane
Re(s)>0 are at most simple and occur at the points

s∈
{

1
2 (m−j), 1

2 (m−j)−1, ...
}
.

If s0 is a pole of E(h, s,Φ) we may consider the Laurent expansion

E(h, s,Φ) =
A(h,Φ)
s−s0

+A0(h,Φ)+O(s−s0),

where A(h,Φ)=Ress=s0 E(h, s,Φ). The function h 7!A(h,Φ) defines an automorphic
form on U(V ⊕V ).

10.5. The global doubling integral

Consider now an irreducible automorphic cuspidal representation π∈Ac(U(V )). Denote
by π∨ the contragredient representation of π and write η for the character η�det of
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Um(A), identified with the adelic points of the subgroup U(V )d of P . Let Hπ (resp.
Hπ∨) be the space of π (resp. π∨). For f∈Hπ and f∨∈Hπ∨ , let

φ(g) = 〈π(g)f, f∨〉,

where 〈· , ·〉 is the standard pairing. Given a section Φ( · , s)∈I(s, η), define

Z(s, f, f∨,Φ) =
∫
Um(A)

φ(g)Φ((g, 1), s) dg. (10.5)

This integral converges absolutely for Re(s)>m.
The basic identity of [20, p. 3] relates (10.5) to some Rankin–Selberg integral

Z(s, f, f∨,Φ) =
∫

[Um×Um]

E((g1, g2), s,Φ)f(g1)f∨(g2)η−1(g2) dg1 dg2. (10.6)

The point here is that:
� If Φ( · , s)=⊗vΦv( · , s), f=⊗fv and f∨=⊗f∨v are factorizable, then the zeta inte-

gral (10.5) equals the product ∏
v

Z(s, fv, f∨v ,Φv),

where, letting φv(g)=〈πv(g)fv, f∨v 〉,

Z(s, fv, f∨v , ηv,Φv) =
∫
U(V⊗FFv)

φv(g)Φv((g, 1), s) dg (10.7)

is the local zeta integral.
� The Eisenstein series (10.4) admits a meromorphic continuation to the entire

complex plane.
Thus all this leads to the meromorphic continuation of some Euler products. We

now study the local zeta integrals (10.7).

10.6. Local zeta integrals

Let S be the finite set of ramified places (those v which are either infinite or finite and
either ηv is ramified or πv is not spherical). Assume that Φ is standard at each finite place
v /∈S. Let v be a finite place of F outside S and let q be the residue characteristic of F .
In this paragraph we deal with the local field Fv but we drop the subscript v everywhere.
Thus F is a non-Archimedean local field of characteristic 0, E is a quadratic extension of
F , V is an m-dimensional vector space over E endowed with a non-degenerate Hermitian
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form ( · , ·) and π is an irreducible unitary representation of the group G=U(V ). It may
also be that E=F⊕F is a split extension, then G∼=GL(m,F ) and the computations
below still work (see [20]) and are equivalent to the computations made by Godement
and Jacquet [25].

Denote by H the double of G so that :G×G↪!H. For s∈C and for any character
η of E×, let I(s, η) be the so-called degenerate principal series consisting of smooth
functions on H which satisfy

Φ(uµh, s) = η(det(µ))|det(µ)|s+m/2E Φ(h, s), (10.8)

where u∈U and µ∈M .
The local zeta integral is defined as follows. For f∈π and f∨∈π∨ let

φ(g) = 〈π(g)f, f∨〉

be the corresponding matrix coefficient. For a section Φ( · , s)∈I(s, η), define

Z(s, f, f∨,Φ) =
∫
G

φ(g)Φ((g, 1), s) dg. (10.9)

The integral converges for large Re(s) and defines a non-zero element

Z(s)∈HomG×G(I(s, η), π∨⊗(ηπ)). (10.10)

We may identify the group H as the subgroup of GL(2m,E) which preserves the
Hermitian form with matrix (

0 1m
1m 0

)
.

Let then K be the maximal compact subgroup of H obtained by intersecting this group
with GL(2m,OE), where OE is the ring of integers of E. We let Φ0( · , s) be the standard
section whose restriction to K is 1. Recall (see [51]) that if G is the split group, π is an
unramified principal series, η is unramified, and f and f∨ are non-trivial and K-fixed,
then, up to a non-zero constant, φ(g) is the zonal spherical constant associated with π

and the local zeta integral

Z(s, f, f∨,Φ0) =
L
(
s+ 1

2 , π×η
)

b(s, η)
. (10.11)

Here L(s, π×η) is the usual Langlands Euler factor associated with π, η and the standard
representation of the L-group LG, and

b(s, η) =
m−1∏
j=0

L(2s+m−j, η0εjE/F ),

where η0 is the restriction of η to F×. Note that in b(s, η) each L-factor is a local (Tate)
factor.
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10.7. From now on, we fix fv, f∨v and Φv=Φ0
v as above for each v /∈S. We conclude

that

Z(s, f, f∨,Φ) =
1

bS(s, η)
LS
(
s+

1
2
, π×η

)∏
v∈S

Z(s, fv, f∨v ,Φv), (10.12)

where bS(s, η) is the product of the local factors b(s, ηv) over the set of finite places v /∈S.
We remark that the proof of [47, Proposition 7.2.1]—which generalizes immediately

to the unitary case—implies that for any point s∈C there exist choices of f , f∨ and Φ
such that the local zeta integral Zv(s, f, f∨,Φ) is non-zero.

Now recall that we have

bS(s, η)Z(s, f, f∨,Φ) =
∫

[Um×Um]

E∗((g1, g2), s,Φ)f(g1)f∨(g2)η−1(g2) dg1 dg2, (10.13)

where E∗(h, s,Φ)=bS(s, η)E(h, s,Φ) is the normalized Eisenstein series.
We conclude from (10.12) and (10.13) that any pole of LS

(
s+ 1

2 , π×η
)

must be a
pole of bS(s, η)Z(s, f, f∨,Φ) for a suitable choice of Φ, and hence also a pole of the
normalized Eisenstein series E∗(h, s,Φ). Since bS(s, η) does not vanish in the half-plane
Re(s)>0, we conclude the following result.

Proposition 10.2. The following statements hold :
(1) If η 6=η̄−1, the partial L-function LS

(
s+ 1

2 , π×η
)

is entire in the half-plane
Re(s)>0.

(2) If η=η̄−1 then η=εjE/F with j=0 or j=1. Then the partial L-function

LS
(
s+ 1

2 , π×η
)

has at most simple poles in the half-plane Re(s)>0 and these can only occur for

s∈
{

1
2 (m−j), 1

2 (m−j)−1, ...
}
.

We now explain the relation of the doubling method with the Weil representation.

10.8. Doubling the Weil representation

Consider an n-dimensional vector space W over E equipped with a τ -skew-Hermitian
〈· , ·〉, as in §7.1. The space W+W=W⊗E (V ⊕V )=W⊕W is then endowed with the
symplectic form [ · , · ]⊕−[ · , · ]. We denote by Ω the Weil representation of Mp4nm(A)—
the group of adelic points of Mp(W+W)—corresponding to the same character ψ of
A/F .
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The obvious embedding

i: Sp2nm(A)×Sp2nm(A)−!Sp4nm(A)

leads to a homomorphism

ĩ:Mp2nm(A)×Mp2nm(A)−!Mp4nm(A)

such that
Ω� ĩ=ω⊗ω∨,

where ω∨ is the contragredient representation of ω, and is the same as ωψ̄ (the Weil repre-
sentation associated with ψ̄). Clearly W+W=(X⊕X)+(Y⊕Y) is a complete polarization
of W+W and Ω can be realized on S((X⊕X)(A)).

The choice of χ also defines a homomorphism

Un(A)×U2m(A)−!Mp4nm(A) (10.14)

lifting the natural map
Un(A)×U2m(A)−!Sp4nm(A),

and so, we obtain a representation Ωχ of Un(A)×U2m(A) on S((X⊕X)(A)). We will
rather work with another model of the Weil representation which we now describe.

10.9. Set
Wd =W⊗EV d and Wd =W⊗EVd.

Then W+W=Wd+Wd is another complete polarization of W+W. Thus Ω can also be
realized on L2(Wd(A)). We denote by Ω− this realization. There is an isometry

δ :L2((X+X)(A))−!L2(Wd(A))

intertwinning the action of Mp4nm(A) on the two spaces. Explicitly, δ is given as follows.
We identify Wd and W via the map

(w,−w) 7−!w,

and write w∈W as w=(x, y), according to the decomposition W=X+Y. Then, for
Ψ∈L2((X+X)(A)), we have

δ(Ψ)(w) =
∫

X(A)

ψ(2[u, y])Ψ(u+x, u−x) du. (10.15)
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10.10. Ichino sections

It follows from [42] that the action of M(A) on ϕ∈S(Wd(A)) is given by

(Ω−
χ(µ)ϕ)(ω) =χ2(det(µ))|det(µ)|n/2ϕ(µ−1ω). (10.16)

In particular, setting

Φ(h) = (Ω−
χ(h)ϕ)(0), (10.17)

we have

Φ∈ I(s0, χ2), (10.18)

with s0= 1
2 (n−m). In general a holomorphic section Φ( · , s) is said to be associated with

ϕ if it is holomorphic in s and Φ(h, s0)=(Ω−
χ(h)ϕ)(0). We call Ichino sections the sections

which are associated with some ϕ∈S(Wd(A)).

11. Rallis’ inner product formula and the proof of Theorem 10.1

We first want to construct an n-dimensional skew-Hermitian space W over E and a pair
of characters χ=(χ1, χ2) of A×

E/E
× (as in §7.1) such that

ΘW
ψ,χ,V (π) 6=0. (11.1)

To prove (11.1) we shall compute the Petersson product

〈θf1ψ,χ,φ1
, θf2ψ,χ,φ2

〉=
∫

[Un]

θf1ψ,χ,φ1
(g′)θf2ψ,χ,φ2

(g′) dg′, (11.2)

where f1, f2∈Hπ, using Rallis’ inner product formula.

11.1. Rallis’ inner product formula

We work with the dual pair (U(V ⊕V ), U(W )) and the associated Weil representation
Ωχ. The corresponding theta distribution is

Θ(φ) =
∑

ξ,η∈X(F )

φ(ξ, η),

and it follows from [30, §1] that, as a representation of Um(A)×Um(A)⊂U2m(A),

Ωχ� =ωχ⊗
(
χ2 ·ω∨χ

)
,
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where  is the obvious embedding Um(A)×Um(A)⊂U2m(A).
With notation as in (11.2), we have φ1⊗φ̄2∈S((X⊕X)(A)), and a simple formal

calculation gives the right-hand side of (11.2) as∫
[Um×Um]

f1(g1)χ−1
2 (g2)f2(g2)

(∫
[Un]

Θψ,χ,φ1⊗φ̄2
((g1, g2), g′) dg′

)
dg1 dg2, (11.3)

where Θψ,χ,φ1⊗φ̄2
is defined by the obvious analogue of (7.3). Unfortunately the inner

theta integral ∫
[Un]

Θψ,χ,φ1⊗φ̄2
((g1, g2), g′) dg′

diverges in general. Following Kudla and Rallis [47] we will regularize this integral. But
here again we shall rather work with the model (Ω−

χ , S(Wd(A))).
It follows from (10.15) that we have

δ(φ1⊗φ̄2)(0)= 〈φ1, φ2〉, (11.4)

where 〈· , ·〉 denotes the scalar product in the Hilbert space L2(X(A)).
Now on the space S(Wd(A)) the theta distribution takes the form

Θ−(ϕ) =
∑

ξ∈Wd(F )

ϕ(ξ).

Setting
ϕ= δ(φ1⊗φ̄2), (11.5)

we therefore see that (11.3) is equal to∫
[Um×Um]

f1(g1)χ−1
2 (g2)f2(g2)

(∫
[Un]

Θ−
ψ,χ,ϕ((g1, g2), g′) dg′

)
dg1 dg2. (11.6)

Here again the inner theta integral∫
[Un]

Θ−
ψ,χ,ϕ((g1, g2), g′) dg′

diverges in general but we now describe how Kudla and Rallis [47] and Ichino [36] intro-
duce a regularization of it.

11.2. The regularized theta integral

Suppose that m>n. It then follows from [36, §2] that, for a given finite place v of F ,
there is an element α of the spherical Hecke algebras of U2m(Fv) such that, for every
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ϕ∈S(Wd(A)) and h∈U2m(A), the theta function Θ−
ψ,χ,Ω−(α)ϕ(h, ·) is rapidly decreasing

on U(W )\Un(A).(10) It follows that the theta integral∫
[Un]

Θ−
ψ,χ,Ω−(α)ϕ(h, g′) dg′

is absolutely convergent. Now if ϕ is such that the original theta-integral∫
[Un]

Θ−
ψ,χ,ϕ(h, g′) dg′

is absolutely convergent, Ichino [36, Lemmas 2.3 and 2.2] proves that there exists some
non-zero constant cα, independent of ϕ, such that∫

[Un]

Θ−
ψ,χ,Ω−(α)ϕ(h, g′) dg′ = cα

∫
[Un]

Θ−
ψ,χ,ϕ(h, g′) dg′.

The regularized theta integral is then defined to be the function

B(g, ϕ) =
1
cα

∫
[Un]

Θ−
ψ,χ,Ω−(α)ϕ(h, g′) dg′.

It is well defined and independent of the choices of v and α; see [36, §2]. The function
h 7!B(h, ϕ) defines an automorphic form on U(V ⊕V ) and the linear map

S(Wd(A))−!A(U(V ⊕V )),

ϕ 7−!B( · , ϕ),

is U2m(A)-equivariant.

Remark. By the Howe duality [34], [56] the spherical Hecke algebras of U2m(Fv)
and Un(Fv) generate the same algebra of operators on S(Wd(Fv)) through the Weil
representation Ω−. It follows from [36, §2] that one may associate with α an element α′

of the spherical Hecke algebra of Un(Fv) such that Ω−(α)=Ω−(α′) and

α′ ·1= cα ·1, (11.7)

where 1 is the trivial representation of Un(Fv).

Proposition 11.1. Let ψ, χ, φ and f be as above. Then we have

〈θf1ψ,χ,φ1
, θf2ψ,χ,φ2

〉=
∫

[Um×Um]

f1(g1)χ−1
2 (g2)f2(g2)B((g1, g2), ϕ) dg1 dg2,

where ϕ is given by (11.5).

(10) Note that α acts on ϕ through the Weil representation.
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Proof. We have∫
[Um×Um]

f1(g1)χ−1
2 (g2)f2(g2)B((g1, g2), ϕ) dg1 dg2

=
1
cα

∫
[Um×Um]

f1(g1)χ−1
2 (g2)f2(g2)

∫
[Un]

Θ−
ψ,χ,Ω−(α)ϕ((g1, g2), g′) dg1 dg2 dg′

=
1
cα

∫
[Un]

(∫
[Um×Um]

f1(g1)χ−1
2 (g2)f2(g2)Θ

−
ψ,χ,Ω−(α)ϕ((g1, g2), g′) dg1 dg2

)
1(g′) dg′

=
1
cα

∫
[Un]

(∫
[Um×Um]

f1(g1)χ−1
2 (g2)f2(g2)Θ

−
ψ,χ,ϕ((g1, g2), g′) dg1 dg2

)
(α′ ·1)(g′) dg′

=
∫

[Un]

(∫
[Um×Um]

f1(g1)χ−1
2 (g2)f2(g2)Θ

−
ψ,χ,ϕ((g1, g2), g′) dg1 dg2

)
dg′

=
∫

[Un]

θf1ψ,χ,φ1
(g′)θf2ψ,χ,φ2

(g′) dg′,

where we have used the remark above.

11.3. Ichino’s regularized Siegel–Weil formula

The proof of Theorem 10.1 will follow from the following reformulation of the main result
of [36]. We provide the details of the proof in Appendix B.

Theorem 11.2. Let s0 be a positive real number < 1
2m and let Φ( · , s) be a holo-

morphic section of I(s, χ2) such that the Siegel Eisenstein series E(h, s,Φ) has a simple
pole at s=s0 whose residue A( · ,Φ) generates an irreducible automorphic representation.
Then there exists a global skew-Hermitian space W over E of dimension n=m−2s0 and
a function ϕ∈S(Wd(A)) such that

A(h,Φ)(=Ress=s0 E(h, s,Φ)) = cB(h, ϕ),

where c is a non-zero explicit constant.

Assuming Theorem 11.2 we can now prove Theorem 10.1.

11.4. Proof of Theorem 10.1

Let s0 be a pole of the partial L-function LS
(
s+ 1

2 , π×η
)

where η is some character
of E×\A×

E . It follows from Proposition 10.2 that η=η̄−1 and that s0 is a half-integer
6 1

2m. We set n=m−2s0 and suppose that n is positive. Note that we necessarily
have η|A×=εnE/F . We set χ2=η and fix some arbitrary choice of character χ1 such that
χ1|A×=εmE/F .
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Since s0 is a pole of the partial L-function LS
(
s+ 1

2 , π×χ2

)
there are choices of f∈π,

f∨∈π∨ and of a holomorphic section Φ( · , s) of I(s, χ2) such that∫
[Um×Um]

A((g1, g2),Φ)f(g1)f∨(g2)χ−1
2 (g2) dg1 dg2 6=0. (11.8)

In particular the Siegel Eisenstein series E(h, s,Φ) has a simple pole at s=s0. We may
moreover modify Φ so that A( · ,Φ) generates an irreducible automorphic representation
and (11.8) is still non-zero. Theorem 11.2 then implies that there exists a global skew-
Hermitian space W over E of dimension n=m−2s0 and a function ϕ∈S(Wd(A)) such
that

A(h,Φ) = cB(h, ϕ), (11.9)

where c is a non-zero explicit constant. Set f1=f and let f2∈Hπ be the element corre-
sponding to the conjugate of f∨∈Hπ∨ . Writing ϕ as a linear combination of δ(φ1⊗φ̄2),
it follows from Proposition 11.1 and equations (11.8) and (11.9) that there exist elements
φ1, φ2∈S(X(A)) such that

〈θf1ψ,χ,φ1
, θf2ψ,χ,φ2

〉=
∫

[Um×Um]

f1(g1)χ−1
2 (g2)f2(g2)B((g1, g2), ϕ) dg1 dg2

is non-zero. This proves that ΘW
ψ,χ,V (π) 6=0.

Lemma 11.3. The representation ΘW
ψ,χ,V (π) is a cuspidal automorphic representa-

tion of U(W ).

Proof. Let W ′ be the smallest element of the Witt tower {Wr}r such that

ΘW ′

ψ,χ,V (π) 6=0.

By the Rallis theta tower property [62], ΘW ′

ψ,χ,V (π) is a cuspidal automorphic represen-
tation of U(W ). Let n′ be the dimension of W ′. We have n′6n and, by inverting the
above arguments, we get that LS

(
s+ 1

2 , π×η
)

has a pole at s= 1
2 (m−n′). Since by hy-

pothesis LS(s, π×η) is holomorphic in the half-plane Re(s)> 1
2 (a−1), where a=m−n,

we conclude that n′>n. The lemma follows.

11.5. We can now conclude the proof of Theorem 10.1. The non-vanishing of

〈θf1ψ,χ,φ1
, θf2ψ,χ,φ2

〉

implies the non-vanishing of∫
[Un]

θf2ψ,χ,φ2
(g′)
(∫

[Um]

θψ,χ,φ1(g, g
′)f1(g) dg

)
dg′ =

∫
[Un]

θf1ψ,χ,φ1
(g′)θf2ψ,χ,φ2

(g′) dg′.

(11.10)
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But it follows from Lemma 11.3 that g′ 7!θf2ψ,χ,φ2
(g′) is rapidly decreasing and that we

may therefore invert the order of integration in the left-hand side of (11.10). Setting
F (g′)=θf2ψ,χ,φ2

(g′), we get that

θFψ,χ,φ1
(g) =

∫
[Un]

F (g′)θψ,χ,φ1(g, g
′) dg′

is non-zero and is not orthogonal to the space of π. Since the image of ΘV
ψ,χ,W is an

automorphic subrepresentation of L2([Um]), this proves that π is in the image of the
cuspidal ψ -theta correspondence from the group U(W ).

12. Weak Arthur theory

In this section we recall a small part of Arthur’s work on the endoscopic classification
of automorphic representations of classical groups. This will be used in the following
section to verify the hypotheses of Theorem 10.1 in our (geometric) cases.

12.1. Notation

Let E be a CM-field with totally real maximal subfield F which is a number field, and
let A be the ring of adeles of F . We will always assume that a specified embedding of
E into the algebraic closure of F has been fixed. We set ΓF=Gal(
Q/F ). Let V be a
non-degenerate Hermitian vector space over E with dimE V =m.

We let G be an inner form of UE/F (m), the quasi-split unitary group over F , whose
group of F -points is given by

UE/F (m)(F ) = {g ∈GLm(E) : tḡJg=J}.

Here J is the anti-diagonal matrix

J =

 0 1
. ..

1 0


and z 7!z̄ is the Galois conjugation of E/F . In this section we simply denote by
U(m) the unitary group UE/F (m). We finally denote by GL(m) the F -algebraic group
ResE/F (GLm |E). We will identify automorphic representations of GL(m) with automor-
phic representations of GLm(AE).
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12.2. L-groups

The (complex) dual group of U(m) is

U(m)∨ =GLm(C),

and the L-group of U(m) is the semi-direct product

LU(m) =GLm(C)oΓF ,

where the action of ΓF factors through Gal(E/F ) and the action of the non-trivial
element σ∈Gal(E/F ) is given by

σ(g) =Φmtg−1Φ−1
m , g ∈GLm(C).

Here Φm is the anti-diagonal matrix with alternating ±1 entries:

Φm =

 0 1
. ..

(−1)m−1 0

 .

Note that Φ2
m=(−1)m−1 so that σ is of order 2. Moreover, σ fixes the standard splitting

of GLm(C).
Now the (complex) dual group of GL(m,E), seen as a group over F , is

GL(m)∨ =GLm(C)×GLm(C),

and the L-group of GL(m) is the semi-direct product

LGL(m) = (GLm(C)×GLm(C))oΓF ,

where now σ acts by
σ(g, g′) = (g′, g), g, g′ ∈GLm(C).

12.3. Representations induced from square integrable automorphic
representations

By [57], one may parameterize the discrete automorphic spectrum of GL(m) by a set of
formal tensor products

Ψ=µ�R,
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where µ is an irreducible, unitary, cuspidal automorphic representation of GL(d) and R
is an irreducible representation of SL2(C) of dimension n, for positive integers d and n

such that m=dn. For any such Ψ, we form the induced representation

ind(µ| · |(n−1)/2
AE

, µ| · |(n−3)/2
AE

, ..., µ| · |(1−n)/2
AE

)

(normalized induction from the standard parabolic subgroup of type (d, ..., d)). We then
write ΠΨ for the unique irreducible quotient of this representation.

We may more generally associate a representation ΠΨ of GL(m), induced from square
integrable automorphic representations, to a formal sum of formal tensor products

Ψ= (µ1�Rn1)�...�(µr�Rnr ), (12.1)

where µj is an irreducible, unitary, cuspidal automorphic representation of GL(dj)/F ,
Rnk

is an irreducible representation of SL2(C) of dimension nk and m=n1d1+...+nrdr.
With each µj�Rnk

we associate a square integrable automorphic form Πj of GL(nkdk).
We then define ΠΨ as the induced representation

ind(Π1⊗...⊗Πr)

(normalized induction from the standard parabolic subgroup of type (n1d1, ..., nrdr)).
This is an irreducible representation of GLm(AE), since it was proved by Tadic [66] and
Vogan [70] that a representation induced by a unitary irreducible one is irreducible.

12.4. Unramified base change

Let π=⊗′
vπv be an automorphic representation of G(A) occuring in the discrete spec-

trum.(11) For almost every finite place v of F both G(Fv) and πv are unramified. Let
Fv be the local field associated with such a place and let W ′

Fv
be its Weil–Deligne group.

Then by the Satake isomorphism πv is associated with an L-parameter ϕv:W ′
Fv
!LU(m);

see e.g. [54].
The (fixed) embedding of E into the algebraic closure of F specifies Ev=E⊗F Fv.

This realizes W ′
Ev

as a subgroup of W ′
Fv

. Restricting ϕv to W ′
Ev

one gets an L-parameter
for an unramified irreducible representation Πv of GLm(Ev)—the principal base change
of πv.

Remark. There is another base change.(12) We fix a unitary character

χ: A×
E/E

×−!C×

(11) Note that it is always the case if G is anisotropic.
(12) It is sometimes called unstable base change but we will avoid this confusing terminology.
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whose restriction to A× is the character εE/F associated, by classfield theory, with the
quadratic extension E/F . Outside some finite set S of places of F the character χ is
unramified. Let v /∈S, the non-principal base change for unramified representations of
G(Fv) is the one described above but twisted by the character χv. The definition depends
on the choice of the character but so does the transfer between functions; see e.g. [59].
In the statement below we will solely consider the principal base change, note however
that we have to consider both base changes in the proofs, and we will not make this
very explicit. The definition depends on the choice of the character but only up to a
twist: two different choices differ by a character of E×

v trivial on F×
v . The group of

such characters of E×
v is exactly the group of characters of UEv/Fv

(m) by the following
correspondence: let ω be a character of E×

v trivial on F×
v and denote by ω1 the character

of the subgroup of UEv/Fv
(m) defined by ω1(g)=ω(z), where z is any element of E×

v such
that det(g)=z/z̄. The principal and the non-principal base change commute with the
twist by ω�det on the GL(m,Ev) side and the twist by ω1 on the UEv/Fv

(m) side.

12.5. Weak base change

The following proposition is essentially due to Arthur [3, Corollary 3.4.3] though it is not
stated for unitary groups; see [59, Corollary 4.3.8] for a statement in the latter case when
G is quasi-split. The reduction from the general case to the quasi-split case follows the
same lines;(13) we provide some details in Appendix A. (When Kaletha, Minguez, Shin
and White have finished their three announced papers, this will be included.)

Proposition 12.1. Let π be an irreducible automorphic representation of G(A)
which occurs (discretely) as an irreducible subspace of L2(G(F )\G(A)). Then, there
exists a (unique) global representation Π=ΠΨ of GL(m,AE), induced from square in-
tegrable automorphic representations, associated with a parameter Ψ as in (12.1) and
a finite set S of places of F containing all Archimedean ones such that, for all v /∈S,
the representations πv and Πv are both unramified and Πv is the principal base change
of πv.

We will refer to Π as the weak base change of π.

Remark. Proposition 12.1 puts serious limitations on the kind of non-tempered rep-
resentations that can occur discretely: e.g. an automorphic representation π of G(A)
which occurs discretely in L2(G(F )\G(A)) and which is non-tempered at one place v /∈S
is non-tempered at all places outside S.

(13) The use of the stable twisted trace formula being replaced by the (untwisted) stable trace
formula.
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The above remark explains how Arthur’s theory will be used in our proof. We now
want to get a global control on the automorphic representations with a prescribed type
at infinity.

12.6. Standard representations and characters

We first recall the results of local harmonic analysis that we will need. We therefore fix a
place v of F and, until further notice, let G denote the group of Fv-points of the unitary
group. Denote by H(G) the Hecke algebra of locally constant functions of compact
support on G.(14)

By Langlands’ classification, any admissible representation π of G can be realized as
the Langlands subquotient of some standard representation. Recall that the latter can
be identified with a G-orbit of a couple %=(M,σ) where M⊂G is a Levi subgroup and
σ is an irreducible representation of M that is tempered modulo the center.

Both π and % determine real linear forms Λπ and Λ%—the exponents—on aM ; they
measure the failure of the representation to be tempered.

Following Arthur we denote by %π=(Mπ, σπ) the standard representation corre-
sponding to π. We furthermore recall that the distribution character of π has a decom-
position

trace π(f) =
∑
%

n(π, %) trace %(f), f ∈H(G),

into standard characters %, where the coefficients n(π, %) are uniquely determined integers
such that all but finitely many of them are equal to 0 and n(π, %π)=1. If n(π, %) 6=0, then
Λ%6Λπ in the usual sense that Λπ−Λ% is a nonnegative integral combination of simple
roots of the root system associated with the inducing parabolic,(15) with equality Λπ=Λ%
if and only if %=%π.

12.7. Archimedean packets

Suppose now that v is a Archimedean place. Local principal base change associates with
the standard module %π a standard module of GLm(C) that we denote by St(π). We now
describe this module in terms of L-parameters. Recall that L-packets are in one-to-one
correspondence with admissible L-parameters ϕ:W ′

Fv
!LU(m).

(14) We will mainly deal with the situation where v is Archimedean, so that H(G)=C∞
c (G), except

in Appendix A where we have to deal with all places.
(15) In loose terms: the Langlands subquotient of % is more tempered than π.
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Restricting ϕ to W ′
Ev

one gets an L-parameter which defines a standard module of
GLm(C); this representation is precisely St(π).

Now there is a local analogue to §12.3. A standard representation of GLm(C) can
be parametrized by a formal sum of formal tensor product (12.1), where each µj is now
a tempered irreducible representation of GL(dj ,C). The other components Rnj remain
irreducible representations of SL2(C). With each µj�Rnj , we associate the unique irre-
ducible quotient Πj of

ind(µj | · |(nj−1)/2, µj | · |(nj−3)/2, ..., µj | · |(1−nj)/2)

(normalized induction from the standard parabolic subgroup of type (dj , ..., dj)). We
then define ΠΨ as the induced representation

ind(Π1⊗...⊗Πr)

(normalized induction from the standard parabolic subgroup of type (n1d1, ..., nrdr)).
The representation ΠΨ is irreducible and unitary. We will abusively denote by Ψ the
standard representation associated with ΠΨ. Now by the local Langlands correspondence,
the standard module Ψ can be represented as a homomorphism

Ψ:W ′
Ev

×SL2(C)−!GLm(C). (12.2)

Arthur associates with such a parameter the L-parameter ϕΨ:W ′
Ev
!GLm(C) given by

ϕΨ(w) =Ψ
(
w,

(
|w|1/2

|w|−1/2

))
.

And St(π)=Ψ if and only if ϕ|W ′
Ev

=ϕΨ.

12.8. Weak classification

We now come back to the global situation. Let π be an irreducible automorphic represen-
tation of G(A) which occurs (discretely) as an irreducible subspace of L2(G(F )\G(A)).
It follows from Proposition 12.1 that π determines an irreducible automorphic represen-
tation Π=ΠΨ of GLm(AE). Given an Archimedean place v, it is not true in general that
St(πv)=Ψv. Our main technical result in this third part of the paper is the following
theorem, whose proof—a slight refinement of the proof of Proposition 12.1—is postponed
to Appendix A.
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Theorem 12.2. Let π be an irreducible automorphic representation of G(A) which
occurs (discretely) as an irreducible subspace of L2(G(F )\G(A)). Assume that for every
Archimedean place v the representation πv has regular infinitesimal character. Let ΠΨ

be the automorphic representation of GL(m,AE) associated with π by weak base change.
Then, for every Archimedean place v, the (unique) irreducible quotient of the standard
GLm(C)-module St(πv) occurs as an (irreducible) subquotient of the local standard rep-
resentation Ψv.

Remark. Theorem 12.2 follows from Proposition 12.1 and the description of the
cohomological Arthur packets recently obtained by Arancibia, Moeglin and Renard [1].
We give a direct self-contained proof in Appendix A.

13. Applications

In this section we derive the corollaries to Theorem 12.2 that are used in the paper.

13.1. Application to L-functions

Let π be an irreducible automorphic representation of G(A) which occurs (discretely) as
an irreducible subspace of L2(G(F )\G(A)) and let Π=ΠΨ be the automorphic represen-
tation of GL(m) associated with π by weak base change. Write

Ψ= (µ1�Rn1)�...�(µr�Rnr ).

We factor each µj=⊗vµj,v, where v runs over all places of F . Let S be a finite set of
places of F containing the set S of Proposition 12.1, and all v for which some µj,v or πv
is ramified. We can then define the formal Euler product

LS(s,ΠΨ) =
r∏
j=1

∏
v/∈S

Lv

(
s−nj−1

2
, µj,v

)
Lv

(
s−nj−3

2
, µj,v

)
... Lv

(
s− 1−nj

2
, µj,v

)
.

Note that LS(s,ΠΨ) is the partial L-function of a very special automorphic representation
of GL(m); it is the product of partial L-functions of the square integrable automorphic
representations associated with the parameters µj�Rnj . According to Jacquet and Sha-
lika [37], LS(s,ΠΨ), which is an absolutely convergent product for Re(s)�0, extends to a
meromorphic function of s. Moreover, it follows from Proposition 12.1 and the definition
of LS(s, π) that

LS(s, π) =LS(s,ΠΨ).
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13.2. Infinitesimal character

It follows from Theorem 12.2 that for each infinite place v the representations πv and
Πv both have the same infinitesimal character. It is computed in the following way. Let
v0 be an Archimedean place of F . We may associate with Ψ the parameter ϕΨv0

: C∗!
G∨⊂GLm(C) given by

ϕΨv0
(z) =Ψv0

(
z,

(
(zz̄)1/2

(zz̄)−1/2

))
.

Being semisimple, it is conjugate into the diagonal torus {diag(x1, ..., xm)}. We may
therefore write ϕΨv0

=(η1, ..., ηm), where each ηj is a character z 7!zPj z̄Qj . One easily
checks that the vector

νΨ =(P1, ..., Pm)∈Cm∼=Lie(T )⊗C

is uniquely defined modulo the action of the Weyl groupW=Sm ofG(Fv0). The following
proposition is detailed in [6].

Proposition 13.1. The infinitesimal character of πv0 is the image of νΨ in Cm/Sm.

From now on we assume that π has a regular(16) and integral infinitesimal character
at every infinite place. This forces the Archimedean localizations of the cuspidal auto-
morphic representations µj to be induced of unitary characters of type (z/z̄)p/2, where
p∈Z. Moreover, we have

1
2p+

1
2 (nj−1)− 1

2 (m−1)∈Z.

We can now relate Arthur’s theory to Theorem 10.1.

Proposition 13.2. Assume that for some Archimedean place v0 of F the local
representation πv0 is a Langlands’ quotient of a standard representation with an exponent
(z/z̄)p/2(zz̄)(a−1)/2. Then, the following statements hold :

(1) In the parameter Ψ some factor µj�Rnj is such that nj>a. In particular, if
a> 1

2m, the representation µj is a character.
(2) If we assume that π has trivial infinitesimal character and that 3a>m+|p|.

Then in the parameter Ψ some factor µj�Rnj is such that nj>a, and the representation
µj is a character.

Proof. It follows from Theorem 12.2 that, if πv0 is a Langlands’ quotient of a stan-
dard representation with an exponent (z/z̄)p/2(zz̄)(a−1)/2, then the associated standard
representation Ψv0 (of GLm(C)) contains a character of absolute value > 1

2 (a−1). This

(16) Equivalently, the Pj ’s are all distinct.
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forces one of the factors µj�Rnj in Ψ to be such that nj>a. Since
∑
j nj=m, there can,

if a> 1
2m, only be factors µj�Rnj in Ψ, where nj>a and µj is a character. This proves

the first part of the proposition.

We now assume that π has trivial infinitesimal character. It follows, in particular,
that p and m−a have the same parity. Suppose that 3a>m+|p|. Note that if |p|>a then
a> 1

2m and the result follows from the first case; we will therefore assume that |p|6a.
Now we have a> 1

2m and, as above, this forces one of the factors µj�Rnj in Ψ to be
such that nj>a and either µj is a character or µj is 2-dimensional. We only have to deal
with the latter case. Set n=nj . The localization µj in v0 is induced from two characters
(z/z̄)pj/2, j=1, 2, and Theorem 12.2 implies that the set

{
1
2 (a+p−1), 1

2 (a+p−3), ..., 1
2 (p+1−a)

}
(13.1)

is contained in one of the two sets

Ik =
{

1
2 (n+pk−1), 1

2 (n+pk−3), ..., 1
2 (pk+1−n)

}
, k=1, 2,

say k=1. The infinitesimal character of πv0 is regular and integral, it is therefore a
collection of m distinct half-integers. Let m+ be the number of positive entries and m−

be the number of negative entries. The entries must include the (necessary disjoint) sets
Ik, k=1, 2. Now, since |p|<a (by the reduction already made), the set (13.1) contains
either 0 or ± 1

2 and consequently so does I1. This forces I2 to be totally positive or
negative. And since (13.1) contains

[
1
2 (a+p)

]
positive elements and

[
1
2 (a−p)

]
negative

elements, we conclude that

max{m−,m+}>n+
[
1
2 (a−|p|)

]
> a+

[
1
2 (a−|p|)

]
.

On the other hand max{m−,m+}=
[
1
2m
]
+|m+−m−| and since a−|p| and m have the

same parity, we end up with

3a−|p|6m+2|m+−m−|.

Since m+=m− (πv0 has trivial infinitesimal character) we get a contradiction.

Remark. It follows from the proof that we can replace the assumption that the
infinitesimal character is that of the trivial representation by the more general assumption
that its entries are all integral, resp. half-integral but non-integral, and that it is balanced,
i.e. that it contains as many positive and negative entries.
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Proposition 13.3. Let π be as in Proposition 13.2, with either a> 1
2m or with

trivial infinitesimal character and 3a>1+|p|. Then there exists a character η of A×
E/E

×

and an integer b>a such that the partial L-function LS(s, η×π), where S is a finite set
of places which contains all the Archimedean places and all the places where π ramifies,
is holomorphic in the half-plane Re(s)> 1

2 (b+1) and has a simple pole at s= 1
2 (b+1).

Proof. Proposition 13.2 provides a character η=µj of AE and an integer b=nj>a.
Writing LS(s, η×π) explicitly on a right half-plane of absolute convergence using the
description of §13.1; we get a product of LS

(
s− 1

2 (b−1), η×η
)

some terms of the form

LS
(
s− 1

2 (b′−1), η×%
)
.

Our hypothesis on a forces b′<a6b; so such a factor is non-zero at s= 1
2 (b+1). The

conclusion of the proposition follows.

13.3. Langlands’ parameters of cohomological representations

The restriction to C× of the Langlands’ parameter of a cohomological representation Aq

is explicitly described in [5, §5.3]. We use here the following alternate description given
by Cossutta [11].

Recall that we have q=q(X), with X=(t1, ..., tp+q)∈Rp+q such that t1>...>tp and
tp+q>...>tp+1. Since Aq only depends on the intersection u∩p, we may furthermore
choose X such that the Levi subgroup L associated with l has no compact (non-abelian)
simple factor.

We associate with these data a parameter

Ψ:WR×SL2(C)−! LU(m)

such that
(1) Ψ factors through LL, that is

Ψ:WR×SL2(C) ΨL−−−! LL−! LU(m),

where the last map is the canonical extension [64, Proposition 1.3.5] of the injection
L∨⊂U(m)∨;

(2) ϕΨL
is the L-parameter of the trivial representation of L.

The restriction of the parameter Ψ to SL2(C) therefore maps
(

1 1
0 1

)
to a principal unipo-

tent element in L∨⊂U(m)∨. The restriction ϕ: C×!GLm(C) of the Langlands’ param-
eter of Aq to C× is given by

ϕ(z) =Ψ
(
z,

(
(zz̄)1/2

(zz̄)−1/2

))
.
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More explicitly, let z1, ..., zr be the different values of the {tj}mj=1 and let {pk}rk=1

and {qk}rk=1 be the integers such that

(t1, ..., tp) = (z1, ..., z1︸ ︷︷ ︸
p1 times

, ..., zr, ..., zr︸ ︷︷ ︸
pr times

)

and
(tp+q, ..., tp+1) = (z1, ..., z1︸ ︷︷ ︸

q1 times

, ..., zr, ..., zr︸ ︷︷ ︸
qr times

).

We then have

L=
r∏
j=1

U(pj , qj),

with
∑
j pj=p and

∑
j qj=q. Moreover, if pjqj=0, then either pj or qj is equal to 1. We

let mj=pj+qj , j=0, ..., r, and set

kj =−m1−...−mj−1+mj+1+...+mr.

The canonical extension LL!LU(m) of the block diagonal map

GLm1(C)×...×GLmr
(C)−!GLm(C)

then maps z∈C×⊂WR to
(z/z̄)k1/2Im1

...

(z/z̄)kr/2Imr

 .

Now the parameter ΨL maps
(

1 1
0 1

)
to a principal unipotent element in each factor of

L∨⊂U(m)∨. The parameter ΨL therefore contains an SL2(C) factor of the maximal
dimension in each factor of L∨. These factors consist of GLmj (C), j=1, ..., r. The
biggest possible SL2(C) representation in the jth factor is Rmj . We conclude that Ψ
decomposes as

(µ1�Rm1 �µ−1
1 �Rm1)�...�(µr�Rmr �µ−1

r �Rmr ), (13.2)

where µj is the unitary characters of C× given by µj(z)=(z/z̄)kj/2. Denoting the char-
acter z 7!z/z̄ by µ, we conclude that

St(Aq) = (µk1/2�Rm1)�...�(µkr/2�Rmr ). (13.3)
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13.4. In particular, it follows from (13.3) that

St(A(b×q, a×q))=µ(m−1)/2�µ(m−3)/2�...�µ(m−2b+1)/2

�(µ(a−b)/2�Rp+q−a−b)�µ(2a−1−m)/2�...�µ(1−m)/2.

Therefore from Theorem 10.1, Proposition 13.2 and the paragraph following it, we
deduce the following result.

Proposition 13.4. Let π∈Ac(U(V )) and let v be an infinite place of F such that
U(V )(Fv)∼=U(p, q). Assume that πv is (isomorphic to) the cohomological representa-
tion A(b×q, a×q) of U(p, q) with 3(a+b)+|a−b|<2m. Then, there exists some (a+b)-
dimensional skew-Hermitian space W over E such that π is in the image of the cuspidal
ψ-theta correspondence from the group U(W ).

Proof. We begin by translating the notation of §13.1 to the notation of this section.
The |p| and b of §13.1 are here |a−b| and p+q−a−b=m−(a+b), respectively. The
hypothesis of this proposition is the same as the hypothesis of §13.1. One deduces the
fact that the partial L-function as in §13.1 has a pole at a point s0 with s0> 1

2 (m−(a+
b)+1). Using Theorem 10.1, we obtain the fact that π is in the image of the ψ -theta
correspondence with a skew-Hermitian space W of dimension m−2s0−1>m−(m−(a+
b))=(a+b). But it is easy to see that a strict inequality is impossible at the infinite
place v, and we obtain the equality as in the statement of the proposition. Moreover,
the representation of U(W ) in this correspondence is a discrete series at the place v and
is, therefore, necessarily a cuspidal representation.

13.5. Proof of Theorem 6.1(2)

It suffices to prove that, if πσf ∈Cohb
′,a′

f for some σ∈Gal(
Q/Q) and some integers b′ and
a′ such that a+b=a′+b′, then either (a′, b′)=(a, b) or (a′, b′)=(b, a). To do so, recall
that, corresponding to πf , there is a parameter Ψ given by Proposition 12.1. Now fix an
unramified finite prime v and let ωπv :Hv!C be the unramified character of the Hecke
algebra associated with the local (unramified) representation πv by Satake transform [54].
Recall that ωπv is associated with some unramified character χπv of a maximal torus
of G(Qv) (considered up to the Weyl group action). Since the Hecke algebra and its
action on H�(S(K),C) admits a definition over Q, the Galois group Gal(
Q/Q) acts
on the characters of the Hecke algebra associated with representations πf∈Cohf , and
therefore on χπv , so that χπσ

v
=χσπv

. Note that the Galois action preserves the norm.
Now, if πf∈Coha,bf with 3(a+b)+|a−b|<2m, the global parameter Ψ contains a unique
factor µ�Rm−a−b, where µ is a unitary Hecke character, and all the other factors are
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associated with smaller SL2(C)-representations—this follows from Proposition 13.4 and
(the proof of) Proposition 13.2. Localizing this parameter Ψ at the finite unramified
place v, we conclude that the character χπv

has a constituent which is a Hecke character
of “large” norm, corresponding to the SL2(C)-representation of dimension m−a−b. This
singularizes the character µv so that the Galois action on χπv yields the usual action of
Gal(
Q/Q) on µ. Now, if µ is (z/z̄)(b−a)/2 at infinity, then for every σ∈Gal(
Q/Q) the
character µσ is either (z/z̄)(a−b)/2 or (z/z̄)(b−a)/2 at infinity. And we conclude from
Proposition 13.4 that the contribution of πσf to SH(a+b)q(S(K),C) can only occur in

Ha×q,b×q(S(K),C)⊕Hb×q,a×q(S(K),C).

Appendices

Appendix A. Proof of Theorem 12.2

A.1. The quasi-split case

Suppose that G is quasi-split. We want to relate the discrete automorphic spectra of G
and that of the (disconnected) group G̃ which is equal to GL(m) twisted by the exterior
automorphism θ: g 7! tḡ−1. Following Arthur, this goes through the use of the stable
trace formula. The notation is as in the preceding paragraph except that we will use G̃
to denote the twisted linear group as in [59].

A.1.1. Discrete parts of trace formulae

Let f=
⊗

v fv be a decomposable smooth function with compact support in G(A). We
are essentially interested in

traceRGdis(f) = trace f |L2
dis(G(F )\G(A), (A.1)

where L2
dis is the discrete part of the space of automorphic forms on G(F )\G(A). We

fix a positive real number t and (following Arthur) we will only compare sums, relative
to G and GL(m), over representations whose infinitesimal character has norm 6t.

For a fixed t, Arthur defines a distribution f 7!IGdisc,t(f) as a sum of the part of (A.1)
relative to t and of terms associated with some representations induced from Levi sub-
groups; see [59, formula (4.1.1)]. There is an analogous distribution f 7!Ĩmdisc,t(f) in the
twisted case; see [59, formula (4.1.3)]. Proposition 12.1 is based on the comparison of
these two distributions via their stabilized versions.
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A.1.2. Stable distribution, endoscopic groups and transfer

Fix a place v and let G=G(Fv). Langlands and Shelstad [50] have conjectured the
existence of a remarkable family of maps—or rather of correspondences—f;fH which
transfer functions on G to functions on so-called endoscopic groups H, certain quasi-split
groups of dimension smaller than dimG. These maps are an analytic counterpart to the
fact that non-conjugate elements in G can be conjugate over the algebraic closure G(
Fv).
This goes through the study of orbital integrals.

Two functions in H(G) are equivalent, resp. stably equivalent, if they have the same
orbital integrals, resp. stable orbital integrals (see [2]). We denote by I(G), resp. SI(G),
the corresponding orbit space. It is known that invariant distributions on G annihilate
any function f∈H(G) such that all the orbital integrals of f vanish. An invariant dis-
tribution is a stable distribution on G if it annihilates any function f∈H(G) such that
all the stable orbital integrals of f vanish. Equivalently, it is an invariant distribution
which lies in the closed linear span of the stable orbital integral; see e.g. [50]. The theory
of endoscopy describes invariant distributions on G in terms of stable distributions on
certain groups of dimension less than or equal to G—the endoscopic groups.

Due to the recent proofs by Ngô [60] of the fundamental lemma and Waldspurger’s
and Shelstad’s work, the Langlands–Shelstad conjecture is now a theorem. We need the
more general version which includes the disconnected group G̃, and which is also known
due to the same authors [72], [65], [75]. In both cases endoscopic groups are described in
[73]; see also [59]. The group G appears as a (principal) endoscopic subgroup of G̃; this
is the key point to relate representations of G and GL(m). In what follows, we denote
by Ĩ(m) and S̃I(m) the quotients of H̃(m) defined as above.

A.1.3. Local stabilization

Let Icusp(G) be the image in I(G) of the cuspidal functions on H(G), i.e. the func-
tions whose orbital integrals associated with semi-simple elements contained in a proper
parabolic subgroup all vanish. We similarly define Ĩcusp(m) (see [74]).

Arthur [2] then stabilizes Icusp(G). In particular he defines the stable part SIcusp(G)
of Icusp(G), and similarly for all the endoscopic groups (or rather endoscopic data). The
transfer maps f 7!⊕HfH induce a linear isomorphism

Icusp(G)∼=
⊕
H

SIcusp(H)OutG(H), (A.2)

where we sum over the endoscopic groups (or rather endoscopic data) not forgetting G
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itself. The twisted analogue of (A.2) is

Ĩcusp(m)∼=
⊕
H

SIcusp(H)Out
G̃

(H); (A.3)

see [72], where Waldspurger deals with a much more general situation.
We say that a virtual representation π—in the Grothendieck ring (with complex

coefficients) of the representations of G—is stable if f 7!trace π(f) is a stable distribution.
Assume that π is a finite linear combination of elliptic representations of G, then, by
[2], π is stable if and only if trace π(f)=0 for any f∈Icusp(G) in the kernel of the
projection of Icusp(G) onto SIcusp(G) in the above decomposition. Moreover, the map
f 7!(π 7!trace π(f)) induces an isomorphism from SIcusp(G) to the space of linear forms
with finite support on the elliptic and stable virtual representations.

Now let π be any virtual representation of G that is a finite combination of elliptic
representations of G. Its distribution character defines a distribution on Icusp(G) and it
follows from (A.2) that, for every endoscopic data H, we may associate with π a virtual
representation πHst such that for every f∈Icusp(G) we have

traceπ(f) =
∑
H

traceπHst (f
H). (A.4)

We denote by πst the virtual representation πGst. This is a stable, elliptic representation.
In the Archimedean case, it follows from [64] that if π is a discrete series represen-

tation of G, then the virtual representation πst is the sum of the representations in the
L-packet of π. Moreover, if π is only elliptic but not discrete, then πst=0.

A.1.4. Stable standard modules

If %=(M,σ) is a standard module with σ elliptic, we define the associated stable standard
module to be the virtual representation obtained as the induced module indM σst. If π
is any irreducible admissible representation of G, we denote by πst the stable standard
module associated with %π. This is a virtual representation induced from a Langlands’
packet of discrete series. The next proposition again follows from [2].

Proposition A.1. The set of stable standard modules is a basis of the vector space
of stable distributions that are supported on a finite set of characters of G.

Let H be an endoscopic data in G̃. Given an admissible irreducible representation π
of H, as H is a product of unitary groups, we have associated with it a stable standard
module πst. We may transfer πst to a standard module for G̃ and therefore for GLm(Ev).
This transfer is the standard module of GLm(Ev) associated with any standard module
occuring in πst by local principal base change, and we denote it by St(π).

We now come back to the global situation.
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A.1.5. Stabilization of trace formulae

The stabilization of the distributions IGdisc,t refers to a decomposition

IGdisc,t(f) =
∑

H∈Eell(G)

ι(G,H)SHdisc,t(f
H), f ∈H(G); (A.5)

see e.g. [59, formula (4.2.1)]. Here we sum over a set of representatives of endoscopic
data in G, we denote by fH the Langlands–Kottwitz–Shelstad transfer of f to H and,
for every H, SHdisc,t is a stable distribution. The coefficients ι(G,H) are positive rational
numbers.

Similarly, the stabilization of the distributions Ĩmdisc,t refers to a decomposition

Ĩmdisc,t(f̃) =
∑

H∈Ẽell(m)

ι̃(m,H)SHdisc,t(f̃
H), f̃ ∈ H̃(m). (A.6)

Now we fix a finite set S of places of F which contains all the Archimidean places of F .
We moreover assume that S contains all the ramification places of G. If v /∈S, G×Fv is
isomorphic to the (quasi-split) groupG(Fv) and splits over a finite unramified extension of
Fv; in particular G×Fv contains a hyperspecial compact subgroup Kv (see [69, §1.10.2]).
Let Hv be the corresponding (spherical) Hecke algebra and let HS=

∏
v/∈S Hv.

We may decompose (A.5) according to characters of HS . Namely, for f∈HS , we
have a decomposition (see [59, formula (4.3.1)])

IGdisc,t(f) =
∑
cS

IGdisc,cS,t(f),

where cS=(cv)v∈S runs over a family of compatible Satake parameters—called Hecke
eigenfamilies in [3], [59]—consisting of those families that arise from automorphic repre-
sentation of G(A), and IGdisc,cS,t is the cS eigencomponent of IGdisc,t. It then follows from
[3, Lemma 3.3.1] or [59, Lemma 4.3.2] that

IGdisc,cS,t(f) =
∑

H∈Eell(G)

ι(G,H)SHdisc,cS,t(f
H), (A.7)

where on the right-hand side cS is rather the Hecke eigenfamily for H which corresponds
to cS under the L-embedding LH!LG that is part of the endoscopic data, and SHdisc,cS,t

is the stable part of the trace formula for H restricted to the representations which are
unramified outside S and belong to the cS eigencomponent.

Similarly, in the twisted case we have

Ĩmdisc,cS,t(f̃) =
∑

H∈Ẽell(m)

ι̃(m,H)SHdisc,cS,t(f̃
H). (A.8)
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A Hecke eigenfamily cS determines at most one irreducible automorphic represen-
tation Π=ΠΨ of GLm(AE) such that, for every v /∈S, the unramified representation Πv

corresponds to the Satake parameter cv. We write Π=0 or Ψ=0 if Π does not exist. Note
that Proposition 12.1 states that if Π=0 then the cS eigencomponent of the discrete part
of L2(G(F )\G(A)) is trivial. In fact Arthur (and Mok) prove that, if Π=0, then for all
f∈HS we have

IGdisc,cS,t(f) = 0 =SGdisc,cS,t(f).

The proof goes by induction on m; see [3, Proposition 3.4.1] and [59, Proposition 4.3.4].
Following their proof, we now prove the following refined version of Proposition 12.1.

Proposition A.2. Let π be an irreducible automorphic representation of G(A)
which occurs (discretely) as an irreducible subspace of L2(G(F )\G(A)). Assume that
for every Archimedean place v the representation πv has regular infinitesimal charac-
ter. Let S be a finite set of places—including all the Archimedean ones—such that π
is unramified outside S and belongs to the cS eigencomponent of the discrete part of
L2(G(F )\G(A)), and let Π=ΠΨ be the associated automorphic representation. Then, for
every Archimedean place v, the (unique) irreducible quotient of the standard GLm(C)-
module St(πv) occurs as an (irreducible) subquotient of Ψv.(17)

Remark. If Ψ=0 it follows in particular from the proposition that π cannot exist as
proved in [59, Proposition 4.3.4].

Proof. Mok [59] has proved that IHdisc,cS,t is of finite length and we will freely use
that fact to simplify the proof. Let v∈S be an Archimedean place and let πS∈IHdisc,cS,t

be an irreducible representation. Denote by γv the collection of m characters of C∗

obtained as the restriction of the Langlands parameter of πv to C∗; considering this
collection as a Langlands parameter for a representation of GL(m,C), we obtain the
Langlands parameter of the representation St(πv) of GL(m,C). We recall that Ψv is the
local component of the representation of GLm(A) defined by cS . The proposition is a
corollary of Proposition 12.1 and the following lemma.

Lemma A.3. The Langlands quotient of St(πv) is a subquotient of the standard
module associated with Ψv.

Proof. We call an irreducible representation included in IHdisc,cS,t maximal if this
representation does not appear as a subquotient of the standard module (which at each
place is the product of the local standard modules) of another representation entering
SHdisc,cS,t. We will prove the lemma for a maximal representation. Denote by π′S such a
representation.

(17) Here Ψv is considered as a standard module; see §12.7.
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We first prove that if the lemma holds for any maximal element of IHdisc,cS,t, then it
holds for any element of IHdisc,cS,t. Take any element πS of IHdisc,cS,t, and assume that its
standard module occurs in the decomposition of the standard module of the maximal
element π′S of IHdisc,cS,t and that we know the lemma for π′S . Here we use the deep result of
Salamanca–Riba [63]: if π′v is unitary and has an infinitesimal character which is integral
and regular, then π′v has cohomology. So π′v is of the form Aq′(λ′) and Johnson has in his
thesis [38] computed the decomposition of such a module in terms of standard modules.
We provide details below (with explicit parameters).

Denote by γ′v the analogue of γv (as defined before the lemma) for π′. We recall
that the normalizer of q′ in H is a product of unitary groups

∏`
i=1 U(pi, qi) and that

λ′ gives a character of this group, that is a set of half integers ri for i=[1, `]. It is not
necessary to know exactly what γ′v is. In fact it is enough to know that it is a collection
of characters zxi,ji z̄x

′
i,ji , with i∈[1, `] and ji∈[1,mi], where mi :=(pi+qi), satisfying

{xi,ji : ji ∈ [1,mi]}=
{
ri+k : k∈

[
1
2 (mi−1),− 1

2 (mi−1)
]}

(A.9)

{xi,ji : ji ∈ [1,mi]}=
{
−ri+k : k∈

[
1
2 (mi−1),− 1

2 (mi−1)
]}
. (A.10)

We also know that Ψv is an induced representation of unitary characters. Thus we can
decompose m=

∑`′

t=1mt and for any t we have a unitary character of C∗, (z/z̄)nt . The
subquotients of the standard module Ψv are exactly the representations whose Langlands’
parameters are collections of m characters of C∗ that can be partitioned in `′ subsets
such that in each subset, indexed by t, the characters are of the form zxz̄x

′
with

x∈nt+
[
1
2 (mt−1),− 1

2 (mt−1)
]

and x′ ∈−nt+
[
1
2 (mt−1),− 1

2 (mt−1)
]
.

Recall that by hypothesis the lemma holds for π′v. Now, for each i∈[1, `], there exists
t∈[1, `′] such that{

ri+k : k∈
[
1
2 (mi−1),− 1

2 (mi−1)
]}

⊂nt+
[
1
2 (mt−1),− 1

2 (mt−1)
]
,

and, by symmetry,{
−ri+k : k∈

[
1
2 (mi−1),− 1

2 (mi−1)
]}

⊂−nt+
[
1
2 (mt−1),− 1

2 (mt−1)
]
.

To prove the lemma for πv, we therefore only have to prove that the Langlands’ parameter
γv of πv is a collection of m characters of C∗ which can be decomposed in ` subsets
satisfying exactly the property (A.9) and (A.10) above with the same numbers. But
this follows from Johnson’s thesis: in the exact sequence [38, assertion (3), p. 378], the
standard modules which appear all satisfy ∆+⊃∆(ū) where ū is the nilradical of the
opposite parabolic subalgebra of q. Our assertion follows (we can permute inside the
blocks but not between two different blocks).
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Remark. This is not mysterious, at least in our case. It is just the fact that the
induced representation of GL2(C) of two characters zxz̄x

′
and zy z̄y

′
is irreducible if

x>y but x′<y′ or the symmetric relations and this is precisely what occurs if the two
characters are in subsets indexed by j and j′, with j 6=j′.

We now prove the lemma for maximal representations. When we decompose IHdisc,cS,t

in terms of standard modules, we are sure that the standard module associated with any
maximal representation π′S occurs with the same coefficient as the representation itself.
We now look at the coefficient with which the stable standard module of π′S occurs
in SHdisc,cS,t. Up to a positive global constant i(H), it is either the same coefficient
as in IHdisc,cS,t or π′S comes from endoscopy. In this latter case we argue by induction
because endoscopic groups are product of smaller unitary groups. So we assume that the
standard module of π′S occurs in SHdisc,cS,t with the coefficient i(H) times the multiplicity
of π in IHdisc,cS,t. We now look at the sum of all H and decompose in the Grothendieck
group; the standard module of π′S can be canceled by a representation occurring in the
decomposition of the standard module of πH

′

S , where πH
′

S occurs in SH
′

disc,cS,t. If this does
not occur, then by transfer the standard module of π′S appears in the decomposition
of ΨS , and we are done for π′S . (In fact in that case what we get is stronger than the
statement of the lemma.)

In the case where we have a simplification, by positivity, πH
′

S is not maximal for H ′

but, by an easy induction, we know the lemma for πH
′

S . We argue explicitly as above
that this also proves the lemma for πS , we leave the details to the reader especially as
the deep results of Mok ultimately yield that this cannot happen: the representation of
GLm(A) determined by cS is the transfer of a unique endoscopic group.

A.2. The general (non-quasi-split) case

The notation is as in the preceding two paragraphs. We do not assume G to be quasi-split
anymore.

Let π be an irreducible automorphic representation of G(A) which occurs (discretely)
as an irreducible subspace of L2(G(F )\G(A)). Let S be a finite set of places—including
all the Archimedean ones—such that both G and π are unramified outside S. It still
makes sense to consider a Hecke eigenfamily (outside S) cS . Again it determines at most
one irreducible automorphic representation Π=ΠΨ of GLm(AE) such that for every v /∈S
the unramified representation Πv corresponds to the Satake parameter cv, and we write
Π=0, or Ψ=0, if ΠΨ does not exist.

We may restate Theorem 12.2 in the following way.

Theorem A.4. Let π be an irreducible automorphic representation of G(A) which
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occurs (discretely) as an irreducible subspace of L2(G(F )\G(A)). Assume that for every
Archimedean place v the representation πv has regular infinitesimal character. Let S be
a finite set of places—including all the Archimedean ones—such that both G and π are
unramified outside S. Let cS be the Hecke eigenfamily associated with π and let ΠΨ be the
associated automorphic representation of GL(m). Then, for every Archimedean place v,
the (unique) irreducible quotient of the standard GLm(C)-module St(πv)BC occurs as an
(irreducible) subquotient of the local standard representation Ψv.

Proof. Here we use the stable trace formula (A.7) for the group G. We write the
left-hand side of (A.7) as a linear combination of standard modules. The contribution
of the standard module associated with πv might be zero but then there must exist π′,
an irreducible automorphic representation of G(A) which occurs (discretely) as an irre-
ducible subspace of L2(G(F )\G(A)), such that π′v and πv share the same infinitesimal
character and πv is a subquotient of the standard module associated with π′v. It is then
enough to prove the theorem for π′. From now on we will therefore assume that the
standard module associated with πv contributes to the left-hand side of (A.7).

We now write the right-hand side as a sum of stable standard modules. At least one
of these has an L-parameter whose restriction to C× is the parameter of the standard
module of πv. At this point it is not clear that this stable standard module is associated
with a square integrable automorphic representation of an endoscopic group. Using the
same induction as above one may however assume this is the case. Now since endoscopic
groups are (products of) quasi-split unitary groups the theorem follows from the quasi-
split case (see the proposition above).

Appendix B. Proof of Theorem 11.2

We fix s0 and a character χ=χ2 of A×
E/E

× as in Theorem 11.2. Let n=m−2s0 and
n′=m+2s0, so that

−s0 = 1
2 (m−n′).

Note that we have

m<n′< 2m and χ|A×
F

= εnE/F = εn
′

E/F .

B.1. Representations associated with skew-Hermitian spaces

In this paragraph we fix a prime and omit it from notation as in §10.6. Recall that
the isometry class of a τ -skew-Hermitian space W of dimension n over E is determined
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by the Hasse invariant ε=ε(W )=±1. We will write W1 and W2 for the two distinct
τ -skew-Hermitian spaces of dimension n over E.

We fix an arbitrary choice of character χ1 of E× such that χ1|F×=εmE/F . We may
consider the local analogue of the Weil representation Ω−

χ of the preceding paragraph; see
(10.16). This yields a representation of U2m(F )×Un(F ) on S(Wm). The group Un(F )
acts via a twist χ1 of its linear action on S(Wm). Let R(W,χ) be the maximal quotient
of S(Wm) on which Un(F ) acts by χ1. Kudla and Sweet [48] show that R(W,χ) is
an admissible representation of U2m(F ) of finite length and with a unique irreducible
quotient. Moreover, since 16n6m, it follows from [41, Theorem 1.2] that R(W1, χ) and
R(W2, χ) are irreducible inequivalent representations of U2m(F ).

B.2. Automorphic representations associated with skew-Hermitian spaces

We now return to the global situation. Assume that 16n<m and let C={Wv}v be
a collection of local skew-Hermitian spaces of dimension n such that Wv is unramified
outside of a finite set of places of F , then—following Kudla–Rallis [47, §3]—we may
define a global irreducible representation

Π(C) =
⊗
v

R(Wv, χv) (B.1)

of U2m(A). Such representations are of two types: those for which the Wv’s are the
localizations of some (unique) global skew-Hermitian space W over E—in this case we
write Π(W ) for Π(C)—and those for which no such global space exists. Given a collection
C={Wv}v, the obstruction to the existence of a global space is just the requirement that

∏
v

ε(Wv) = 1.

Let A(U(V ⊕V )) be the set of irreducible automorphic representations of U2m(A). The
following proposition is the analogue of [47, Theorem 3.1] in the unitary case.

Proposition B.1. Let C={Wv}v be a collection of local skew-Hermitian spaces of
dimension n such that Wv is unramified outside of a finite set of places of F and

dim HomU2m(A)(Π(C),A(U(V ⊕V ))) 6=0.

Then, there exists a global skew-Hermitian space W over E such that the Wv’s are the
localizations of W .
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Proof. The proof makes use of ideas of Howe. We consider the Fourier coefficients of
automorphic representations with respect to the unipotent radical of the Siegel parabolic
subgroup P=MN of the quasi-split unitary group U(V ⊕V ). Identifying the latter with
the subgroup of GL(2m,E), which preserves the Hermitian form with matrix

(
0 1m

−1m 0

)
,

we have

N =
{(

1m b

0 1m

)
: b∈Herm(F )

}
,

where
Herm(F ) = {b∈Mm(F ) : b= t̄b}.

For β∈Herm(F ) we define the character ψβ of N(A) by

n(b) =
(

1m b

0 1m

)
7−!ψ(trace(bβ)),

and the βth Fourier coefficient of f∈A(U(V ⊕V )) by

Wβ(f)(g) =
∫
N(F )\N(A)

f(n(b)g)ψ(− trace(βb)) db. (B.2)

The latter defines a linear functional

Wβ :A(U(V ⊕V ))−!C,

f 7−!Wβ(f)(e).

Now, if A∈HomU2m(A)(Π(C),A(U(V ⊕V ))), then Aβ=Wβ �A defines a linear func-
tional on Π(C) such that

Aβ(π(n)f) =ψβ(n)Aβ(f), for all n∈N(Af ),

Aβ(π(X)f) = dψβ(X)Aβ(f), for all X ∈Lie(N∞),

and Aβ has continuous extension to the smooth vectors of Π(C).
Let

Ωβ = {w∈Wm : 〈w,w〉=β}.

It follows from [36, Lemmas 5.1 and 5.2] on the local functionals that, if Ωβ=∅, then
Aβ=0. In particular, if rank(β)>n, then Aβ=0. Now, if Ωβ 6=∅ and rank(β)=n, we
must have equality of Hasse invariants εv(β)=εv(Wv). So that either C correspond to
a global skew-Hermitian space, or Aβ=0 for all β with rank(β)>n. The proposition
therefore follows from the next lemma.
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Lemma B.2. Let A∈HomU2m(A)(Π(C),A(U(V ⊕V ))) be such that Aβ=0 for all β
with rank(β)>n. Then A=0.

Proof. Fix a non-Archimedean place v and let φ be a compactly supported function
on Nv whose Fourier transform vanishes on the set of βv∈Herm(Fv) with rank(βv)<n,
and is non-zero on the set of βv such that Ωβv 6=∅. Then [36, Lemma 5.1] shows that φ
does not act by zero in R(Wv, χv) or Π(C). On the other hand, by hypothesis, φ acts by
zero in the image of A. Thus A=0 by irreducibility of Π(C).

B.3. Proof of Theorem 11.2

If Φ is a section of I(s0, χ), we may extend it to a holomorphic section Φ( · , s) of I(s, χ)
and consider the residue A( · ,Φ) in s=s0 of the Siegel Eisenstein series E(h, s,Φ). This
residue does not depend on the holomorphic extension. We therefore get a U2m(A)-
intertwining map A: I(s0, χ)!A(U(V ⊕V )). Now it follows from [36, Lemma 6.1] that
this map factors through the quotient

I(s0, χ)∞⊗
(⊕

C

Πf (C)
)
,

where C runs over all collections of local skew-Hermitian spaces, as above, of dimension n.
The proposition above therefore associates with any irreducible residue of a Siegel Eisen-
stein series a global space W of dimension n over E. Theorem 11.2 then follows from
[36, Theorem 4.1].(18)

Appendix C. The local product formula

In this appendix we show that the cocycles ψnq,nq of this paper (when transformed
into cocycles with values in the appropriate Schrödinger model) are equal to the cocycles
ϕnq,nq introduced by Kudla–Millson in [44]; see also [46]. We stated this relation without
proof in Proposition 5.17 (5). It is almost proved in [46]: on the fifth line of page 158 the
cocycle ϕq,q is defined by (see also (C.5) below)

ϕq,q =
1

22q
D+
D+ϕ0.

Then on the next page, Theorem 5.2 (ii), it is stated that

ϕnq,nq =ϕq,q∧...∧ϕq,q. (C.1)

(18) Beware that our W is Ichino’s V ′.
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The previous equation reduces the problem to proving the equality of cocycles for the
case n=1. This is because the intertwiner BV+⊗W⊗1 below commutes with the outer
exterior product and the cocycle ψnq,nq factors as above by definition. In what follows we
will be using the symplectic vector space obtained from the tensor product of Hermitian
spaces V ⊗W where (V, ( · , ·)V ) is a Hermitian space of signature (p, q) and (W, ( · , ·)W ) is
a Hermitian space of signature (1, 1). Since the analysis in what follows will be controlled
by W , with V essentially a parameter space, we will first describe the required structures
on W alone.

C.1. The Schrödinger and Fock models of the Weil representation for U(W )

We consider a Hermitian space (W, ( · , ·)W ) of signature (1, 1). We let WR denote the
real vector space underlying W. Then WR has the standard integrable almost complex
structure JW induced by multiplication by i. It is also equipped with the symplectic
form

〈· , ·〉W =− Im( · , ·)W .

Finally, recall that we denote by θW the Cartan involution of W and let

J0 =JW �θW = θW �JW .

Then J0 is positive definite with respect to 〈· , ·〉W .

We now describe two bases for W . Let {ε1, ε2} be the orthogonal complex basis of
W such that

(ε1, ε1) = 1 and (ε2, ε2) =−1.

Set

e1 =
1√
2
(ε1−iε2), e2 =

1√
2
(iε1+ε2) =J(e1),

f1 =
1√
2
(iε1−ε2) =J0(e1), f2 =

1√
2
(−ε1−iε2) =J0(e2).

Then {e1, e2, f1, f2} is a (real) symplectic basis of the underlying real vector space WR.
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Let E=spanR(e1, e2) and F=J0(E)=spanR(f1, f2). Then

WR =E+F (C.2)

is a Lagrangian splitting of the symplectic vector space, and we obtain a Schrödinger
model S(E) of the Weil representation of U(W ) realized in the Schwartz space S(E).
We let x and y be the coordinates of E associated with the basis {e1, e2}, and set
z=x+iy. We let P(E) denote the subspace of S(E) given by products of complex-valued
polynomials in x and y, with the Gaussian ϕ0=exp (−π(x2+y2)), or equivalently by
products of complex-valued polynomials in z and z̄, with the Gaussian ϕ0=exp (−πzz̄).

We next give two sets of coordinates for the space W ′0 associated with the positive
complex structure J0. We first note that

e′01 =
1√
2
(ε′01 +iε′02 ) and e′02 =

i√
2
(ε′01 −iε

′0
2 ).

Hence, the vectors e′01 and e′02 are independent (over C) and we have two bases for W ′0 ,
the basis {e′01 , e

′0
2 } and the basis {ε′01 , ε

′0
2 }. We let s and t be the (complex) coordinates

for W ′0 relative to the first basis. We will call these coordinates split coordinates. We
let a′ and b′′ be the coordinates for W ′0 relative to the second basis ε′01 and ε′02 . We will
call a′ and b′′ product coordinates. In order to understand the superscripts attached to
these coordinates and the terminology, note that ε′01 =ε′1 and ε′02 =ε′′2 , and hence

W ′0 =W ′
+⊕W ′′

− = Cε′01 ⊕Cε′02

and
Pol(W ′0) =Pol(W ′

+)⊗Pol(W ′′
−)∼= C[a′]⊗C[b′′].

We next note that the split coordinates and the product coordinates are related by
the following result.

Lemma C.1. We have

a′ =
1√
2
(s+it) and b′′ =

i√
2
(s−it).

We now have the following result.

Lemma C.2. There is a u(W )-equivariant mapping BW : Pol(W ′0)!P(E) satisfying
the following conditions:

(1)
BW (1)=ϕ0;
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(2)

BW �s�B
−1
W =x− 1

π

∂

∂x
;

(3)

BW �t�B
−1
W = y− 1

π

∂

∂y
;

(4)

BW �
1
π

∂

∂s
�B−1

W =x+
1
π

∂

∂x
;

(5)

BW �
1
π

∂

∂t
�B−1

W = y+
1
π

∂

∂y
.

Hence, by Lemma C.1, we have the following.

Lemma C.3. For BW , a′ and b′′ as above, we have
(1)

BW �a
′
�B−1

W =
1√
2

(
z− 1

π

∂

∂z̄

)
;

(2)

BW �b
′′
�B−1

W =
1√
2

(
z̄− 1

π

∂

∂z

)
.

C.2. The Schrödinger and Fock models for U(V )×U(W )

We now describe and compare two different realizations of the infinitesimal Weil repre-
sentation associated with the pair U(V )×U(W ), the split Schrödinger model (there is
another Schrödinger model for Hermitian spaces, the real points in V ⊗W, that we will
not use here, but it is the one used in [9, Chapter VIII]) and the Fock model (with two
sets of coordinates). So we now need to bring the space V into the picture. We will be
brief since all the essential ideas are contained in the previous section.

C.2.1. The split Schrödinger model for U(V )×U(W )

The split Schrödinger model is realized in the Schwartz space S((V ⊗E)R) using the
polarization

(V ⊗W )R =(V ⊗E)R+(V ⊗F )R

inherited from that of W in equation (C.2). Here the tensor product is over C.
Recall that throughout the paper we have used a basis {vj}p+qj=1 for V . Hence, we have

a basis {vj⊗e1}p+qj=1 for the complex vector space V ⊗E and noting that i(vj⊗e1)=vj⊗e2,
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we obtain a basis {vj⊗e1, vj⊗e2}p+qj=1 for the underlying real vector space (V ⊗E)R. We let
{xj , yj}p+qj=1 be the corresponding coordinates. We will also use the complex coordinates
zj=xj+iyj , 16j6p+q. We will regard a function in S((V ⊗E)R) as a function of the
zj ’s (and their complex conjugates). Once again we have the space P(V ⊗E) consisting of
the product of complex-valued polynomials in xj and yj , 16j6p+q, with the Gaussian
ϕ0=exp

(
−π
(∑p+q

j=1 x
2
j+y

2
j

))
, or equivalently the product of polynomials in zj and z̄j ,

16j6p+q,, with the Gaussian ϕ0=exp
(
−π
(∑p+q

j=1 zj z̄j
))

.
This is the model where the cocycles of Kudla–Millson ϕq,q were originally defined;

see [44, Proposition 5.2] or [46, p. 148]. To state their formula we need more notation.
In what follows A(ξ′α,µ), resp. A(ξ′′α,µ), will denote the operation of left exterior multipli-
cation by ξ′α,µ, resp. ξ′′α,µ.

For µ with p+16µ6p+q define

D+
µ =

p∑
α=1

((
z̄α−

1
π

∂

∂zα

)
⊗A(ξ′α,µ)

)
(C.3)

and


D+
µ =

p∑
α=1

((
zα−

1
π

∂

∂z̄α

)
⊗A(ξ′′α,µ)

)
. (C.4)

The formula of Kudla and Millson is then

ϕq,q =
1

22q

(( p+q∏
µ=p+1

D+
µ

)
�

( p+q∏
ν=p+1


D+
ν

))
ϕ0. (C.5)

C.2.2. The Fock model for U(V )×U(W )

The second realization of the Weil representation is the polynomial Fock model

Pol((V ⊗W )′0)

considered in this paper. In what follows we will not need the entire space (V ⊗W )′0 but
only the subspace (V+⊗W )′0 . We will give two bases for (V+⊗W )′0 . Our computations
are then simplified by the following lemma.

Lemma C.4. We have

p′0V⊗W |(V+⊗W )⊗RC = IV+⊗p
′0
W

or, in more concise form,

(v⊗w)′0 = v⊗w′0 for v ∈V+.
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Proof. By definition,

p′0V⊗W = 1
2 (IV ⊗IW⊗1−θV ⊗(JW �θW )⊗i)

and hence

p′0V⊗W |((V+⊗W )R⊗RC) = 1
2 (IV+⊗IW⊗1−IV+⊗(JW �θW )⊗i)

= IV+⊗(IW⊗1−JW,0⊗i).

Remark. Lemma C.4 implies that we can carry over the computations of the previous
section to the ones we need by simply “tensoring with the standard basis for V+”.

Now recall that

Pol((V+⊗W )′0) =Pol(V ′
+⊗W ′

+)⊗Pol(V ′′
+ ⊗W ′′

−). (C.6)

The first basis for (V+⊗W )′0 is adapted to the split Schrödinger model. It is given
by

{vα⊗e′01 , vα⊗e
′0
2 }

p
α=1.

We define {sα, tα}pα=1 to be the coordinates associated with this basis. We will again
call these coordinates split coordinates. The second basis for (V+⊗W )′0 is given by

{vα⊗ε′01 , vα⊗ε
′0
2 }

p
α=1.

We let {a′α, b′′α}
p
α=1 be the corresponding coordinates with the same explanation for the

name and the superscripts as before. Thus, the tensor product in equation (C.6) corre-
sponds to the tensor product decomposition

Pol(V+⊗W ′0)∼= C[a′1, ..., a
′
p]⊗C[b′′1 , ..., b

′′
p ]. (C.7)

We next note that the split coordinates and the product coordinates are related by
the following lemma.

Lemma C.5. We have

a′α =
1√
2
(sα+itα) and b′′α =

i√
2
(sα−itα).

As before we have the following result.
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Lemma C.6. There is a u(V )×u(W )-equivariant embedding (not onto)

BV+⊗W : Pol(V+⊗W ′0)−!P(V ⊗E)

satisfying the following conditions:
(1)

BV+⊗W (1⊗1) =ϕ0;

(2)

BV+⊗W �sα�B
−1
V+⊗W =xα−

1
π

∂

∂xα
;

(3)

BV+⊗W �tα�B
−1
V+⊗W = yα−

1
π

∂

∂yα
;

(4)

BV+⊗W �
1
π

∂

∂sα
�B−1

V+⊗W =xα+
1
π

∂

∂xα
;

(5)

BV+⊗W �
1
π

∂

∂tα
�B−1

V+⊗W = yα+
1
π

∂

∂yα
.

Hence, by Lemma C.5, we have the following lemma.

Lemma C.7. With the notation above, we have (1)

BV+⊗W �a
′
α�B

−1
V+⊗W =

1√
2

(
zα−

1
π

∂

∂zα

)
;

(2)

BV+⊗W �b
′′
α�B

−1
V+⊗W =

1√
2

(
z̄α−

1
π

∂

∂zα

)
.

We now define operators C+
µ and 
C+

µ , p+16µ6p+q, by
(1) C+

µ=
∑p
α=1 a

′
α⊗A(ξ′′α,µ);

(2) 
C+
µ=
∑p
α=1 b

′′
α⊗A(ξ′α,µ).

We leave the proof of the next lemma to the reader; see Lemma 5.5 for (1) and
Lemma 5.11 for (2).

Lemma C.8. We have
(1) ( p+q∏

µ=p+1

C+
µ

)
(1)=ψ0,q;
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(2) ( p+q∏
µ=p+1


C+
µ

)
(1)=ψq,0;

(3) ( p+q∏
µ=p+1

C+
µ

)
�

( p+q∏
µ=p+1


C+
µ

)
(1)=ψ0,q∧ψq,0.

Again we leave the proof of the next lemma to the reader.

Lemma C.9. We have
(1)

BV+⊗W �

( p+q∏
µ=p+1

C+
µ

)
�B−1

V+⊗W =
1

2q/2

( p+q∏
µ=p+1

D+
µ

)
;

(2)

BV+⊗W �

( p+q∏
µ=p+1


C+
µ

)
�B−1

V+⊗W =
1

2q/2

( p+q∏
µ=p+1


D+
µ

)
.

We can now prove the local product formula.

Proposition C.10. With the notation above, we have

(BV+⊗W⊗1)(ψ0,q∧ψq,0) = 2qϕq,q.

Proof. We have

(BV+⊗W⊗1)(ψ0,q⊗ψq,0)

= (BV+⊗W⊗1)
(( p+q∏

µ=p+1

C+
µ

)
�

( p+q∏
µ=p+1


C+
µ

)
(1)
)

=
(

(BV+⊗W⊗1)�
( p+q∏
µ=p+1

C+
µ

)
�

( p+q∏
µ=p+1


C+
µ

)
�(B−1

V+⊗W⊗1)
)

(BV+⊗W⊗1)(1)

=
1
2q

( p+q∏
µ=p+1

D+
µ

)
�

( p+q∏
µ=p+1


D+
µ

)
(ϕ0)

= 2qϕq,q.

Remark. We warn the reader that the KM-cocycle ϕq,q does not factor in the split
Schrödinger model. The cocycles ϕq,0=(BV+⊗W⊗1)(ψq,0) and ϕ0,q=(BV+⊗W⊗1)(ψ0,q)
both exist in the split Schrödinger model (of course), but it is not true that we have
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ϕq,0∧ϕ0,q=ϕq,q. The problem is that the product in P(V ⊗E) is induced by the internal
product, i.e the usual multiplication of functions, whereas the product in

Pol(V ′
+⊗W ′

+)⊗Pol(V ′′
+ ⊗W ′′

−)

is external, i.e. the tensor product multiplication. For example, when q=1, we have

(BV+⊗W⊗1)(ψ1,0) = (BV+⊗W⊗1)
( p∑
α=1

z̄α⊗ξ′α,p+1

)
=
√

2ϕ0

( p∑
α=1

z̄α⊗ξ′α,p+1

)
,

(BV+⊗W⊗1)(ψ0,1) = (BV+⊗W⊗1)
( p∑
α=1

zβ⊗ξ′β,p+1

)
=
√

2ϕ0

( p∑
β=1

zβ⊗ξ′′β,p+1

)
,

and hence

(BV+⊗W⊗1)(ψ1,0)∧(BV+⊗W⊗1)(ψ0,1) = 2(ϕ0)2
( p∑
α,β=1

z̄αzβ⊗ξ′α,p+1∧ξ′′β,p+1

)
,

whereas

ϕ1,1 =ϕ0

( p∑
α,β=1

z̄αzβ⊗ξ′α,p+1∧ξ′′β,p+1−
1
2π

p∑
α=1

ξ′α,p+1∧ξ′′α,p+1

)
.
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Norm. Sup., 22 (1989), 605–674.

[58] — Stabilisation de la formule des traces tordue X: stabilisation spectrale. Preprint, 2014.
arXiv:1412.2981 [RT].

[59] Mok, C. P., Endoscopic classification of representations of quasi-split unitary groups.
Mem. Amer. Math. Soc., 235 (2015), 248 pp.
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