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1. Introduction

Given a measure-preserving action of a (discrete) group Γ on a probability space (X, µ),
we say that this action is (s+1)-mixing if for every f0, ..., fs∈L∞(X) and γ0, ..., γs∈Γ,

∫
X

( s∏
i=0

fi(γix)
)

dµ(x)−!
s∏

i=0

∫
X

fi dµ (1.1)

as γi1γ
−1
i2
!∞ for all i1 6=i2. In particular, 2-mixing corresponds to the usual notion

of mixing. It was discovered by Ledrappier [13] that 2-mixing does not imply 3-mixing
for Z2-actions. In this paper we will be interested in mixing of higher order for group
actions. Mixing of all orders is a very widespread phenomenon for 1-parameter actions.
In particular, it is known to hold for many transformations satisfying some hyperbolicity
assumptions. However, this is a measurable property that might arise for a multitude of
other reasons which are not well understood. For instance, the horocyclic flow provides
an example of a parabolic dynamical system which is mixing of all orders. A well-known
longstanding question of Rokhlin asks whether mixing of order 2 implies mixing of all
orders for a general measure-preserving transformation.

Very little is known about higher-order mixing for actions of large groups. We are
only aware of two general families of actions of large groups on manifolds where the
multiple mixing has been established—Zl-actions by automorphisms on compact abelian
groups and actions of simple Lie groups. K. Schmidt and Ward [22] proved that 2-
mixing Zl-action by automorphisms on compact connected abelian groups are mixing of
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all orders, and Mozes [16] established mixing of all orders for ergodic actions of connected
semisimple Lie groups with finite centre.

In this paper we investigate mixing properties of Zl-actions by automorphisms on
compact nilmanifolds. We prove that for such actions, 2-mixing implies mixing of all
orders and establish quantitative estimates for 2-mixing and 3-mixing.

1.1. Main results

Let G be a simply connected nilpotent group and Λ be a discrete cocompact subgroup.
We call the space X=G/Λ a compact nilmanifold. We denote by Aut(X) the group of
continuous automorphisms α of G such that α(Λ)=Λ. Then Aut(X) naturally acts on
X and preserves the Haar probability measure µ on X.

Our first main result concerns exponential 3-mixing. In order to obtain any quanti-
tative estimate in (1.1), it is necessary to work in a class of sufficiently regular functions.
We denote by Cθ(X) the space of Hölder functions with exponent θ, defined with respect
to a Riemannian metric on X.

Theorem 1.1. Let α: Zl!Aut(X) be an action on a compact nilmanifold X such
that every α(z), z 6=0, is ergodic. Then there exists η=η(θ)>0 such that for every
f0, f1, f2∈Cθ(X) and z0, z1, z2∈Zl,∫

X

f0(α(z0)x)f1(α(z1)x)f2(α(z2)x) dµ(x)

=
(∫

X

f0 dµ

)(∫
X

f1 dµ

)(∫
X

f2 dµ

)
+O(N(z0, z1, z2)−η‖f0‖Cθ‖f1‖Cθ‖f2‖Cθ ),

where N(z0, z1, z2)=exp(mini 6=j ‖zi−zj‖).

We note that this result is new even for the case of toral automorphisms. Previously,
quantitative 2-mixing was established for toral automorphisms in [14] and for automor-
phisms of more general compact abelian groups in [15]. Mixing of all orders for ergodic
commuting toral automorphisms was established in [22]. The argument in [22] relies on
finiteness of the number of non-degenerate solutions of S-unit equations established in
[19]. Although there are explicit estimates on the number of such solutions, these esti-
mates are not sufficient to derive any quantitative estimate for 3-mixing because it is also
essential to know how the sets of solutions depend on the coefficients. In order to prove
Theorem 1.1, we use more delicate Diophantine estimates for linear forms in logarithms
of algebraic numbers established in [24] (cf. Proposition 2.2 below).

We also prove mixing of all orders.
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Theorem 1.2. Let α: Zl!Aut(X) be an action on a compact nilmanifold X such
that every α(z), z 6=0, is ergodic. Then, for every f0, ..., fs∈L∞(X) and z0, ..., zs∈Zl,∫

X

( s∏
i=0

fi(α(zi)x)
)

dµ(x) =
s∏

i=0

∫
X

fi dµ+o(1)

as mini 6=j ‖zi−zj‖!∞. Moreover, the convergence is uniform over families of Hölder
functions f0, ..., fs such that ‖f0‖Cθ , ..., ‖fs‖Cθ�1.

This theorem extends the main result of [22] to general nilmanifolds. The proof
in [22] utilises abelian Fourier analysis and properties of solutions of S-unit equations.
Our approach is based on the study of distribution of images of polynomial maps in X.
This reduces the proof to the investigation of certain Diophantine inequalities which are
analysed using W. Schmidt’s subspace theorem. In order to prove an effective version
of Theorem 1.2, one would need to estimate the size of non-degenerate solutions of
these Diophantine inequalities in terms of complexities of coefficients (cf. Proposition 3.1
below). However, this seems to be far out of reach of available techniques when s>2.

Finally, we discuss the problem of exponential mixing for shapes in Aut(X). This
notion was introduced by K. Schmidt in [20] in order to better understand Ledrappier’s
examples [13] which are not mixing of higher order. A shape in Aut(X) is a collection
of elements α0, ..., αs∈Aut(X). We say that the shape is mixing if, for every f0, ..., fs∈
L∞(X), ∫

X

( s∏
i=0

fi(αn
i x)

)
dµ(x)−!

s∏
i=0

∫
X

fi dµ

as n!∞. This property has been extensively studied in the context of commuting
automorphisms of compact abelian groups (see, for instance, [6], [21, Chapter VIII], [26],
and [27]).

We establish quantitative mixing for commuting Anosov shapes. We say that the
shape α0, ..., αs is Anosov if αi1α

−1
i2

is an Anosov map for all i1 6=i2.

Theorem 1.3. Let X be a compact nilmanifold and α0, ..., αs∈Aut(X) be a com-
muting Anosov shape. Then there exists %=%(θ)∈(0, 1) such that, for every f0, ..., fs∈
Cθ(X) and n∈N,∫

X

( s∏
i=0

fi(αn
i x)

)
dµ(x) =

s∏
i=0

∫
X

fi dµ+O

(
%n

s∏
i=0

‖fi‖Cθ

)
. (1.2)

1.2. Applications to rigidity

The exponential mixing property played an important role in the program of classification
of smooth Anosov higher-rank Zl-actions on compact manifolds. It is expected that all
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such actions can be built from actions by automorphisms on nilmanifolds. Fisher, Kalinin
and Spatzier in [8] applied the exponential 2-mixing property and regularity results from
[17] to extend their results for Anosov Zl-actions on tori to actions on nilmanifolds.

Theorem 1.4. (Fisher, Kalinin, and Spatzier) Let α be a C∞-action of Zl, l>2,
on a compact nilmanifold X and let %: Zl!Aut(X) be the map induced by the action of
α(Zl) on the fundamental group of X. Assume that there is a Z2 subgroup of Zl such
that %(z) is ergodic for every non-zero z∈Z2, and there is an Anosov element for α in
each Weyl chamber of %. Then α is C∞-isomorphic to %.

In fact, this application to global rigidity was our original motivation to establish
the exponential mixing property for nilmanifold automorphisms.

Recently, Rodriguez Hertz and Wang [18] generalised Theorem 1.4 and established
a global rigidity result using only existence of a single Anosov element. Again, they
crucially use the exponential mixing property, and reduce the problem to the prior result
by showing existence of many Anosov elements.

We also use the exponential mixing property to establish cocycle rigidity for higher-
rank Zl-actions by automorphisms of nilmanifolds, extending the results of Katok and
Spatzier [11], [12]. A C∞-cocycle is a C∞-map c: Zl×X!R satisfying the identity

c(z1+z2, x) = c(z1, z2x)+c(z2, x) for z1, z2 ∈Zl and x∈X.

Two cocycles c1 and c2 are called smoothly cohomologous if there exists b∈C∞(X) such
that

c1(z, x) = c2(z, x)+b(zx)−b(x) for z ∈Zl and x∈X.

We call a cocycle constant if it does not depend on x∈X. We prove that cocycles over
genuine higher-rank actions by automorphisms on nilmanifolds are smoothly cohomolo-
gous to constant cocycles. This phenomenon was first discovered by Katok and Spatzier
in [11] for certain higher-rank Anosov actions. Using our methods, we generalise this
cocycle rigidity theorem to actions by automorphisms on nilmanifolds. We emphasise
that the action in the following theorem need not be Anosov.

Theorem 1.5. Let α: Zl!Aut(X) be an action on a compact nilmanifold X. As-
sume that there is a Z2 subgroup of Zl such that α(z) is ergodic for every non-zero z∈Z2.
Then every smooth R-valued cocycle is smoothly cohomologous to a constant cocyle.

For certain actions by partially hyperbolic left translations on homogeneous spaces
G/Γ, where G is a semisimple Lie group and Γ is a lattice in G, a similar theorem was
proved by Damjanovic and Katok [3]–[5] and Wang [25]. We note that these authors also
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prove Hölder versions of this result which are not amenable to our techniques. Further-
more, cocycle rigidity results are proven for small perturbations of these actions on G/Γ
in [5] and [25]. Again we cannot obtain these results by our methods.

Acknowledgements
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2. Exponential 3-mixing

In this section we prove Theorem 1.1. We start by setting up basic notation, which
will be also used in subsequent sections. Then, in §§2.2–2.4, we collect some auxiliary
estimates. The proof of Theorem 1.1 is divided into two parts. We first give a proof
under an irreducibility condition in §2.5, and then in §2.6 prove Theorem 1.1 in general
using an inductive argument.

We note that if the reader is only interested in exponential 2-mixing, then the results
of §2.3 are not needed, and in §2.5, one only needs to consider case 1. This makes the
proof much simpler.

2.1. Notation

Let G be a connected simply connected nilpotent Lie group, Λ be a discrete cocompact
subgroup, and X=G/Λ be the corresponding nilmanifold equipped with the invariant
probability measure µ. We fix a right-invariant Riemannian metric d on G which also
defines a Riemannian metric on X. Let L(G) be the Lie algebra of G and exp:L(G)!G

be the exponential map. The lattice subgroup Λ defines a rational structure on L(G).
For a field K⊃Q, we denote by L(G)K the corresponding Lie algebra over K. Denoting
the commutator subgroup by G′, let π:G!G/G′ be the factor map. We also have the
corresponding map Dπ:L(G)!L(G/G′). We fix an identification G/G′'L(G/G′)'Rd

that respects the rational structures.

Every automorphism β of G defines a Lie-algebra automorphism Dβ:L(G)!L(G)
such that β�exp=exp �Dβ. If β(Λ)=Λ, then Dβ preserves the rational structure of L(G)
defined by Λ. In particular, given an action α: Zl!Aut(X) on the nilmanifold X=G/Λ,
we obtain a homomorphism Dα: Zl!GL(L(G)Q).
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For a multiplicative character χ: Zl!C×, we set

Lχ := {u∈L(G)⊗C :Dα(z)u =χ(z)u for z ∈Zl}.

Let X (α) denote the set of characters χ appearing in the action Dα on L(G), and
X ′(α)⊂X (α) be the set of characters appearing in the action on L(G)/L(G)′.

2.2. Estimates on Lyapunov exponents

Since α(Zl) preserves the rational structure on L(G) defined by the lattice Λ, it follows
that each character χ in X (α) is of the form χ(z)=uz1

1 ... uzl

l where the ui’s are algebraic
numbers. The Galois group Gal(
Q/Q) naturally acts on X (α) and X ′(α). Let X0⊂X ′(α)
be one of the Galois orbits.

Lemma 2.1. Suppose that every α(z), z 6=0, acts ergodically on X. Then there exists
c>0 such that

max
χ∈X0

|χ(z)|> exp(c‖z‖) for all z ∈Zl.

Proof. By [2, Theorem 5.4.13], ΛG′/G′ is a lattice in G/G′, and the action α defines
the action on the torus T :=G/ΛG′ by linear automorphisms. Let V be the subspace of
L(G)/L(G)′ spanned by the χ-eigenspaces with χ∈X0. Clearly, this subspace is invariant
under α(Zl) and is defined over Q. Hence, it defines an α-invariant subtorus TX0 of T .
Since α(z)|T is ergodic when z 6=0, it follows that the corresponding linear map has no
roots of unity as eigenvalues. This implies that α(z)|TX0

is also ergodic.
Consider a linear map `: Rl!R|X0| which is defined for z∈Zl by

`(z) := (log |χ(z)| :χ∈X0)

and extended to Rl by linearity. Since for every z∈Zl\{0}, the automorphism α(z) acting
on TX0 is ergodic, we have `(z) 6=0 by [9, Lemma 3.2]. Hence, `|Zl is injective.

We also claim that `(Zl) is discrete. We consider the embedding Zl!GL(V ) defined
by α. Since α(Zl) preserves the integral lattice in V corresponding to the torus TX0 , it
follows that the image of this embedding is discrete. In other words, the subset

{(χ(z) :χ∈X0) : z ∈Zl}

of (C×)|X0| is discrete. Since the kernel of the natural homomorphism (C×)|X0|!R|X0|

defined by s 7!log |s| is compact, this implies that `(Zl) is discrete, as claimed. Since
`(Zl) is discrete and has rank l, it follows that the space `(Rl) has dimension l, and, in
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particular, the map ` is injective. Therefore, by compactness, there exists c>0 such that,
for every z∈Rl, we have

max
χ∈X0

log |χ(z)|> c‖z‖.

This implies the lemma.

Lemma 2.1 shows that in Theorem 1.1 we may replace N(z0, z1, z2) by

exp
(

min
i 6=j

max
χ∈X0

|χ(zi−zj)|
)
.

2.3. Diophantine estimates

Recall that the (absolute) height of an algebraic number u is defined by

H(u) =
(∏

v

max{1, |u|v}
)1/[Q(u):Q]

,

where | · |v denote suitably normalised absolute values of the field Q(u). When u is an
algebraic integer, the height can be computed as

H(u) =
(∏

i

max{1, |ui|}
)1/[Q(u):Q]

,

where the ui’s denote all the Galois conjugates of u.
The following result is deduced from the work of Waldschmidt [24, Corollary 10.1].

Proposition 2.2. Let u1, ... ul, u∈C be algebraic numbers and z=(z1, ..., zl)∈Zl.
Then there exist c1, c2, c3>1, depending on u1, ..., ul and [Q(u):Q], such that, assuming
that

‖z‖> log(c2H(u)) (2.1)

and

uz1
1 ... uzl

l u 6=1,

we have the estimate

|uz1
1 ... uzl

l u−1|> exp
(
−c1 log(c2H(u)) log

(
c3‖z‖

log(c2H(u))

))
. (2.2)

Surprisingly, it turns out that the term log(c2H(u)) in the denominator is essential
to establish exponential 3-mixing (cf. (2.28)–(2.30) below).
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Proof. We note that, since H(u)>1 and (2.1) holds, the right-hand side of (2.2) is
bounded from above by

exp(−c1 log c2 log c3).

Taking the constants sufficiently large, we may arrange that this quantity is bounded
by 1

2 . Then (2.2) trivially holds when |uz1
1 ... uzl

l u−1|> 1
2 , and without loss of generality

we assume that |uz1
1 ... uzl

l u−1|6 1
2 .

Let log denote the principle value of the (complex) logarithm. There exists z0∈Z
such that |z0|�‖z‖ and

T := log(uz1
1 ... uzn

n u) =πiz0+z1 log u1+...+zl log ul+log u.

It is convenient to set u0=−1, so that log u0=πi. (Here, but not elsewhere, i denotes
the imaginary unit.) Let S :=uz1

1 ... uzl

l u. Since |S−1|6 1
2 ,

|T |= |log S|6 2|S−1|.

Hence, it is sufficient to establish a lower bound for |T |. Note that, since S 6=1, we have
T 6=0. For this purpose, we use [24, Corollary 10.1], which we now recall. We note that
the result in [24] is stated using the logarithmic height while here we use the exponential
height. For simplicity, we take E=e and f=1.

Let D=[Q(u0, ..., ul, u):Q], A0, ..., Al and B be numbers, greater than e, such that

H(ui) 6Ai, i =0, ..., l, H(u) 6B and
l∑

i=0

|log ui|
log Ai

+
|log u|
log B

6 e−1(l+2)D. (2.3)

We set

A =max{A0, ..., Al, B},

M = max
i=0,...,l

(
1

log Ai
+

|zi|
log B

)
,

Z0 =max{7+3 log(l+2), log D},

G0 =max{4(l+2)Z0, log M, log D},

U0 =max{D2 log A,Dl+4G0Z0 log A0 ... log Al log B}.

Then, according to [24, Corollary 10.1],

|T |> exp(−cU0), (2.4)
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where c is an explicit positive constant depending only on n. We set B :=c2H(u) with
c2>1. We note that

|log u|2 6π2+(log |u|)2 6π2+[Q(u) : Q]2(log H(u))2.

Therefore, taking Ai sufficiently large, depending on ui, and sufficiently large c2, we may
arrange that (2.3) holds. If c2 is sufficiently large, A=B. Under the assumption (2.1),
we have M6c3‖z‖/log B with sufficiently large c3 and also

G0 = log M 6 log
(

c3‖z‖
log B

)
.

Moreover, if c3 is sufficiently large, then

U0 � log
(

c3‖z‖
log B

)
log B.

Therefore, estimate (2.4) implies that

|T |> exp
(
−c1 log

(
c3‖z‖
log B

)
log B

)
,

where c1 is an explicit positive constant. This completes the proof of the proposition.

2.4. Equidistribution of box maps

A box map is an affine map

ι:B := [0, T1]×...×[0, Tk]−!L(G)

of the form
ι: (t1, ..., tk) 7−! v+t1w1+...+tkwk, (2.5)

with v, w1, ..., wk∈L(G). We shall use the following result, which is a variation of our
theorem [9, Theorem 2.1], that implies equidistribution of box maps under suitable Dio-
phantine conditions. This result is based on the work of Green and Tao [10].

We denote by |B| the k-dimensional volume of the box B.

Theorem 2.3. Fix 0<θ61. There exist L1, L2>0 such that for every δ∈(0, δ0)
and every box map ι:B!L(G), one of the following conditions holds:

(i) For every θ-Hölder function f :X!R, u∈L(G), and g∈G,∣∣∣∣ 1
|B|

∫
B

f(exp(u) exp(ι(t))gΛ) dt−
∫

X

f dµ

∣∣∣∣ 6 δ‖f‖Cθ .

(ii) There exists z∈Zd\{0} such that

‖z‖� δ−L1 and |〈z,Dπ(wi)〉|�
δ−L2

Ti
for all i=1, ..., k.
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Proof. In the case of Lipschitz functions f , this is [9, Theorem 2.1], and the analo-
gous result for Hölder functions can be deduced by a standard approximation argument.
Indeed, suppose that for some f∈Cθ(X), u∈L(G), and g∈G,∣∣∣∣ 1

|B|

∫
B

f(exp(u) exp(ι(t))gΛ) dt−
∫

X

f dµ

∣∣∣∣ >δ‖f‖Cθ . (2.6)

Then one can find a Lipschitz function fε such that

‖fε−f‖C0 6 εθ‖f‖Cθ and ‖fε‖Lip � ε− dim(X)−1‖f‖C0

(see, for instance, [9, Lemma 2.4]). Then taking ε=
(

1
3δ

)1/θ, we deduce from (2.6) that∣∣∣∣ 1
|B|

∫
B

fε(exp(u) exp(ι(t))gΛ) dt−
∫

X

fε dµ

∣∣∣∣ > (δ−2εθ)‖f‖Cθ

� εdim(X)+1(δ−2εθ)‖fε‖Lip

� δ(dim(X)+1)/θ+1‖fε‖Lip.

Now the theorem for Lipschitz functions implies that (ii) holds with some L1, L2>0
depending on θ.

2.5. 3-mixing under an irreducibility condition

The action of Dα(Zl) preserves the rational structure on L(G) defined by the lattice Λ.
In particular, it follows that each character χ in X (α) is of the form χ(z)=uz1

1 ... uzl

l

where the ui’s are algebraic numbers. The Galois group Gal(
Q/Q) naturally acts on
X (α) and on L(G)	Q. We fix an orbit X0⊂X ′(α) of the Galois group and for each χ∈X0,
we fix a vector wχ∈Lχ whose coordinates are algebraic integers, so that the vectors wχ

are also conjugate under the action of the Galois group. Let WC be the Lie subalgebra
of L(G)⊗C generated by the vectors wχ, χ∈X0, and W =WC∩L(G). We also fix a basis
{wi}i of W .

In this section, we prove Theorem 1.1 under the irreducibility assumption that
Dπ(W ) is not contained in a proper rational subspace. Let 	wχ=Dπ(wχ), χ∈X0. We
observe that under this assumption the coordinates of each of the vectors 	wχ are linearly
independent over Q. Indeed, if we suppose that 〈a, 	wχ〉=0 for some a∈Qd\{0}, then
applying the action of the Galois group, we deduce that 〈a, 	wχ〉=0 for all χ∈X0. Since
Dπ(W ) is spanned over C by the vectors wχ, χ∈X0, this would imply that Dπ(W ) is
contained in a proper rational subspace, which contradicts our assumption.

Let
N =N(z1, z2, z3) := exp

(
min
i 6=j

‖zi−zj‖
)
. (2.7)
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Without loss of generality, we may assume that z0=0 and N=exp(‖z1−z2‖). We set
ε=N−�, where �>0 is a fixed parameter which is sufficiently small and will be specified
later (see (2.21), (2.23), (2.26) and (2.30) below).

We fix a fundamental domain F⊂G for X=G/Λ and set E=exp−1(F ). As in [9,
§3], we may arrange that E is bounded and has piecewise smooth boundary. Since the
Haar measure on G is the image under exp of a suitably normalised Lebesgue measure
on L(G) [2, Theorem 1.2.10], we obtain∫

X

f0(x)f1(α(z1)x)f2(α(z2)x) dµ(x)

=
∫

E

f0(exp(u)Λ)f1(exp(Dα(z1)u)Λ)f2(exp(Dα(z2)u)Λ) du.

(2.8)

We choose a basis of L(G) that contains the basis {wi}i of W and tessellate L(G) by
cubes C of size ε with respect to this basis. Since E has piecewise smooth boundary, we
obtain ∣∣∣∣E\

⋃
C⊂E

C

∣∣∣∣� ε, (2.9)

and ∫
E

f0(exp(u)Λ)f1(exp(Dα(z1)u)Λ)f2(exp(Dα(z2)u)Λ) du

=
∑
C⊂E

∫
C

f0(exp(u)Λ)f1(exp(Dα(z1)u)Λ)f2(exp(Dα(z2)u)Λ) du

+O(ε‖f0‖Cθ‖f1‖Cθ‖f2‖Cθ ).

(2.10)

For every cube C, we pick a point uC∈C. Then, since f0 is θ-Hölder,∫
C

f0(exp(u)Λ)f1(exp(Dα(z1)u)Λ)f2(exp(Dα(z2)u)Λ) du

= f0(exp(uC)Λ)
∫

C

f1(exp(Dα(z1)u)Λ)f2(exp(Dα(z2)u)Λ) du

+O(εθ‖f0‖Cθ‖f1‖Cθ‖f2‖Cθ ).

(2.11)

We decompose each cube C as C=B′+B, where B is a cube in W and B′ is a cube in
the complementary subspace.

We claim that, for sufficiently small �>0 and all sufficiently large N defined in (2.7),

1
|B|

∫
B

f1(exp(v1+Dα(z1)b)Λ)f2(exp(v2+Dα(z2)b)Λ) db

=
(∫

X

f1 dµ

)(∫
X

f2 dµ

)
+O(N−�‖f1‖Cθ‖f2‖Cθ ),

(2.12)
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uniformly over the cubes B and v1, v2∈L(G).
Suppose first that (2.12) holds. Then using uniformity over v1 and v2, we deduce

that

1
|C|

∫
C

f1(exp(Dα(z1)u)Λ)f2(exp(Dα(z2)u)Λ) du

=
1

|B′| |B|

∫
B′

∫
B

f1(exp(Dα(z1)b′+Dα(z1)b)Λ)f2(exp(Dα(z2)b′+Dα(z2)b)Λ) db db′

=
(∫

X

f1 dµ

)(∫
X

f2 dµ

)
+O(N−�‖f1‖Cθ‖f2‖Cθ ).

Combining this estimate with (2.10) and (2.11), we obtain∫
E

f0(exp(u)Λ)f1(exp(Dα(z1)u)Λ)f2(exp(Dα(z2)u)Λ) du

=
( ∑

C⊂E

f0(exp(uC)Λ)|C|
)(∫

X

f1 dµ

)(∫
X

f2 dµ

)
+O((N−�+εθ)‖f0‖Cθ‖f1‖Cθ‖f2‖Cθ ).

Since f is θ-Hölder and (2.9) holds,∑
C⊂E

f0(exp(uC)Λ)|C|=
∑
C⊂E

∫
C

f0(exp(u)Λ) du+O(εθ‖f0‖Cθ )

=
∫

E

f0(exp(u)Λ) du+O((ε+εθ)‖f0‖Cθ )

=
∫

X

f0 dµ+O(εθ‖f0‖Cθ ).

Hence,∫
E

f0(exp(u)Λ)f1(exp(Dα(z1)u)Λ)f2(exp(Dα(z2)u)Λ) du

=
(∫

X

f0 dµ

)(∫
X

f1 dµ

)(∫
X

f2 dµ

)
+O(N−�θ‖f0‖Cθ‖f1‖Cθ‖f2‖Cθ ).

(2.13)

This proves the required estimate when N is sufficiently large, and it is also clear that
this estimate holds for N in bounded intervals. Hence, Theorem 1.1 follows. Now it
remains to prove the claim (2.12).

To prove (2.12), we apply Theorem 2.3 to the nilmanifold X×X=(G×G)/(Λ×Λ)
with δ=N−�. We assume that N is sufficiently large, so that Theorem 2.3 applies. Let
f=f1⊗f2. Clearly,∫

X×X

f d(µ⊗µ) =
(∫

X

f1 dµ

)(∫
X

f1 dµ

)
and ‖f‖Cθ �‖f1‖Cθ‖f2‖Cθ .
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We consider the map ι: [0, ε]k!L(G) defined by

ι(t) =
(

v′1+
k∑

i=1

tiDα(z1)wi, v
′
2+

k∑
i=1

tiDα(z2)wi

)
,

with suitably chosen v′1, v
′
2∈L(G), so that∫

B

f1(exp(v1+Dα(z1)b)Λ)f2(exp(v2+Dα(z2)b)Λ) db =
∫

[0,ε]k
f(ι(t)Λ) dt.

It is sufficient to prove that

ε−k

∫
[0,ε]k

f(ι(t)Λ) dt =
∫

X×X

f d(µ⊗µ)+O(δ‖f‖Cθ ).

Applying Theorem 2.3, we deduce that either∣∣∣∣ε−k

∫
[0,ε]k

f(ι(t)Λ) dt−
∫

X×X

f d(µ⊗µ)
∣∣∣∣ 6 δ‖f‖Cθ , (2.14)

or there exists (a1, a2)∈(Zd)2\{(0, 0)} such that

max{‖a1‖, ‖a2‖}� δ−L1 =N�L1 (2.15)

and

|〈a1, (Dπ)Dα(z1)wi〉+〈a2, (Dπ)Dα(z2)wi〉|�
δ−L2

ε
=N�(L2+1) (2.16)

for all i=1, ..., k.
We shall show that if �>0 is sufficiently small and N is sufficiently large, then either

(2.15) or (2.16) fails. Suppose that both (2.15) and (2.16) holds. Since each of the vectors
wχ, χ∈X0, is a linear combination of vectors wi, we deduce from (2.16) that

|〈a1, (Dπ)Dα(z1)wχ〉+〈a2, (Dπ)Dα(z2)wχ〉|�N�(L2+1) for all χ∈X0. (2.17)

As Dα(z)wχ=χ(z)wχ and 	wχ=Dπ(wχ), (2.17) becomes

|χ(z1)〈a1, 	wχ〉+χ(z2)〈a2, 	wχ〉|�N�(L2+1) for all χ∈X0. (2.18)

We divide the argument into three cases.

Case 1. a1=0. Then a2 6=0 and 〈a2, 	wχ〉6=0. Moreover, by [1, Theorem 7.3.2],

|〈a2, 	wχ〉|�‖a2‖−d−1 �N−�L1(d+1). (2.19)
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By Lemma 2.1, there exists χ∈X0 such that |χ(z2)|>N c with fixed c>0. Hence, it follows
from (2.18) that

|〈a2, 	wχ〉|�N�(L2+1)−c. (2.20)

We assume that the parameter �>0 satisfies

−�L1(d+1) >�(L2+1)−c. (2.21)

Comparing (2.19) and (2.20), we get a contradiction if N is sufficiently large. Hence, we
may assume that a1 6=0.

Case 2. a1 6=0 and χ(z1)〈a1, 	wχ〉+χ(z2)〈a2, 	wχ〉=0 for some χ∈X0. As the Galois
group acts transitively on the set X0, it follows that this equality holds for all χ∈X0. By
Lemma 2.1, there exists χ∈X0 such that |χ(z2−z1)|>N c with fixed c>0. Then

|〈a2, 	wχ〉|= |χ(z1−z2)| |〈a1, w̄χ〉|>N c|〈a1, 	wχ〉|. (2.22)

Since a1 6=0, we have 〈a1, 	wχ〉6=0, and by [1, Theorem 7.3.2],

|〈a1, 	wχ〉|�‖a1‖−d−1 �N−�L1(d+1).

On the other hand,
|〈a2, 	wχ〉|�‖a2‖�N�L1 .

Hence, we deduce that
N−�L1(d+1)+c �N�L1 .

We choose the parameter �>0 so that

−�L1(d+1)+c>�L1. (2.23)

Then when N is sufficiently large, we get a contradiction.

Case 3. a1 6=0 and χ(z1)〈a1, 	wχ〉+χ(z2)〈a2, 	wχ〉6=0 for all χ∈X0. This is the most
difficult part of the proof.

Since a1 6=0, we have 〈a1, 	wχ〉6=0, and, by [1, Theorem 7.3.2],

|〈a1, 	wχ〉|�‖a1‖−d−1 �N−�L1(d+1).

We set u=−〈a2, 	wχ〉/〈a1, 	wχ〉. By Lemma 2.1, there exists χ∈X0 such that |χ(z1)|�N c

with fixed c>0. It follows from (2.18) that for this χ, we have the estimate

|χ(z2−z1)u−1|� N�(L2+1)

|χ(z1)| |〈a1, 	wχ〉|
�N�(L2+1+L1(d+1))−c. (2.24)
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Let K1 :=�(L2+1+L1(d+1))−c.
Next, we compare this estimate with the lower estimate provided by Proposition 2.2.

We note that

H(u) =
∏
v

max{|〈a1, 	wχ〉|v, |〈a2, 	wχ〉|v}1/[Q(u):Q].

For all non-Archimedian places v,

|〈ai, 	wχ〉|v 6 1,

and for all Archimedian v,

|〈ai, 	wχ〉|v �‖ai‖�N�L1 .

Therefore,

H(u)�NK2 , (2.25)

where K2 :=�L′
1 with fixed L′

1>0. We take the parameter �>0 so that

K2 =�L′
1 < 1. (2.26)

Then assuming that N is sufficiently large, we obtain

log(c2H(u))6 log(c′2N
K2) 6 log N, (2.27)

where c′2>1 depends on the implicit constant in the estimate (2.25). We recall that we
have chosen the indices so that

log N = ‖z2−z1‖.

Since (2.27) holds, Proposition 2.2 applies, and we deduce that

|χ(z2−z1)u−1|> exp
(
−c1 log(c2H(u)) log

(
c3‖z2−z1‖
log(c2H(u))

))
.

Without loss of generality, we may assume that c3>e. Since the function x 7!x log(C/x)
is increasing for x6C/e, we deduce that

|χ(z2−z1)u−1|> exp
(
−c1 log(c′2N

K2) log
(

c3 log N

log(c′2NK2)

))
> exp(−c1 log(c′2N

K2) log(c3K
−1
2 )).

(2.28)
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Comparing (2.24) and (2.28), we conclude that

K ′
2 log N+M2 6K1 log N+M1, (2.29)

where K ′
2 :=−c1K2 log(c3K

−1
2 ), M2 :=−c1 log c′2 log(c3K

−1
2 ), and M1 is determined by

the implicit constant in (2.24). We observe that, as �!0+, K ′
2!0− and K1!−c<0.

Therefore, taking the parameter �>0 sufficiently small, we may arrange that

K ′
2 >K1. (2.30)

Then when N is sufficiently large, (2.29) fails. This shows that either (2.15) or (2.16)
fails, and (2.14) holds when N is sufficiently large. Now we have verified the claim (2.12)
and completed the proof of Theorem 1.1 under the irreducibility condition.

In order to prove Theorem 1.1 in general, we observe that using the same argu-
ment, one can deduce the following more general version of the estimate (2.12): for all
sufficiently large N defined in (2.7),

1
|B|

∫
B

f1(h1β1(exp(v1+Dα(z1)b))Λ)f2(h2β2(exp(v2+Dα(z2)b))Λ) db

=
(∫

X

f1 dµ

)(∫
X

f2 dµ

)
+O(N−�‖f1‖Cθ‖f2‖Cθ )

(2.31)

uniformly over the cubes B, h1, h2∈G, v1, v2∈L(G), and automorphisms β1 and β2 of G

which act trivially on G/G′. Indeed,∫
B

f1(h1β1(exp(v1+Dα(z1)b))Λ)f2(h2β2(exp(v2+Dα(z2)b))Λ) db

=
∫

B

f1(h1 exp(Dβ1(v1)+Dβ1Dα(z1)b)Λ)f2(h2 exp(Dβ2(v2)+Dβ2Dα(z2)b)Λ) db,

and to prove (2.31), we can apply Theorem 2.3 to the map

ι: t 7−!
(

v′1+
k∑

i=1

tiDβ1Dα(z1)wi, v
′
2+

k∑
i=1

tiDβ2Dα(z2)wi

)
.

As in the above proof, either (2.31) holds, or an analogue of (2.16) holds, but since
DπDβi=Dπ, this reduces to exactly the same estimate as (2.16). Therefore, (2.31)
follows. Now we combine (2.31) with the argument (2.8)–(2.13) to deduce that∫

X

f0(x)f1(h1β1(α(z1)(x)))f2(h2β2(α(z2)(x))) dµ(x)

=
(∫

X

f0 dµ

)(∫
X

f1 dµ

)(∫
X

f2 dµ

)
+O(N−�θ‖f0‖Cθ‖f1‖Cθ‖f2‖Cθ )

(2.32)

uniformly over h1, h2∈G and automorphisms β1 and β2 of G that preserve Λ and act
trivially on G/G′. We will use this estimate to establish Theorem 1.1 in general.
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2.6. 3-mixing in general

Let W be the Lie subalgebra of L(G) introduced in §2.5. By [23, Chapter 5, §5], there
exists a closed connected normal subgroup M of G such that M/(M∩Λ) is compact, and

exp(W )gΛ = MgΛ for almost every g ∈G.

Since we may replace the lattice Λ by its conjugate, we assume that

exp(W )Λ =MΛ.

We note that the group M satisfies the following properties:
(i) M is α(Zl)-invariant;
(ii) Dπ(W ) is not contained in a proper rational subspace of L(M/M ′);
(iii) [G, M ]⊂M ′.

Properties (i)–(iii) can be verified exactly as in the proof of [9, Lemma 3.4].
We give the proof of Theorem 1.1 using induction on the dimension of X. For this,

we use that X=G/Λ fibers over Y =G/MΛ with fibers isomorphic to

R =MΛ/Λ'M/(M∩Λ).

The invariant measure on X can be decomposed as∫
X

f dµ =
∫

Y

∫
R

f(yr) dµR(r) dµY (y), f ∈C(X),

where µY and µR are normalised invariant measure on Y and R, respectively. Since the
fibration is α(Zl)-equivariant (by (i)),∫

X

f0(x)f1(α(z1)x)f2(α(z2)x) dµ(x)

=
∫

Y

(∫
R

f0(yr)f1(α(z1)(y)α(z1)(r))f2(α(z2)(y)α(z2)(r)) dµR(r)
)

dµY (y)

=
∫

F

(∫
R

f0(gr)f1(α(z1)(g)α(z1)(r))f2(α(z2)(g)α(z2)(r)) dµR(r)
)

dmF (g),

(2.33)

where F⊂G is a bounded fundamental domain for G/MΛ, and mF is the measure on F

induced by µY . We shall show that for N defined in (2.7) and some η>0,∫
R

f0(gr)f1(α(z1)(g)α(z1)(r))f2(α(z2)(g)α(z2)(r)) dµR(r)

=
(∫

R

f0(gr) dµR(r)
)(∫

R

f1(α(z1)(g)r) dµR(r)
)(∫

R

f2(α(z2)(g)r) dµR(r)
)

+O(N−η‖f0‖Cθ‖f1‖Cθ‖f2‖Cθ )

(2.34)
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uniformly over g∈F .
Suppose that (2.34) holds. Then, combining (2.33) and (2.34), we obtain∫

X

f0(x)f1(α(z1)x)f2(α(z2)x) dµ(x)

=
∫

Y

f̄0(y)f̄1(α(z1)y)f̄2(α(z2)y) dµY (y)+O(N−η‖f0‖Cθ‖f1‖Cθ‖f2‖Cθ ),

where the functions f̄i on Y are defined by

y 7−!
∫

R

fi(yr) dµR(r).

Since dim(Y )<dim(X), it follows from the inductive assumption that, for some η>0,∫
Y

f̄0(y)f̄1(α(z1)y)f̄2(α(z2)y) dµY (y)

=
(∫

Y

f̄0 dµY

)(∫
Y

f̄1 dµY

)(∫
Y

f̄2 dµY

)
+O(N−η‖f̄0‖Cθ‖f̄1‖Cθ‖f̄2‖Cθ )

=
(∫

X

f0 dµ

)(∫
X

f1 dµ

)(∫
X

f2 dµ

)
+O(N−η‖f0‖Cθ‖f1‖Cθ‖f2‖Cθ ),

and this completes the proof of Theorem 1.1. Hence, it remains to prove (2.34).
To prove (2.34), we write

α(zi)(g) = aimiλi with ai ∈F , mi ∈M and λi ∈Λ, i=1, 2.

Then ∫
R

f0(gr)f1(α(z1)(g)α(z1)(r))f2(α(z2)(g)α(z2)(r)) dµR(r)

=
∫

R

f0(gr)f1(a1m1β1(α(z1)(r)))f2(a2m2β2(α(z2)(r))) dµR(r),

where the βi’s are the maps induced by the automorphisms m 7!λimλ−1
i . We observe

that because of (ii), W⊂L(M) satisfies the irreducibility assumption of §2.5, and by (iii),
the automorphisms βi act trivially on M/M ′. Hence, (2.32) holds. We apply (2.32) to
the functions on R defined by

φ0(r) := f0(gr) and φi(r) := fi(air), i =1, 2.

This gives∫
R

φ0(r)φ1(m1β1(α(z1)r))φ2(m2β2(α(z2)r)) dµR(r)

=
(∫

R

φ0 dµR

)(∫
R

φ1 dµR

)(∫
R

φ2 dµR

)
+O(N−η‖φ0‖Cθ‖φ1‖Cθ‖φ2‖Cθ )

=
(∫

R

f0(gr) dµR(r)
)(∫

R

f1(α(z1)(g)r) dµR(r)
)(∫

R

f2(α(z2)(g)r) dµR(r)
)

+O(N−η‖f0‖Cθ‖f1‖Cθ‖f2‖Cθ ).

This implies (2.34) and completes the proof of Theorem 1.1.
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3. Higher-order mixing

The aim of this section is to prove Theorem 1.2. We shall use the notation introduced
in §2.1. In §3.1 we prepare Diophantine estimates. Then in §3.2 we give a proof of
Theorem 1.2 under an irreducibility condition, and in §3.3 we give a proof in general
using an inductive argument.

We note that it is sufficient to prove Theorem 1.2 for a collection of functions
fi∈L∞(X) which is dense in L1(X). Hence, we may assume that f0, ..., fs∈Cθ(X).
Furthermore, we may assume that z0=0.

3.1. Diophantine estimates

Let K be a number field and S be a finite set of places of K containing all the archimedean
places. We denote by US the ring of S-units, namely, the group of elements x in K such
that |x|v=1 for v /∈S. For a vector x̄∈Ks, we define its (relative) height by

H(x̄) =
∏
v

max{1, ‖x̄‖v},

where v runs the set of all places of K, and ‖x̄‖v=maxi |xi|v.

Proposition 3.1. Let v∈S and b1, ... bs∈K\{0}. Then for every ε>0, the inequal-
ity ∣∣∣∣b1+

s∑
j=2

bjxj

∣∣∣∣
v

<H(x̄)−ε (3.1)

has finitely many solutions x̄∈US such that no proper subsum of b1+
∑s

j=2 bjxj vanishes.

We call such solutions of (3.1) non-degenerate.
We give a simple proof of the proposition which is based on the classical W. Schmidt

subspace theorem. We note that this proposition is closely related to results about
finiteness of the number of solutions of S-unit equations. For S-unit equations the number
of non-degenerate solutions can be estimated explicitly. For instance, we refer to a
remarkably uniform bound in [7]. Since explicit bounds on the number of solutions do
not play any role in our arguments, we do not pursue this direction here.

Proof. We prove the proposition by induction on s. Note that, when s=1, the
statement holds trivially because there are only finitely many solutions of H(x̄)<c.

Given a solution x̄ of (3.1), we set ȳ=(1, x̄), and we denote by jv=jv(x̄) the first
index jv such that

|yjv |v = ‖ȳ‖v > 1.
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Partitioning the set of solutions according to the index jv, we may assume that this index
is fixed.

We introduce a family of linear forms Lwj(ȳ), with w∈S and j=1, ..., s, defined by

Lwj(ȳ) =


yj , if (w, j) 6=(v, jv),

s∑
j=1

bjyj , if (w, j) = (v, jv).

Then, if ȳ=(1, x̄) corresponds to a solution of (3.1),

s∏
j=1

|Lwj(ȳ)|w =
s∏

j=1

|yj |w, w 6= v,

s∏
j=1

|Lvj(ȳ)|v = |Lvjv
(ȳ)|v

∏
j 6=jv

|yj |v <H(ȳ)−ε
s∏

j=1

|yj |v,

and, by the product formula, ∏
w∈S

s∏
j=1

|Lwj(ȳ)|w <H(ȳ)−ε. (3.2)

By the W. Schmidt subspace theorem [1, Corollary 7.2.5], all the solutions of (3.2) are
contained in a finite union of proper linear subspaces of Ks. Partitioning solutions of
(3.1) according to these subspaces, we may assume that these solutions additionally
satisfy a non-trivial linear relation

c1+
s∑

j=2

cjxj =0 (3.3)

with c1, ..., cs∈K.
Suppose that c1 6=0. Given a solution x̄ of (3.3), we pick a minimal J⊂{2, ..., s} such

that
c1+

∑
j∈J

cjxj =0. (3.4)

Then no proper subsum in (3.4) vanishes. It follows from the finiteness of the number of
non-degenerate solutions of unit equations [1, Theorem 7.4.2] that xj , j∈J , varies over a
finite set. This shows that for every solution x̄ of (3.3) there exists j0=2, ..., s such that
xj0 belongs to a fixed finite set. Hence, in order to prove finiteness of non-degenerate
solutions (3.1), we may assume that xj0 is fixed. Then (3.1) becomes∣∣∣∣b1+bj0xj0 +

∑
j 6=j0

bjxj

∣∣∣∣
v

<H(x̄)−ε. (3.5)



mixing properties of commuting nilmanifold automorphisms 147

Since we are assuming that no proper subsum in (3.1) vanishes, b1+bj0xj0 6=0 and no
proper subsum in (3.5) vanishes either. Let x̄′=(xj :j 6=j0). Then H(x̄′)6H(x̄). Hence,
by the inductive assumption, the number of non-degenerate solutions x̄′ of (3.5) is finite,
and this implies the proposition in this case.

Now suppose that c1=0 in (3.3). One of c2, ..., cs is non-zero, and for simplicity, we
assume that cs 6=0. Then combining (3.1) with (3.3), we obtain that∣∣∣∣b1+

s−1∑
j=2

(bj−cjbsc
−1
s )xj

∣∣∣∣
v

<H(x̄)−ε. (3.6)

Given a solution x̄ of (3.6), we pick a minimal J⊂{2, ..., s−1} such that∣∣∣∣b1+
∑
j∈J

(bj−cjbsc
−1
s )xj

∣∣∣∣
v

<H(x̄)−ε, (3.7)

and no proper subsum of b1+
∑

j∈J(bj−cjbsc
−1
s )xj vanishes. Let x̄′=(xj :j∈J). Since

H(x̄′)6H(x̄), it follows from the inductive hypothesis that x̄′ belongs to a fixed finite set.
This proves that for every solution x̄ of (3.1) there exists j0=2, ..., s such that xj0 belongs
to a fixed finite set. Now we can finish the argument as in the previous paragraph, and
this completes the proof of the proposition.

3.2. Higher-order mixing under irreducibility condition

We define the subspace W in L(G), the set of characters X0 and the eigenvectors wχ

with χ∈X0 as in §2.5.
In this section we assume that Dπ(W ) is not contained in any proper rational

subspace. Let {w1, ..., wk} be a fixed basis of W . Consider a box map

ι:B−!L(G),

t 7−!
k∑

i=1

tiwi,

where B=[0, T1]×...×[0, Tk].

Lemma 3.2. Let f1, ..., fs∈C(X), u1, ..., us∈L(G), β1, ..., βs be automorphisms of
G such that βi=id of G/G′, z1, ... zs∈Zl, v1, ..., vs∈L(G), and x1, ..., xs∈X. Then

1
|B|

∫
B

( s∏
i=1

fi(exp(ui)βi(α(zi)(exp(vi+ι(t))))xi)
)

dt =
s∏

i=1

∫
X

fi dµ+o(1)

as min{‖zi‖, ‖zi−zj‖:i 6=j}!∞. Moreover, the convergence is uniform over u1, ..., us,
β1, ..., βs, v1, ..., vs, x1, ... xs, and functions f1, ..., fs with ‖fi‖Cθ�1.
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Proof. It is sufficient to prove the claim when f1, ..., fs belong to a dense family of
functions in C(X). Hence, without loss of generality, we may assume that the functions
are Hölder with exponent θ.

To prove the lemma, we apply Theorem 2.3 to the product nilmanifold Xs=Gs/Λs.
Suppose that the claim of the lemma fails. Then there exist δ∈(0, δ0) and sequences
f

(n)
1 , ..., f

(n)
s ∈Cθ(X), u

(n)
1 , ..., u

(n)
s ∈L(G), β

(n)
1 , ..., β

(n)
s which satisfy β

(n)
i =id on G/G′,

z
(n)
1 , ..., z

(n)
s ∈Zl satisfying

min{‖z(n)
i ‖, ‖z(n)

i −z
(n)
j ‖ : i 6= j}!∞ as n!∞,

v
(n)
1 , ..., v

(n)
s ∈L(G), and x

(n)
1 , ..., x

(n)
s ∈X such that∣∣∣∣ 1

|B|

∫
B

( s∏
i=1

f
(n)
i (exp(u(n)

i )β(n)
i (α(z(n)

i )(exp(v(n)
i +ι(t))))x(n)

i )
)

dt−
s∏

i=1

∫
X

f
(n)
i dµ

∣∣∣∣
>δ

s∏
i=1

‖f (n)
i ‖Cθ .

We set f (n)=f
(n)
1 ⊗...⊗f

(n)
s :Xs!R, u(n)=(u(n)

1 , ..., u
(n)
s )∈L(G)s,

ι(n):B−!L(G)s,

t 7−! (Dβ
(n)
1 Dα(z(n)

1 )(v(n)
1 +ι(t)), ..., Dβ(n)

s Dα(z(n)
s )(v(n)

s +ι(t))),

and x(n)=(x(n)
1 , ..., x

(n)
s )∈Xs. Then

‖f (n)‖Cθ �
s∏

i=1

‖f (n)
i ‖Cθ

and ∣∣∣∣ 1
|B|

∫
B

f (n)(exp(u(n)) exp(ι(n)(t))x(n)) dt−
∫

X

f (n) dµ⊗s

∣∣∣∣� δ‖f (n)‖Cθ .

It follows from Theorem 2.3 that there exists (a(n)
1 , ..., a

(n)
s )∈(Zd)s\{0} such that

‖a(n)
1 ‖, ..., ‖a(n)

s ‖� δ−L1 � 1 (3.8)

and ∣∣∣∣ s∑
j=1

〈a(n)
j , DπDβ

(n)
j Dα(z(n)

j )(wi)〉
∣∣∣∣� δ−L2

Ti
� 1 for all i=1, ..., k. (3.9)
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Since β
(n)
j =id on G/G′, we have DπDβ

(n)
j =Dπ. We rewrite (3.9) in terms of vectors

wχ, χ∈X0, that satisfy Dα(z)wχ=χ(z)wχ for z∈Zl. Since each wχ can be written as a
linear combination of the wi’s, it follows from (3.9) that∣∣∣∣ s∑

j=1

χ(z(n)
j )〈a(n)

j , Dπ(wχ)〉
∣∣∣∣� 1 for all χ∈X0. (3.10)

We observe that, because of (3.8), the tuple (a(n)
1 , ..., a

(n)
s ) varies over a finite set. Hence,

passing to a subsequence, we may assume that (3.10) holds for a fixed tuple (a1, ..., as)∈
(Zd)s\{0}. After changing indices, we may assume that aj 6=0 for j=1, ..., s′, and aj =0
for j>s′. We note that this implies that

bj := 〈aj , Dπ(wχ)〉 6=0 for all j =1, ..., s′ and χ∈X0.

Indeed, if 〈aj , Dπ(wχ)〉=0 for some j and χ, then taking Galois conjugates we obtain
that 〈aj , Dπ(wχ)〉=0 for all χ∈X0. This implies that Dπ(W ) is contained in a proper
rational subspace and contradicts the irreducibility assumption.

We may cancel vanishing subsums from (3.10), and passing to a subsequence, we
may assume that no proper subsum in (3.10) vanishes.

Passing to a subsequence and changing indices, we may also assume that

max
j=1,...,s′

‖z(n)
j ‖= ‖z(n)

1 ‖. (3.11)

By Lemma 2.1, there exists fixed c>0 such that

max
χ∈X0

|χ(z)|> exp(c‖z‖), z ∈Zl. (3.12)

Hence, passing to a subsequence, we may assume that

|χ0(z
(n)
1 )|> exp(c‖z(n)

1 ‖)

holds with a fixed χ0∈X0. For this χ0, (3.10) gives∣∣∣∣b0+
s′∑

j=1

bjx
(n)
j

∣∣∣∣� exp(−c‖z(n)
1 ‖), (3.13)

where x
(n)
j :=χ0(z

(n)
j −z

(n)
1 ). It is clear that the bj ’s and x

(n)
j ’s are S-units in a fixed

number field, and to derive a contradiction, we apply the estimate of Proposition 3.1.
We observe that there exists cv>1, v∈S, such that

|χ0(z)|v 6 exp(cv‖z‖), z ∈Zl.
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Hence,
|x(n)

j |v = |χ0(z
(n)
j −z

(n)
1 )|v 6 exp(cv‖z(n)

j −z
(n)
1 ‖),

and, by (3.11),

H(x̄(n)) =
∏
v∈S

max{1, |x(n)
1 |v, ..., |x(n)

s′ |v}

6 exp
(( ∑

v∈S

cv

)
max

16j6s′
‖z(n)

j −z
(n)
1 ‖

)
6 exp

(
2
( ∑

v∈S

cv

)
‖z(n)

1 ‖
)

.

It follows from (3.13) that

∣∣∣∣b0+
s′∑

j=1

bjx
(n)
j

∣∣∣∣�H(x̄(n))−ε, (3.14)

with fixed ε>0. According to our construction, no proper subsum in (3.14) vanishes.
Hence, it follows from Proposition 3.1 that x(n)=χ0(z

(n)
j −z

(n)
1 ) runs over a finite set. As

all elements in X0 are conjugate under the Galois action, it follows that χ(z(n)
j −z

(n)
1 ),

with χ∈X0, also runs over a finite set. In particular,

max
χ∈X0

|χ(z(n)
j −z

(n)
1 )|� 1.

On the other hand, by (3.12),

max
χ∈X0

|χ(z(n)
j −z

(n)
1 )|!∞.

This contradiction proves the lemma.

Now we prove Theorem 1.2 under the irreducibility condition. Without loss of
generality, we may assume that z0=0. We fix a fundamental domain F⊂G for G/Λ
and set E=exp−1(F ). We may arrange that E is bounded and has piecewise smooth
boundary. Then∫

X

f0(x)
( s∏

i=1

fi(α(zi)(x))
)

dµ(x) =
∫

E

f0(exp(u)Λ)
( s∏

i=1

fi(exp(Dα(zi)u)Λ)
)

du,

where du denotes a suitably normalised Lebesgue measure on L(G). We choose a basis
of L(G) that contains the fixed basis {wi}i of W and tessellate L(G) by cubes C of size
ε with respect to this basis. Then ∣∣∣∣E\

⋃
C⊂E

C

∣∣∣∣� ε. (3.15)
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For all u1, u2∈C,

|f0(exp(u1)Λ)−f0(exp(u2)Λ)|� εθ. (3.16)

Here and later in the argument the implied constants may depend on the Hölder norms
of f0, ..., fs. For every cube C, we pick a point uC∈C. Then it follows from (3.15) and
(3.16) that

∫
E

f0(exp(u)Λ)
( s∏

i=1

fi(exp(Dα(zi)u)Λ)
)

du

=
∑
C⊂E

∫
C

f0(exp(u)Λ)
( s∏

i=1

fi(exp(Dα(zi)u)Λ)
)

du+O(ε)

=
∑
C⊂E

f0(exp(uC)Λ)
∫

C

( s∏
i=1

fi(exp(Dα(zi)u)Λ)
)

du+O(εθ).

(3.17)

Each cube C in the above sum can be written as C=B′+B, where B is a cube in W

and B′ is a cube in the complementary subspace.

Let

N =N(z1, ..., zs) := min{‖zi‖, ‖zi−zj‖ : i 6= j}.

It follows from Lemma 3.2 that

1
|B|

∫
B

( s∏
i=1

fi(exp(vi+Dα(zi)(b))Λ)
)

db!
s∏

i=1

∫
X

fi dµ (3.18)

as N!∞, uniformly over v1, ... vs∈L(G) and the cubes B (note that all the cubes are
translates of a fixed cube). Hence, it follows that

1
|C|

∫
C

( s∏
i=1

fi(exp(Dα(zi)(u))Λ)
)

du

=
1

|B′| |B|

∫
B′

∫
B

( s∏
i=1

fi(exp(Dα(zi)(b′)+Dα(zi)(b))Λ)
)

db db′!
s∏

i=1

∫
X

fi dµ

as N!∞. Combining this with (3.17), we deduce that

∫
E

f0(exp(u)Λ)
( s∏

i=1

fi(exp(Dα(zi)u)Λ)
)

du

=
( ∑

C⊂E

f0(exp(uC)Λ)|C|
) s∏

i=1

∫
X

fi dµ+
( ∑

C⊂E

|C|
)

o(1)+O(εθ),
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where clearly
∑

C⊂E |C|=O(1). Moreover, using (3.16) and (3.15), we deduce that

∑
C⊂E

f0(exp(uC)Λ)|C|=
∑
C⊂E

(∫
C

f0(exp(u)Λ) du+O(|C|εθ)
)

=
∫

E

f0(exp(u)Λ) du+O(εθ) =
∫

X

f0 dµ+O(εθ).

This implies that∫
X

f0(x)
( s∏

i=1

fi(α(zi)(x))
)

dµ(x) =
∫

E

f0(exp(u)Λ)
( s∏

i=1

fi(exp(Dα(zi)u)Λ)
)

du

=
s∏

i=0

∫
X

fi dµ+o(1)+O(εθ)

as N!∞. This proves Theorem 1.2 under the irreducibility condition. It is clear from
the proof that convergence is uniform provided that ‖f0‖Cθ , ..., ‖fs‖Cθ�1.

3.3. Higher-order mixing in general

We will apply an inductive argument which uses the result of §3.2 as a base case. In fact,
we note that the argument in §3.2 implies that∫

X

f0(x)
( s∏

i=1

fi(hiβi(α(zi)(x)))
)

dµ(x) =
s∏

i=0

∫
X

fi dµ+o(1) (3.19)

as N=N(z1, ..., zs)!∞, uniformly over functions f0, ..., fs with ‖fi‖Cθ�1, h1, ..., hs∈G

and automorphisms β1, ..., βs of G that preserve Λ and act trivially on G/G′. Indeed,
Lemma 3.2 implies that in (3.18) we more generally have

1
|B|

∫
B

( s∏
i=1

fi(hiβi(exp(vi+Dα(zi)(b)))Λ)
)

db =
s∏

i=1

∫
X

fi dµ+o(1)

as N!∞, uniformly over f0, ..., fs with ‖fi‖Cθ�1, h1, ..., hs∈G, automorphisms β1, ...,

βs, and v1, ... vs∈L(G). Then the rest of the argument carries over and implies (3.19).
Let W be the Lie subalgebra of L(G) introduced in §2.5. By [23, §5.5], there exists

a closed connected normal subgroup M of G such that M/(M∩Λ) is compact, and

exp(W )gΛ = MgΛ for almost every g ∈G.

Since we may replace the lattice Λ by its conjugate, we assume that

exp(W )Λ =MΛ.
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We note that the group M satisfies the following properties:
(i) M is α(Zl)-invariant;
(ii) Dπ(W ) is not contained in a proper rational subspace of L(M/M ′);
(iii) [G, M ]⊂M ′.

Properties (i)–(iii) can be verified exactly as in the proof of [9, Lemma 3.4].
To apply induction, we observe that the nilmanifold X=G/Λ fibers over the nil-

manifold of Y =G/MΛ with fibers isomorphic to R=MΛ/Λ'M/(M∩Λ). The invariant
measure µ on X decomposes as∫

X

f dµ =
∫

Y

∫
R

f(yr) dµR(r) dµY (y), f ∈C(X),

where µY and µR denote the normalised invariant measures on Y and R, respectively.
It follows from (i) that the fibration X!Y is α(Zl)-equivariant. Hence, we obtain∫

X

f0(x)
( s∏

i=1

fi(α(zi)(x))
)

dµ(x)

=
∫

Y

(∫
R

f0(yr)
( s∏

i=1

fi(α(zi)(y)α(zi)(r))
)

dµR(r)
)

dµY (y)

=
∫

F

(∫
R

f0(gr)
( s∏

i=1

fi(α(zi)(g)α(zi)(r))
)

dµR(r)
)

dmF (g),

(3.20)

where F⊂G is a bounded fundamental set for G/MΛ, and mF is the measure on F

induced by µY . We write

α(zi)(g) = aimiλi with ai ∈F , mi ∈M and λi ∈Λ, i=1, ..., s.

Then ∫
R

f0(gr)
( s∏

i=1

fi(α(zi)(g)α(zi)(r))
)

dµR(r)

=
∫

R

f0(gr)
( s∏

i=1

fi(aimiβi(α(zi)(r)))
)

dµR(r),

where the βi’s are the transformations of S induced by the automorphisms m 7!λimλ−1
i

of M . By (ii), the subspace W⊂L(M) satisfies the irreducibility assumption of §3.2, and
by (iii), the automorphisms βi act trivially on M/M ′. Let

φ0(r) := f0(gr) and φi(r) := fi(air), i =1, ..., s.
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Since F⊂G is bounded, we have ‖φi‖Cθ�‖fi‖Cθ�1. Hence, it follows from (3.19) that∫
R

φ0(r)
( s∏

i=1

φi(miβi(α(zi)(r)))
)

dµR(r) =
s∏

i=0

∫
R

φi dµR+o(1)

as N!∞, uniformly over g∈F , m1, ...,ms∈M , and the automorphisms β1, ..., βs. Since
aiMΛ=α(zi)(g)MΛ, this implies that∫

R

f0(gr)
( s∏

i=1

fi(α(zi)(g)α(zi)(r))
)

dµR(r) =
s∏

i=0

∫
R

fi(α(zi)(g)r) dµR(r)+o(1) (3.21)

as N!∞, uniformly over g∈F . Let f̄i be the function on Y defined by

y 7−!
∫

R

fi(yr) dµR(r).

Combining (3.20) and (3.21), we deduce that∫
X

f0(x)
( s∏

i=1

fi(α(zi)(x))
)

dµ(x) =
∫

Y

f̄0(y)
( s∏

i=1

f̄i(α(zi)(y))
)

dµY (y)+o(1)

as N!∞. Finally, it follows by induction on dim(X) that∫
Y

f̄0(y)
( s∏

i=1

f̄i(α(zi)(y))
)

dµY (y) =
s∏

i=0

∫
Y

f̄i dµY +o(1)=
s∏

i=0

∫
X

fi dµ+o(1).

The above argument implies uniform convergence provided that ‖f0‖Cθ , ..., ‖fs‖Cθ�1.
This completes the proof of Theorem 1.2.

4. Exponential mixing of shapes

While we have proved exponential 2-mixing and 3-mixing for Zl-actions by automor-
phisms on nilmanifolds, we do not know if exponential mixing of higher orders holds
for them in general. This would require a quantitative version of Proposition 3.1 which
seems to be out of reach of available number-theoretic methods. Nonetheless, we prove
a weak form of exponential mixing where the error term is controlled by

N∗(z0, ..., zs) := min
χ∈X (α)

min
|χ(zi−zj)|>1

i 6=j

|χ(zi−zj)|

with notation as in §2.1. This, in particular, implies exponential mixing for Anosov
shapes—Theorem 1.3.
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Theorem 4.1. Let α: Zl!Aut(X) be an action on a compact nilmanifold X such
that every α(z), z 6=0, is ergodic. Then there exists η=η(θ)>0 such that, for every
f0, ..., fs∈Cθ(X) and z0, ..., zs∈Zl,∫

X

( s∏
i=0

fi(α(zi)x)
)

dµ(x) =
s∏

i=0

∫
X

fi dµ+O

(
N∗(z0, ..., zs)−η

s∏
i=0

‖fi‖Cθ

)
. (4.1)

Proof. We adapt the method of the proof of [9, Theorem 1.2] from our previous
paper. Since the proof is quite similar to the argument in this paper, we will only give
an outline.

We take a character χ∈X (α) and the corresponding eigenvector w∈L(G). If χ is real,
we denote by W the corresponding 1-dimensional eigenspace. Otherwise, we denote by W

the 2-dimensional subspace 〈w, 	w〉∩L(G). Then Dα(z)|W =r(z)ω(z), where r(z)=|χ(z)|
and ω(z) is a rotation. We assume in addition that χ2 /∈X (α). Then W is closed under
the Lie bracket.

We first treat the irreducible case: namely, when Dπ(W ) is not contained in a proper
rational subspace. Without loss of generality, N∗>1. Then for all i 6=j, |χ(zi−zj)| 6=1
and after changing indexes, |χ(z0)|<|χ(z1)|<...<|χ(zs)|. We may also assume that z0=0.
We fix a basis of L(G) which contains a basis of W and tessellate L(G) by cubes of size
ε with respect to this basis. Then the integral∫

X

f0(x)
( s∏

i=1

fi(α(zi)x)
)

dµ(x)

can be approximated by a sum of the integrals∫
C

( s∏
i=1

fi(exp(Dα(zi)u)Λ)
)

du

with the error of size O(εθ
∏s

i=1 ‖f‖Cθ ). Since C=B′+B, where B is a cube in W and
B′ is a cube in the complementary subspace, the above integral can be written as∫

B′

∫
B

( s∏
i=1

fi(exp(Dα(zi)b′+Dα(zi)b)Λ)
)

db db′.

For every cube B, we take a box map ιB : [0, ε]dim(W )!B that parameterises B. Then,
by [9, Proposition 4.2], there exists �>0 such that

1
|B|

∫
B

( s∏
i=1

fi(exp(vi+Dα(zi)b)Λ)
)

db

= ε− dim(W )

∫
[0,ε]dim(W )

( s∏
i=1

fi(exp(vi+r(zi)ω(zi)ιB(t))Λ)
)

dt

=
s∏

i=1

∫
X

fi dµ+O

(
σ−�

s∏
i=1

‖f‖Cθ

)
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uniformly over v1, ..., vs∈L(G), where σ=min{εr(z1), r(zs)/r(zs−1), ..., r(z2)/r(z1)}. We
note that the Diophantine condition for the box map t 7!ω(zi)ιB(t), which is required
in [9, Proposition 4.2], is satisfied because W is spanned by vectors with algebraic co-
ordinates and [1, Theorem 7.3.2] applies. Since this estimate is uniform over the vi’s, it
follows that

1
|C|

∫
C

( s∏
i=1

fi(exp(Dα(zi)u)Λ)
)

du =
s∏

i=1

∫
X

fi dµ+O

(
σ−�

s∏
i=1

‖f‖Cθ

)
,

and we deduce that∫
X

f0(x)
( s∏

i=1

fi(α(zi)x)
)

dµ(x) =
s∏

i=1

∫
X

fi dµ+O

(
(εθ+σ−�)

s∏
i=1

‖f‖Cθ

)
.

We refer to the proof of [9, Theorem 1.2] for details. Choosing ε=r(z1)−1/2 implies the
claim of the theorem in the irreducible case.

To give a proof in general, we use induction on dim(X). This argument is very
similar to §2.6. If exp(W )Λ 6=X, we consider the α-equivariant fibration X!Y defined
by the closure. The above argument implies that∫

X

f0(x)
( s∏

i=1

fi(hiβi(α(zi)x))
)

dµ(x) =
s∏

i=1

∫
X

fi dµ+O

(
N−η
∗

s∏
i=1

‖f‖Cθ

)
uniformly over h1, ..., hs∈G and automorphisms β1, ..., βs∈Aut(X) that act trivially on
G/G′. (In fact, this uniformity was part of [9, Proposition 4.2].) Then as in §2.6,∫

X

f0(x)
( s∏

i=1

fi(α(zi)x)
)

dµ(x)

=
∫

Y

f̄0(x)
( s∏

i=1

f̄i(α(zi)x)
)

dµY (x)+O

(
N−η
∗

s∏
i=1

‖f‖Cθ

)
,

where f̄0, ..., f̄s∈Cθ(Y ). Now the claim follows by induction on dimension.

Remark 4.2. In the irreducible case of the above proof, we can replace N∗(z0, ..., zs)
by

N ′
∗(z0, ..., zs) := max

χ∈X ′(α)
min

|χ(zi−zj)|>1

i 6=j

|χ(zi−zj)|,

which provides a better estimate.

Proof of Theorem 1.3. We note that if in Theorem 4.1 we assume that α(zi−zj) are
Anosov for all i 6=j, then N∗(z0, ..., zs)>1 and N∗(nz0, ..., nzs)=N∗(z0, ..., zs)n. Hence,
Theorem 1.3 follows directly from Theorem 4.1.
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5. Cocycle rigidity

We now apply exponential 2-mixing to prove smooth cocycle rigidity for genuinely higher-
rank abelian actions by automorphisms of nilmanifolds—Theorem 1.5. The proof is based
on the “higher-rank trick” from [11].

Let Zl!Aut(X) be an action on a compact nilmanifold X and c: Zl×X!R be a
cocycle. Assume that there is a rank-2 subgroup 〈a, b〉 of Zl such that all its non-zero
elements act ergodically on X.

First, we note that the map c0 :Zl 7!R defined by z 7!
∫

X
c(z, x) dµ(x) is a homomor-

phism by the cocycle property. Then c−c0 is also a cocycle, and it will suffice to prove
the theorem for c−c0. Thus, we will assume that all functions c(z, ·) for z∈Zl satisfy∫

X
c(z, x) dµ(x)=0.
Let f(x)=c(a, x). We shall show that there exists φ∈L2(X) such that

f =φ�a−φ. (5.1)

We will apply our previous results [9, §6]. By [9, Theorem 6.1], it suffices to show that

σ2 :=
∫

X

f2 dµ+2
∞∑

i=1

∫
X

(f �ai)f dµ =
∞∑

i=−∞
〈f �ai, f〉=0.

We note that the assumption of this theorem is verified in [9, §6] using exponential mixing
of a. Let h(x)=c(bj , x). It follows from the cocycle property that

f �bj−f =h�a−h.

Hence,
n∑

i=−n

(f �aibj−f �ai) =
n∑

i=−n

(h�ai+1−h�ai) =h�an+1−h�a−n,

and it follows from exponential mixing that

σ2 =
∞∑

i=−∞
〈f �aibj , f〉 for every j ∈Z.

On the other hand, by the exponential mixing for the group 〈a, b〉 established in Theo-
rem 1.1, ∑

i,j∈Z
〈f �aibj , f〉<∞.

This implies that σ2=0 and proves (5.1).
Now using the cocycle regularity result [9, Theorem 7.1] established in our previous

paper, we deduce that (5.1) also has a C∞ solution. Finally, since a acts ergodically, it
follows from [11, Lemma 4.1] that

c(z, ·) =φ�z−φ for all z ∈Zl.

This completes the proof of Theorem 1.5.
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