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1. Introduction

By the classical Picard theorem an entire holomorphic map C!C omits at most one
point if non-constant. The characteristic example of an entire holomorphic map omitting
a point is, of course, the exponential function z 7!ez, since every entire holomorphic map
C!C omitting a point factors through the exponential map.

Liouville’s theorem asserts that all entire conformal maps Rn!Rn are Möbius trans-
formations and, in particular, homeomorphisms for n>3. This rigidity of spatial confor-
mal geometry no longer persists in quasiconformal geometry. Reshetnyak in the late 1960s
and Martio–Rickman–Väisälä in the early 1970s showed that the rich theory of mappings
of bounded distortion, or so-called quasiregular mappings, is a natural replacement for
holomorphic functions in higher dimensions. This advancement raised the question of
the existence of Picard-type theorems for quasiregular mappings; see e.g. Zorich [22] or
Väisälä’s survey [20].

Already in his 1967 paper [22] Zorich gave an example of a quasiregular mapping
Rn!Rn omitting the origin. This so-called Zorich map is the natural higher-dimensional
analogue of the exponential function although the mapping is not a local homeomor-
phism. The branching of the map cannot be avoided by Zorich’s global homeomorphism
theorem from the same article: For n>3, quasiregular local homeomorphisms Rn!Rn

are homeomorphisms. Recall that, by Reshetnyak’s theorem, quasiregular mappings are
(generalized) branched covers, that is, discrete and open mappings and hence local home-
omorphisms modulo an exceptional set of (topological) codimension at least 2; we refer
to Rickman’s monograph [16] for the general theory of quasiregular mappings.

A counterpart of Picard’s theorem for quasiregular mappings is due to Rickman [14]:
Given K>1 and n>2 there exists q depending only on K and n so that a non-constant
K-quasiregular mapping Rn!Rn omits at most q points. The sharpness of Rickman’s
Picard theorem is known in dimension n=3 and is also due to Rickman. In [15] he shows
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the following existence result: Given any finite set P in R3 there exists a quasiregular
mapping R3!R3 omitting exactly P .

Holopainen and Rickman generalized the Picard theorem to quasiregular mappings
into manifolds with many ends in [5] and a fortiori to quasiregular mappings between
manifolds in [7]; note also similar results in the sub-Riemannian geometry [6]. These re-
sults stem from potential-theoretic proofs of Rickman’s Picard theorem due to Lewis [9]
and Eremenko–Lewis [3]. It can be said that the ramifications of these methods are now
well understood. Recently, Rajala generalized Rickman’s Picard theorem to mappings of
finite distortion [13]. Whereas the aforementioned potential-theoretic methods are diffi-
cult to adapt to this more general class of mappings, Rajala shows that value distribution
theory based on modulus methods is still at our disposal.

The sharpness of these theorems, however, is still mostly unknown and Rickman’s
3-dimensional construction in [15] provides essentially the only method to produce ex-
amples.

In this article we show the precision of Rickman’s Picard theorem in all dimensions.

Theorem 1.1. Given n>3, q>2, and points y1, ..., yq∈Rn there exists a quasiregular
mapping Rn!Rn omitting exactly y1, ..., yq.

It has already been mentioned that the case of dimension n=3 was settled by Rick-
man. For n=2 the number of omitted points is at most 1 by Picard’s theorem and the
Stöılow factorization; see e.g. the book by Astala, Iwaniec, and Martin [1, §5.5]. As
discussed above, the case q=1 is given by the Zorich map for all n>3. Therefore we may
restrict to the cases n>4 and q>2. However, it is natural to include n=3.

As will become apparent in the following outline of the proof, the proof of Theo-
rem 1.1 is independent of the analytic theory of quasiregular mappings.

The general outline follows the idea of Rickman’s construction in [15] and both proofs
stem from PL-topology. Rickman’s original method relies on a very delicate deformation
theory of 2-dimensional branched covers ([15, §5]) which leads to an extension theory of
2-dimensional branched covers; we refer to [2] for an exposition on Rickman’s main ideas.
These arguments rely essentially on the discrete nature of the branch set in dimension 2.
Already when n=3, the corresponding deformation theory is much more complicated due
to the non-trivial topology of the branch set; see however an application of Piergallini’s
method in [12] to obtain a quasiregular map R4!S2×S2#S2×S2 in [17]. We are not
aware of a similar deformation theory, based on a detailed analysis of the branch set, in
higher dimensions.

The required extension theory is, however, essentially trivial in all dimensions for
BLD-mappings. Recall that a mapping f :X!Y between metric spaces X and Y is a
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mapping of bounded length distortion (or a BLD-map, for short) if f is open and discrete,
and there exists a constant L>1 satisfying

1
L
`(γ) 6 `(f �γ) 6L`(γ) (1.1)

for all paths γ in X, where `(γ) is the length of γ. We refer to the seminal paper of
Martio and Väisälä [11] for the discussion of the special rôle of BLD-mappings among
quasiregular mappings; see also Heinonen–Rickman [4] for the metric theory.

The BLD-theory in the proof of Theorem 1.1 brings forth an alternative, and slightly
stronger, formulation. We denote by Sn and Sn−1 the Euclidean unit spheres in Rn+1

and Rn, respectively, and by Bn(y, δ) the metric ball in Sn in the inherited metric.

Theorem 1.2. Let n>3, p>2, and y0, ..., yp be points in Sn. Let also g be a Rie-
mannian metric on M :=Sn\{y0, ..., yp} for which Bn(yi, δ)\{yi} is isometric, in met-
ric g, to Sn−1(δ)×(0,∞) for some δ>0 and all 06i6p. Then there exists a surjective
BLD-mapping Rn!(M, g).

Theorem 1.2 clearly yields Theorem 1.1 as a corollary. Indeed, let y1, ..., yq be
points in Rn. After identifying Rn with Sn\{en+1} by stereographic projection, we may
fix a Riemannian metric g on M :=Sn\{en+1, y1, ..., yq} and a BLD-mapping f : Rn!
(M, g) as in Theorem 1.2. It is now easy to verify that the identity map (M, g)!
Sn\{en+1, y1, ..., yq} is quasiconformal. Thus f : Rn!Rn\{y1, ..., yq} is quasiregular.

We are not aware of other methods of producing examples of BLD-mappings from
Rn into Riemannian manifolds with many ends.

1.1. Outline of the proof

Using the framework of Theorem 1.2, we outline the construction of a BLD-map F : Rn!
Sn\{y0, ..., yp} for p>2, and again identify Rn with Sn\{en+1} by stereographic pro-
jection. It is no restriction to assume that y0=en+1 and yi=(0, ti)∈Rn−1×R⊂Sn for
−1<t1<t2<...<tp<1 and we will assume so from now on.

Setting aside geometric aspects of the construction, we give first the topological
description of F : Rn!Sn\{y0, ..., yp}. This description is based on certain essential par-
titions of Rn and Sn. Given a closed set X in Rn (or in Sn), we say that a finite collection
of closed sets X1, ..., Xm forms an essential partition of X if X1∪...∪Xm=X and the
sets Xi have pairwise disjoint interiors.

In the target Sn\{y0, ..., yp}, we fix an essential partition E0, ..., Ep of Sn into n-
cells for which yi∈intEi for each 06i6p and so that E1∪...∪Ep=
Bn and E0=Sn\Bn.
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Figure 1. Cells E1, ..., E4 with (marked) points y1, ..., y4 for p=4 (and n=2).

Figure 2. A half-space modulo boundary.

We also assume that, for all i (mod p+1), Ei−1∩Ei∩Ei+1=Sn−2 and Ei∩Ei+1 is an
(n−1)-cell; see Figure 1. Set E=(E0, ..., Ep).

The F -induced essential partition of Rn is more complicated. Set Rn
+=Rn−1×[0,∞).

Let E′⊂Rn be a closed set satisfying E′=cl(intE′). A mapping ϕ: Rn
+!E′ is a

homeomorphism modulo boundary if ϕ|int Rn
+
: Rn−1×(0,∞)!intE′ is a homeomorphism

and, for every branched cover ψ: ∂E′!Sn−1, the mapping ψ�ϕ|∂Rn
+
: Rn−1×{0}!Sn−1

is a branched cover. Furthermore, we say that E′ is a half-space modulo boundary if
there exists a homeomorphism modulo boundary ϕ: Rn

+!E′. Note that ∂E′ need not be
homeomorphic to Rn

+; see Figure 2.
Suppose, for the sake of argument, there is an essential partition Ω0, ...,Ωp of Rn into

closed sets and each Ωi has an essential partition Ωi,1, ...,Ωi,ji into half-spaces modulo
boundary. We reduce first the existence of a branched cover F : Rn!Sn\{y0, ..., yp} to
an existence of a branched cover f : ∂∪Ω!∂∪E satisfying f(∂Ωi,j)=∂Ei. Here, and in
what follows, the notation

∂∪X=
⋃
i 6=j

Xi∩Xj

is used whenever X=(X0, ..., Xp) is an essential partition.
Let f : ∂∪Ω!∂∪E be a branched cover satisfying the additional condition that

f(∂Ωi,j)=∂Ei for every i=0, ..., p and 16j6ji. Since Ωi,j is a half-space modulo bound-
ary and Ei is an n-cell, we observe that each branched cover fi,j =f |∂Ωi,j extends to a
branched cover Fi,j : Ωi,j!Ei\{yi}. Indeed, we may fix, for every i and j, a homeomor-
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phism modulo boundary ϕi,j : Rn
+!Ωi,j as well as a homeomorphism ψi: Sn−1×[0,∞)!

Ei\{yi}. This means that hi,j =ψ−1
i �fi,j �ϕi,j |∂Rn

+
: Rn−1×{0}!Sn−1 is a branched cover.

The (trivial) extension hi,j×id: Rn
+!Sn−1×[0,∞) of hi,j now yields the required exten-

sion of fi,j after pre- and post-composition with ψi and ϕ−1
i,j |int Ωi,j , respectively. Thus

f extends to a branched cover F : Rn!Sn\{y1, ..., yp}.
Observe also that in forthcoming constructions we may view ∂∪Ω and ∂∪E as

branched codimension-1 hypersurfaces in Rn and the map f as a (generalized) Alexander
map. In particular, the Zorich map is of this character when p=2.

It is crucial that this simple extension is also available for BLD-mappings. It is a
simple exercise to observe that the extension F : Rn!Sn\{y0, ..., yp} constructed above
will be a BLD-mapping with respect to the Riemannian metric g in Sn\{y0, ..., yp} if

(i) f : ∂∪Ω!∂∪E is a BLD-map;
(ii) ϕi: Rn

+!Ωi is BLD modulo boundary and ϕi|int Rn
+

is an embedding; and
(iii) ψi: Sn−1×[0,∞)!(Ei\{yi}, g) is bilipschitz.

Here and in what follows, we say that a mapping ϕ: Rn
+!Ω, where Ω is a closed set in

Rn with Ω=cl(int Ω), is BLD modulo boundary if the restriction f |int Rn
+
: int Rn

+!intΩ
is BLD, and for every BLD-map ψ: ∂Ω!Sn−1, the map ψ�ϕ|∂Rn

+
: Rn−1×{0}!Sn−1 is

BLD.

For Riemannian metrics g with cylindrical ends as in Theorem 1.2, it is easy to
construct homeomorphisms ψi satisfying condition (iii), and so this extension argument
reduces the proof of Theorem 1.2 to Theorem 1.3.

A closed set Ω in Rn is a Zorich extension domain if there exists a map Rn
+!Ω

which is BLD modulo boundary and a homeomorphism in the interior.

Theorem 1.3. Given n>3 and p>2 there is an essential partition Ω=(Ω0, ...,Ωp)
of Rn for which

(a) the sets Ωi have essential partitions into Zorich extension domains; and
(b) there exists a BLD-map f : ∂∪Ω!∂∪E satisfying f(∂Ωi)=∂Ei for all i=0, ..., p.

Essential partitions Ω satisfying both conditions (a) and (b) in Theorem 1.3 are
called Rickman partitions, since the pairwise common boundary ∂∪Ω is analogous to the
2-dimensional complex Rickman constructs in [15]. The reader may find it interesting to
compare §4 and §5 with [15, §2 and §3].

The partition in Theorem 1.3 is achieved in two stages, with rough Rickman parti-
tions playing an intermediate rôle: an essential partition Ω̃=(Ω̃0, ..., Ω̃p) of Rn is a rough
Rickman partition if

(a′) each Ω̃i has an essential partition (Ω̃i,1, ..., Ω̃i,ji) with each Ω̃i,j being BLD-
homeomorphic to Rn−1×[0,∞); and
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(b′) the sets ∂∪Ω̃ and ∂∩Ω̃ have finite Hausdorff distance, where

∂∩Ω̃=
⋂
i

Ω̃i

is the common boundary of the partition Ω̃; ∂∪Ω̃ is called the pairwise common boundary
of Ω̃.

In general, rough Rickman partitions Ω̃ do not admit branched covers ∂∪Ω̃!∂∪E.
To refine our rough Rickman partition Ω̃ to a Rickman partition Ω, we impose an addi-
tional compatibility condition, called the tripod property; see Definition 4.4 for its precise
formulation. These particular rough Rickman partitions, together with a modification of
Rickman’s sheet construction in [15, §7], then yield the required global partition Ω.

In Rickman’s original terminology, the construction of rough Rickman partitions is
called the cave construction and the notion of cave bases corresponds to the subdivisions
provided by the tripod property.

We summarize the two parts of the proof of Theorem 1.3 as follows. First, we prove
the existence of suitable rough Rickman partitions by direct construction.

Theorem 1.4. Given n>3 and p>2 there exists a rough Rickman partition Ω̃=
(Ω̃0, ..., Ω̃p) supporting the tripod property.

As in [15] we begin the proof of Theorem 1.4 by partitioning Rn with an essential
partition Ω′=(Ω′

1,Ω
′
2,Ω

′
3) with Ω′

1 and Ω′
2 BLD-homeomorphic to Rn−1×[0,∞) and Ω′

3

having a partition (Ω′
3,1, ...,Ω

′
3,2n−1) into pairwise disjoint sets, where each Ω′

3,j is BLD-
homeomorphic to Rn−1×[0,∞). All sets Ω′

i are unions of unit n-cubes [0, 1]n+v, where
v∈Zn, and (Ω′

1,Ω
′
2,Ω

′
3) satisfies the tripod property. This occupies §5. The final step in

the proof of Theorem 1.4 is a generalization of this argument. This step is discussed in
§8; see Proposition 8.1.

The essential partition Ω̃ (as well as Ω′) has the following geometric property. Let
X be any of the sets Ω̃0, Ω̃1 or Ω̃2,j for some 16j62n−1, and for each k>0 write

Xk =3−kX.

By passing to a subsequence if necessary, the sets Xk and their boundaries ∂Xk⊂Sn con-
verge in the Hausdorff sense respectively to X∞ and ∂X∞, where ∂X∞ is a “generalized
Alexander horned sphere in Sn with infinitely many horns”. Under the normalization
Ω̃k=3−kΩ̃ for k>0, in fact ∂∪Ω∞=∂∩Ω∞ for any sublimit Ω∞ of the partitions Ω̃k, in
the Hausdorff sense. This may be considered a coarse Lakes of Wada property for the
pairwise common boundary of Ω̃. Of course, this observation applies also to Rickman’s
original cave construction. We do not discuss this feature of Ω̃ in more detail, and leave
these details to the interested reader.
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The second part of the proof of Theorem 1.3 is the refinement of rough Rickman
partitions to Rickman partitions. This formalizes the effect of the sheet construction
(called pillows in §7) as follows.

Proposition 1.5. Given a rough Rickman partition Ω̃=(Ω̃0, ..., Ω̃p) supporting the
tripod property, there exists a Rickman partition Ω=(Ω0, ...,Ωp) for which the Hausdorff
distance of ∂∪Ω and ∂∪Ω̃ is at most 1.

We do not explore the geometry of the domains Ω0, ...,Ωp further. However, we do
observe that the domains in the Rickman partition can be taken to be uniform domains;
see Corollaries 5.2 and 8.9.

As discussed in this introduction, Theorem 1.4 and Proposition 1.5 together prove
Theorem 1.3, and we obtain Theorem 1.2 from Theorem 1.3 and the observation on the
existence of BLD-extensions.
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2. Preliminaries

In this section we introduce general metric and combinatorial notions used in the con-
struction. Most of the discussion is in the ambient space Rn for some fixed n>3.

2.1. Metric notions

In Rn, let d∞ be the sup-metric

d∞(x, y) = ‖x−y‖∞

given by the supremum norm

‖(x1, ..., xn)‖∞ =max
i

|xi|.
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The metric ball B∞(p, r)={x∈Rn :‖p−x‖∞<r} of radius r>0 about p∈Rn in this metric
then is the open cube

B∞(p, r) = p+(−r, r)n.

Similarly, 
B∞(p, r)=p+[−r, r]n.
Diverting from standard terminology, we apply the term cube exclusively to closed

n-balls 
B∞(p, r). The point p is the center of the cube 
B∞(p, r) and of course the
side-length of 
B∞(p, r) is 2r.

The set E in Rn is rectifiably connected if for every x, y∈E there exists a path
γ: [0, 1]!E of finite length so that x, y∈γ[0, 1]. In this situation, γ connects x and y

in E. When E is rectifiably connected in Rn, dE is its inner metric in E; that is, for all
x, y∈E,

dE(x, y) = inf
γ
`(γ),

over all paths γ connecting x and y in E, with `(γ) being the length of γ. Note that
the length of γ is in terms of Euclidean distance. The notion of inner metric gives
the following characterization of BLD-homeomorphisms: A homeomorphism f :E!E′

between rectifiably connected sets E and E′ in Rn is BLD if and only if f :E!E′ is
bilipschitz in the inner metric.

2.2. Complexes

For a detailed discussion on simplicial complexes we refer to [8] and [18] and merely
recall some notation and terminology. Given a simplicial complex P in Rn, P (k) is its
k-skeleton, that is, the collection of all k-simplices in P . If m is the largest dimension
of simplices in P , then P has dimension m, m=dimP . We consider only homogeneous
simplicial complexes, that is, every simplex in P is contained in a simplex of dimension
dimP . We denote by |P (k)| the subset in Rn which is the union of all simplices in P (k);
thus, |P |=|P (m)|.

Recall that every k-simplex σ has a standard structure as a simplicial complex having
σ as its only k-simplex and the vertices of σ as the 0-skeleton. The i-simplices of this
complex form the i-faces of σ.

We mainly consider cubical complexes. Much as simplices have a natural structure
as a complex, the k-dimensional faces of a cube Q=
B∞(x, r) determine a natural CW
complex structure for Q. The k-dimensional faces of Q are k-cubes, and a CW complex P
is a cubical complex if its cells are cubes. Note in particular, that given an i-cube Q and a
j-cube Q′ the intersection Q∩Q′ is a k-dimensional face of both cubes, k6min{i, j}. The
k-skeleton and its realization are defined for cubical complexes in a manner analogous
to simplicial complexes.
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A homogeneous cubical complex of dimension k is usually referred to as a cubi-
cal k-complex. A set E⊂Rn is a cubical k-set if there is a cubical k-complex P with
|P |=E. Cubical k-sets E and E′ are essentially disjoint if E∩E′ is a cubical set of lower
dimension. Given two cubical sets E and E′, write

E−E′ =cl(E\E′),

where cl(E\E′) is the closure of E\E′. Clearly, E−E′=E if E′ has lower dimension
than E.

A cubical k-complex P is r-fine if all k-cubes in P have side-length r, i.e. are
congruent to [0, r]k⊂Rk⊂Rn. Similarly, a set E in Rn is r-fine if r>0 is the largest
integer for which there exists an r-fine cubical complex P with E=|P |, and r is called
the side-length %(E) of E. In what follows, we assume that all cubical complexes are
r-fine for some integer r>0. Given an r-fine set E=|P |, we tacitly assume that its
underlying complex P is also r-fine.

Let P be a 3k-fine cubical n-complex for k>1, and Ω=|P |. We denote by Ω∗ the
subdivision of Ω into cubes of side-length 3. More formally, there exists a unique 3-fine
cubical n-complex P̃ satisfying Ω=|P̃ |; we set Ω∗=P̃ (n) and refer to Ω∗ as the 3-fine
subdivision of Ω. We will also need Ω#, the 1-fine subdivision of Ω, i.e. subdivision of Ω
into unit cubes, and call Ω# the unit subdivision of Ω. In what follows, if A⊂Rm and
r>0, we write

rA= {rx∈Rn :x∈A}.

2.3. Essential partitions

Cubical k-sets U1 ..., Um induce the essential partition {U1, ..., Um} of the cubical set U
if U=U1∪...∪Um and the sets Ui are pairwise essentially disjoint. If the sets U1, ..., Um,
and U are n-cells, we usually consider the essential partition ordered and denote it by
U=(U1, ..., Um) as in the introduction.

To simplify notation, for r>0 we also set rU=(rU1, ..., rUm), and given an n-cell
E⊂U , write U∩E=(U1∩E, ..., Um∩E) and U−E=(U1−E, ..., Um−E).

2.4. Graphs, forests, and adjacency

The pair G=(V,E) is a graph if V is a countable set and E is a collection of unoriented
pairs of points in V ; V is the set of vertices and E the set of edges of G. Note that we
only allow one edge between two distinct vertices and, in particular, our graphs do not
have loops, i.e. edges from a vertex to itself.
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We use repeatedly the standard fact that a graph contains a maximal tree, that is,
given a graph G=(V,E) there is a subtree T=(V,E′) containing all vertices of G. The
length `(G) of G is the number of vertices of G, the valence of G at v is ν(G, v) and
ν(G)=maxv∈G ν(G, v) is the (maximal) valence of G. We denote by dG(v, v′) the graph
distance of v and v′ in G, that is, the length of the shortest edge path between v and v′

in G.

Given a distinguished vertex v∈G, the pair (G, v) is called a rooted graph and v the
root of this graph. The radius r(G, v) of G at v is the largest graph distance between v
and a leaf of G; a vertex w∈G is a leaf if it belongs to exactly one edge, or equivalently,
has valence 1. A vertex which is neither a leaf nor the root is an inner vertex. A subtree
Γ⊂G connecting the root v to a leaf w of G is a branch when all vertices in Γ other than
v and w have valence 2.

Let (G, v) be a finite rooted tree and v′ 6=v be a vertex in G. We define the subtree
behind v′ in (G, v) as follows. Since G is a tree, there exists a unique v′′∈G for which
e={v′′, v′} is the last edge in the shortest path from v to v′. The graph (V,E\{e}) has two
connected components Γv and Γv′ containing v and v′, respectively. Both components
are trees; Γv′ is the subtree behind v′ in (G, v).

A graph G is a forest if all of its components are trees. A forest F⊂G is maximal if
components of F are maximal trees in components of G and F contains all vertices of G.

A function u:G!R on a tree G has the John property in G if given v and v′ in G

there exists 06j6d=dG(v, v′) so that u is (strictly) increasing on v0, ..., vj and (strictly)
decreasing on vj+1, ..., vd, where v=v0, v1, ..., vd=v′ is the unique shortest edge path from
v to v′ in G.

Most graphs we consider are adjacency graphs of collections of k-cells in Rn. A set
E⊂Rn is a k-cell if E is homeomorphic to the closed cube [0, 1]k in Rk; E is a cubical
k-cell if for some r>1 there is an r-fine homogeneous cubical complex P for which E=|P |.

Two k-cells E and E′ are adjacent if E∩E′ is a (k−1)-cell. We recall from PL-
theory that given two adjacent PL k-cells E and E′ there exists a PL-homeomorphism
E∪E′!E which is identity on ∂(E∪E′)∩E, and refer to [8] or [18, Chapter 3] for this
and similar results in PL-theory.

A collection P of k-cells in Rn has the adjacency graph

Γ(P) = (P, {{E,E′} :E ∈P and E′ ∈P are adjacent}).

Given a subgraph Γ⊂Γ(P ), we write |Γ|=
⋃

E∈ΓE; in particular, |Γ(P )|=|P |.
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Figure 3. A cubical 2-complex with its adjacency graph and a choice of a maximal tree.

Figure 4. Two different fold-outs of faces of a 3-cube along non-isomorphic maximal trees.

2.5. Remarks on figures

Although we consider n-cells for n>3, we use 2-dimensional illustrations related to 3-
dimensional example configurations, so that often a 3-dimensional situation is seen rela-
tive to one of its faces. The figures displayed here often have orientations different than
suggested by their coordinates in R3.

In particular, ‘fold-out’ diagrams illustrate particular cubical (n−1)-complexes. To
formalize this, suppose E is a cubical (n−1)-cell in Rn with an essential partition
{E1, ..., Es} into unit (n−1)-cubes and let Γ be a maximal tree in Γ({E1, ..., Es}). An
(n−1)-cell E′ in Rn−1 then is a fold-out of E (along Γ) if E′ has a partition {E′

1, ..., E
′
s}

with adjacency graph Γ({E′
1, ..., E

′
s}) isomorphic to Γ and there exists a map ψ:E′!E

which sends each cube E′
i isometrically to Ei. We call ψ a bending of E′. Sometimes, as

in Figure 4, a fold will be indicated by a dashed line.

Fold-out figures, in particular, illustrate 3-cells contained in 3-cubes. Most of our
figures of this type, e.g. in §4 and §5, are akin to the following two simple examples.

Consider the cube Q=[0, 3]3. Then F=[0, 3]2×{0} is a face of Q and the unit cube
q=[1, 2]2×[0, 1] is contained in Q and meets F in the face f=[1, 2]2×{0}. We illustrate
the fact that q meets F by identifying f in F as in Figure 5.

In our second example, Q and F remain the cube [0, 3]3 and its face [0, 3]2×{0}
respectively, but q=[0, 1]×[1, 2]×[0, 1]. Let also F ′ be the face {0}×[0, 3]2 of Q. Then
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Figure 5. The cube q in Q realized as a square f in F .

Figure 6. The cube q in Q meeting faces F∪F ′.

q∩(F∪F ′) is a union of two faces f=[0, 1]×[1, 2]×{0} and f ′={0}×[1, 2]×[0, 1] of q. To
indicate how q meets F∪F ′ in more than one face, we use the symbol ‘x ’ to indicate one
of the two faces which correspond to q in Q as in Figure 6.

3. Atoms and molecules

In this section we discuss the elementary BLD-theory of certain cubical n-cells. We call
these classes of cells atoms, molecules, dented atoms and dented molecules.

Definition 3.1. We say that a cubical n-cell A=|P | in Rn is an atom of length ` if
A is r-fine and the adjacency graph Γ(P ) is a tree of length `.

Given an atom A=|P |, we denote its length by `(A); i.e. `(A)=`(Γ(P )). Note also
that every r-fine atom A has a uniquely determined r-fine complex PA with A=|PA|.

Clearly, by finiteness of adjacency trees, every r-fine atom of length ` is uniformly
L-bilipschitz to the n-cube [0, r]n, with L depending only on n and `. In what follows,
we define more complicated cells, using atoms as building blocks. The hierarchy between
atoms in these constructions is given by the notion of proper adjacency. The atoms
A=|P | and A′=|P ′| are properly h-adjacent, for h>1, if

(1) the side-lengths of A and A′ satisfy %(A)>h%(A′) or %(A′)>h%(A); and
(2) there exist n-cubes Q∈P (n) and Q′∈(P ′)(n) for which A∩A′=Q∩Q′.

Let A be a finite collection of properly adjacent atoms so that Γ(A) is a tree. Suppose
also that |Γ(A)| is John, that is, the function A 7!%(A) is a John function on Γ(A), so
there is a unique Â∈A with %(Â)=maxA∈A %(A), called the root of A.

We exploit the John property to produce bilipschitz mappings from |Γ(A)| to proper
subdomains of |Γ(A)|. In particular, we construct bilipschitz maps |Γ(A)|!Â, where Â
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Figure 7. Some atoms of length 4.

is the root of A. To obtain uniform bounds for the bilipschitz constants, we define a col-
lapsibility condition and introduce a class of n-cells called molecules; see Proposition 3.5
for the first bilipschitz contractibility statement for molecules.

Let A∈Γ(A) be an inner vertex in (Γ(A), Â) and let N (A) be neighbors of A in
Γ(A). For each a∈N (A), let qa∈P (n−1)

a be the unique cube satisfying qa∩A=a∩A, and
denote by FA(a) the face of qa containing qa∩A. Note that, since |Γ(A)| is John, there
exists a unique A′∈N (A) so that %(A′)>%(A).

Definition 3.2. Let A∈Γ(A) be an inner vertex in (Γ(A), Â) and A′ be a neighbor
of A with %(A′)>%(A). The vertex A is λ-collapsible for λ>1 if there exists a collection

{fa ⊂FA(A′) : a∈N (A)\{A′}}

of essentially pairwise disjoint (n−1)-cubes with %(fa)=λ%(FA(a)).

Definition 3.3. Let M=|Γ(A)|=
⋃

A∈AA be a cubical n-cell having an essential par-
tition into a finite collection A of atoms, and let ν>1 and λ>1. Then M is a (ν, λ)-
molecule if

(a) the adjacency graph Γ(A) is a tree;
(b) adjacent atoms in A are properly 3-adjacent;
(c) Γ(A) is John;
(d) Γ(A) has valence at most ν; and
(e) each inner vertex of (Γ(A), Â) is λ-collapsible, where Â is the root of A.

Remark 3.4. By (c),M=|Γ(A)| is a John domain; see e.g. [10] or [21] for terminology.

Let M=|Γ(A)| be a molecule. By (b), the atoms in A and the tree Γ(A) are uniquely
determined. The tree Γ(M)=Γ(A) is the atom tree of M , and the root Â of A is called
the root of M . The tree Γint(M)=Γ

(⋃
A∈A P

(n)
A

)
is the internal tree Γint(M) of M . In

addition,
`atom(M) = max

A∈Γ(A)
`(A)

is the atom length of M , and
`(M) = `(Γ(A))

is the (external) length of M . The (maximal) side-length of M is

%(M) = max
A∈Γ(A)

%(A).
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Figure 8. Example of a tree Γ(A) and the molecule M=|Γ(A)|.

The main result on molecules is the following bilipschitz contraction property.

Proposition 3.5. Let M be a (ν, λ)-molecule with root Â in Rn. Then there exists
an L-bilipschitz homeomorphism

φ: (M,dM )−! (Â, dÂ)

which is the identity on Â∩∂M , where L depends only on n, ν, λ, and `atom(M).

This proposition should not surprise any expert. Its proof is based on the bounded
local structure of Γ(M) and bilipschitz equivalence of atoms of uniformly bounded length.
Due to the specific nature of the statement and its fundamental rôle in our arguments,
we discuss its proof in detail. We gratefully acknowledge work of Semmes, especially [19],
as the main source of these ideas.

The proof of Proposition 3.5 is by induction on the size of the tree Γ(M). We begin
with a lemma corresponding to the induction step of this proof. Given sets X and Y in
Rn, the set

X?Y = {tx+(1−t)y ∈Rn :x∈X, y ∈Y and t∈ [0, 1]},

is the join of X and Y . If Q is an n-cube in Rn, xQ is its barycenter, that is, Q=

B∞(xQ, rQ), where rQ>0. For an (n−1)-cube F , the barycenter xF is defined as the
average of the vertices of F . The definitions coincide for n-cubes.

Lemma 3.6. Let Q be an n-cube and let M be a molecule properly adjacent to Q

with %(Q)>%(M), and let ν>1 and λ>1.
Let F be the face of Q containing M∩Q and let F1, ..., Fν⊂∂M−Q be pairwise

disjoint faces of n-cubes Q1, ..., Qν in Γint(M), respectively. Suppose there exist essen-
tially pairwise disjoint (n−1)-cubes F ′

1, ..., F
′
ν in F satisfying %(F ′

i )=λ%(Fi) for every
i=1, ..., ν.



224 d. drasin and p. pankka

Figure 9. A tree Γ(A) and the molecule M=|Γ(A)|.

Then there exist L=L(n, `atom(M), `(M), ν, λ)>1 and an L-bilipschitz homeomor-
phism

φ: (M∪Q, dM∪Q)−!Q,

which is the identity on Q−(F ?{xQ}) and an isometry on each Fi?{xQi}.

Proof. Let i∈{1, ..., ν} and set F ′′
i =B∞

(
xF ′

i
, 1

2%(Fi)
)
∩F⊂F ′

i . Then F ′′
i is an (n−1)-

cube in F with the same barycenter as F ′
i and the same side-length as Fi. We denote by

Q′′
i ⊂Q the n-cube having F ′′

i as a face, and set ∆i=Fi?{xQi} and ∆′′
i =F ′′

i ?{xQ′′
i
}.

By a shelling argument, there exists a PL-homeomorphism φ:M∪Q!Q which is
the identity in Q\(F ?{xQ}) and which restricts to an isometry φ|∆i :∆i!∆′′

i for every
i=1, ..., ν; see e.g. [18, Lemma 3.25]. Since it suffices to consider only a finite number
of triangulations and PL-homeomorphisms, φ is uniformly bilipschitz with a constant
depending only on n, `atom(M), `(M), ν, and λ.

Proof of Proposition 3.5. Let M=|Γ(A)| be a (ν, λ)-molecule with root Â; see Fig-
ure 9. We may assume that M 6=Â and, more precisely, that Γ(A) has inner vertices,
since otherwise the claim follows from Lemma 3.6.

To begin the induction, set Γ0=Γ(A), M0=M , and with each leaf L∈Γ0 associate a
face FL of an n-cube QL∈Γint(L) with FL⊂∂M0∩L. We denote the set of these chosen
faces by F0, and for every leaf L∈Γ0 set JL=FL?{xQL

}.
Fix an atom A′

0∈Γ0 which is an inner vertex in Γ0 so that the rooted subtree Γ′0=ΓA′
0

behind A′
0 in (Γ0, Â) consists of leaves of Γ0. Also choose an atom A0∈Γ0\Γ′0 adjacent

to A′
0 in Γ0. Let Q0 be the unique n-cube in A0 and F0 be the unique face of Q0 which

contains A0∩A′
0; set J0=F0?{xQ0} and F ′

0={FL :L∈Γ′0}.
Since M=|Γ(A)| is a (ν, λ)-molecule and A′

0 is an inner vertex in Γ(A), A′
0 is λ-

collapsible. Thus there exists a collection {F ′
L :L∈Γ′0} of pairwise disjoint (n−1)-cubes
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Figure 10. An intermediate tree Γi and the cell |Γi|.

satisfying %(F ′
L)=λ%(FL) for every L∈Γ′0.

By Lemma 3.6, there exist a constant L>1, depending only on n, ν, δ, `atom(M),
and `(M), and an L-bilipschitz homeomorphism

φ0: (|Γ′0|∪Q0, d|Γ′0|∪Q0)−! (Q0, dQ0),

which is the identity on Q−(F0?{xQ0}) and an isometry on each join JL for L∈Γ′0.
We now define Γ1=Γ0\Γ′0 and F1=(F0\F ′

0)∪{F0}. Then M1=|Γ1| is a (ν, λ)-
molecule with root Â. In terms of this notation, φ0 extends, by identity, to an L-
bilipschitz homeomorphism

φ0: (M0, dM0)−! (M1, dM1),

which is an isometry on each join JL=FL?{xQL
} for L∈Γ′0.

Clearly, `(M1)<`(M0). We iterate this step to obtain a descending sequence of
subgraphs Γ0, ...,Γi of Γ(A) so that every Γj has at least one vertex fewer than Γj−1

for j=1, ..., i; see Figure 10. Since Γ(A) is a finite tree, there exists i0>1 depending on
r(Γ(A), Â) so that Γi0 consists of only Â.

For i=0, ..., i0, we also obtain collections of faces F0, ...,Fi on leaves of graphs
Γ0, ...,Γi, and L-bilipschitz homeomorphisms

φj−1: (|Γj−1|, d|Γj−1|)−! (|Γj |, d|Γj |)

which are isometries on the joins over the faces in Fj−1 for every j=1, ..., i0. As in the
construction above, φi(|Γi−1|) is contained in a join over a face in Fi. Thus

φi�...�φ0: (|Γ0|, d|Γ0|)−! (|Γi|, d|Γi|)

is L-bilipschitz for every i=0, ..., i0, where L depends only on n, ν, λ, and `atom(M), and
so

φi0 �...�φ0: (|Γ0|, d|Γ0|)−! (Â, dÂ)

satisfies the conditions of the claim. This concludes the proof.
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Corollary 3.7. Let M=|Γ(A)| be a (ν, λ)-molecule and let Γ⊂Γ(A) be a subtree
containing the root Â of M . Then there exist an L>1 depending only on n, ν, λ,
and `atom(M), and an L-bilipschitz homeomorphism φ: (M,dM )!(|Γ|, d|Γ|) which is the
identity on |Γ|∩∂M .

Proof. Let Γ′ be a component of Γ(A)\Γ. Then |Γ| is an (ν, λ)-molecule. Thus
the claim follows by applying Proposition 3.5 to the components of Γ(A)\Γ followed by
Lemma 3.6 on the roots of these trees.

Before introducing dented atoms, we record a uniform bilipschitz equivalence result
in spirit of Proposition 3.5. A half-space in Rn appears as the normalized target; full
details of the proof are left to the interested reader.

Proposition 3.8. Let ν>1, λ>1, `>1, and let {Mm}m>0 be an increasing sequence
of (ν, λ)-molecules so that, for every m>1,

(1) Mm−Mm−1 is connected and contains the root of Mm;
(2) `atom(Mm)6`; and
(3) if A and A′ are adjacent in Γ(Mm) with %(A)<%(A′) then %(A′)=3%(A).

Let M=
⋃

m>0Mm. Then (M,dM ) is L-bilipschitz equivalent to Rn−1×[0,∞), where L
depends only on n, ν, λ, and `.

Sketch of proof. Let Γ be the tree
⋃

m>0 Γ(Mm), and let Γ′ be the unique branch
passing through all roots M̂m of Mm for m>0. We may consider Γ′ as a sequence
of atoms with increasing side-length, and for every m>0 denote by Γ′m the part of Γ′

contained in Γ(Mm).

Following the idea of Corollary 3.7, we obtain a sequence {ψm}m>0 of L′-bilipschitz
contractions ψm: (Mm, dMm)!(|Γ′m|, d|Γ′m|) so that ψm+1|Mm =ψm for every m>0, where
L′ depends only on n, ν, λ, and `. This produces an L-bilipschitz map ψ: (M,dM )!
(|Γ′|, d|Γ′|).

It remains now to show that (|Γ′|, d|Γ′|) is L′′-bilipschitz equivalent to Rn−1×[0,∞),
where L′′ depends only on n and `.

Let A be the unique vertex in Γ′ with valence 1. Since Γ′ is a branch, we may
now enumerate the vertices in Γ′ as A=a0, a1, a2, ... with ak adjacent to ak+1. By
(3), %(ak+1)=3%(ak) for every k>0. Thus (|Γ′|, d|Γ′|) is L′′′-bilipschitz equivalent, L′′′=
L′′′(n, `), to a cone

{(x1, ..., xn)∈Rn :x2
n 6x2

1+... x2
n−1},

and hence L′′-bilipschitz equivalent to Rn−1×[0,∞), where L′′ depends only on n and `.
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3.1. Dented atoms

Definition 3.9. Let A be an atom in Rn. A molecule M contained in A is on the
boundary of A if A−M is an n-cell and for each Q∈Γint(M),

(i) Q is contained in a strictly larger cube of Γint(A); and
(ii) Q∩∂A contains a face of Q.

Definition 3.10. Let A be an atom in Rn and let M1, ...,Mν⊂A be pairwise disjoint
molecules on the boundary of A each having side-length at most 3−2%(A). The n-cell
D=A−

⋃ν
i=1Mi is a dented atom if

(i) each Mi is contained in an n-cube in Γ(A); and
(ii) dist(Q,Q′)>min{%(Q), %(Q′)} for all Q∈Γint(Mi) and Q′∈Γint(Mj) for i 6=j.

The molecules M1, ...,Mν are called dents of A, and A is the hull of D, hull(D).

Remark 3.11. The reader may find the constant 3−2 curious, but this explicit con-
stant is chosen to be compatible with the constructions in §5, more specifically, §5.3.1.
These constructions also have the property that each cube in Γ(A) has at most 2 dents.

By (ii), the hull and the dents of a dented atom are unique. Given a dented atom

D=A−
ν⋃

i=1

Mi,

we write Σ(D)=
⋃ν

i=1 Γ(Mi), Σint(D)=
⋃ν

i=1 Γint(Mi), and %(D)=%(hull(D)). For no-
tational consistency, we consider every atom as a (trivially) dented atom and define
hull(A)=A for every molecule A. When hull(D) is a cube, D is a dented cube.

The main result on dented atoms is the following uniform bilipschitz restoration
result. We note that neither the internal geometry of the hull nor the geometry of dents
have a rôle in the statement. This is a consequence of confining the dents to be in cubes
of the hull and the local nature of the construction of the homeomorphism.

Proposition 3.12. Suppose D is a dented atom with hull A. Then there exists
L=L(n) and an L-bilipschitz homeomorphism φ: (D, dD)!(A, dA) which is the identity
on D∩∂A.

For the proof, we introduce a useful neighborhood for cubes contained in the dents.
Let Q and q=B∞(xq, rq) be n-cubes in Rn so that q⊂Q and q has a face in ∂Q. The set

Cone(q,Q) =
{
x∈B∞

(
xq,

7
6rq

)
∩Q : 2 dist(x, q) 6dist(x, ∂Q)

}
is the truncated conical neighborhood of q in Q.



228 d. drasin and p. pankka

Figure 11. Two cubes and their (truncated) conical neighborhoods in a larger cube.

Lemma 3.13. Let D=A−
⋃

iMi be a dented atom in Rn. Then there exists µ>0
depending only on n such that

#{q′ ∈Σ(D) : Cone(q′, Q)∩Cone(q,Q) 6= ∅}6µ

for all q∈Σ(D).

Proof. Let q and q′ be pairwise disjoint n-cubes in an n-cube Q so that q and q′

have a face in ∂Q. If either %(q)=%(q′) or %(q)>3%(q′) and dist∞(q, q′)>%(q′), then
Definitions 3.9 and 3.10 show that Cone(q,Q)∩Cone(q′, Q)=∅.

Suppose now that D=A−
⋃

iMi is a dented atom, and that the n-cubes q and q′

in Σ(D) are contained in Q∈Γ(A). Then, by the definition of dented atom and the first
observation, Cone(q,Q)∩Cone(q′, Q) 6=∅ if and only if q∩q′ 6=∅. Hence it suffices that
µ be larger than the number of neighbors of q of the same side-length, so we may take
µ=3n.

Remark 3.14. LetD be a dented atom and consider cubes Q,Q′∈Γ(hull(D)), Q 6=Q′.
Then, if q, q′∈Σ(D) with q⊂Q and q′⊂Q′, we have that Cone(q,Q)∩Cone(q′, Q′)=∅.

Proof of Proposition 3.12. Recall that the atom A is the hull of D and that A−D
is a pairwise disjoint union of molecules. The proof is an inductive collapsing of A−D
along the forest Σ(D) removing leaves one by one. Let m=#Σ(D).

Let Σ be a subforest of Σ(D), q∈Σ be a leaf, Q∈Γ(A) be the cube containing q, and
let Σ′=Σ\{q}. Then there exists a PL-homeomorphism φΣ,q:A−|Σ|!A−|Σ′| having
support in Cone(q,Q); that is φΣ,q(x)=x for x /∈Cone(q,Q). Clearly, we may take φΣ,q

L-bilipschitz with L depending only on n.
Using this observation, we find a sequence Σ(D)=Σ0⊃...⊃Σm=∅ of forests and

L-bilipschitz PL-homeomorphisms φi:A−|Σi−1|!A−|Σi| having support in the conical
neighborhood of the leaf Σi−1\Σi for every i=1, ...,m.

Lemma 3.13 shows that the number of cones over cubes in Σ is locally bounded, and
thus

φ=φm�...�φ0: (D, dD)−! (A, dA)
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Figure 12. A dented molecule U with a tree Γ(U).

is a bilipschitz homeomorphism with a bilipschitz constant depending only on n.

3.2. Dented molecules

We end this section by defining dented molecules, which relate to dented atoms as
molecules relate to atoms.

Definition 3.15. A dented atom D′ is properly adjacent to a dented atom D if
hull(D′)∪hull(D) is a molecule and either

(1) hull(D′)⊂hull(D) and D′∩D=hull(D′)∩D; or
(2) hull(D′)∩hull(D)=D′∩D.

Note from (1) that proper adjacency is not a symmetric relation. However, we
symmetrize this relation by saying that dented atoms D and D′ are properly adjacent if
D′ is properly adjacent to D or D is properly adjacent to D′.

Let D be a finite collection of dented atoms so that each pair of atoms in D is either
properly adjacent or pairwise disjoint. Since dented atoms are n-cells, the adjacency tree
Γ(D) is well defined. Let U=|Γ(D)| and M=

⋃
D∈D hull(D). By proper adjacency of the

dented atoms, M is a molecule.

Definition 3.16. An n-cell U is a dented molecule if there exists a finite collection
D of pairwise properly adjacent dented atoms so that Γ(D) is a tree with U=|Γ(D)|.
The n-cell hull(U)=

⋃
D∈D hull(D) is the hull of U . The vertex D̂∈D is the root of U if

hull(D̂) is the root of hull(U).

Remark 3.17. Note that, given a dented molecule U=|Γ(D)|, the collection D is
uniquely determined. We call elements of D the dented atoms of U and set Γ(U)=Γ(D).

Let U be a dented molecule. We define internal and external vertices of Γ(U) as
follows.
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Definition 3.18. A dented atom D∈Γ(U) is internal if there exists strictly larger
D′∈Γ(U) whose hull contains D, i.e. %(D′)>%(D) and D⊂hull(D′). A dented atom in
Γ(U) is external if it is not internal. Denote by ΓI(U) the set of internal vertices of Γ(U)
and by ΓE(U) the set of external vertices.

The motivation for this dichotomy is the following easy observation, which we record
as a lemma.

Lemma 3.19. Let U be a dented molecule. Then D 7!hull(D) is a tree isomorphism
ΓE(U)!Γ(hull(U)). In particular,

hull(U) =
⋃

D∈ΓE(U)

hull(D).

We finish this section by introducing terminology related to dented molecules. Let
D be a dented molecule.

Definition 3.20. A vertex d∈Γ(D) is expanding in D if the subtree Γ(D)d behind d
in Γ(D) consists of atoms.

Note that, if d is expanding in D then d is an atom, since d∈Γ(D)d.

Definition 3.21. A dented molecule D′ is a partial hull of D if there exist vertices
d1, ..., dm of Γ(D) for which

D′ =D∪
m⋃

k=1

hull(dk).

Remark 3.22. In §5 (e.g. in §5.3.1), we consider a sequence of dented molecules
{Ui}i>1 for which hull(Ui) is a (ν, λ)-molecule with ν and λ depending only on n, although
the adjacency tree Γ(Ui) no longer has uniformly bounded valence.

We show there exist L-bilipschitz maps Ui!hull(Ui) with L depending only on n.
This proof is based on a sequence of partial hulls from Ui to hull(Ui).

Since we prove this statement only for particular dented molecules based on notions
in the following section, we postpone this statement to §5. Nevertheless, we invite the
interested reader to consider a general statement along the lines of Propositions 3.5
and 3.12.

4. Local rearrangements and the tripod property

In this section we develop tools to produce rough Rickman partitions; recall §1. Through-
out this section we consider different kinds of repartitions in a single cube. These rear-
rangements are only tangentially related to the final essential partitions introduced in
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Figure 13. The essential partition D.

§5, so the reader may find these constructions unmotivated. Our aim is to simplify these
later discussions by introducing these local modifications and their properties here before
exploiting them later. Thus the reader should consider this section as preparation for §5.

To motivate the rôle of our tools, consider the following example. LetD1, D2, andD3

be the cubes [0, 1]n−1×[0, 1], [0, 1]n−1×[−1, 0], and [1, 2]×[0, 1]n−2×[0, 1], respectively,
and D be the essential partition (D1, D2, D3) of their union.

The Hausdorff distance of the common boundary ∂∩D and the pairwise common
boundary ∂∪D satisfy

dist
H

(∂∪D, ∂∩D) = 1 (4.1)

in the sup-metric.
Let k>0 and consider now the sets Vi=3kDi for i=1, 2, 3, and the associated essential

partition V=(V1, V2, V3). Of course, topological properties and bilipschitz equivalence
of the cubes remain invariant under this scaling. The Hausdorff distances in (4.1) scale
accordingly, and so

dist
H

(∂∪V, ∂∩V) = 3k. (4.2)

We will show that in this case, as well as in more general situations, there exists an
essential partition W=(W1,W2,W3) of

⋃
i Vi into n-cells (Wi, dWi) uniformly bilipschitz

to [0, 3k]n with
dist
H

(∂∪W, ∂∩W) 6 6 (4.3)

in the sup-metric.
Property (4.3) is a consequence of the so-called tripod property, informally men-

tioned in the introduction, which we now formally define. In later sections, we discuss
other structures related to partitions.

We first need an equivalence relation. Let U be a 3-fine cubical n-set in Rn and let
U∗ be a 3-fine subdivision of U . Suppose U=(U1, U2, U3) is an essential partition of U ,
and let (∂∪U)# be the unit subdivision of ∂∪U as defined in §2.2. Let Γ∪(U) be the
subgraph of the adjacency graph Γ((∂∪U)#) composed of vertices of Γ((∂∪U)#) and all
edges {q, q′}∈Γ((∂∪U)#) for which q∪q′⊂Ui∩Uj for a pair i 6=j.

Example 4.1. In the discussion accompanying Figure 13, Γ∪(D) consists of two
vertices {[0, 1]n−1×{0}, {1}×[0, 1]n−1} and has no edges, whereas Γ∪(3kD), for k>1, is
a pairwise disjoint union of two connected subgraphs.
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Figure 14. Profile of q1, q2, q3, and q4 on the face common to Q and Q′.

Definition 4.2. The cubes q and q′ in (∂∪U)# are U-equivalent if
(a) q and q′ are in the same component of Γ∪(U); and
(b) q∪q′⊂Q for some Q∈U∗.

Denote by [q] the U-equivalence class of q∈(∂∪U)# and by |[q]| the union
⋃

q′∈[q] q
′.

For each pair (i, j), i 6=j, the U-equivalence class [q] of q∈(∂∪U)# is said to be between
Ui and Uj when q⊂Ui∩Uj .

Remark 4.3. Condition (b) in Definition 4.2 implies that the equivalence class [q]
of q∈(∂∪U)# has diameter at most 3 in the sup-metric. Note that equivalence classes
are cubical 1-fine sets of dimension n−1, and that the number of (n−1)-cubes in [q] is
uniformly bounded by a constant depending only on n.

Definition 4.4. An essential partition U of U has the tripod property if there exists
an essential partition ∆ of ∂∪U into cubical (n−1)-cells satisfying

(∆1) each c∈∆ is contained in a U-equivalence class; and
(∆2) to each c1∈∆ corresponds a unique pair c2, c3∈∆ for which c1∩c2∩c3 contains

an (n−2)-cell in ∂∩U with c1, c2, and c3 contained in different U-equivalence classes.

The tripod property of an essential partition is most conveniently verified using the
following local tripod property.

Definition 4.5. Given an essential partition U and a cube Q⊂|U| of side-length at
least 3, we say that U has the tripod property relative to Q if there exists an essential
partition ∆ of Q∩∂∪U into (n−1)-cells satisfying (∆1) and (∆2).

Example 4.6. To give a simple example of an essential partition U satisfying the
tripod property we consider U=(Q−A,A,Q′), where Q=[0, 3]3, Q′=[0, 3]2×[−3, 0], and
A is the atom A=

⋃4
r=1 qr, where qr=[r−1, r]×[1, 2]×[0, 1] for r=1, 2, 3 and q4=[1, 2]×

[2, 3]×[0, 1]; see Figure 14.

Note first that (Q−A)∩Q′ has three components f1=[0, 1]×[2, 3]×{0}, f2=[0, 3]×
[0, 1]×{0}, and f3=[2, 3]×[2, 3]×{0}, whereas A∩(Q−A) and A∩Q′ are 2-cells. We
organize the essential partition ∆ of ∂∪U into three triples ∆1, ∆2, and ∆3 by subdividing
the cells A∩(Q−A) and A∩Q′ as follows.
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Figure 15. Congruence classes of building blocks for n=3.

For r=1, 3, we set

∆r = {fr, qr∩(Q−A), qr∩Q′}.

Let

∆2 = {f2, (q2∪q4)∩(Q−A), (q2∪q4)∩Q′}.

For each r, we directly check that ∆r is a triple of (n−1)-cells. In addition,
⋂

c∈∆r
c is

an (n−2)-cell for every r=1, 2, 3. Hence ∆=
⋃3

r=1 ∆r is an essential partition of ∂∪U
satisfying conditions (∆1) and (∆2).

4.1. Building blocks

We introduce the elementary atoms which generate rough Rickman partitions.
An (n−1)-cell F in Rn is planar if F is congruent to an (n−1)-cell in Rn−1. Suppose

P is an r-fine n-cell and F is a planar (n−1)-cell. Then P is F -based if there exists an
(n−1)-cell F ′ in Rn−1 and a cubical (n−1)-cell P ′⊂F ′ so that P∪F is congruent to
(P ′×[0, r])∪F ′⊂Rn.

Let Tn={0,±e1, ...,±en} and let Tn be the graph with vertices Tn and edges {0, ei}
and {0,−ei} for i=1, ..., n.

Definition 4.7. An atom A is an (n-dimensional) building block if Γ(A) is isomorphic
to a proper subtree of Tn−1 having at least two vertices.

The fundamental property used in what follows is that an n-dimensional building
block is an n-cell. We record now some observations based on the combinatorial structure
of building blocks.

Let B be a building block in Rn. Since Γ(B) is a proper subtree of Tn−1, we observe
that, for all q∈Γ(B), the cubical set q∩∂B is an (n−1)-cell which induces an essential
partition of the faces of q, and the adjacency graph Γ(q∩∂B) of these faces is connected.
Moreover, Γ(B) has valence less than 2(n−1) and contains at most one vertex q∈Γ(B)
having valence greater than 1. Further, if #Γ(B)>2 there exists a unique n-cube qB
in B which is a vertex in Γ(B) with valence greater than 1: this unique cube qB is the
center of B.
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A building block B in Rn is r-fine if B is an r-fine atom for some r>0.

Suppose Q is a cube of side-length 3r containing an r-fine building block B along a
face F of Q. Then, for every cube q∈Γ(B), q∩F is an (n−1)-cube and a face of q. For
the following definition, recall (as in §3) that a barycenter of a k-cube C is the unique
point in C equidistant from all vertices of C.

Definition 4.8. Suppose Q⊂Rn is an n-cube of side-length 3r containing an F -based
r-fine building block B⊂Q, where F is a face of Q. Let xF be the barycenter of F . The
building block B is centered in Q if either of the following conditions is satisfied:

(1) if B has a center qB then xF is the barycenter of qB∩F ; or
(2) if #Γ(B)=2, then Γ(B) contains the cube q with xF being the barycenter of

q∩F .

The significance of centered building blocks is motivated by the following observa-
tion.

Remark 4.9. Let Q⊂Rn be a cube of side-length 3 and B be a 1-fine centered
building block contained in Q along the face F of Q. Since B is centered, the barycenter
xF of F is the barycenter xf0 of a face f0 of a unique cube q0 in Γ(B). Suppose that
q∈Γ(B) is a cube adjacent to q0. Since Q has side-length 3 and the barycenter of q0 is
xF , we have that q∩(∂Q−F ) is a face of q. In particular, the components of B∩(∂Q−F )
are unit (n−1)-cubes, which are in one-to-one correspondence with cubes in B−q0, cf.
Figure 15.

Convention. We assume from now on that every r-fine building block B in a cube
Q is centered and based on a face of Q whenever Q has side-length 3r. We extend the
notion of center by defining the unique cube in B containing the barycenter of F on its
boundary to be the center of B.

Building blocks give rise to a local tripod property of the following form.

Proposition 4.10. Let n>3, and let Q and Q′ be n-cubes of side-length 3 with
a common face F=Q∩Q′, and let B be an F -based building block in Q. Then U=
(Q−B,B,Q′) has the tripod property.

We begin the proof of Proposition 4.10 with a partitioning lemma.

Lemma 4.11. Let n>2, and let A be a 1-fine atom in Q=[0, 3]n containing the cube
[1, 2]n, with Γ(A) isomorphic to a subgraph of Tn and 1<#Γ(A)62n. Then Q−A has
an essential partition P into n-cells. Moreover, there exist cubes CP={qC∈A# :C∈P}
so that qC 6=qC′ for cells C 6=C ′ in P and qC∩C contains an (n−1)-cube for every C∈P.
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Proof. In the special case #Γ(A)=2, we may take P={Q−A} and CP={[1, 2]n}.
The proof in the general case is by induction on the dimension n. The claim clearly

holds for n=2; consider e.g variations of Example 4.6. Suppose that n>3 is a dimension
for which the claim holds for n−1.

Let A be a 1-fine atom in Q=[0, 3]n containing [1, 2]n with Γ(A) isomorphic to a
subtree of Tn and 1<#Γ(A)62n. By rotation, we may assume that [1, 2]n+e1∈Γ(A).
Let F=[0, 3]n−1. Then A∩(F×[1, 2])=A′×[1, 2], where A′ is an (n−1)-dimensional atom
in F where 1<#Γ(A′)62(n−1). The adjacency graph Γ(A′) is isomorphic to a subgraph
of Tn−1. By induction, F−A′ has an essential partition P ′ into (n−1)-cells and, for each
C ′∈P ′, we may fix qC′∈CP′⊂(A′)# so that each C ′∩qC′ contains an (n−2)-cube.

Let P ′′={C ′×[0, 3]:C ′∈P ′}. We observe that Q−(|P ′′|∪A) consists of unit cubes
in (A′×[0, 3]−A)#. It is now easy to find, for each C ′∈P ′ a cubical n-cell ΩC′ so
that C ′×[0, 3]⊂ΩC′ ,

⋃
C′∈P′ ΩC′=Q−A, and that the sets ΩC′ are pairwise essentially

disjoint. We set P={ΩC′ :C ′∈P ′} and CP={qC′×[1, 2]:C ′∈P ′}.

The following corollary encapsulates the key consequence of Lemma 4.11.

Corollary 4.12. Let n>3, Q be an n-cube of side-length 3 and F be a face of Q.
Given an F -based building block B in Q, the set F−B has an essential partition P
into cubical (n−1)-cells and there exists a collection CP={qC∈B# :C∈P} of pairwise
essentially disjoint unit n-cubes so that C∩qC contains an (n−2)-cube for every C∈P.

Proof. We may assume that Q=[0, 3]n and F=[0, 3]n−1. Since F∩B is an (n−1)-
dimensional atom containing [1, 2]n−1 and having an adjacency tree isomorphic to a
(proper) subtree of Tn−1 with at least two vertices, the claim follows from Lemma 4.11.

Proof of Proposition 4.10. Clearly the pairwise common boundary ∂∪U consists of
U-equivalence classes (Q−B)∩B, B∩Q′, and (Q−B)∩Q′. The classes (Q−B)∩B and
B∩Q′ are (n−1)-cells meeting ∂∩U in an (n−2)-cell. We construct now an essential
partition of ∂∪U into (n−1)-cells as required.

Let P and CP be sets as in Corollary 4.12. Then there exists an essential partition
{AC :C∈P} of B into atoms AC satisfying qC⊂AC ; consider, for example, the compo-
nents of the graph Γ(B#\P). For every C∈P, take ∆C ={AC∩(Q−B), AC∩Q′, C}.
Then ∆=

⋃
C∈P ∆C is the required partition of ∂∪U.

In what follows, Proposition 4.10 is used to verify the tripod property for essential
partitions obtained by rearrangements based on building blocks.



236 d. drasin and p. pankka

4.2. Flat (planar) rearrangements

Although the notion of atom admits a large variety of possible constructions, we restrict
ourselves to only a few basic constructions, all of which appear in this section. These
choices yield a double edged sword: we avoid self-intersections and thus preserve the
topology of the original essential partition after rearrangement, as a penalty we create
neglected faces (discussed in §4.4).

In the next two sections we discuss local rearrangements, based on centered building
blocks in a single n-cube. This section concerns flat rearrangements, in that atoms are
extended across a single face of a cube. The following section considers the case that
atoms are extended across several faces of a cube.

With this objective in mind, we say that an atom A, which is a pairwise essentially
disjoint union of building blocks, consists of building blocks. Note that planar atoms
admit unique partitions into building blocks, but essential partitions of non-planar atoms
into building blocks are not unique. Indeed, in each corner where two planar parts of
a non-planar atom meet, there are two possible partitions if one of the building blocks
consists of two cubes. This ambiguity is, however, not significant in our considerations,
since in these cases we may take any possible partition. Keeping this ambiguity in mind,
we give the following definition.

Definition 4.13. Given an atom A consisting of building blocks, we denote by Γ̃(A)
the adjacency graph Γ(B), where B is an essential partition of A into building blocks.
We also set `bb(A)=`(Γ(B)).

Thus, when the essential partition of A into building blocks is clear from the context,
we denote this adjacency graph by Γ̃(A). Note that Γ̃(A) is always a tree.

We consider different cases, starting from simple and heading to more complicated
constructions.

Let Q be an n-cube of side-length 9 and F be a face of Q. We subdivide Q into 3n

congruent n-cubes of side-length 3, i.e., we consider Q∗. Then Q∗ induces a subdivision of
F into 3n−1 congruent (n−1)-cubes of side-length 3. The collection of these (n−1)-cubes
is F ∗. Let Q(Q;F ) be the subset of cubes in Q∗ with a face in F ∗.

Definition 4.14. A quadruple (Q,F,Q′
0, q0) forms initial data if

(a) q0 is an n-cube of side-length 3 so that q0∩Q is a face of q0 and q0∩F is an
(n−2)-cube; and

(b) Q′
0⊂Q(Q;F ) is a collection with

(i) Γ(Q′
0) connected, and

(ii) q0∩|Q′
0|=q0∩Q.
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Figure 16. An example of an initial data (Q, F,Q′
0, q0). The face F (side-length 9) and cube

q0 (side-length 3) are viewed from above, cubes in Q(Q; F )\Q′
0 are marked with ‘x’; n=3.

Definition 4.15. Let (Q,F,Q′
0, q0) be initial data. A maximal tree Γ⊂Γ(Q′

0∪{q0})
is a spanning tree associated with this initial data if Γ has valence less than 2(n−1).

The valence bound 2(n−1) in Definition 4.15 was already anticipated in our valence
bound for building blocks, recall Definition 4.7.

The following simple lemma shows the existence of spanning trees in the configura-
tions we consider here. Let qF be the unique cube of side-length 3 in Q(Q;F ) having
valence 2(n−1) in Γ(Q(Q;F )); thus the barycenter of qF ∩F is the barycenter of F .

Lemma 4.16. Suppose (Q,F,Q′
0, q0) forms initial data and Γ(Q′

0\{qF }) is con-
nected. Then there exists a spanning tree Γ⊂Γ(Q′

0).

Proof. Let Γ′ be a maximal tree in Γ(Q′
0\{qF }). Since Γ(Q′

0\{qF })⊂Γ(Q(Q;F ))
and qF is the unique vertex in Γ(Q(Q;F )) having valence 2(n−1), Γ′ is a spanning tree
of Γ(Q′

0\{qF }). If qF /∈Q′
0, we may take Γ=Γ′.

If qF ∈Q′
0, let q′∈Γ(Q′

0) be a vertex adjacent to qF . We extend Γ′ to a tree Γ
containing qF by adding the edge {q′, qF }. Since the valence of q′ in Γ′ is less than
2(n−1)−1, the claim follows.

Spanning trees repartition Q using atoms.

Lemma 4.17. Given initial data (Q,F,Q′
0, q0) and a spanning tree Γ, there exists a

1-fine atom AΓ in Q with the following properties:
(1) AΓ∩q′ is an F -based building block for every q′∈Q′

0;
(2) the adjacency graph Γ̃(AΓ) of building blocks is Γ\{q0};
(3) AΓ∪q0 is an n-cell ; and
(4) AΓ∩∂Q⊂F∪q0.

We call AΓ the (unique) atom associated with the spanning tree Γ (and initial data
(Q,F,Q′

0, q0)).

Remark 4.18. Note that the atom AΓ in Lemma 4.17 is on the boundary of Q as
defined in §3.1. Thus Q−AΓ is a dented cube and, in particular, an n-cell.
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Figure 17. A spanning tree (left) and the corresponding atom (right) associated with the
initial data in Figure 16.

Proof of Lemma 4.17. To obtain the building blocks, we make the following obser-
vation.

Suppose q′∈Γ is a vertex other than q0. Let Γq′ be the star of q′ in Γ, that is, the
subgraph of Γ containing only edges connecting to q′ and all vertices on these edges. We
let Eq′=|Γq′ |. Then Eq′ is a building block.

To each q′∈Q′
0 corresponds a unique F -based centered building block Bq′⊂q′ which

is a translation of 1
3Eq′ . These building blocks form an essential partition of the atom

AΓ=
⋃

q′∈Q′
0
Bq′ , whose adjacency graph Γ̃(AΓ)=Γ({Bq′ :q′∈Q′

0}) is isomorphic to Γ.
Conditions (1), (2), and (4) are clearly satisfied by the construction. Since Γ is a

tree, AΓ is an atom. As q0 is a leaf in Γ and AΓ∩q0 is an (n−1)-cube, AΓ∪q0 is an n-cell
and (3) holds.

Atoms associated with initial data and spanning trees immediately yield a local
tripod property.

Lemma 4.19. Let Q and Q′ be n-cubes of side-length 9 sharing the face F . Suppose
that (Q,F,Q(Q;F ), q0) forms initial data with spanning tree Γ. Let AΓ be the atom asso-
ciated with Γ and (Q,F,Q(Q;F ), q0). Then the essential partition U=(Q−AΓ, AΓ, Q

′)
of Q∪Q′ has the tripod property.

Proof. Let q be a cube in Q(Q;F ) and let q− be the unique cube in Q′ sharing a face
with q. Denote by Bq the building block q∩AΓ. By Proposition 4.10, (q−Bq, Bq, q−)
satisfies the tripod property. Let ∆q be an essential partition of (∂∪U)∩q as in Defini-
tion 4.4. Since Q(Q;F ) is an essential partition of a cubical set having ∂∪U (essentially)
in its interior, ∆=

⋃
q∈Q(Q;F ) ∆q is a required essential partition of ∂∪U.

More generally, we may consider initial data (Q,F,Q′
0, q0), where q0∈Q(Q;F ); this

means that q0⊂Q with q0∩F being a face of q0. Initial data of this type is called internal
initial data. This notion of initial data is especially useful for extending a 3-fine building
block inside a cube of side-length 9. We formulate now this rearrangement procedure.

Corollary 4.20. Let Q be a cube of side-length 9 and F be a face of Q. Let also
q1, ..., qp be pairwise essentially disjoint cubes in Q(Q;F ). Suppose, for 16r6p, each
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Figure 18. Some examples of atoms Ar for r=1, ..., p each associated with an internal initial
data; here p=1, 2, 2, 3.

(Q,F,Q′
r, qr) forms internal initial data with Q′

r⊂Q(Q;F ) and Q′
t∩Q′

s=∅ for t 6=s.
Suppose Γ1, ...,Γp, respectively, are spanning trees for these initial data. Then there exist
pairwise disjoint 1-fine atoms Ar associated with initial data (Q,F,Q′

r, qr) for r=1, ..., p.

It is easy to obtain a local tripod property for these repartitions. We leave the
details, similar to those of the proof of Lemma 4.19, to the interested reader.

Corollary 4.21. Let Q and Q′ be n-cubes of side-length 9 sharing the face F ,
and suppose that, for each 16r6p, (Q,F,Q′

r, qr) forms internal initial data as in Corol-
lary 4.20 so that in addition

B := |Q(Q;F )|−
p⋃

r=1

|Q′
r|

is a building block of side-length 3. For each 16r6p, let Γr be a spanning tree for
(Q,F,Q′

r, qr), associate an atom Ar with Γr as in Corollary 4.20 and define A as the
(disjoint) union of the atoms Ar. Then the essential partition

U=(Q−(B∪A), B∪A,Q′)

of Q∪Q′ has the tripod property.

Convention. Henceforth we do not differentiate between initial data and internal
initial data, and refer to both as initial data.

4.3. Non-flat (non-planar) rearrangements

We consider now local rearrangements in the non-flat case. For our purposes it suffices
to consider rearrangements which occur in a single cube.

Let Q be an n-cube of side-length 9 and F be a subset of the collection of all faces
of Q. Let F be partitioned into the sets F1 and F2 so that |Fr| is an (n−1)-cell for
r=1, 2. Note that each |Fr|, in particular, is a union of faces of Q.

Let Q(Q;F)⊂Q∗ be the cubes having a face in |F|; we denote by Q(Q;Fr)⊂Q(Q;F)
those with a face in |Fr|. Note that {Q(Q;F1),Q(Q;F2)} is not (necessarily) a partition
of Q(Q;F). The following definition generalizes Definition 4.14.
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Definition 4.22. A triple

(Q, (F1,Q′′
1 , q1), (F2,Q′′

2 , q2))

forms non-flat initial data if the following conditions are satisfied:
(a) for every r=1, 2, qr⊂Rn−Q is an n-cube of side-length 3 with Q∩qr being a

face of qr and qr∩|Fr| being an (n−2)-cube;
(b) {Q′′

1 ,Q′′
2} is a partition of Q(Q;F) which, for r=1, 2, satisfies

(0) Q′′
r⊂Q(Q;Fr),

(1) Γ(Q′′
r ) is connected,

(2) qr∩|Q′′
r | is a face of qr, and

(3) qr∩|Fr|∩|Q′′
r | is an (n−2)-cube.

Remark 4.23. Let (Q, (F1,Q′′
1 , q1), (F2,Q′′

2 , q2)) be as in Definition 4.22, and let q+
1

and q+
2 be the n-cubes in Q∗ sharing a face with q1 and q2, respectively. Since q1∩Q is

a face of q1, condition (2) in (b) shows that q+
1 ∈Q′′

1 . Clearly, the same argument holds
for q2 and we also have q+

2 ∈Q′′
2 .

Let r∈{1, 2}, Γ̂⊂Γ(Fr) be a maximal tree and Q′⊂Q(Q;F)∪{qr}. A subgraph
Γ⊂Γ(Q′) is dominated by Γ̂ if, for each vertex q∈Γ and the star Γq of q in Γ, either
there exists a vertex Fq∈Γ(Fr) satisfying Γq\{qr}⊂Q(Q;Fq) or there exists an edge
{Fq, F

′
q}∈Γ̂ satisfying Γq\{qr}⊂Q(Q;Fq)∪Q(Q;F ′

q).

Definition 4.24. Let (Q, (F1,Q′′
1 , q1), (F2,Q′′

2 , q2)) form non-planar initial data. A
maximal forest Σ=Γ1∪Γ2⊂Γ(Q′′∪{q1, q2}) is a spanning forest associated with this data
if

(i) Σ has valence less than 2(n−1); and
(ii) for r=1, 2, Γr is a maximal tree in Γ(Q′′

r∪{qr}) dominated by a maximal tree
of Γ(Fr).

The proof of the following existence result for spanning forests is analogous to
Lemma 4.16, and we omit the details. Let Q′

c(Q;F) be the collection of all cubes in
Q(Q;F) having valence 2(n−1).

Lemma 4.25. Suppose that (Q, (F1,Q′′
1 , q1), (F2,Q′′

2 , q2)) forms non-planar initial
data for which Γ(Q′′

r \Qc(Q;F)) is connected for r=1, 2. Then there exists a spanning
forest Σ associated with (Q, (F1,Q′′

1 , q1), (F2,Q′′
2 , q2)).

Lemma 4.26. Let (Q, (F1,Q′′
1 , q1), (F2,Q′′

2 , q2)) form non-planar initial data, and
let Σ=Γ1∪Γ2⊂Γ(Q′∪{q1, q2}) be a spanning forest.
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Figure 19. A spanning forest on four faces F of a cube Q; note that the forest enters each
cube q in Q(Q;F). Here Q is the center cube in a building block consisting of 3 cubes (left
figure).

Then there exist a 1-fine cubical set AΣ in Q composed of pairwise disjoint 1-fine
atoms A1 and A2 which, for r=1, 2, satisfies the following properties:

(1) each Ar is composed of building blocks;
(2) for every q′′∈Q′′

r , Ar∩q′′ is an atom having an essential partition into at most
two building blocks;

(3) every building block in Ar is F -based with F∈Fr;
(4) Ar∪qr is an n-cell ;
(5) Ar∩∂Q⊂|Fr|∪qr; and
(6) the adjacency graph of the cells {Ar∩Q′′ :Q′′∈Q′′

r} is isomorphic to Γr.

The set AΣ in Lemma 4.26 is said to be associated with this initial data and the
spanning forest Σ. Property (2) is a consequence of the trees Γ1 and Γ2 being dominated
by Γ(F1) and Γ(F2) respectively. Property (3) asserts that AΣ is on the boundary of Q.

Remark 4.27. As in Remark 4.18, the components A1 and A2 of AΣ in Lemma 4.26
are atoms on the boundary of Q. In particularly, Q−AΣ is a dented cube.

Proof of Lemma 4.26. Consider first the tree Γ1. Let q′∈Γ1 be an F -based cube,
where F∈F1, and let Γq′ be the star of q′ in Γ1.

If |Γq′ | is F -based, we fix a building block Bq′ as in Lemma 4.17. Suppose, however,
that |Γq′ | is not F -based. Then, by (ii) in Definition 4.24, there exists a face F ′∈F1 so
that each cube in Γq′ is either F -based or F ′-based. Thus there exist an F -based building
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Figure 20. The atoms A1 and A2 associated with the initial data in Figure 19.

block BF and an F ′-based building block BF ′ in q′ with the following properties:
(i) BF ∩BF ′ is an (n−1)-cube; and
(ii) BF ∪BF ′ meets the neighbors of q′ in Γ1 in (n−1)-cubes.
In this case, we take Bq′=BF ∪BF ′ , and define A1=

⋃
q′∈ΓBq′ . The atom A2 is

defined similarly. It is easy to check that A1 and A2 satisfy properties (1)–(6).

These non-planar rearrangements satisfy the tripod property.

Lemma 4.28. Let U=(U1, U2, U3) be an essential partition and Q⊂U3 be an n-cube
of side-length 9 sharing a face with both U1 and U2. Let

(Q, (F1,Q′′
1 , q1), (F2,Q′′

2 , q2))

form non-planar initial data for which
(i) qr⊂Ur for r=1, 2;
(ii) |Fr|⊂Q∩Ujr , where {jr, r}={1, 2}; and
(iii) |F1|∪|F2|=Q∩∂∪U.

Let Σ be a spanning forest for this initial data and let AΣ=A1∪A2 be the union of the
atoms associated with this initial data and spanning forest.

Then the essential partition

V =(U1∪A1, U2∪A2, U3−AΣ)

has the tripod property in Q.
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Proof. It suffices to verify that ∂∪V satisfies the tripod property in every cube in
Q(Q;F).

Let q∈Q(Q;F). We consider two cases. Suppose first that b=q∩AΣ is a building
block, with AΣ from Lemma 4.26. Let q′ be the unique n-cube in U2∪U3 sharing a side
with q. By Proposition 4.10, the essential partition (q−b, b, q′) of q∪q′ satisfies the tripod
property.

Suppose next that A=q∩AΣ has an essential partition into two building blocks, say
b1 and b2. By (ii), there are exactly two n-cubes q1 and q2 in U2∪U3 sharing a side with q.
Let f1=q∩q1 and f2=q∩q2. By relabeling, we may assume that br is fr-based for r=1, 2.
Since the building blocks b1 and b2 are centered and do not contain common n-cubes, we
may assume, by relabeling again if necessary, that b2∩f1=∅. Since b1∪b2 is connected, it
follows that cbf =b1∩f2 must be an (n−1)-cube. We also note that the set cbb=(∂b1)∩b2
is a unit (n−1)-cube and (∂b1)∩b2=b1∩∂b2. Define E1=(∂∪(q, q−b1, q1)−cbb)∪cbf and
E2=∂∪(q, q−b2, q2)−(cbb∪cbf ).

Thus, by elementary modifications of the proof of Proposition 4.10, there exists,
for r=1, 2, an essential partition ∆r of Er satisfying the conditions of Definition 4.4, so
that ∆=∆1∪∆2 is an essential partition of ∂∪(q, q−A, q1∪q2) satisfying the conditions
of Definition 4.4. The claim follows.

4.4. Neglected faces in Q(Q; F)

We finish this section by a slight modification of our analysis for non-flat initial data.
This is to compensate for the fact that while the spanning forest contains every subcube
q∈Q(Q;F), some cubes q will have faces, contained in ∂Q, disjoint from atoms in
AΣ=A1∪A2. For example, consider Figure 20. It is easy to find a cube q in Q(Q;F)
which meets more faces of ∂Q than q∩AΣ. Such cubes q are only of side-length 3, but
this will create a problem in satisfying the tripod property when, in §5, we scale these
configurations, and so preparations are given here. We make a formal definition.

Definition 4.29. Let (Q, (F1,Q′′
1 , q1), (F2,Q′′

2 , q2)) form non-flat initial data, Σ be a
spanning forest, and AΣ=A1∪A2 be the cubical set associated with Σ from Lemma 4.26.
A cube q∈Q(Q;F) has an AΣ-neglected face if q has more faces contained in ∂Q than
q∩AΣ has building blocks.

Remark 4.30. Note that, for each q∈Q(Q,F), q∩AΣ is either a building block or a
union of two building blocks.

Let N (Q;AΣ) denote the collection of all AΣ-neglected faces in cubes in Q(Q;F).
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Definition 4.31. Suppose q∈Q(Q;F) has an AΣ-neglected face f and let p∈{1, 2}
be such that f⊂|Fp|. Then f admits a flat extension of AΣ if there exist q′∈Q(Q;F)
adjacent to q and a face f ′ of q′ contained in |Fp| so that q′∩Ap contains an f ′-based
atom and f∩f ′ is an (n−2)-cube. We call f ′ a link of AΣ into f .

To motivate this terminology, consider a cube q∈Q(Q,F) having a neglected face f
and let q′∈Q(Q;F) be the cube adjacent to q as in Definition 4.31. Then q∩AΣ=q∩Ar

and q′∩AΣ=q∩Ap, where {r, p}={1, 2}. Moreover, both cubes q and q′ are F -based for
F∈Fp. Thus using a flat rearrangement, the atom q′∩AΣ may be extended to a molecule
by adding an atom which enters the cube q and is f∪f ′ based. This heuristics is made
precise in §5.

Note that, in Figure 20, all neglected faces admit a flat extension of AΣ. In general
this is, however, not the case; see Figure 35. For this reason, we partition the neglected
faces into collections, called pre-basins, so that each collection contains at least one
neglected face admitting a flat extension. Note that pre-basins are always flat, in the
sense that each pre-basin is contained in a single face in F1∪F2.

Let Next(Q;AΣ) be the collection of all faces in N (Q;AΣ) admitting a flat extension
of AΣ.

Definition 4.32. Given p∈{1, 2}, a collection C⊂N (Q;AΣ) is a pre-basin on |Fp| if
(PB1) |C|⊂F for some F∈Fp;
(PB2) Γ(C) is connected; and
(PB3) C∩Next(Q;AΣ) 6=∅,

Remark 4.33. It is easy to observe that the components of the graph N (Q;AΣ)
are pre-basins. Indeed, given a component C⊂N (Q;AΣ), by the definitions of spanning
forest and connected component, there exists a pair {f, f ′} where f∈C and f ′ is a link
of AΣ to f .

This formulation of pre-basins is sufficient for all forthcoming constructions in di-
mensions n>3. In §5.3.4, when n=3, we will also need to subdivide pre-basins. We
formalize this with the notion of a system of basins; however this procedure is (quite)
general and need not be restricted only to dimension n=3. Note that, whereas a pre-
basin always consists of neglected faces, a basin need not contain a neglected face; see
Figure 22.

Given a pre-basin C⊂N (Q;AΣ), we introduce a cell σC , called a connecting cell, as
follows. By (PB3), we may fix fC∈C∩Next(Q;AΣ). Let f ′C be a link into fC , and let
qC and q′C denote the unique cubes in Q(Q;F) having fC and f ′C as faces, respectively.
Let σC be the connected component of f ′C−AΣ meeting fC in an (n−2)-cell, and set
ΩC =|C|∪σC . The cell ΩC is called an extension of |C| to f ′C .
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Figure 21. Extended pre-basins for a partition of N (Q; AΣ) into 8 pre-basins given the data
in Figure 20; the neglected faces are shaded.

Let P be a partition of N (Q;AΣ) into pre-basins, and suppose we have fixed, for
each C∈P, an extension ΩC of |C|; see Figure 21. Let ΩP=

⋃
C∈P ΩC .

Definition 4.34. An essential partition B of ΩP is a system of basins (associated with
ΩP) if

(B1) each B∈B is a subset of F∈F1∪F2;
(B2) Γ(B#) is connected for every B∈B;
(B3) Γ(B#) admits a spanning tree;
(B4) B∩AΣ contains a unit (n−2)-cube for every B∈B; and
(B5) for every B∈B there exists C∈P so that B−|N (Q;AΣ)| is contained in a

connecting cell σC .
The elements of B are called basins.

Note that the condition (B5) is more flexible than requiring that B−|C|⊂σC , as
can be observed by contrasting Figure 22 with Figure 21.

Remark 4.35. The existence of a system of basins is straightforward given a partition
P of N (Q;AΣ). Indeed, for every C∈P, fix fC∈C∩Next(Q;AΣ). Let f ′C be a link into
fC and let σC be a connecting cell. We then subdivide

⋃
C∈P σC into pairwise disjoint 1-

fine sets σ′C with connected graphs Γ(σ′C) so that the sets BC =|C|∪σ′C satisfy conditions
(B2) and (B4) for every C∈B. Since Γ(σ′C) has valence less than 2(n−1)−1 and |C|
is 3-fine, it is also straightforward to show that Γ(B#

C ) admits a spanning tree. Clearly
conditions (B1) and (B5) are satisfied. Thus B={BC :C∈P} is a system of basins.

Finally, we introduce a (flat) rearrangement along a system of basins. Let B be a
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Figure 22. A partition of N (Q; AΣ) into 10 basins associated with the data of Figure 21.

system of basins associated with ΩP, and let B∈B. By (B5) we may fix qB∈AΣ so that
B∩qB is an (n−2)-cube.

Let FB∈F1∪F2 be the unique face of Q satisfying (B1). Then the quadruple
(3Q, 3FB , 3B#, 3qB) satisfies the conditions for flat initial data. The only modification is
that 3Q and FB now have side-length 27. We call (3Q, 3FB , 3B#, 3qB) scaled flat initial
data.

By (B3), we may fix, for every B∈B, a spanning tree ΓB of Γ(3B#∪{3qB}). Simi-
larly as in the proof of Lemma 4.17, we find a 1-fine atom AΓB

associated with the initial
data (3Q, 3FB , 3B#, 3qB) and the spanning tree ΓB . This observation is formalized as
the next lemma, with the details left to the interested reader.

Lemma 4.36. Let Q be a cube of side-length 9 and AΣ⊂Q be a union of two atoms
as in Lemma 4.26. Suppose that B is a system of basins associated with ΩP, where P is
a partition of N (Q;AΣ) into pre-basins. For every B∈B, let (3Q, 3FB , 3B#, 3qB) be a
scaled flat initial data and ΓB be a spanning tree of Γ(3B#∪{3qB}).

Then there exist 1-fine pairwise disjoint atoms AΓB
, B∈B, satisfying conditions

(1)–(4) in Lemma 4.17 and so that 3AΣ∪
⋃

B∈B AΓB
is a pairwise disjoint union of two

molecules.
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Figure 23. A selection of spanning trees associated the configuration in Figure 22.

5. Rough Rickman partitions

This section applies the elementary constructions from §4 to produce domains Ω1, Ω2,
and Ω3 which form a rough Rickman partition of Rn, and proves Theorem 1.4 for p=2.
The proof is based on the existence of uniform essential partitions associated with the
exhaustion of [0,∞)n−1×R=

⋃
k>0 3kQ0, where Q0=[0, 3]n−1×[−3, 3].

Theorem 5.1. For m>0, there exist essential partitions

Ωm =(Ωm,1,Ωm,2,Ωm,3)

of n-cells 3m(Q0∪([3, 6]×[0, 3]n−1)) contained in [0,∞)n−1×R with the following prop-
erties:

(1) the sequence (Ωm) is stable, i.e.
(1a) Ωm,p∩3m−2Q0=Ωm′,p∩3m−2Q0 for m′>m>2 and p=1, 2, 3,
(1b) Ωm,3⊂(int[0,∞)n−1)×R=

⋃
m>0 Ωm;

(2) each Ωm,p is a dented molecule satisfying the following properties:
(2a) there exist ν>1, λ>1, and `0>1 depending only on n so that each hull(Ωm,p)

is a (ν, λ)-molecule with atom length at most `0, and
(2b) there exist L>1 depending only on n and an L-bilipschitz homeomorphism

(Ωm,p, dΩm,p)!(hull(Ωm,p), dhull(Ωm,p)) which is the identity on ∂hull(Ωm,p)∩Ωm,p;
(3) each Ωm, m>1, satisfies the tripod property.

For p=1, 2, 3, each domain Ωp=
⋃

m>0 Ωm,p in its inner metric dΩp is bilipschitz equiv-
alent to Rn−1×[0,∞). Moreover, there exist bilipschitz homeomorphisms

φ1: [0,∞)n−1×[0,∞)−! (Ω1, dΩ1) and φ2: [0,∞)n−1×(−∞, 0]−! (Ω2, dΩ2)

which restrict to the identity mappings on ∂[0,∞)n−1×[0,∞) and ∂[0,∞)n−1×(−∞, 0],
respectively ; the boundary ∂[0,∞)n−1 is understood relative to Rn−1.

Conditions (1)–(3) have the following interpretations. Condition (1) refers to an
induction process, which consists of two main steps: scaling and rearranging, and allows
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us to paste the essential partitions Ωm together. Condition (2) yields that the domains
Ωm,j are uniformly bilipschitz equivalent to cubes [0, 3m]n. Finally, (3) ensures that
distH(∂∪Ωm, ∂∩Ωm)66 in the sup-metric; compare with (4.3). We also observe the
following corollary; see §5.4.

Corollary 5.2. Let p=1, 2, 3 and m>1. Then Ωm,p are John domains with John
constant depending only on n. Furthermore, each Ωp is a uniform domain.

Proof of Theorem 1.4 (for p=2) given Theorem 5.1. Let Ω′=(Ω′
1,Ω

′
2,Ω

′
3) be the

essential partition of [0,∞)n−1×R from Theorem 5.1. By (1a) and (3) in Theorem 5.1,
Ω′ satisfies the tripod property.

We subdivide Rn into 2n−1 congruent subsets W1, ...,W2n−1 , where W1=[0,∞)n−1×
R. Since Ω′

3⊂intW1, by reflecting Ω′
3 with respect to the common sides of W1, ...,W2n−1

we obtain pairwise disjoint domains Ω′
4, ...,Ω

′
2n−1+2. The unions of the corresponding

reflections of Ω′
1 and Ω′

2 are the domains Ω1 and Ω2 claimed in Theorem 1.4. Thus Ω1

and Ω2 are connected.
Let φ1: [0,∞)n−1×[0,∞)!(Ω′

1, dΩ′
1
) and φ2: [0,∞)n−1×(−∞, 0]!(Ω′

2, dΩ′
2
) be two

bilipschitz homeomorphisms which reduce to the identity mapping on the boundary, a
consequence of Theorem 5.1. Reflections across the pairwise common sides of the domains
W1, ...,W2n−1 extend φ1 and φ2 to bilipschitz homeomorphisms

ψ1: Rn−1×[0,∞)−! (Ω1, dΩ1) and ψ2: Rn−1×(−∞, 0]−! (Ω2, dΩ2).

Finally, if
Ω3 =Ω′

3∪...∪Ω′
2n−1+2 and Ω=(Ω1,Ω2,Ω3),

condition (3) in Theorem 5.1 ensures that Ω is a rough Rickman partition satisfying the
tripod property.

5.1. Proof of Theorem 5.1 – First steps

We begin the proof of Theorem 5.1 in this section by explicitly giving the initial steps
of the inductive construction of the partitions Ωm. The general induction is based on
rearrangements in three types of cubes and their successive scalings, and we consider
these rearrangements in detail in §5.2. We complete the proof finally in §5.4.

Let Ω be a 3-fine n-cell and suppose that U=(U1, U2, U3) is an essential partition
of Ω into n-cells. A cube Q∈Ω∗ of side-length 3 is a U-cube if there exists i∈{1, 2, 3}
for which Q⊂Ui. The index i is the color of Q in U, and the indices {1, 2, 3}\{i} are
complementary indices (of the color of Q). Let also

Q∂(U) = {Q∈ |U|∗ :Q∩∂∪U contains an (n−1)-cell}.
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Figure 24. The faces of Ω1 in ∂∪Ω

5.1.1. The initial step (step 0)

We begin with the n-cubes

Ω1 = [0, 3]n, Ω2 = [0, 3]n−1×[−3, 0], and Ω3 = [3, 6]×[0, 3]n−1

of side-length 3, and set
Ω=(Ω1,Ω2,Ω3)

and Ω=|Ω|=Ω1∪Ω2∪Ω3; see Figure 24.
For consistency, let also

Ω0 =(Ω0,1,Ω0,2,Ω0,3) = (Ω1,Ω2,Ω3).

Note that Ω0 does not satisfy the tripod property for the (trivial) reason that Ω2∩Ω3 is
not (n−1)-dimensional. However, we note that ∂∩Ω=Ω1∩Ω2∩Ω3 is an (n−2)-cube.

In anticipation of the forthcoming induction step, we note that ∂∪Ω0⊂[0, 3]n. Fur-
thermore, the cube [0, 3]n is contained in the domain Ω0,1 but has one (n−1)-dimensional
face contained in ∂Ω0,2 and one in Ω0,3. The cube [0, 3]n will therefore be an example
of a C-cube. This is one of the three general categories we will use C-cubes (C for color),
D-cubes (D for dent), and N -cubes (N for neglected). They are formally introduced in
§5.2, but have clear antecedents from various local rearrangements in §4.

5.1.2. First rearrangement

First scale Ω0 by 3, and let

Ω′
1 =3Ω0 =(3Ω0,1, 3Ω0,2, 3Ω0,3).

To rearrange Ω′
1 to achieve the tripod property and properties (1)–(3) in Theo-

rem 5.1, we modify Ω′
1 using atoms which allow respectively 3Ω0,2 and 3Ω0,3 to pene-

trate 3Ω0,1; this will produce Ω1. We apply Lemma 4.26 to C=3Ω0,1 and thus obtain
the essential partition

Ω1 =(Ω1,1,Ω1,2,Ω1,3) = (3Ω0,1−(A2∪A3), 3Ω0,2∪A2, 3Ω0,3∪A3)
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Figure 25. An example of the evolution of ∂∪Ω1 with the cube [0, 3]3 emphasized.

of |Ω′
1| into n-cells satisfying the tripod property, where A2 and A3 are atoms from

the process of Lemma 4.26, see Figure 25; rearrangements of this type will be called
C-modifications (Lemma 5.15) in the inductive construction, since they are performed in
a scaled copy of a C-cube.

In the proof of Lemma 4.26, we are free to use any maximal forest Σ. In particular, we
may assume that [0, 3]n is a leaf of Σ as in Figure 25; this choice is used to obtain stability
condition (1a). Thus we arrive at Ω1 in accord with the conditions of Theorem 5.1.

As orientation toward the general induction step, we note that ∂∪Ω1 is contained in
a union of n-cubes of side-length 3 contained in 3Ω0,1. Indeed, let

Q= {Q∈Q∂(Ω′
1) :Q⊂ 3[0, 3]n =3Ω0,1}.

Then ∂∪Ω1⊂|Q|.
Moreover, for all Q∈Q, there exists exactly one jQ∈{2, 3} so that cl(intQ∩Ω1,jQ

)
is a building block. If Q∩Ω1,jQ

=cl(intQ∩Ω1,jQ
), then Q is a D-cube. Otherwise, Q is

an N -cube.

5.1.3. The second step

Whereas the essential partition Ω0 was explicitly chosen and Ω1 was described using
Lemma 4.26, at this point we only give a heuristic description for Ω2.

The essential partition Ω2 is obtained from Ω1 by first defining Ω′
2=3Ω1 and re-

arranging 3Ω1,1, 3Ω1,2, and 3Ω1,3 with flat rearrangements (Lemma 4.17) and by flat
rearrangements in basins (Lemma 4.36); we attach atoms of side-length 1 to the atoms
3A2 and 3A3 and, correspondingly, remove them from 3Ω1,1. Figure 26 illustrates this
step. This modification will be called a secondary C-modification and will be formalized
in Lemma 5.20. Note, however, that in order to satisfy the stability requirement (1a),
we also impose the additional condition that Ω2∩[0, 3]n=Ω1∩[0, 3]n. This is possible,
since Ω1,3∩[0, 3]n is a leaf.
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Figure 26. An example of Ω2 with the cube [0, 3]3 highlighted.

5.2. C-, D-, and N -cubes

With this preparation, we formally define C-, D-, and N -cubes; primary cubes have side-
length 3 and secondary cubes side-length 9. The corresponding rearrangements, based
on flat and non-flat rearrangements in §4, are then discussed in the following sections.
Note that, if Q is a primary or a secondary cube, the corresponding rearrangement is
performed in 3Q.

Restricting exclusively to these cubes in the iteration process provides a systematic
rearrangement process. We obtain the sequence {Ωm}m>0, using scalings and rearrange-
ments, in such a way that for each m>0 there exists an essentially disjoint collection Lm

of primary and secondary cubes (of different types) which covers ∂∪Ωm. After scaling
Ωm by 3, we perform appropriate rearrangements of the right type in each cube in 3Lm.
This yields a new essential partition Ωm+1 and a new list Lm+1 of essentially disjoint
cubes which also have the property ∂∪Ωm+1⊂|Lm+1|. The rearrangements in these cubes
are mutually independent, and it follows from the properties of rearrangements in §4 that
Ωm+1 satisfies the tripod property. We discuss the list Lm and this inductive step in
§5.2.6.

Although there are a priori six different types of cubes, only four types of rearrange-
ments occur here. The reason is that all N -cubes are contained in secondary C-cubes
and secondary N -cubes, and secondary D-cubes never appear. In Table 27 we list the
four types of rearrangements and descendants they produce; we use the subscript 2 to
denote secondary cubes.
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Q modification in 3Q descendant(s) in 3Q

C-cube C C2

D-cube D C, D
C2 C2 C, D, N2

N2 N2 C, D, N2

Table 27. Cubes, modifications, and descendants.

5.2.1. C-cubes

Let U be an n-cell and U=(U1, U2, U3) be an essential partition of U . Recall that Q∂(U)
is the collection of cubes Q in |U|∗ for which Q∩∂∪U is an (n−1)-cell.

Let Q∈Q∂(U) be a U-cube of color i∈{1, 2, 3}, and j and k be complementary
indices. For p=j, k, let Q′

p(Q) be the collection of all unit n-cubes in Q# meeting Up in
an (n−1)-cube, and let Q′(Q)=Q′

j(Q)∪Q′
k(Q). Let Q′

c(Q) be the cubes in Q′(Q) having
(maximal) valence 2(n−1) in the adjacency graph Γ(Q′(Q)) as in §4.3.

Definition 5.3. Let U=(U1, U2, U3) be an essential partition. A U-cube Q∈Q∂(U)
of color i is a C-cube in U if, for complimentary colors j and k,

(i) there are unit n-cubes qj⊂Uj and qk⊂Uk with qj∩qk=∅ such that both cubes
qj and qk have a face contained in ∂Q; let q′j and q′k be the unique cubes in Q′(Q) which
share a face with qj and qk, respectively; and

(ii) the adjacency graph Γ({qk}∪(Q′
j(Q)\(Q′

c(Q)∪{q′j}))) is connected.

The collection of C-cubes in U is denoted by C(U). Note that each Q∈C(U) satisfies
Q∩∂∪U⊂∂Q, since C-cubes are U-cubes.

Remark 5.4. Definition 5.3 formalizes the heuristic properties of C-cubes discussed
in §5.1.1. First, a C-cube Q is contained in one element of the essential partition, and,
second, Q meets the other two elements in a codimension-1 set (item (i)). Item (ii)
formalizes a necessary condition for a rearrangement to extend color k between i and j

in the scaled copy of Q. For Ω0 and Ω1 this condition could be simplified to the condition
that Q∩Ωj is a union of faces of Q.

Definition 5.5. Let U and V be essential partitions satisfying |U|=3|V|. A cube
Q of side-length 9 is a secondary C-cube in U with respect to V if 1

3Q is a C-cube with
respect to V.

The collection of secondary C-cubes in U with respect to V is denoted by C2(U;V).

Remark 5.6. Note that in Definition 5.5 we do not require U∩Q=3
(
V∩ 1

3Q
)
. In

fact, if U∩Q is obtained by a C-modification in Q (see §5.2.4), then U∩Q 6=3V∩Q.
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5.2.2. D- and N -cubes

Let U=(U1, U2, U3) and V=(V1, V2, V3) be essential partitions satisfying |U|=3|V|. We
first discuss D-cubes.

Definition 5.7. A cube Q∈Q∂(U) of side-length 3 is a D-cube in U relative to V if
(1) Q is a 3V-cube of color i;
(2) Q is not a U-cube;
(3) there exists complementary colors j and k for which A:=Q∩Uj is an n-cell and

Q has no neglected faces, and (intQ)∩Uk=∅;
(4) A is either a (Q∩∂3Vi)-based building block in Q or a union of two building

blocks based on different faces of Q; and
(5) (Q−A,A,Ω) has the tripod property, where Ω is the smallest n-cell consisting

of n-cubes of side-length 3 for which A∩∂Q⊂Ω.

The collection of all D-cubes in U with respect to V is denoted D(U;V). Note that
in Definition 5.7, A in (3) is always a 1-fine atom. If A in (3) and (4) is a building block,
we say that Q is a D-cube of type 1. Otherwise, Q is a D-cube of type 2.

Since by definition D-cubes have no neglected faces, we also need N -cubes.

Definition 5.8. A cube Q∈Q∂(U) is an N -cube in U relative to V if
(1) Q is a 3V-cube of color i;
(2) Q is not a U-cube;
(3) there exists a unique complementary color j such that A:=cl(intQ∩Uj) is a

(Q∩∂3Vi)-based building block in Q while (intQ)∩Uk=∅;
(4) Q has a neglected face contained in 3Vj ; and
(5) (Q−A,A,Ω) has the tripod property, where Ω is the smallest n-cell consisting

of n-cubes of side-length 3 for which A∩∂Q⊂Ω.

The collection of all N -cubes in U with respect to V is denoted N (U;V). We define
secondary N -cubes as follows.

Definition 5.9. Let U, V, and W be essential partitions satisfying |U|=3|V|=9|W|.
A cube Q of side-length 9 is a secondary N -cube in U (with respect to N (V;W)) if 1

3Q

is an N -cube in V relative to W.

We let N2(U;V,W) denote the collection of all secondary N -cubes in U with respect
to N (V;W).
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Figure 28. An example of an essential partition V in Q, and essential partitions 3V and U
in D=3Q for a building block in Figure 18.

5.2.3. D-modifications

We consider first D-cubes of type 1. The first rearrangement is called a D-modification,
which has already been anticipated by Lemma 4.17 and Corollary 4.20.

Lemma 5.10. (D-modification of type 1) Let V be an n-cell, V=(V1, V2, V3) and
W=(W1,W2,W3) be essential partitions satisfying V =|V|=3|W|, and let Q∈D(V;W)
be a D-cube of type 1; let i be the color of 1

3Q in W and let j be such that A:=Q∩Vj is
an F -based building block, where F is a face of Q. Then there exists a pairwise disjoint
union of atoms BΣ⊂3Q composed of 1-fine 3F -based building blocks on the boundary of
3Q, so that the n-cells Ui=3Vi−BΣ, Uj =3Vj∪BΣ, and Uk=3Vk, where k is the other
complementary index, form an essential partition

U=(U1, U2, U3)

of |3V| satisfying
(1) BΣ∩∂(3Q)⊂∂∪3V;
(2) ∂∪U∩3Q⊂|C(U)|∪|D(U;V)|; and
(3) BΣ is an atom for n>3 and consists of at most 3 components for n=3.

Furthermore, U has the tripod property in 3Q.

Convention. Before giving the proof of Lemma 5.10, we emphasize that the figures
in this section (e.g. in Figure 28) use only the two complementary colors j and k. The
third color, the color i of the cube itself, never appears.

Proof of Lemma 5.10. It suffices to find planar initial data for Corollary 4.20, the
claim then follows from Lemma 4.19. Note that Corollary 4.20 is necessary only for n=3,
since for n>3 we may use Lemma 4.17.

Define F ′=3F∩3Vi, that is, F ′=3F−3A. For n>3, F ′ is connected. For n=3, F ′

is at most three 2-cells. Let D=3Q.
Let D∗ be the 3-regular subdivision of D and let (D∗)′⊂D∗ be the subset of cubes

having a face contained in F ′. For n>3 we fix a unit cube Q1 in A. Then Q1∩F ′ is
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Figure 29. Analogue of Figure 28 for D-cube of type 2.

an (n−2)-cell. For n=3, we fix unit cubes Q1, ..., Qp in A, where p is the number of
components of F ′.

When n>3 we choose a maximal tree Σ∈Γ((D∗)′∪{Q1}), and for n=3, we fix a
maximal forest Σ=Γ1∪...∪Γp in Γ((D∗)′∪{Q1, ..., Qp}). The vertex sets of the trees Γi

now give the required partition for (D∗)′. Corollary 4.20 yields a 1-fine set BΣ whose com-
ponents are 3F -based atoms. The tripod property in D for U follows from Lemma 4.19,
and condition (4) in Lemma 4.17 shows that BΣ⊂F∪intD.

Assertions (1) and (2) follow from Corollary 4.20, the fact that cubes in (D∗)′ are
D-cubes in D(U;V) and the observation that 3A=|C(U)|∩D.

For D-cubes of type 2, the corresponding arrangement is also called a D-modifica-
tion.

Lemma 5.11. (D-modification of type 2) Let V be an n-cell, let V=(V1, V2, V3) and
W=(W1,W2,W3) be essential partitions satisfying V =|V|=3|W|, and Q∈D(V;W) be
a D-cube of type 2; let i be the color of 1

3Q in W and take j so that A:=Q∩Vj =B∪B′

is an atom, where B and B′ are essentially disjoint building blocks. Then there exists
a pairwise disjoint union AΣ⊂3Q of 1-fine atoms on the boundary of 3Q consisting of
building blocks with

U=(U1, U2, U3)

being an essential partition of 3|V| by n-cells satisfying the tripod property in 3Q. Here
Ui=3Vi−AΣ, Uj =3Vj∪AΣ, and Uk=3Vk, where k is the remaining complementary in-
dex. Moreover,

(1) AΣ∩∂(3Q)⊂∂∪3V;
(2) ∂∪U∩3Q⊂|C(U)|∪|D(U;V)|; and
(3) AΣ is an atom for n>3 and consists of at most four components for n=3.

Finally, U has the tripod property in 3Q.

Proof. This case uses Lemma 4.26 in place of Corollary 4.20, and Lemma 4.28 in
place of Lemma 4.19.

We may assume that i=1, j=2, and k=3, and that B and B′ are f - and f ′-based,
respectively. Let D=3Q.
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Let Q′ be the collection of the cubes in D∗ meeting f∪f ′ and not contained in 3A#.
Recall that Γ(Q′) is the adjacency graph of the cubes in Q′. For n>3, Γ(Q′) is connected,
and we may fix a cube q∈3A# of side-length 3 and a maximal tree Σ⊂Γ(Q′∪{q}). It
is a simple observation that we may now apply Lemma 4.26 directly to Σ and obtain a
1-fine atom AΣ satisfying (1)–(6) therein.

For n=3, we observe that Γ(Q′) has at most four components Γ1, ...,Γp, p64; Fig-
ure 29 illustrates p=3. It is easy to observe that we may fix pairwise essentially disjoint
cubes q1, ..., qp in 3A∗ so that Γ(Γi∪{qi}) is connected, and thus create a maximal for-
est Σ=Σ1∪...∪Σp with Σi⊂Γ(Γi∪{qi}). A slight modification of Lemma 4.26 yields
AΣ=AΣ1∪...∪AΣp , where AΣi is a 1-fine atom satisfying (1)–(6) therein.

In both cases, U=(3V1−AΣ, 3V2∪AΣ, 3V3) satisfies the required conditions.

The essential properties of D-modifications are summarized in the next two corol-
laries.

Corollary 5.12. Let V, Q, A, U, and {i, j, k}={1, 2, 3} be as in Lemma 5.10 or
as in Lemma 5.11. Then U∩3Q satisfies the tripod property and in addition

(a) ∂∪U∩3Q⊂|C(U)|∪|D(U;V)|; and
(b) C(U∩3Q)=(3A)∗.

Moreover, to each f∈(((∂∪V)∩Q)−A)# corresponds one 3f-based building block in Uj.

By condition (1) in Lemmas 5.10 and 5.11, D-modifications are performed indepen-
dently in each cube of 3D(V;W) in the sense that, given two adjacent D-cubes Q and
Q′ in D(V;W), all D-modifications (of types 1 and 2) in 3Q and 3Q′ leave the essen-
tial partition 3V unmodified on the common face 3Q∩3Q′. This is summarized in the
following definition and corollary; see Definition 4.13 for the meaning of Γ̃( ·) and `bb( ·).

Let V=(V1, V2, V3) be an essential partition of an n-cell by n-cells so that Vp is a
dented molecule for p=1, 2, 3. Let W=(W1,W2,W3) be an essential partition satisfying
|V|=3|W| and let D′⊂D(V,W) be a non-empty subfamily.

Definition 5.13. An essential partition U of 3|V| into n-cells is obtained by D-
modifications in D′ from essential partitions V relative to W if U satisfies the tripod
property in each cube in 3D′ and

(a) U−|3D′|=3V−|3D′|;
(b) for every cube C∈3D′, the essential partition U∩C is obtained by a D-modifi-

cation, that is, U has the properties (1)–(3) of Lemma 5.10 or 5.11 relative to C;
(c) each leaf A∈Γ(Ui) is a 1-fine atom adjacent to a 3-fine atom A′=3a′, where a′

is a leaf in Γ(Vi); and
(d) to each leaf a∈Γ(Vi) correspond at most 3 maxa′ `bb(a′) leaves in Γ(Ui) adjacent

to 3a∈Γ(Ui), where the maximum is taken over the leaves a′ in Γ(Vi).
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Figure 30. A cube Q and an essential partition U in 3Q.

For D′=D(V;W), we say that U is obtained by D-modification from V relative to W.

Corollary 5.14. Let V=(V1, V2, V3) be an essential partition of an n-cell by n-
cells so that Vp is a dented molecule for p=1, 2, 3, and let W=(W1,W2,W3) be an
essential partition satisfying |V|=3|W|. Given a non-empty subfamily D′⊂D(V;W),
there exists an essential partition U which is obtained by D-modification in D′ from V
relative to W.

5.2.4. C-modification

The following rearrangement is a C-modification.

Lemma 5.15. Let V be an n-cell and V=(V1, V2, V3) be an essential partition of
V . Suppose Q∈C(V) has color i in V, and let j and k be complementary colors. Then
there exist atoms Aj and Ak in 3Q which are composed of building blocks along ∂(3Q)
so that Ui=3Vi−(Aj∪Ak), Uj =3Vj∪Aj , and Uk=3Vk∪Ak are n-cells and

U=(U1, U2, U3) (5.1)

is an essential partition of 3V into n-cells having the tripod property in 3Q. Moreover,
(1) (Aj∪Ak)∩∂(3Q)⊂∂∪3V; and
(2) (∂∪U)∩3Q⊂|D(U;V)|∪|N (U;V)|.

Proof. The proof is a straightforward application of Lemma 4.28 to appropriate
non-planar initial data.

For notational convenience, take i=3. Let q1⊂V1 and q2⊂V2 be unit cubes as in
Definition 5.3. For p=1, 2, let Fp be the collection of faces of Q which meet Vp in an
(n−1)-cell. Then

(Q, (F1,Q(Q;F2), q1), (F2,Q(Q;F1), q2))

are non-planar initial data; cf. Definition 4.24.
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Let Σ be a spanning forest as in Lemma 4.25 and A1 and A2 be atoms associated
with Σ as in Lemma 4.17. By Lemma 4.28, the essential partition

(V1∪A1, V2∪A2, V3−(A1∪A2))

satisfies the tripod property in 3Q.
Property (1) follows immediately from (5) in Lemma 4.26, and (2) from the obser-

vation that every cube in 3(Q(Q;F1)∪Q(Q;F2)) is either a D- or N -cube.

It is obvious that C-modifications are performed independently. We formalize this
in the following definition and corollary. Let V be an essential partition of an n-cell into
n-cells and let C′⊂C(V) be non-empty.

Definition 5.16. An essential partition U of 3|V| into n-cells is obtained by C-
modification in C′ from V if U satisfies the tripod property in each cube in 3C′ and

(a) U−|3C′|=3V−|3C′|;
(b) if C∈3C′, then U∩C is obtained from 3V by a C-modification, that is, U satisfies

the properties of Lemma 5.15 relative to C; and
(c) ∂∪U∩|3C′|⊂|D(U;V)∪N (U;V)|.

Corollary 5.17. Let V=(V1, V2, V3) be an essential partition of an n-cell so that
Vp is a dented molecule for p=1, 2, 3. Let C′⊂C(V) be a non-empty subfamily. Then there
exists an essential partition U=(U1, U2, U3) of |3V| which is obtained by C-modification
in C′.

5.2.5. Secondary C- and N -modifications

The C-modification in Lemma 5.15 is a ’primary’ C-modification. To illustrate the ne-
cessity of ‘secondary’ C- and N -modifications, consider the following example. This is
necessitated by the presence of neglected faces (Definition 4.29).

Example 5.18. Let

W =(W1,W2,W3) = ([0, 3]3, [0, 3]2×[−3, 0], [3, 6]×[0, 3]2).

The cube Q=[0, 3]3 is a C-cube of color 1 in W.
Using Lemma 5.15 we perform a C-modification in C=3Q, that is, obtain the essen-

tial partition V relative to C as in Lemma 5.15; see Figure 30.
Consider now the essential partition 3V. One possible essential partition U′′ of |3V|

is in Figure 31. Notice in Figure 30 that V already has three neglected faces each of
which meets the vertical fold. Thus U′′ cannot satisfy the tripod property. A glance at
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Figure 31. An essential partition U′′ in 9Q.

Figure 31 also shows that in addition there are now 3 cubes, in fact cubes in 3N (V;W),
of side-length 9 in U′′ which cannot be partitioned into C- and D-cubes.

In this situation, we achieve the tripod property with a ‘secondary’ C-modification in
3V. The procedure imitates that of Lemma 5.10, and takes into account both neglected
faces and D-cubes; see Figure 32.

To be more precise, the essential partition U is obtained by a secondary C-modi-
fication as follows. We observe first that ∂∪V∩9Q⊂|D(V;W)|∪|N (V;W)|. Let also
Aj =C∩Vj for each color j=1, 2.

We perform now an independent D-modification in each cube in 3D(V;W). For
each cube Q′∈3N (V;W), we extend either 3A1 or 3A2 from outside Q′ into Q′ using a
1-fine atom; after this extension Q′ meets each color in its interior. This extension uses
Lemma 4.36. Let U be the essential partition obtained this way. Note that 3N (V;W)=
N2(U;V,W).

Regarding the construction of the sequence {Ωm}m>0, we may take Ω2=U if we
have V=Ω1 and W=Ω0, since the tripod property is now satisfied.

The secondary N -modification in the cubes 3N2(U;V,W) is defined as follows. Let
Q′∈N2(U;V,W). By Lemma 4.36, Uj∩Q′ is a disjoint union of a molecule and a 1-
fine atom, each of a different complementary color. Moreover, there are three types of
cubes in Q′, that is, the sets C(U∩Q′), D

(
U∩Q′;V∩ 1

3Q
′) and N

(
U∩Q′;V∩ 1

3Q
′) are

all non-empty; note that all cubes of N
(
U∩Q′;V∩ 1

3Q
′) and none of D

(
U∩Q′;V∩ 1

3Q
′)

meet the two distinguished faces of Q′. Secondary N -modification in 3Q′ consists of
independent C- and D-modifications and applications of Lemma 4.36 and is similar to
the case of a secondary C-modification.

We formalize now the secondary modifications in the form of lemmas. The proofs of



260 d. drasin and p. pankka

Figure 32. An essential partition U obtained by a secondary C-modification from 3V. The
three cubes of N2(U;V,W) are highlighted with solid lines and a C-cube and a D-cube
highlighted with dashed lines.

those lemmas follow the proofs of Lemmas 5.10, 5.11, and 5.15. Since the main difficulty
is in their formulation, we leave the details of the proofs to the interested reader. For
the statement, we give the following definition.

Definition 5.19. An essential partition U is obtained by a secondary modification
from V with respect to W in a cube C=3Q of side-length 27 if U satisfies the tripod
property in C, V and W are essential partitions satisfying |U|=3|V|=9|W|, and there
are colors j and k and molecules Mj and Mk in 3Q such that Ui=3Vi−(Mj∪Mk),
Uj =3Vj∪Mj , and Uk=3Vk∪Mk are n-cells, and these molecules satisfy the following
conditions:

(1) (Mj∪Mk)∩∂(3Q)⊂∂∪3V;
(2) (∂∪U)∩3Q⊂|C(U)|∪|D(U;V)|∪|N2(U;V,W)|;
(3) 3Aj⊂Mj and 3Ak⊂Mk;
(4) for p=j, k, Mp−3Ap consists of pairwise disjoint 1-fine atoms made of building

blocks; and
(5) when n>3 and p=1, 2, 3, each building block in Γ̃(3Ap) meets at most one atom

in Mp−3Ap,
where Aj and Ak are atoms in Q satisfying Vi=3Wi−(Aj∪Ak), Vj =3Wj∪Aj , and Vk=
3Wk∪Ak; here V=(V1, V2, V3) and W=(W1,W2,W3).

Lemma 5.20. (Secondary C-modification) Let V and W be essential partitions sat-
isfying |V|=3|W|, and suppose that V has been obtained by a C-modification in 1

3Q

from W. Then there exists an essential partition U of 3|V| which is obtained by a
secondary modification from V with respect to W in 3Q.
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Lemma 5.21. (Secondary N -modification) Let V, W, and W′ be essential parti-
tions satisfying |V|=3|W|=9|W′|, and let Q∈N2(V;W,W′) be a secondary N -cube
so that V is obtained by a secondary modification in 1

3Q from W with respect to W′.
Then there exists an essential partition U of 3|V| so that U is obtained by a secondary
modification from V with respect to W in 3Q.

5.2.6. The Machine

Having all necessary modifications now at our disposal, we introduce the main induction
step. Corollary 5.24 will summarize the process.

Let V, W, and W′ be essential partitions satisfying |V|=3|W|=9|W′|. Suppose
that all secondary C-cubes in C2(V;W) and all secondary N -cubes Q in N2(V;W,W′)
are obtained by secondary C- and N -modifications from 1

3Q, respectively. Suppose
also that |V|∩|3C(W)| is obtained by a series of independent C-modifications and |V|∩
|3D(W;W′)| by a series of independent D-modifications.

Based on the modifications introduced in this section (Lemmas 5.10, 5.15, 5.20,
and 5.21) we note:

(a) the sets |C(V)| and |D(V;W)| are essentially disjoint; and
(b) the sets |C2(V;W)| and |N2(V;W,W′)| are essentially disjoint.

Indeed, by definition of C- and D-cubes, C(V)∩D(V;W)=∅. The claim (a) now follows
from the observation that cubes in 1

3 (C(V)∪D(V;W)) are unit cubes. The claim (b)
now follows with a similar argument.

It is essential to notice that cubes in C2(V;W)∪N2(V;W,W′) contain cubes in
C(V)∪D(V;W), that is, the intersection |C(V)∪D(V;W)|∩|C2(V;W)∪N2(V;W,W′)|
has non-empty interior; see e.g. Figure 32. For this reason, and to have a well-defined
order of independent rearrangements, we set

R(V;W,W′) = {Q∈C(V)∪D(V;W) :Q 6⊂ |C2(V;W)∪N2(V;W,W′)|};

here R stands for remaining.
The inductive process can now be organized in a form of a list of operations to be

performed. Given a collection LW of essentially disjoint cubes in |W|, we define the list
LV with respect to the history (W,W′,LW) by

LV =L(V;W,W′,LW)

= {Q∈C2(V;W)∪N2(V;W,W′)∪R(V;W,W′) :Q⊂ 3|LW|}.
(5.2)

Note that cubes in L(V;W,W′,LW) are pairwise essentially disjoint and have side-
length either 3 or 9.
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Remark 5.22. To see how the collection LW organizes the modification process,
consider the essential partitions Ω0 and Ω1. The essential partition Ω0 has one C-cube
Q and, after scaling, we perform the (only possible) rearrangement in 3Q. Thus the
essential partition Ω1 has one secondary C-cube 3Q. There are also several C-cubes in
|Ω1|−3Q, contained in Ω1,2∪Ω1,3, but all these C-cubes have one face in 3Q. Since it
suffices to perform a rearrangement on one side of ∂∪3Ω1, we perform the secondary
C-modification in 9Q and ignore the other C-cubes. Thus, if we set LΩ0 ={Q} and
LΩ1 ={3Q}, the rearrangement to obtain Ω2 is performed in 3|LΩ1 |. We follow this
general principle of nested rearrangements throughout the construction. For example,
for the next rearrangement we define LΩ2 =L(Ω2;Ω1,Ω0,LΩ1), and rearrangements take
place in 3|LΩ2 |; note that LΩ2 consists of C- and D-cubes and secondary N -cubes as
mentioned in Example 5.18. In particular, we have 9|LΩ0 |=3|LΩ1 |!|LΩ2 |.

Definition 5.23. Given essential partitions V, W, and W′ satisfying |V|=3|W|=
9|W′| and a list LW of cubes in W, an essential partition U is properly obtained (following
LV=L(V;W,W′,LW)) if U is obtained

(i) by C-modification in 3(C(V)∩LV);
(ii) by D-modification in 3(D(V,W)∩LV); and
(iii) by secondary modification in 3((C2(V;W)∪N2(V;W,W′))∩LV).

These modifications now yield the following corollary, which can be viewed as the
induction step in the construction; the specific sequence {Ωm}m>0 satisfying Theorem 5.1
appears in the next section.

Corollary 5.24. Let V, W, and W′ be essential partitions for which |V|=3|W|=
9|W′| and let LW be the list of cubes in |W|. Suppose V is properly obtained following
LV=L(V;W,W′,LW) and suppose that V satisfies the tripod property and ∂∪V⊂|LV|.

Then there exists a properly obtained essential partition U satisfying |U|=3|V| and
∂∪U⊂|LU|⊂3|LV|, where LU=L(U;V,W,LV). In particular, U satisfies the tripod
property.

Proof. It suffices to note that U is obtained by independent modifications in each
cube 3Q for Q∈L(V;W,W′,LW), and is hence properly obtained. These modifications
also yield a new list L(U;V,W,LV); Lemmas 5.10, 5.11, 5.15, 5.20, and 5.21 cover
the possible situations of different modifications. Thus ∂∪U⊂|L(U;V,W,LV)| and U
satisfies the tripod property.
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5.3. Inductive construction

Throughout this section, Ω0 and Ω1 are the essential partitions defined in §5.1.1 and
§5.1.2.

Proposition 5.25. Let n>3, Ω0=([0, 3]n, [0, 3]n−1×[−3, 0], [3, 6]×[0, 3]n−1) and let
Ω1 be an essential partition as in §5.1.2. Then there exist essential partitions Ωm=
(Ωm,1,Ωm,2,Ωm,3) for m>1 satisfying the tripod property and the following conditions:

(a) |Ωm|=3|Ωm−1|;
(b) ∂∪Vm⊂|L(Ωm;Ωm−1,Ωm−2,LΩm−1)|;
(c) all cubes in LΩm =L(Ωm;Ωm−1,Ωm−2,LΩm−1) are properly obtained ; and
(d) Ω`∩3m−2|Ω0|=Ωm∩3m−2|Ω0| for all `>m.

In addition, there exist ν>1 and λ>1, depending only on n, so that for all m>0 and
each p=1, 2, 3,

(e) every hull(Ωm,p) is a (ν, λ)-molecule with the atom length of Γ(hull(Ωm,p))
bounded by a constant depending only on n; and

(f) there exists L=L(n)>1 and an L-bilipschitz map

ψm,p: (Ωm,p, dΩm,p)−! (hull(Ωm,p), dhull(Ωm,p))

which is the identity on Ωm,p∩∂hull(Ωm,p).

We first prove Proposition 5.25 in dimensions n>3 and then consider the more
complicated dimension n=3 separately; see §5.3.4. Proposition 5.25 is obtained in three
steps. In higher dimensions, we first construct the sequence Ω3,Ω4, ... by induction using
Corollary 5.24 and then check conditions (a)–(d) and the tripod property. Property (e)
is more subtle and considered separately in §5.3.2. Finally, we prove Property (f), the
most demanding part, in §5.3.3. For n=3, the steps are similar with the exception that
we use specific C- and secondary C-modifications to meet condition (e).

5.3.1. Proof of Proposition 5.25 in dimension n>3

Consider the essential partitions Ω1, Ω0, and 1
3Ω0 in the rôle of the essential partitions

V, W, and W′ of §5.2.6.
We obtain Ω1 by one C-modification from 3Ω0 and take Ω2 to be either the essential

partition U in Lemma 5.20, or directly apply Corollary 5.24. In particularly, Ω2 satisfies
the tripod property and is properly obtained following LΩ1 =L

(
Ω1;Ω0,

1
3Ω0,LΩ0

)
, where

LΩ0 ={[0, 3]n}; cf. Remark 5.22. We take LΩ2 =L(Ω2;Ω1,Ω0,LΩ1).
To meet the stability requirement (d) of the proposition, let Q0=[0, 1]n−1∪[−1, 1],

and note that Ω2∩9Q0 is obtained by a single D-modification from 3Ω1∩9Q0. Thus,
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by making proper choices in the C-modification yielding Ω1 and in the secondary C-
modification yielding Ω2, we may assume that Ω2∩3Q0=Ω1∩3Q0; compare with Fig-
ures 25 and 26 and the discussion in §5.1.2 and §5.1.3. Indeed, using the notation from
§5.1.2, Ω1,3=3Ω0,3∪A3 and we may assume as in Figure 25 that the building block
Ω1,3∩3Q0 is a leaf in Γ(A3). Let U be an essential partition given by Corollary 5.24,
and define Ω2 by Ω2−3Q0=U−3Q0 and Ω2∩3Q0=Ω1∩3Q0.

Since Ω2∩3Q0=Ω1∩3Q0, it is easy to obtain the rest of the sequence Ω0,Ω1,Ω2, ...

by applying Corollary 5.24 to the essential partitions Ωm−1, Ωm−2, and 3Ωm−2 and
modifying the obtained essential partitions as for m=2.

Corollary 5.24 yields that the essential partitions in the sequence {Ωm}m>0 satisfy
the tripod property and conditions (a)–(c).

Remark 5.26. Recall that, as a direct consequence of the definition, each dented mol-
ecule Ωm,p has a unique essential partition into dented atoms. Recall that the adjacency
graph of this essential partition of Ωm,p into dented atoms is Γ(Ωm,p).

Remark 5.27. Whereas there is no simple inclusion relation between the domains
Ωm,p and Ωm+1,p, the trees Γ(Ωm,p) and Γ(Ωm+1,p) are closely related. Indeed, formally,
Γ(Ωm+1,p) is obtained by adding leaves to Γ(Ωm,p). At the same time, however, a vertex
representing an atom of side-length at least 3 in Γ(Ωm,p) becomes a dented atom in
Γ(Ωm+1,p).

Finally, the tree Γ(Ωp) of the limit Ωp=
⋃

m>1 Ωm,p is an inverse limit of the trees
Γ(Ωm,p).

5.3.2. Condition (e)

We consider first some general properties of dented molecules Ωm,p and their hulls
hull(Ωm,p) (cf. §3.2), and then obtain condition (e) in Proposition 5.25.

Remark 5.28. The trees Γ(Ωm,p) and Γ(hull(Ωm,p)) are related since Γ(hull(Ωm,p))
is obtained by removing those (dented) atoms from Γ(Ωm,p) which are contained in
hull(hull(Ωm,p)−Ωm,p). Thus Γ(hull(Ωm,p)) can be viewed as a subtree of Γ(Ωm,p) where
the remaining vertices are (undented) atoms instead of dented atoms.

Recall that a vertex D∈Γ(Ωm,p) is internal if there exists a vertex D′∈Γ(Ωm,p) so
that %(D′)>%(D) and D⊂hull(D′), and that a vertex is external if not internal (Defini-
tion 3.18).

Remark 5.29. Although we focus on one of the domains in the following lemma,
it should be noted that the other two domains also have a rôle, since they create the
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dents. This is crucial for the combinatorics to settle (e) and (f). Suppose D∈Γ(Ωm,p)
is an internal vertex and D′∈Γ(Ωm,p) is a vertex closest to D in Γ(Ωm,p) satisfying
D⊂hull(D′).

Then D is contained in a dent M ′ of D′. This dent is a vertex in Γ(Ωm,r) for r 6=p.
Note also that since D is contained in a dent of M ′, we have

%(hull(D′))> 32%(hull(M ′))> 34%(hull(D)).

Lemma 5.30. Let m>1. Suppose A is a leaf in Γ(Ωm,p) and let 3k∈{1, 3} be the
side-length of A. Let D be the vertex adjacent to A in Γ(Ωm,p) satisfying %(D)>%(A).
Then 3−kA is a leaf of Ωm−k,p.

If %(D)>3%(A), then the atom 3−kA arose from a C-modification and A is an
internal vertex of Γ(Ωm,p),

Otherwise, %(D)=3%(A) and 3−kA came from a D-modification or a secondary mod-
ification. Furthermore, in this case, A is an external vertex of Γ(Ωm,p) if and only if D
is an external vertex of Γ(Ωm,p).

Remark 5.31. Whereas the number of atoms A attached to D in Lemma 5.30 satis-
fying %(D)=3%(A) is uniformly bounded, there will be no upper bound for the number
of atoms A attached to D in general. This follows from the observation that there is
no upper bound for the size of a dent of a dented molecule and each cube in a dent is
penetrated by a (dented) molecule which is an internal vertex attached to D. Note that
trees Γ(Ωm,p) have internal vertices only for m>3.

Note also that the essential partition Ω1 is exceptional in the following sense. The
molecule Ω1,p, for p=2, 3, is obtained from 3Ω0,p by a C-modification but the leaf Ω1,p−
3Ω0,p is not contained in a dent of Ω1,p. This is the one case in the construction of the
sequence {Ωm}m>0 when a C-modification does not produce an internal vertex.

Proof of Lemma 5.30. Since A is a leaf, it is an atom. Moreover, %(D)>3%(A) by
construction.

First observe that if 3−kA is obtained by a C-modification, there exists a dent M of
3−kD with 3−kA⊂M . Since M⊂hull(3−kD), it follows that A⊂hull(D). Thus in this
case A is internal and %(A)63−4%(D).

Since the ratio of side-lengths in a D-modification and in secondary modifications
is 3, the atom 3−kA is obtained by a D-modification or a secondary modification if and
only if %(D)=3%(A).

Suppose now that %(D)=3%(A). We show that A is an internal vertex if and only if
D is an internal vertex.

Suppose first that A is an internal vertex. Then there exists D′∈Γ(Ωm,p) containing
A in its hull. Let M ′ be the dent of D′ containing A. By properties of modifications,
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we have either D⊂M ′ or M ′⊂hull(D), since D is adjacent to A and A⊂M ′. Since
%(M ′)>9%(A)=3%(D), we have D⊂M ′. Thus D is internal.

Suppose now that D is an internal vertex. Then there exists D0∈Γ(Ωm,p) and a
dent M0 of D0 satisfying D⊂M0⊂hull(D0). We may assume that D0 is minimal in the
sense that, for every D′∈Γ(Ωm,p) between D and D0 in Γ(Ωm,p), D 6⊂hull(D′).

Let D1, ..., D` be the shortest path in Γ(Ωm,p) from D0 to D so that D1 is adjacent
to D0. Then D1⊂M0 and we note that %(hull(D1))−1hull(D1) has been obtained by a
C-modification in a cube Q of side-length 9.

Furthermore, by properties of modifications, we observe that all modifications to
obtain dented molecules D1, ... D` take place in cubes 3jQ where 3j 6%(hull(D1)). Thus
all dented atoms D1, ..., D` are contained in the cube Q′ :=%(hull(D1))Q⊂M0. In par-
ticular, D⊂Q′. Since A is obtained from D by either a D-modification or a secondary
modification, we also have A⊂Q′⊂M0. Thus A is internal.

Lemma 5.32. (Property (e)) Let n>3. There exist ν>1 and λ>1 depending only
on n so that the adjacency tree Γ(hull(Ωm,p)) is a (ν, λ)-molecule for every m>2 and
each p.

Proof. By Lemma 3.19, Γ(hull(Ωm,p)) is isomorphic to the tree ΓE(Ωm,p) of ex-
ternal vertices of Γ(Ωm,p), and Lemma 5.30 shows that external vertices arise from D-
modifications or secondary modifications. Thus it suffices to estimate the number of
atoms created by a D-modification or secondary modification for m>2.

Let 1<k<m, and let A be an atom in Γ(Ωk,p) created by a D-modification or a
secondary modification. Then A has side-length 1 and is contained in a union of at most
two cubes of side-length 9. Since there exist 3n essentially disjoint cubes of side-length 3
in a cube of side-length 9, the atom A consists of strictly less than 2·3n building blocks;
see Remark 5.33 below. Since we attach at most one atom to a building block of 3A,
this modification of 3A attaches strictly less than 2·3n atoms. We conclude that the tree
Γ(hull(Ωm,p)) is at most 2·3n-valent.

To show that hull(Ωm.p) is λ-collapsible for some λ>1, let M∈Γ(hull(Ωm,p)) be a
molecule of side-length 3k. Then M is attached to at most 2·3n molecules of side-length
3k−1 and to one molecule M ′ of side-length 3k+1. Let F ′ be the face of a cube in M ′

where M and M ′ meet.
Let ε>0, to be fixed in a moment, and take ` with

(1+ε)3k−1`6 3k+1< (1+ε)3k−1(`+1).

Then there exist at least `n−1 pairwise disjoint (n−1)-cubes of side-length (1+ε)·3k−1

on F . Since

`n−1>

(
9

1+ε
−1

)n−1

, (5.3)
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we may fix ε>0 small enough, depending on n, so that

`n−1> 2·3n (5.4)

when n>4. We conclude that there exists λ>1, depending only on n, for which M , and
hence hull(Ωm,p), is λ-collapsible.

Remark 5.33. Note that, although estimates (5.3) and (5.4) hold also for n=3, the
number of building blocks in an atom A no longer is an upper bound for atoms attached
to 3A. In fact, D-modification in dimension 3 may attach as many as three atoms to a
single building block; cf. Figure 18.

5.3.3. Condition (f)

It suffices to consider m>4. Let p∈{1, 2, 3}. To simplify notation, set V =Ωm,p.

Lemma 5.34. There exist L=L(n)>1 and an L-bilipschitz map

ϕ: (V, dV )−! (hull(V ), dhull(V ))

which is the identity on V ∩∂hull(V ).

We begin the proof of Lemma 5.34 with two auxiliary lemmas. For the statements,
we need some new notation and also use terms from §3.2.

Let d∈Γ(V ) be a dented atom and let D∈Γ(V ) be the unique dented atom adjacent
to D satisfying %(D)>%(d). Let Qd and Q′

d be the unique (dented) cubes of side-length
%(d) in d and inD, respectively, having a common face F ′

d. Note that F ′
d⊂Qd∩QD=d∩D.

Let Fd be a face of Qd contained in ∂d sharing an (n−2)-cube with F ′
d. We call

Jd=Fd?{xQd
} and J ′d=F ′

d?{xQ′
d
} the internal and the external join of D, respectively.

Note that Jd⊂d and J ′d⊂D.
The first key ingredient in the proof of Lemma 5.34 is a bilipschitz equivalence prop-

erty for expanding descendants; recall Definitions 3.20 and 3.21 of expanding descendants
and partial hulls, respectively, in §3.2.

Lemma 5.35. Let P be a partial hull of V and let D∈Γ(P ) be a dented atom
having only expanding descendants. Then there exist L=L(n)>1 and an L-bilipschitz
map ϕD: (|Γ(P )D|, d|Γ(P )D|)!(hull(D), dhull(D)) which is the identity on D∩∂hull(D).
Moreover, for any descendant d∈Γ(P ) of D, ϕD(|Γ(P )d|)⊂Jd.

Proof. By Lemma 5.32, for every descendant d∈Γ(P ), |Γ(P )d| is a collapsible (ν, λ)-
molecule with ν and λ depending only on n. Thus, by Proposition 3.5, there exist
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L′=L′(n)>1 and an L′-bilipschitz mapping ψD: (|Γ(P )D|, d|Γ(P )D|)!(D, dD) which is
the identity on D−

⋃
d Jd, where the union is over descendants of D.

Proposition 3.12 then produces L′′=L′′(n)>1 and an L′′-bilipschitz map

φD: (D, dD)−! (hull(D), dhull(D))

which is the identity on D∩∂hull(D). Furthermore, by a simple modification of the
proof of Proposition 3.12, we may assume that φD is an isometry from Jd to J ′d for each
descendant d of D. Thus ϕD=φD �ψD is the desired map.

The second key ingredient in the proof of Lemma 5.34 is a regrouping of joins
associated with expanding descendants of large relative side-length. We begin by counting
the number of descendants, and again need some notation.

Let P be a partial hull of V =Ωm,p. Let D∈Γ(P ) be a dented atom and B∈
Γ̃(hull(D)) be a building block. Let A(P,D;B) denote the vertices of Γ(P ) adjacent
to D which have side-length 3−4%(D) and are contained in B. Note that there are no
vertices adjacent to D and contained in B with side-length greater than 3−4%(D); recall
Remark 5.29.

Lemma 5.36. Let n>3, D∈Γ(P ), and B∈Γ̃(hull(D)). Then

#A(P,D;B) 6 8n23n. (5.5)

Proof. The argument is similar to the counting argument in the proof of Lemma 5.32.
Let %(D)=3k. Let MB=B∩hull(hull(D)−D). We note first that given a cube Q∈
Γint(B), Q∩MB is a pairwise disjoint union of two molecules, since Q∩MB stems from
a C-modification performed in 3k−2Q. We also have that %(MB)=3k−2.

Let UB⊂MB be the union of the atoms of side-length 3k−2 in Γ(MB). The dented
molecules in A(P,D;B) are in one-to-one correspondence with Γint(UB). Indeed, other
cubes in Γint(MD) have side-length at most 3k−3 and the dented molecules adjacent to
D which they contain have side-length at most 3k−5.

Since an atom of side-length 3k−2 in a cube of side-length 3k has at most 2n3n cubes,
we have for each Q∈Γint(B) the estimate

#Γint(UB∩Q) 6 2·2n3n =4n3n.

As #Γint(B)<2n, i.e an n-dimensional building block consists of less than 2n cubes,
we have

#Γint(UB) 6 2n4n3n =8n23n.
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In the proof of Lemma 5.34 we construct a sequence of partial hulls from the dented
molecule V to the molecule hull(V ). The crux of the proof is to inductively contract
the leaves into joins associated with building blocks and then isometrically move these
joins further. The estimate in Lemma 5.36 is used to obtain the necessary collapsibility
properties of the partial hulls. We formalize this step in the following lemma.

Let D∈Γ(P ) be a dented molecule and B∈Γ̃(hull(D)) be a building block. Let
Q′

B∈Γ(B) denote the center of B, and F ′
B the unique face of Q′

B contained in ∂hull(D).
Let QB⊂3k−1(3−kQ′

B)# be the unique cube of side-length 3−1%(B) having FB=QB∩F ′
B

as a face of QB with the same barycenter as F ′
B . We call JB=FB?{xQB

} the join
associated with B.

Lemma 5.37. Let P be a partial hull of V. Suppose D∈Γ(P ) is a dented atom.
Then there exist L=L(n)>1 and an L-bilipschitz map

ψD: (D, dD)−! (hull(D), dhull(D))

which is the identity on ∂D−hull(D), and which for every B∈Γ̃(hull(D)) satisfies
(1) ψD(B∩D)=B; and
(2) for each d∈A(P,D;B), ψD|Jd

is an isometric embedding from Jd into JB.
In addition, suppose Q is the smallest cube having D on the boundary, and let for

every B∈Γ̃(hull(D)), fB be an (n−1)-cube of side-length 3−4%(B) in B∩∂Q having
distance at least 3−4 to ∂B−∂Q and to each Jd. Then ϕD|fB?{xqB

} is an isometry into
JB , where xqB

is the barycenter of the unique cube qB in Q having fB as a face.

Proof. The argument is similar to the collapsing argument in Lemma 5.32. Let
%(D)=3k and B∈Γ̃(hull(D)).

As by definition %(FB)=3k−1, we may fix 26n−1 (n−1)-cubes of side-length 27
263k−4

in FB . Since Lemma 5.36 yields that

#A(P,D;B)< 26n−1

and %(Jd)=3−4%(D)=3k−4, there exists for each d∈A(P,D;B) an (n−1)-cube F ′′
d ⊂FB of

side-length 3k−4 so that the pairwise distances of these (n−1)-cubes are at least 1
263k−4.

Thus there exist L=L(n)>1 and an L-bilipschitz map ψB :B!B which is the identity
on B−∂Q and which is an isometric embedding from Jd to F ′′

d ?{xq′′d
}, where q′′d is the

unique n-cube in Q having F ′′
d as a face.

The required mapping ϕD is now the composition of the extensions of the various
maps ψB to all of D. We leave the modification of the argument in the case of additional
(n−1)-cubes fB for the interested reader.
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Proof of Lemma 5.34. We construct a sequence P0, ..., Pk of partial hulls of V, where
P0=V and Pk=hull(V ). In each stage, we remove one dented atom of smallest side-
length.

Let P0=V and J0=∅. Suppose that, for k>0, we have constructed
(a) partial hulls P0, ..., Pk of V so that P`+1 is a partial hull of P` for 06`<k−1;
(b) collections J0, ...,Jk of joins associated with building blocks in these partial hulls

so that the joins J` are contained in atoms of Γ(P`) which are hulls of the dented atoms
D in Γ(P`−1) for 16`6k, and for such D, the number of joins contained in |Γ(P`)D−D|
is at most 3n, recall that Γ(P`)D is the subtree in Γ(P`) behind vertex D;

(c) for every 16`<k, an L-bilipschitz map ψ`: (P`, dP`
)!(P`+1, dP`+1), which is the

identity on those atoms of Γ(P`) which are atoms of Γ(P`−1), where L is at most the
product of bilipschitz constants in Lemmas 5.35 and 5.37.

If Pk 6=hull(V ), we construct Pk+1 as follows. As Γ(V ) is finite, this process termi-
nates.

Since Pk 6=hull(V ), there exist dented atoms in Γ(Pk). Let Dk∈Γ(Pk) be the dented
atom having smallest side-length, and d∈Γ(Pk) be an atom adjacent to Dk in hull(Dk).
By minimality of Dk, d is an expanding vertex (Definition 3.20) in Γ(Pk).

Let Jk(Dk) be the joins in Jk which are contained in |Γ(Pk)Dk
−Dk|. We treat

these joins as (virtual) adjacent atoms. Thus each join J∈Jk(Dk) increases (virtually)
the valence of Γ(Pk)Dk

by 1 at the dented atom containing it, and so when n>4, the
valence of Γ(Pk)Dk

increases at each vertex by at most 3n.
We leave it to the interested reader to verify that Γ(Pk)Dk

remains λ-collapsible with
λ depending only on n even when the joins Jk(Dk) are understood as (virtual) adjacent
atoms; compare with Lemma 5.32.

Let ϕk: (|Γ(Pk)Dk
|, d|Γ(Pk)Dk

|)!(Dk, dDk
) be a bilipschitz map as in Lemma 5.35

with the property that, for each J∈Jk(Dk), ϕk|J is an isometry.
Let φk: (Dk, dDk

)!(hull(Dk), dhull(Dk)) be a bilipschitz map as in Lemma 5.37 with
the property that, for each descendant d of Dk, φk is an isometry from Jd into some JB

for B∈Γ̃(hull(Dk)).
Let ψk be the composition of φk �ϕk and Pk+1=Pk∪hull(Dk). To obtain Jk+1, we

remove the joins Jk(Dk) from Jk and add the joins associated with the building blocks
in hull(Dk). This completes the induction step and the proof.

5.3.4. Proposition 5.25 in dimension n=3

The essential partitions Ω0 and Ω1 fixed in §5.1.1 and §5.1.2 are the starting point for
the induction also in dimension n=3. To obtain the partitions Ωm for m>2, we use
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Figure 33. Visible faces of building blocks.

explicit configurations of atoms in order to obtain branching estimates for the adjacency
trees. We begin this section by introducing the particular modifications we use in the
induction.

When n=3 it is easy to exhibit an explicit catalog of C-modifications associated
with building blocks. Similarly, the secondary modifications can be explicitly illustrated.
These configurations are exhibited in figures and the estimates are obtained simply by
counting building blocks and cubes in these configurations.

Visible faces. Suppose Q is a cube of side-length 3 in R3, F is a face of Q, and B
is an F -based building block in Q. Having Figure 15 at our disposal, we observe that for
every q∈B#, q∩F is a unit square and B∩(Q−B) is a 2-cell consisting of at most four
faces of q.

Figure 33 displays foldouts of faces of all (unit) cubes q in building blocks B which
may occur in Q. Note that the foldout pictures show only faces of cubes q contained in
F or Q−B. These faces are the visible faces of ∂q; only these are in ∂∪U.

C-modification. Based on the catalog in Figure 33, we observe that in dimension
n=3 it suffices to fix four C-modifications which can be applied in all cubes in all building
blocks of side-length 9. The case of five visible faces is illustrated in Figure 34. A
comprehensive list of examples of C-modifications to cubes with three or four visible
faces is given in Figure 35.

Summary. Let 3B be a building block of side-length 9 and suppose that in each
Q′∈3B∗ we have performed one of the C-modifications illustrated in Figures 34 and 35,
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Figure 34. A cube q in B with five visible faces.

and let AQ′,i⊂Q′, i=1, 2, be the corresponding atoms; %(AQ′,i)=1. Then
(i) each atom AQ′,i consists of at most 20 building blocks and 56 cubes;
(ii) in each cube Q′∈3B∗, AQ′,1∪AQ′,2 consists of at most 28 building blocks and

79 cubes; and
(iii)

⋃
Q′(AQ′,1∪AQ′,2) consists of at most 100 building blocks and 285 cubes.

Secondary modifications. Observe first that, while a secondary C-modification
may occupy as many as four faces of a cube of side-length 27, a secondary N -modification
is confined to two faces. Thus the upper bounds for unit cubes and building blocks are
achieved by secondary C-cubes, and so there is no need to consider explicitly secondary
N -modifications.

Let Q and B be as above and let Q′′ be the unique cube sharing the face F with Q.
Let V=(Q−B,Q′′, B) and let U=(U1, U2, U3) be the essential partition of |3V| obtained
after C-modifications, based on Figures 34 and 35. Note that components of

3A1 =U1−3(Q−B)

are atoms having 8 building blocks.
Let Q′∈3B∗. Figure 36 presents an example of a system of basins in Q′ when Q′

has five visible faces. For cubes with fewer visible faces, similar systems of basins can
be found; these systems have fewer basins. Figure 37 illustrates a C-modification in the
largest basin in Figure 36. The systems of basins for cubes in 3B∗ with fewer visible faces
can be chosen to have basins not larger than this basin in terms of the number of unit
cubes in added atoms. We encourage the interested reader to verify these statements by
illustrations.

Summary. Let Ω=(Ω1,Ω2,Ω3) be an essential partition of 3Q obtained from U
by a secondary modification. For Q′∈3B∗, let MQ′,j =Ωj∩Q′, j=1, 2. Then MQ′,j is a
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Figure 35.

molecule having 3AQ′,j as its root. Let LQ′,j =MQ′,j−3AQ′,j be the union of leaves of
MQ′,j . Then

(i) each component of LQ′,j consists of at most 16 building blocks and 47 cubes;
(ii) for each cube Q′∈3B∗, LQ′,1∪LQ′,2 has at most 31 components and consists of

at most 243 building blocks; and
(iii) the union

⋃
Q′(LQ′,1∪LQ′,2) consists of at most 829 building blocks.

Furthermore, Γ(MQ′,j) has valence at most 45.

5.3.5. Completion of the proof of Proposition 5.25 for n=3

We construct the sequence {Ωm}m>0 of essential partitions using Corollary 5.24 itera-
tively as in §5.3.1 with the only exception that for C- and secondary C-modifications, we
use the explicit configurations illustrated in §5.3.4. Thus, again, the essential partitions
Ωm satisfy conditions (a)–(d) and the tripod property.



274 d. drasin and p. pankka

Figure 36. An example of a system of basins. Basins indicated with (large) dots.

Figure 37.

To verify condition (e), we note first that Lemma 5.30 has no dimensional restric-
tions, and so it applies also for n=3.

Regarding Lemma 5.32, we note that, when n=3, the statistics in §5.3.4 imply that
Γ(hull(Ωm,p)) has valence at most 20 and every atom in Γ(hull(Ωm,p)) consists of at
most 56 cubes. Since 92>82>56, we may take ε= 8

9 in the proof. Thus the claim of
Lemma 5.32 holds also for n=3, and so {Ωm}m>0 satisfies condition (e).

To verify condition (f), we observe that, using the configurations in §5.3.4 now show
that #A(P,D;B)6285 in Lemma 5.36. Since 285<262, the process of Lemma 5.37 is
therefore also at our disposal, and thus it suffices to discuss the proof of Lemma 5.34 for
n=3. The bounds we need here are already available from §5.3.4.

Concerning item (b) in the proof of Lemma 5.34, the number of joins in our con-
struction is now 16. Furthermore, the maximal (virtual) valence of Γ(Pk)Dk

is at most
31+16=47, since the atoms in Γ(Pk)Dk

−Dk are expanding and hence obtained by a
D-modification, a secondary modification or by a C-modification over one face of a cube.
Finally, since Dk has at most 16 descendants for n=3, the result of Lemma 5.34 there-
fore holds also for n=3. This concludes the verification of condition (f) and the proof of
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Proposition 5.25 in dimension n=3.

5.4. Proof of Theorem 5.1

Let {Ωm}m>0 be a sequence of essential partitions as in Proposition 5.25 and observe
that conditions (2) and (3) in the claim of Theorem 5.1 are satisfied.

We conclude the proof of Theorem 5.1 by showing that, for p=1, 2, 3,

Ωp =
⋃

m>0

Ωm,p

is bilipschitz equivalent to Rn−1×[0,∞) in its inner geometry.
By (2b), (Ωp, dΩp

) is bilipschitz equivalent to (hull(Ωp), dhull(Ωp)) for each p. Since
hull(Ω3) is a monotone union of (ν, λ)-molecules, where ν and λ depend only on n,
(Ω3, dΩ3) is bilipschitz equivalent to Rn−1×[0,∞) by Proposition 3.8.

Concerning hull(Ω2), we observe first that hull(Ω2)∩[0,∞)n−1×[0,∞) consists of
an infinite collection of pairwise disjoint (ν, δ)-molecules. Thus (hull(Ω2), dhull(Ω2)) is
bilipschitz equivalent to [0,∞)n−1×(−∞, 0] as we may apply Proposition 3.5 to these
molecules separately. Since the components of hull(Ω2)∩[0,∞)n−1×[0,∞) do not meet
∂[0,∞)n−2×R, we obtain a bilipschitz homeomorphism

[0,∞)n−1×(−∞, 0]−! (hull(Ω2), dhull(Ω2))

which is the identity on the boundary ∂[0,∞)n−1×(−∞, 0].
We are left with hull(Ω1). Since hull(Ω1,m)=[0, 3m+1]n for every m>1, we have

hull(Ω1)=[0,∞)n.
This completes the construction of a rough Rickman partition of [0,∞)n−1×R and

the proof of Theorem 5.1.

Proof of Corollary 5.2. The domains Ωm,p are John domains with a John constant
depending only on n. This can be seen for example as follows. Let a, b∈intΩp be
points and let A,B∈Γ(Ωp) be the (dented) atoms containing a and b, respectively. Let
D1, ..., Dr be the geodesic in Γ(Ωp) connecting A and B. Since the atoms hull(Dr) have
uniformly bounded length and the function r 7!%(hull(Dr)) satisfies the combinatorial
John condition as noted in §3, we observe that there exists C>1 depending only on n so
that a and b can be connected with a path γ: [0, 1]!Ωm,p satisfying

min{|a−γ(t))|, |γ(t)−b|}6C dist(γ(t), ∂Ωm,p)

for 06t61.
The domains Ωp, for p=1, 2, 3, are uniform domains by the same argument.
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6. From cubes to simplices

In this section we introduce a particular triangulation of the pairwise common bound-
ary ∂∪Ω of a rough Rickman partition Ω=(Ω1,Ω2,Ω3). While the construction of the
domains Ωp is facilitated by using cubes as fundamental units, an Alexander-type map-
ping is more naturally described using simplices. We wish to remind the reader that the
rough Rickman partition Ω must be modified once more to obtain a Rickman partition
Ω̃ supporting a suitable BLD-mapping on ∂∪Ω̃. The triangulation of ∂∪Ω and a parity
function carried by it have important roles in the construction of Ω̃ in the next section.

The space Rn has a natural structure as a CW-complex with unit cubes [0, 1]n+v,
v∈Zn, as n-cells, and the k-dimensional faces of these cubes as k-cells. Every (n−1)-
cube Q of this complex has a natural subdivision into (n−1)-simplices. In what follows
the convex hull of points v0, ..., vk in Rk, 06k6n−1, is

[v0, ..., vk].

Let Q be an (n−1)-cube in Rn and, for k=0, ..., n−1, let Qk be a k-dimensional
face of Q. The n-tuple Q=(Q0, ..., Qn−1) is a flag in Q if

Q0 ⊂Q1 ⊂ ...⊂Qn−1 =Q. (6.1)

Each k-cell Qk has a uniquely defined barycenter cQk
and, by the arrangement (6.1), the

vectors cQ0−cQn−1 , ..., cQn−2−cQn−1 are linearly independent with

SQ = [cQ0 , ..., cQn−1 ]

being an n-simplex contained in Q. We say that SQ is the simplex induced by the flag
Q. Furthermore,

Q=
⋃
Q
SQ,

the union over all flags (Q0, ..., Qn) in Q. Two (n−1)-simplices SQ and SQ′ determined
by different flags Q and Q′, may intersect but they have no common interior. Thus
simplices induced by flags triangulate Q.

As simplices induced by flags are determined by the barycenters of lower-dimensional
faces of (n−1)-cubes, every (n−1)-dimensional subcomplex X of Rn−1, which is a union
of its (n−1)-cells, admits a triangulation with simplices induced by flags. We call the
simplicial complex associated with such a triangulation the standard simplicial structure
of X. Note that, since simplices in the standard simplicial structure arise as a subdivision
of unit cubes in Rn, the k-simplices (0<k6n) in the standard simplicial structure have
diameter between 1

2 and 1
2

√
n.
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Convention. From now on we tacitly assume that a given (n−1)-simplex σ in an
(n−1)-dimensional cubical complex X has the standard simplicial structure of X.

In particular, the pairwise common boundary ∂∪Ω of a Rickman partition Ω admits
this standard simplicial structure.

There is an elementary labeling function associated with the standard simplicial
structure. Let X be an (n−1)-dimensional subcomplex of Rn so that X is a union of its
(n−1)-cells and let X(0) be the vertices of the standard simplicial structure. Since every
vertex v in X is a barycenter of a unique unit cube Qv in the cubical structure of Rn,
the map

ϑX: X(0) −! {0, ..., n−1},

v 7−!dimQv,

is well defined. Moreover, ϑX(σ)={0, ..., n−1} for every (n−1)-simplex σ in the standard
simplicial structure of X. We call ϑX the labeling function of X.

6.1. Parity functions

Let Ω=(Ω1,Ω2,Ω3) be a rough Rickman partition of Rn and let σ be an (n−1)-simplex
in (∂∪Ω)(n−1). Then σ=[v0, ..., vn−1], where 06k6n−1 and vk is a barycenter of a
k-cube in ∂∪Ω. Since ∂∪Ω is the pairwise common boundary, σ lies on the boundary
of exactly two domains in Ω. We say that σ is Ω-positive if there exist i and j with
σ⊂Ωi∩Ωj and

(1) j=i+1 (mod 3); and
(2) there exists a unit vector v∈Rn with vn−1+v∈Ωi and

det(v0−vn−1, ..., vn−2−vn−1, v)> 0. (6.2)

Otherwise, σ is Ω-negative. A vector v satisfying (6.2) is called an oriented normal of σ
if v is orthogonal to vk−vn−1 for every 06k6n−1.

The parity function of Ω is the function νΩ: (∂∪Ω)(n−1)!{±1} defined by

νΩ(σ) =
{

1, if σ is Ω-positive,
−1, if σ is Ω-negative.

The next lemma describes the change of the parity on adjacent simplices.

Lemma 6.1. Let Ω=(Ω1,Ω2,Ω3) be a rough Rickman partition of Rn. Let σ and
σ′ be adjacent (n−1)-simplices in ∂Ωi. Then νΩ(σ)=−νΩ(σ′) if there exists j 6=i such
that σ∪σ′⊂∂Ωj , and νΩ(σ)=νΩ(σ′) otherwise.
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Figure 38. Congruence classes of planar σ∪σ′ for n=3 and k=0, 1, 2.

Proof. Let σ=[v0, ..., vn−1] and σ′=[v′0, ..., v
′
n−1]. Suppose first that σ and σ′ are

contained in an (n−1)-dimensional plane P . We claim that

(v′0−v′n−1)∧...∧(v′n−2−v′n−1) =−(v0−vn−1)∧...∧(vn−2−vn−1). (6.3)

It is then easy to verify the claim of the lemma, as the oriented normal vectors of σ and
σ′ will be opposite normals of P .

Let Q=(Q0, ..., Qn) and Q′=(Q′
0, ..., Q

′
n) be flags defining σ=SQ and σ′=SQ′ , re-

spectively. Since σ and σ′ have a common side, there exists 06k6n−1 such that vi=v′i
for i 6=k.

Suppose first that 0<k<n−1. Then Q′
k and Qk have a common face Qk−1 and are

contained in Qk+1. Since

cQk−1−cQk+1 =(cQk−1−cQ′
k
)+(cQ′

k
−cQk+1) = (cQk

−cQk+1)+(cQ′
k
−cQk+1),

it follows that

v′k−vn−1 = v′k−vk+1+(vk+1−vn−1)

= vk−1−vk+1−(vk−vk+1)+(vk+1−vn−1)

=−(vk−vn−1)+(vk−1−vn−1)+(vk+1−vn−1),

and so

(v′0−v′n−1)∧...∧(v′k−v′n−1)∧...∧(v′n−2−v′n−1)

= (v0−vn−1)∧...∧(v′k−vn−1)∧...∧(vn−2−vn−1)

=−(v0−vn−1)∧...∧(vk−vn−1)∧...∧(vn−2−vn−1).

Thus (6.3) holds. The cases k=0 and k=n−1 are similar.
Suppose now that σ and σ′ are not contained in an (n−1)-dimensional hyperplane.

In this case, using the notation above, v′n−1 6=vn−1 and v′k=vk for 06k<n−1. By the
construction of Ω, there also exists an n-cube Q having σ and σ′ on its boundary. In
particular, w=cQ−vn−1 and w′=cQ−v′n−1 are orthogonal to σ and σ′, respectively.

As the n-simplices [v0, ..., vn−1, cQ] and [v′0, ..., v
′
n−1, cQ] are planar in Rn+1 and share

an (n−1)-dimensional face, we have, by the previous argument,

(v′0−cQ)∧...∧(v′n−1−cQ) =−(v0−cQ)∧...∧(vn−1−cQ),
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Figure 39. Fold-out of the congruence class of σ∪σ′ for n=3.

so that

(v′0−v′n−1)∧...∧(v′n−2−v′n−1)∧w′ =−(v0−vn−1)∧...∧(vn−2−vn−1)∧w.

Since Q is contained in one of the elements of the partition Ω, the claim now follows by
considering separately the cases Q⊂Qi and Q⊂Qj , where j=i+1 (mod 3); in both cases
the oriented normals for σ and σ′ are either w and −w′, or −w and w′, respectively.

7. Pillows and pillow covers

In this section we establish the most significant case, p=3, of Proposition 1.5. Using the
ideas of Rickman [15, §7] we prove the following proposition.

Proposition 7.1. Let Ω=(Ω1,Ω2,Ω3) be a rough Rickman partition of Rn sup-
porting the tripod property. Then there exists a Rickman partition Ω̃=(Ω̃1, Ω̃2, Ω̃3) of
Rn for which the Hausdorff distance of ∂∪Ω and ∂∪Ω̃ is at most 1.

We would like to recall that the construction in §5 yields a rough Rickman partition
Ω=(Ω1,Ω2,Ω3), where Ω1 and Ω2 are connected and Ω3 has 2n−1 components. It should,
however, be noted that we may construct the essential partition Ω̃ in Proposition 7.1
from any rough Rickman partition. Indeed, the construction of Ω̃ is local and the number
of components of the sets Ωi has no rôle in the argument.

The proof of Proposition 1.5 is based on a construction of what we call a pillow cover
of ∂∪Ω, and yields the final essential partition Ω̃. The labeling and parity functions of
Ω lead at once to a BLD-map ∂∪Ω̃!Ŝn−1, where Ŝn−1=Sn−1∪Bn−1. The bound on the
Hausdorff distances of ∂∪Ω and ∂∪Ω̃ is immediate from the pillow construction.

Remark 7.2. (Idea of the pillow cover) We summarize the idea of the pillow cover
construction as follows. Let Ω be a rough Rickman partition of Rn and consider a
triangulation on ∂∪Ω as in §6.

To construct a pillow cover of ∂∪Ω we (locally) replace each pair of adjacent (n−1)-
simplices with a sextuplet of adjacent (Lipschitz) (n−1)-simplices. This sextuplet can be
seen as a (branched) double cover of Ŝn−1; note that Ŝn−1 consists of three (n−1)-cells.

We use the tripod property of ∂∪Ω, organize the adjacent (n−1)-simplices into
directed trees, and modify the domains Ωk by modifying their boundaries via this local
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Figure 40.

replacement procedure of (n−1)-simplices. This process extends Ωk between Ωi and
Ωj for {i, j, k}={1, 2, 3} and, as a consequence, we obtain a new essential partition Ω̃=
(Ω̃1, Ω̃2, Ω̃3) of Rn.

Finally, the local (combinatorial) properties of ∂∪Ω̃ allow us to construct a BLD-map
∂∪Ω̃!∂∪E which shows that domains in Ω̃ are Zorich extension domains.

We discuss first the pillow construction locally for planar (n−1)-cells contained in
∂∪Ω. For notational convenience let E⊂∂∪Ω be a cubical (n−1)-cell contained in a
hyperplane P=Rn−1×{0} of Rn so that E⊂Ωi∩Ωj for some i 6=j. Throughout §§7.1–7.4
we consider E fixed but arbitrary and E inherits a standard simplicial structure from
∂∪Ω. We denote by ν=νE,Ω:E(n−1)!{±1} the restriction of the parity function νΩ

to E. Similarly, ϑ=ϑE,Ω:E(0)!{0, ..., n−1} is the restriction of the labeling function
ϑ∂∪Ω to E.

Let E be the adjacency graph Γ(E(n−1)) and fix a maximal tree Ê in E . Contrary to
the case of maximal trees of adjacency graphs of cubical complexes, we consider Ê as a
directed tree, and fix orientation on Ê so that Ê is connected and all simplices in Ê have
at most one outgoing edge and (possibly several or no) incoming edges.

Suppose σ is an (n−1)-simplex σ of Ê and the (n−2)-simplex τ is a face of σ. Let
σ′ be an (n−1)-simplex in Ê adjacent to σ, that is, σ′∩σ=τ . Then τ is an entry face of
σ if the edge between σ and σ′ is an incoming edge to σ, and τ is an exit face of σ if it
is the (unique) outgoing edge from σ. If τ is an entry or an exit face of a simplex, τ is
considered open, otherwise τ is a closed face of σ; in the configuration of Figure 40 the
open faces are marked with dashed lines.
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Figure 41. The 2-simplices τ1, τ2, and τ3 surrounding τ0 in a subdivision of τ ; n=4.

7.1. Pillow of a simplex

As a preparatory step, let τ=[v1, ..., vn−1] be an (n−2)-simplex in Rn−1, and consider τ
as a face of an (n−1)-simplex σ in E. We define a subdivision τ0, ..., τn−1 of τ as follows.

Suppose first that n>4. For i=1, ..., n−1, let

τi =
[
1
2 (v1+vi), ..., 1

2 (vn−1+vi)
]
⊂ τ.

Then τi is an (n−2)-simplex congruent to τ having diameter 1
2 diam τ and having vi as

a vertex; see Figure 41. Finally, let τ0=τ−
⋃n−1

i=1 τi; we use here and from now on the
notation α−β=α\β also for simplices. For n=4, τ0 is a 2-simplex, while when n>4, τ0
is a more general polyhedron.

When n=3, τ is a line segment [v1, v2]. In this case, we set τ1=
[
v1, v1+ 1

3 (v2−v1)
]
,

τ2=
[
v2, v2+ 1

3 (v1−v2)
]
, and τ0=τ−(τ1∪τ2); thus τ0 is the ‘middle third’ of τ .

Definition 7.3. Let u: τ![−1, 1] be a continuous function on τ . Then u is an opening
if u|int τ0>0 and u|τ\int τ0 =0. Similarly, u is a shuffle if

(1) u|int τ0>0;
(2) there exist i 6=j in {1, ..., n−1} such that u|int τi>0 and u|int τj<0; and
(3) u|τ\(int τ0∪int τi∪int τj)=0.

Remark 7.4. Note that, if u: τ![−1, 1] is either an opening or a shuffle, u|∂τ =0.

7.1.1. Pillow cover functions

For each (n−1)-simplex σ in E, we set

`σ =
{

2, if ν(σ) =−1,
4, if ν(σ) = 1,

and introduce a family of Lipschitz functions

Ψσ:σ×{1, ..., `σ}−! [−1, 1],

which will form the pillow covers. We consider the two parities separately.
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Remark 7.5. For each σ and both parities ν(σ), we may assume that the function
Ψσ satisfies the additional regularity condition

Ψσ(x, i+1)−Ψσ(x, i) > 1
10 dist(x, ∂σ)

for x∈σ and i∈{1, ..., `σ−1}.
We may also assume, from now on, that the mappings Ψσ are PL and uniformly

Lipschitz, that is, there exists L>1 (depending only on n) so that every Ψσ is L-Lipschitz
for every σ in ∂∪Ω and, in particular, in the cell E.

Case 1. Functions on negative simplices.
Suppose ν(σ)=−1. We define uσ: ∂σ![−1, 1] as follows. Given a face τ of σ, we

set uσ|τ to be an opening if τ is either an entry or an exit face of σ. If τ is closed, uσ|τ
is the zero function. Thus we may fix Ψσ:σ×{1, 2}![−1, 1] satisfying

(1) Ψσ(x, 1)=0 and Ψσ(x, 2)=uσ(x) for all x∈∂σ; and
(2) Ψσ(x, 1)<0<Ψσ(x, 2) for all x∈intσ.

Case 2. Functions on positive simplices.
For ν(σ)=1, two functions uσ and vσ on ∂σ will be used in a similar way. Given a

face τ of σ, take uσ|τ to be an opening if τ is either an entry or an exit face of σ, and
uσ|τ =0, otherwise. As for vσ, define vσ|τ =0 for every face τ of σ which is not an exit
face, and take vσ to be a shuffle on the exit face of σ, if such face exists. Note that uσ

and vσ have (essentially) pairwise disjoint supports.
We may now fix a function Ψσ:σ×{1, ..., 4}![−1, 1] so that, for x∈∂σ,
(1) Ψσ(x, 1)=Ψσ(x, 2)=0 and Ψσ(x, 3)=Ψσ(x, 4)=uσ(x) if vσ(x)=0;
(2) Ψσ(x, 1)=Ψσ(x, 2)=Ψσ(x, 3)=vσ(x) and Ψσ(x, 4)=0 if vσ(x)<0;
(3) Ψσ(x, 1)=0 and Ψσ(x, 2)=Ψσ(x, 3)=Ψσ(x, 4)=vσ(x) if vσ(x)>0;

while for x∈intσ,
(4) Ψσ(x, 1)<Ψσ(x, 2)<Ψσ(x, 3)<Ψσ(x, 4); and
(5) Ψσ(x, 1)<0<Ψσ(x, 4).

7.1.2. Sheets and a pillow cover

The singular (n−1)-simplices

σ̂i = {(x,Ψσ(x, i)) :x∈σ}, (7.1)

where i∈{1, ..., `σ}, constitute the sheets of σ (as in [15]), and the union of sheets

σ̂=
`σ⋃

i=1

σ̂i (7.2)
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forms a pillow cover on σ. Note that a pillow cover of σ consists of either two or four
singular (n−1)-simplices depending on the parity ν(σ) of σ.

Remark 7.6. Observe that {σ̂1, ... σ̂`σ
} is a (singular) triangulation of σ̂ by singular

(n−1)-simplices. This triangulation, however, does not induce a simplicial complex, since
pairwise intersections of these simplices are generally not unions of sides. For example,
σ̂1∩σ̂`σ is not a union of faces of σ̂1.

7.1.3. Pillows

We consider next, in more detail, the complementary domains of σ̂ in σ×R. Let

Pσ = {(x, t)∈σ×R : Ψσ(x, 1) 6 t6Ψσ(x, `σ)}.

We call Pσ a pillow. Let also

Uσ = {(x, t)∈σ×R : t>Ψσ(x, `σ)}

and
Lσ = {(x, t)∈σ×R : t6Ψσ(x, 1))}.

Regardless of the parity of σ, Uσ and Lσ are bilipschitz equivalent to σ×[0,∞) and
σ×(−∞, 0], respectively. For example, for Uσ, there is the bilipschitz map

(x, t) 7−!
{

(x, 2(t−Ψσ(x, `σ)), if Ψσ(x, `σ) 6 t6 2Ψσ(x, `σ),
(x, t), if t> 2Ψσ(x, `σ),

and similarly for Lσ the map

(x, t) 7−!
{

(x, 2(t−Ψσ(x, 1)), if Ψσ(x, 1) > t> 2Ψσ(x, 1),
(x, t), if t6 2Ψσ(x, 1).

Since |Ψσ|61, these homeomorphisms are the identity outside σ×[−2, 2], and the
bilipschitz constants of these homeomorphisms depend only on n and the Lipschitz con-
stants of Ψσ. Similarly, Pσ is bilipschitz equivalent to an n-cell independent of the parity
of σ.

Pillows on a negative simplex

When ν(σ)=−1, we observe that ∂Pσ is an essentially disjoint union of σ̂=σ̂1∪σ̂2 to-
gether with a union of (n−1)-cells in ∂σ×R.
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Figure 42. Adjacency graphs Γ((σ×R)\σ) and Γ((σ×R)\σ̂) for σ with negative parity.

Figure 43. Adjacency graphs Γ((σ×R)\σ) and Γ((σ×R)\σ̂) for σ with positive parity. The
merge of the domains P U

σ and Uσ (as well as P L
σ and Lσ) in Lemma 7.8 is anticipated by the

choice of colors.

Pillows on a positive simplex

When ν(σ)=1, the complementary domains have more complicated structure. Now Pσ\σ̂
has three components with closures PU

σ , PM
σ , and PL

σ , respectively,

PU
σ = {(x, t) :Ψσ(x, 1) 6 t6Ψσ(x, 2)},

PM
σ = {(x, t) :Ψσ(x, 2) 6 t6Ψσ(x, 3)},

PL
σ = {(x, t) :Ψσ(x, 3) 6 t6Ψσ(x, 4)}.

Although the letters ‘U’, ‘M’, and ‘L’ refer to ‘upper’, ‘middle’, and ‘lower’, the domains
are not named by their position along the t-axis; these names anticipate Lemma 7.8
below. We have

σ̂∩∂PU
σ = σ̂1∪σ̂2, σ̂∩∂PM

σ = σ̂2∪σ̂3, and σ̂∩∂PL
σ = σ̂3∪σ̂4;

see Figure 43.

7.2. Pillow covers of adjacent simplices

Recall that E⊂∂∪Ω is a planar (n−1)-cell, and, to simplify the notation, we have as-
sumed that E⊂Rn−1×{0}⊂Rn.
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Let σ be an (n−1)-simplex, E be as before, and suppose that σ′ is another (n−1)-
simplex in E sharing an (n−2)-simplex with σ. By changing the rôles of σ and σ̂ if
necessary, we may assume that ν(σ′)=−ν(σ)=−1.

Definition 7.7. The pillow covers σ̂ and σ̂′ of σ and σ′, respectively, are compatible if
Ψσ( · , 2)=Ψσ′( · , 1) and Ψσ( · , 3)=Ψσ′( · , 2) on τ , where τ is the common face of σ and σ′.

From now on we assume that σ̂ and σ̂′ are compatible pillow covers. The following
lemma recapitulates Rickman’s idea on using two types of pillow covers to permute the
local rôles of the three domains.

Lemma 7.8. Let σ̂ and σ̂′ be compatible pillow covers of σ and σ′, respectively.
Then

((σ∪σ′)×R)\(σ̂∪σ̂′)

has three components ΩU , ΩM , and ΩL satisfying

ΩU =Uσ∪PU
σ ∪Uσ′ , ΩM =PM

σ ∪Pσ′ , and ΩL =Lσ∪PL
σ ∪Lσ′ .

Proof. It suffices to observe that the closures of PU
σ and Uσ′ meet in the (n−1)-cell

{(x, t)∈ τ×R : Φσ(x, 3) 6 t6Φσ(x, 4)}.

Similarly, PL
σ ∩Lσ′ is an (n−1)-cell.

Using the notation of Lemma 7.8, we now make a few observations on the natural
triangulation of σ̂∪σ̂′ into sheets and domains ΩU , ΩM , and ΩL.

For σ̂′, the pairwise intersections of the domains ΩL, ΩM , and ΩU with σ̂′×R are
(up to a closure) Lσ′ , Pσ′ , and Uσ′ . Thus

∂ΩL∩σ̂′ = σ̂′1, ∂ΩM∩σ̂′ = σ̂′1∪σ̂′2, and ∂ΩU∩σ̂′ = σ̂′2.

The situation is slightly more complicated with σ̂. Note first that ΩM∩(σ×R) is
PM

σ up to closure. Thus

∂ΩM∩σ̂= σ̂2∪σ̂3,

and we have

σ̂2 =ΩU∩ΩM∩(σ×R) and σ̂3 =ΩL∩ΩM∩(σ×R).

Moreover,

ΩL∩(σ×R) =Lσ∪PL
σ and ΩU∩(σ×R) =Uσ∪PU

σ ,
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Figure 44. Adjacency graphs Γ((σ×R)\σ̂), Γ(((σ∪σ′)×R)\(σ̂∪σ̂′)) and Γ((σ′×R)\σ̂′) with
maps of graphs induced by inclusions.

and

∂ΩL∩σ̂= ∂Lσ∪∂PL
σ = σ̂1∪σ̂3∪σ̂4 and ∂ΩU∩σ̂= ∂Uσ∪∂PU

σ = σ̂4∪σ̂1∪σ̂2.

This ‘shuffle’ will allow our domains {Ω`}3
`=1 to connect near ∂∪Ω. The proof of

the following lemma is left to the interested reader; the situation is captured by the
suggestive figure in [15, Figure 7.2] and Figure 44.

Lemma 7.9. With the notation above, we have

σ̂1∪σ̂4 =ΩU∩ΩL∩(σ×R),

σ̂2 =ΩL∩ΩM∩(σ×R),

σ̂3 =ΩM∩ΩU∩(σ×R).

Furthermore,

σ̂′1 =ΩL∩ΩM∩(σ′×R) and σ̂′2 =ΩM∩ΩU∩(σ′×R).

Our discussion shows that the domains ΩU , ΩM , and ΩL are bilipschitz equivalent
to either (σ∪σ′)×(0,∞), (σ∪σ′)×(−∞, 0), or to Bn. We formalize this observation as
follows.

Lemma 7.10. Let σ̂ and σ̂′ be compatible Lipschitz pillow covers on σ and σ′, re-
spectively. Then

(1) there exist bilipschitz homeomorphisms

hU
σ,σ′ : (σ∪σ′)×(0,∞)−! (ΩU , dΩU ) and hL

σ,σ′ : (σ∪σ′)×(−∞, 0)−! (ΩL, dΩL),

whose supports are contained in σ∪σ′×
[
− 1

2 ,
1
2

]
, such that hU

σ,σ′ and hL
σ,σ′ extend to

BLD-maps (σ∪σ′)×[0,∞)!ΩU and (σ∪σ′)×(−∞, 0]!ΩL, respectively ; and
(2) the closure of ΩM is a bilipschitz n-cell.
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The bilipschitz (and BLD) constants are quantitative in the sense that they depend only
on n, the Lipschitz constants of Ψσ and Ψσ′ and the minimal bilipschitz constants of
the homeomorphisms σ!Bn−1 and σ′!Bn−1.

7.3. Maps on pairs of sheets

The pillow construction on the union σ∪σ′ of two adjacent simplices σ and σ′ gives rise
to maps σ̂∪σ̂′!Ŝn−1, where Ŝn−1=Sn−1∪Bn−1⊂Rn. We now discuss these local maps
in more detail.

We write Sn−1=Sn−1
+ ∪Sn−1

− , where Sn−1
+ and Sn−1

− are the upper and lower hemi-
spheres of Sn−1, i.e. Sn−1

+ ∩Sn−1
− =∂Bn−1. Then Rn\Ŝn−1 has three components denoted

DU , DL, and DM so that ∂DU =Sn−1
+ ∪Bn−1, ∂DL=Sn−1

− ∪Bn−1, and ∂DM =Sn−1. We
fix n points {y0, ..., yn−1} on ∂Bn−1 and view Ŝn−1 as a CW-complex having three (n−1)-
cells Sn−1

+ , Sn−1
− , and Bn−1 and vertices {y0, ..., yn−1}.

Let σ and σ′ be adjacent (n−1)-simplices in E and let σ̂ and σ̂′ be compatible
Lipschitz pillows on σ and σ′, respectively. By changing the rôles of σ and σ′ if necessary,
we may assume that ν(σ)=−ν(σ′)=1. Let ϑ:σ(0)∪σ′(0)!{0, ..., n−1} be the labeling
function of Ω restricted to σ∪σ′.

Although the singular simplices ∆={σ̂1, ..., σ̂4, σ̂
′
1, σ̂

′
2} again do not define a simpli-

cial complex, there exists a continuous map f : σ̂∪σ̂′!Ŝn satisfying
(S1) f maps each singular simplex in ∆ to one of the simplices Sn−1

+ , Sn−1
− , and

Bn−1 in a bilipschitz manner;
(S2) f(v)=yϑ(v) for all v∈σ(0)∪(σ′)(0); and
(S3) if {X,Y }⊂{U,L,M} is a pair then f(ΩX∩ΩY )=DX∩DY .
Since f is bilipschitz on singular simplices, it is discrete and

1
L
`(γ) 6 `(f �γ) 6L`(γ)

for all paths γ in σ∪σ′, where L is the maximum of the bilipschitz constants of f restricted
to simplices in ∆. Furthermore, in the sense of the following lemma, f is a branched
cover in the interior of σ̂∪σ̂′.

Lemma 7.11. Let O=(σ̂∪σ̂′)∩int(σ∪σ′)×R. Then f |O:O!Ŝn is a branched cover
and the branch set of f |O is the set

O∩{y ∈σ∩σ′ : Ψσ(y, 1) =Ψσ(y, 4)}⊂Rn.

In particular, f |O is an open map.
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Proof. Let τ be the common face of σ and σ′. Let S=σ̂∪σ̂′ and

G=
4⋃

i=1

int σ̂i∪
2⋃

j=1

int σ̂′j .

Then
S=G∪(S∩(τ×R))∪(S∩∂(σ∪σ′)×R).

Clearly G⊂O and f |G:G!Ŝn is a local homeomorphism. Suppose now that x=(y, t)∈
O∩(τ×R). Then f(x)∈Sn∩Bn.

There are four cases to consider. Suppose first that y has a neighborhood O′ in τ

such that Ψσ(y′, 1)=Ψσ(y′, 2) for y′∈O′. Then also Ψσ(y′, 1)=Ψσ′(y′, 1) and Ψσ(y′, 3)=
Ψσ(y′, 4)=Ψσ′(y′, 2) for y′∈O′ by compatibility, and so either t=Ψσ(y, 1)=Ψσ′(y, 1) or
t=Ψσ(y, 3)=Ψσ′(y, 2). In either case, there are exactly three simplices TU , TL, and TM

among the simplices {σ̂1, ..., σ̂4, σ̂
′
1, σ̂

′
2} with x∈TU∩TL∩TM and f(TU )=∂DU , f(TL)=

∂DL, and f(TM )=∂DM . When y has a neighborhood O′ with Ψσ(y′, 1)=Ψσ(y′, 3) or
Ψσ(y′, 2)=Ψσ(y′, 4) for y′∈O′, the argument is similar. In all these cases, f is a homeo-
morphism in a neighborhood of x.

In the remaining case, x∈O∩(τ×R) and Ψσ(y, 1)=Ψσ(y, 4). Then x belongs to all
six singular simplices, and f is a branched double cover near x.

7.4. Pillow covers of cells

Suppose again that E is a planar (n−1)-cell, i.e. E is contained in an (n−1)-plane P .
We may take P=Rn−1×{0} as in the beginning of §7.

Having ν=νE,Ω at our disposal, we fix a maximal tree Ê⊂Γ(E(n−1)) and obtain, for
every σ∈E(n−1), a pillow σ̂ compatible with the simplices adjacent to σ in E. The set

Ê=
⋃

σ∈E(n−1)

σ̂

is a pillow cover on E. By our convention, all pillow covers σ̂ for σ∈E(n−1) are L-
Lipschitz for L>1 depending only on n, so that Ê is an L-Lipschitz pillow cover.

Lemmas 7.8 and 7.10 on metric properties of the pillow cover construction for pairs
of simplices have counterparts for an (n−1)-cell contained in a hyperplane. The proofs
are verbatim so we merely state the results.

Lemma 7.12. Let E be a cubical (n−1)-cell in Rn−1 and Ê⊂E×
[
− 1

2 ,
1
2

]
be an

L-Lipschitz pillow on E. Then
E×[−1, 1]\Ê
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Figure 45. The adjacency of the domains ΩU , ΩM , and ΩL over a 2-cell in R2×{0}⊂R3.

has three components ΩU , ΩM , and ΩL, each bilipschitz equivalent to Bn in their inner
metric, so that ΩU⊃E×{1} and ΩL⊃E×{−1}. The bilipschitz constant is quantitative
and depends only on n and L.

Lemma 7.13. Let E be a cubical (n−1)-cell in Rn−1 and Ê⊂E×
[
− 1

2 ,
1
2

]
be an

L-Lipschitz pillow on E. Then
(1) there exists a bilipschitz homeomorphism hU

E :E×(0, 1)!(ΩU , dΩU ) having a
BLD-extension h̄U

E :E×[0, 1]!ΩU so that h̄U
E is the identity on E×{1}∪∂E×[0, 1]; and

(2) there exists a bilipschitz homeomorphism hL
E :E×(−1, 0)!(ΩL, dΩL) having a

BLD-extension h̄L
E :E×[−1, 0]!ΩL so that h̄L

E is the identity on E×{−1}∪∂E×[−1, 0].
The statement is quantitative in the sense that the bilipschitz constant depends only on
n and L.

In order to define maps Ê!Ŝn, we fix points {y0, ..., yn−1}⊂Sn−1∩Bn−1, as in §7.3.
The following lemma is a counterpart of the construction in §7.3.

Lemma 7.14. Let E be a cubical planar n-cell in Rn and Ê⊂E×
[
− 1

2 ,
1
2

]
be a

pillow on E. Then there exists a map fE : Ê!Ŝn, which is a branched cover on int Ê=
Ê∩(intE×R), so that fE |σ̂∪σ̂′ satisfies (S1)–(S3) from §7.3 for every pair of adjacent
simplices σ and σ′ in E(n−1). The BLD-constant of fE |int Ê is quantitative in the sense
that it depends only on n, L, and the points {y0, ..., yn−1}.

Proof. The mapping fE is readily obtained as in the discussion in §7.3, so it suffices
to discuss the uniformity of the BLD-constant of fE |int Ê . Since E is given a standard
simplicial structure, all simplices σ in E(n−1) are congruent. For every σ∈E(n−1), faces of
σ are of one of the following three different types: entry, exit, and closed faces. By fixing
opening and shuffle functions invariant under congruences, we may assume that pillows
over simplices, with the same combinatorics, are congruent. More precisely, there exist
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simplices σ1, ..., σr in E(n−1) and compatible pillows so that, for every σ∈E(n−1), there
exists an isometry Iσ of Rn, preserving Rn−1×[0,∞), and 16iσ6r so that Iσ(σ)=σiσ

and Iσ(σ̂)=σ̂iσ .
Thus we fix a finite collection of Lipschitz maps fi: σ̂i!Ŝn−1 and use the isometries

Iσ to obtain a map fE : Ê!Ŝn−1. The BLD-constant of fE |int Ê then clearly depends
only on the Lipschitz constants of this finite collection f1, ..., fr, depending only on n, L,
and the choice of points {y0, ..., yn−1}.

Remark 7.15. The standard simplicial structure of E is not essential for the proof
of Lemma 7.14. In fact, given any simplicial complex P in Rn with |P |=E, it is easy
to observe that there exists a pillow Ê on E consisting of compatible pillows σ̂ for
σ∈P (n−1), and a map fE,P : Ê!Ŝn−1 satisfying the properties of Lemma 7.14 with the
only exception that the BLD-constant of fE,P |int Ê now depends also on the bilipschitz
constants of affine parametrizations [0, e1, ..., en−1]!σ for σ∈P (n−1). Although, this
observation is essential in what follows, we leave the simple modification of the proof of
Lemma 7.14 to the interested reader.

Suppose now that E is a cubical (n−1)-cell in Rn. Since E is a PL (n−1)-cell, there
exists a PL-homeomorphism E!E′, where E′ is an (n−1)-cell in Rn−1. More precisely,
there exists a simplicial complex P so that |P |=E and a simplicial homeomorphism
ϕ:E!E′ with respect to P .

Let E be a cubical (n−1)-cell E in Rn and let Q(E) be the collection of all unit
n-cubes Q in Rn with Q∩intE 6=∅, and let |Q(E)| be the union of these cubes. Set

N (E) =B∞
(
E, 1

3

)
∩|Q(E)|.

In particular, we have
N (E′) =E′×

[
− 1

3 ,
1
3

]
for a planar (n−1)-cell E′ in Rn, and the pair (N (E), E) is PL-homeomorphic to a proper
cell pair (
Bn, 
Bn−1); see [18, Chapter 4].

We apply these observations to small (n−1)-cells in Rn, and summarize the needed
properties in the following lemma, omitting details. Note that the uniform bound of
the bilipschitz constant follows directly from the finiteness of the congruence classes of
(n−1)-cells in the statement.

Lemma 7.16. Let E be a cubical (n−1)-cell in a cube Q⊂Rn of side-length 3.
Then there exist L>1 depending only on n, a planar cubical (n−1)-cell E′, and an L-
bilipschitz PL-homeomorphism ϕE :N (E)!N (E′) so that ϕE(E)=E′. Moreover, there
is a simplicial complex P such that |P |=E and ϕE is piecewise affine with respect to P .
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Using Lemma 7.16, we may define pillow covers for small (n−1)-cells in Rn. Let E be
a cubical (n−1)-cell contained in a cube of side-length 3. Suppose E′ is a planar (n−1)-
cell and ϕE :N (E)!N (E′) is a PL-homeomorphism as in Lemma 7.16. Then ϕE(E(n−1))
is a triangulation of E′. Although ϕE(E(n−1)) is not the standard triangulation of E′, we
obtain a pillow Ê′ on E′ in N (E′) with respect to this triangulation, and call Ê=ϕ−1

E (Ê′)
a pillow cover of E.

Given an (n−1)-simplex σ in E, we also say that σ̂=ϕ−1(Ê∩(ϕ(σ)×[−1, 1])) is the
pillow over σ in Ê. By the finiteness of congruence classes, we conclude that the results
in the beginning of this section hold also for these pillow covers almost verbatim.

7.5. Proof of Proposition 7.1

Let Ω=(Ω1,Ω2,Ω3) be a rough Rickman partition of Rn having the tripod property.
Thus ∂∪Ω has an essential partition into cubical (n−1)-cells ∆={E`}`>0.

Given adjacent E` and E`′ in ∆ belonging to different Ω-equivalence classes (recall
Definition 4.2), there exists, by property (∆2) of Definition 4.4, a unique E`′′ in ∆ so
that the cells E`, E`′ , and E`′′ are mutually adjacent, contained in the same cube of
side-length 3, and belong to different Ω-equivalence classes. If we write E`∼E`′ , the
relation ∼ defines an equivalence relation in ∆ which subdivides ∆ into equivalence
classes containing exactly three elements.

Let
N (∂∪Ω) =B∞

(
∂∪Ω, 1

3

)
be the 1

3 -neighborhood of ∂∪Ω in Rn, and for each ` define

N` = {x∈N (∂∪Ω) : dist(x,E`) =dist(x, ∂∪Ω)}.

Then {N`}`>0 is an essential partition of N (∂∪Ω). Moreover, N` is PL-homeomorphic
to N (E`) for every `. As there are only a finite number of congruence classes of N` and
N (E`), we have that N` is bilipschitz to N (E`), the constant depending only on n.

Suppose E`0 , E`1 , and E`2 are equivalent (n−1)-cells in ∆. We create pillows Ê`0 ,
Ê`1 , and Ê`2 simultaneously. Let E[`]=E`0∪E`1∪E`2 and N[`]=N`0∪N`1∪N`2 . We fix,
for m=0, 1, 2, indices {im, jm, km}={1, 2, 3} such that E`m∩Ωkm is an (n−2)-cell and
E`m⊂Ωim∩Ωjm .

Let
Y =(Rn−1×{0})∪({0}×Rn−2×[0,∞))⊂Rn.

Since E[`]=E`0∪E`1∪E`2 is a union of equivalent elements in ∆, we may fix es-
sentially disjoint (n−1)-cells E′

`0
, E′

`,1, and E′
`,2 in Y such that there exists a map
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Figure 46. The cells E′
`, E′

`′ , and E′
`′′ meeting at {0}×Rn−2×{0} and the partition of N (E′

[`]).
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Figure 47. Three components D′
m waiting to be connected to the corresponding components Um.

φ[`]:E′
[`]!E[`], where E′

[`]=E
′
`0
∪E′

`1
∪E′

`2
, which is a PL-homeomorphism

E′
`0∩E

′
`1∩E

′
`2!E′

`0∩E
′
`1∩E

′
`2 and E′

`k
!E`k

for each k.

The map φ[`] extends to a PL-map φ[`]:N (E′
[`])!N[`] which is a homeomorphism

from the interior of N (E′
[`]) to the interior of N[`], where N (E′

[`])=
⋃2

m=0 N (E′
`m

). The
connected components of N (E′

[`])\Y are Um=ψ[`](int Ωm∩N[`]) for m=0, 1, 2.
Again, by finiteness of the congruence classes, φ′[`]=φ[`]|int E′

[`]
: intE′

[`]!intE[`] is
bilipschitz (in the inner metric) with constant depending only on n. Each map φ′[`]
induces a triangulation on E′

[`], and we denote by ν the parity function σ 7!νΩ(φ[`]�σ)
defined on the (n−1)-simplices in the induced triangulation of E′

[`].
In terms of this function ν on E′

[`], we fix, for every m=0, 1, 2, a Lipschitz pillow

Ê′
`m
⊂B∞

(
E′

`m
, 1

3

)
. By Lemma 7.12, N (E′

`m
)\Ê′

`m
has three components and there exists

a unique component D′
m⊂N (E′

`m
)\Ê′

`m
which does not meet ∂N (E′

`m
) essentially; that

is, the intersection D′
m∩N (E′

`m
) does not contain (n−1)-simplices.

We observe that the set
⋃2

m=0 Ê
′
`m

has six complementary components in N (E′
[`]);

see Figure 47. We now modify the pillows Ê′
`m

; informally, by connecting each D′
m to

Um, there will only be three complementary components.
Form=0, 1, 2, let σ`m

⊂E′
`m

be simplices meeting on a common face τ⊂σ`0∩σ`1∩σ`2 .
By Lemma 6.1, all simplices σ`m have the same ν -parity. For notational simplicity, we
consider only the case ν(σ`m)=−1; the case ν(σ`m)=1 is similar and is left to the reader.
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Figure 48. Domains after modification; a side view.

We fix three subsimplices τ0, τ1, and τ2 of τ by subdiving φ(τ) into congruent
subsimplices of side-length 1

3 and then fixing three of the preimages of these subsimplices
in τ .

Since ν(σ`0)=ν(σ`1)=−1, the sheets σ̂`0 and σ̂`1 of σ0 and σ1, respectively, are
determined by the functions Ψσ`0

and Ψσ`1
. We modify these functions so that

Ψσ`r
(int τr×{2})⊂

(
0, 1

3

)
for r=0, 1, and denote the new sheets obtained in this manner by σ̃`r

for r=0, 1. We de-
note also by D̃′

r the component of N (E′
`r

)\σ̃`r which does not meet ∂N (E′
`r

) essentially.
For r=0, 1, let Ũkr

be the components of N (E′
`r

)\σ̃`r contained in Ukr . It is now
easy to observe that D̃′

r⊂Ũkr is connected. Indeed, the (n−2)-cell

Dr = {(x, t)∈ τr×R : Ψσ`r
(x, 1) 6 t6Ψσ`r

(x, 2)}

for r=0, 1, lies on the boundary of D̃′
r and is contained in Ũkr

. Furthermore, we have
that the interior of cl(D̃′

r∪Ukr ) is bilipschitz to Bn in the inner metric.
Without changing notation, we modify the sheet σ̂`2 accordingly in order to preserve

compatibility with other sheets after this change on τ0∪τ1. The sheet modification is
now applied to σ̂`2 to obtain a new compatible sheet σ̃`2 so that the component D′

2 of
B∞

(
E′

2,
1
3

)
\σ̃`2 is connected to Uk2 . We leave the details of this step to the interested

reader.
We make some observations on the construction of the modified sheets σ̃`m for

m=0, 1, 2. First note that, although σ̃`m is not homeomorphic to σ̂`m there exist maps
h`m : σ̃`m!σ̂`m such that h`m is a homeomorphism in the interior of σ̃`m and

h`m |σ̃`m∩σ̂`m
= id.

In particular, σ̃`m has the same number of singular simplices as does σ̂`m and the map
h`m restricts to a map between singular simplices.
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Second, let
Ẽ′

[`] = σ̃`0∪σ̃`1∪σ̃`2 .

Then
N (E′

[`])\Ẽ
′

has three connected components Ũ1, Ũ2, and Ũ3 with the property

∂Ũr∩∂Ur =B∞
(
Y, 1

3

)
∩∂Ur,

and for every r=1, 2, 3, there exists a bilipschitz homeomorphism

(Ũr, dŨr
)−! (Ur, dUr ),

which is the identity on ∂Ũr∩∂Ur.
Let

Ẽ[`] =φ[`](Ẽ′
[`]).

Due to the convention on closed edges on the boundary of ∂(
⋃2

r=0E`r ), we have that

Ẽ[`]∩Ẽ[`′] =E[`]∩E[`′]

for all ` and `′.
Let

X =
⋃
[`]

Ẽ[`]

denote the union over the equivalence classes [`] of indices. Then Rn\X has compo-
nents Ω̃1, Ω̃2, and Ω̃3. Using the congruence classes of the pillows Ê[`], we may assume
that the pillows Ẽ[`] are uniformly Lipschitz. Then the components Ω̃1, Ω̃2, and Ω̃3

are bilipschitz equivalent to the components Ω1, Ω2, and Ω3 of our original Rickman
partition, respectively, in their inner metric. Furthermore, these bilipschitz homeomor-
phisms (Ωm, dΩm)!(Ω̃m, dΩ̃m

), m=1, 2, 3, extend to BLD-maps cl(Ωm)!cl(Ω̃m). If we
set Ω̃=(Ω̃1, Ω̃2, Ω̃3), then X=∂∪Ω̃.

Finally, we obtain a BLD-map f : ∂∪Ω̃!Ŝn−1. Relabel the components of Rn\Ŝn

by D1, D2, and D3 so that D1=DU , D2=DL, and D3=DM .
By Remark 7.15, we may fix a map g[`]: Ẽ′

`!Ŝn−1 as in Lemma 7.14. By Lipschitz
uniformity of the pillows Ẽ′

[`], we may assume that g[`]|int Ẽ′
[`]

is BLD with BLD-constant
depending only on n.

Let f[`]: Ẽ[`]!Ŝn−1 be the unique map satisfying f[`]�φ[`]=g[`].
Given adjacent pillows Ẽ[`] and Ẽ[`′], the mappings f[`] and f[`′] are both defined

on Ẽ[`]∩Ẽ[`′]. By uniformity of the BLD-constants, we may modify one of the mappings
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Figure 49. The adjacency graph for the cells in Figure 1; p=4.

f[`] and f[`′] slightly to obtain a new collection of uniformly BLD-mappings so that
the mappings f[`] and f[`′] agree on Ẽ[`]∩Ẽ[`′] for every ` 6=`′. The map f , defined by
f |Ẽ[`]

=f[`], is BLD.

This concludes the proof of Proposition 7.1.

8. Finishing touch

In this section we prove Theorem 1.4 and Proposition 1.5. The proofs are slight general-
izations of Theorem 5.1 and Proposition 7.1. The proof of Proposition 1.5 is a straightfor-
ward modification, so we merely indicate the differences. For Theorem 1.4, we introduce
a particular class of rough Rickman partitions, called skewed Rickman partitions, and
show that the method to obtain a rough Rickman partition in the proof of Theorem 5.1
may be modified to obtain skewed Rickman partitions.

8.1. Skewed Rickman partitions

For general p>2, choose points {y0, ..., yp} in Sn as in the introduction, that is, y0=en+1

and yr=(0, tr)∈Rn, where − 1
2 =t1<0<t2<...<tp= 1

2 . Take n-cells E0, ..., Ep as in the
introduction, i.e. E0=cl(Sn\Bn), E1∪...∪Ep=Bn, yr∈intEr, so that Dr=Er∩Er+1 is
an (n−1)-cell for r=0, ..., p (mod p+1). Note that ∂Er is an (n−1)-sphere consisting of
(n−1)-cells Dr∪Dr−1 (mod p+1).

Let

Ŝn−1
p =

p⋃
r=0

∂Er.

We emphasize that Ei∩Ej =Sn−2 for |i−j|>1. Let Ep=(E0, E1, ..., Ep). Then Ep is
an essential partition of Sn, ∂∪Ep=Ŝn−1

p , ∂∩Ep=Sn−2 and the adjacency graph Γ(Ep) is
cyclic.



296 d. drasin and p. pankka

Figure 50. Schematic figure on n-cells Aj in A for p=3 and p=4.

Let q be a k-cube. A PL-embedding ϕ: q!Rn is a PL k-cube and a complex com-
posed of PL-cubes is a skew complex if the PL k-cubes are uniformly bilipschitz equiva-
lent. A Rickman partition Ω is skew if ∂∪Ω is a skew complex.

The tripod property (Definition 4.4) admits a straightforward generalization to skew
complexes Ω=(Ω0, ...,Ωp). Indeed, instead of having three elements in an equivalence
class, we require that ∂∪Ω have an essential partition ∆ into (skew) (n−1)-cells, and
we require that ∆ in turn admit a partition into groups of p+1 elements, each (n−1)-
cell between different elements of Ω, and all having a common intersection containing
an (n−2)-cell. In this case we say that the skew complex satisfies a generalized tripod
property.

We show that Rn admits a skew Rickman partition Ω=(Ω0, ...,Ωp) for each p>2.

Proposition 8.1. Given n>3 and p>2 there exists a skew Rickman partition Ω=
(Ω0, ...,Ωp) supporting the (generalized) tripod property.

8.1.1. Skew structures on atoms and molecules

An essential partition S of an n-cell C is skew if the elements of S are skew n-cells. Before
proceeding further, we discuss skew partitions for (flat) atoms and (non-flat) molecules.

Let A be an r-fine Rn−1-based atom in Rn; let F=A∩Rn−1 and C=∂A−F , where
F refers to ‘floor’ and C to ‘ceiling’. Note that F and C are (n−1)-cells. We partition
A into skew atoms A1, ..., Ap−1 as follows.

Let L1=F , Lp=C, and define, for j=2, ..., p−1, Lj ={(x, δB,j(x))∈A:x∈F}, where
δB,j :F!

[
0, 1

3r
]

is the function

δB,j(x) =
j

p
max

{r
3
,dist(x, F∩C)

}
for x∈F .

For every j=1, ..., p−1, Lj∪Lj+1 bounds a unique n-cell Aj with boundary Lj∪Lj+1.
Now the essential partition

S(A) = (A1, ..., Ap−1) (8.1)
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Figure 51. The join of two skew non-planar building blocks.

is a skew partition of A. Note that F⊂∂A1, C⊂∂Ap−1, and Aj∩Aj+1 is the (n−1)-cell
Lj+1 for all j=1, ..., p−1.

We leave the details of the following lemma to the interested reader.

Lemma 8.2. Let A be an r-fine Rn−1-based atom in Rn and S(A)=(A1, ..., Ap−1) be
a skew partition of A in (8.1) for p>2. Then there exist L-bilipschitz homeomorphisms
ϕj :A!Aj for j=1, ..., p−1, where L=L(n, p), such that on F=A∩Rn−1 and C=∂A−F
we have

(i) ϕ1|F =id and ϕp−1|C =id, ϕj |F∩C =id for each j; and
(ii) ϕj(F )=Lj and ϕj(C)=Lj+1 for each j.

Skew partitions of atoms merge to produce skew partitions of molecules.

Lemma 8.3. There exists L=L(n, p) with the following properties. Let M be a mol-
ecule consisting of building blocks on the boundary of an n-cube Q so that pairwise unions
of adjacent building blocks of different scales are planar. Then there exist an essential
skew partition S(M)=(M1, ...,Mp−1) of M into n-cells and L-bilipschitz homeomor-
phisms ψj :M!Mj , j=1, ..., p−1, for which

(a) ∂M∩∂Q⊂∂M1 and ∂M−∂Q⊂∂Mp−1;
(b) ψi(M)∩ψj(M) is an (n−1)-cell if j=i+1; and
(c) ψi(M)∩ψj(M)=∂M∩∂Q for |i−j|>1.

Proof. It suffices to consider two cases: (i) a non-planar atom in Γ(M), and (ii) two
adjacent atoms in Γ(M).

Suppose first that A is a non-planar atom in Γ(M). Then A consists of planar parts,
all meeting in pairs of building blocks. Thus the general case follows from the special case
of building blocks B and B′ based on different faces of an n-cube, say Q′ (see Figure 51).
There exists a cube q of side-length r in B∪B′ contained in one of the building blocks,
say B, so that q∩B′=B∩B′. Since A′=B′∪q is an atom, we find skew atoms A′

j and
Bj for j=1, ..., p−1, in A′ and B, respectively, so that A′

j∪Bj is an n-cell for each j and
A′

1 and B1 meet ∂Q′. Since A′
j∪Bj are n-cells for j=1, ..., p−1, it is now easy to define

non-planar n-cells A1, ..., Ap−1 forming an essential partition of A.
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Figure 52. A skew partitioned molecule; p=4.

Suppose now that A is an r-fine atom adjacent to a 1
3r-fine atom A′. Again, there

exist building blocks B⊂A and B′⊂A′ such that A′∩A=B∩B′. We may assume that
B∪B′ is Rn−1-based. Let S(B)=(B1, ..., Bp−1) and S(B′)=(B′

1, ..., B
′
p−1) be skew parti-

tions of B and B′. Let ϕj :B!Bj and ϕ′j :B
′!B′

j be homeomorphisms as in Lemma 8.2.
It is now easy to modify these homeomorphisms on A∩A′ to obtain homeomorphisms ϕ̃j

and ϕ̃′j for j=1, ..., p−1, so that each ϕ̃j(B)∪ϕ̃j(B′) is an n-cell. Since the modification
is local, we may also assume that the mappings ϕ̃j and ϕ̃′j are uniformly bilipschitz with
constant depending only on n. We leave the further details to the interested reader; see
Figure 52.

8.1.2. Coarsification of skew partitions

In the proof of Proposition 8.1 we use generalizations of primary and secondary modi-
fications introduced in §5. The rearrangements are given using skew partitions having
properties similar to cubical partitions. We now introduce the necessary terminology.

In this section, let C be a cubical n-cell and S=(S1, ..., Sp−1) be a skew essential
partition of C into n-cells.

Let α∈Z+ and let Qα(C) be a subdivision of C into pairwise disjoint n-cubes of
side-length 3−α. We assign to each q∈Qα(C) an index iq∈{1, ... p−1} with iq being the
minimal index for which q∩Si has non-empty interior. Let Mα(S) be the set of cubes q
in Qα(C) for which int(q∩Si) 6=∅ for more than two indices i∈{1, ..., p−1}, and let

Eα,i(S) = |{q ∈Qα(C)\Mα(S) : iq = i}|.

Remark 8.4. Clearly, we have that (Eα,1(S), ..., Eα,p−1(S)) is an essential partition
of C−|Mα(S)|. Although the cubical sets Eα,i(S) need not be n-cells for all α∈Z+,
since S is a skew partition, there exists α0∈Z+ for which (Eα,1(S), ..., Eα,p−1(S)) is an
essential partition of C−|Mα(S)| into n-cells for α>α0.
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Figure 53. A coarsification of the skew partition in Figure 52.

Definition 8.5. Let α∈Z+ and S=(S1, ..., Sp−1) be a skew partition of an n-cell C.
The essential partition Ŝα=(Ŝ1, ..., Ŝp−1) of C, where

Ŝi =Eα,i(S)∪(|Mα(S)|∩Si), (8.2)

is an ε-coarsification of S for ε>0 if, for each i=1, ..., p−1, Ŝi is an n-cell, Eα,i(S) 6=∅,
Ŝi∩Ŝi−1 is an (n−1)-cell, and distH(Si, Ŝi)<ε.

In the proof of Proposition 8.1, we modify the earlier C-modifications to produce
skew partitions. Heuristically, in a generalized C-modification, we rearrange the domain
Ŝi of a skew partition Ŝα=(Ŝ1, ..., Ŝp−1) of a cube using atoms along common boundaries
Ŝi−1∩Ŝi. To obtain a repartition of a cube satisfying a collapsibility condition analogous
to λ-collapsibility, we must restrict the combinatorial length of the atoms created by
this generalized C-modification. With this aim in mind, we now introduce an additional
condition for coarsified skew partions.

To motivate this condition, consider a C-cube Q of color i in a rough Rickman
partition Ω̃=(Ω̃1, Ω̃2, Ω̃3) of Rn. Then Q∩Ω̃j is contained in at most 2n−2 faces of Q
for j 6=i; see e.g. Figure 34 for n=3. Thus Q∩Ω̃j would meet at most 3α(n−1)(2n−2)
cubes in Qα(Q).

Now, let S=(S1, ..., Sp−1) be a skew partition of an n-cube Q and Ŝα=(Ŝ1, ..., Ŝp−1)
be an ε-coarsification of S for some α∈Z+, and ε∈(0, 1). For |i−j|=1, let

Pij(Ŝα) = {q ∈Qα(Q) : q⊂ Ŝi and q∩Ŝj contains a face of q}.

Definition 8.6. The coarsification Ŝα of S is small if, for each |i−j|=1, there exists
a tree

Γ⊂Γ(Pi,j(Ŝα)∪Pj,i(Ŝα)) (8.3)

containing Pij(Ŝα) in its vertex set with #Γ<3α(n−1)(2n−2).

Remark 8.7. It is straightforward to check that for the skew partition S(M) of
Lemma 8.3 the coarsified partitions Ŝα(M)∩Q are small for all cubes Q∈Γint(M).
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Figure 54. Schematic figure of the tree Γ; a detail.

Before confronting the proof of Proposition 8.1, we introduce a combinatorial notion
related to skew partitions. We say that an essential partition S=(S1, ..., Sp−1) of a cube
is linear if the adjacency graph Γ(S) is an arc, that is, each vertex in S has valence at
most 2. Furthermore, we may also assume from now on that elements in S are indexed
so that S1 and Sp−1 have valence 1 in Γ(S) and the neighbors of Si are Si−1 and Si+1

for each i=2, ..., p−2.

Remark 8.8. The skew partition S(M) in Lemma 8.3 is linear and S(M)∩Q is linear
for each Q∈Γint(M). Note also that, for α∈Z+ large enough, coarsifications Ŝα(M) of
S(M) are also linear.

8.1.3. Proof of Proposition 8.1

We construct the essential partition Ω with the same scheme as in §5 but now with
skew partitions and coarsification methods. Apart from coarsification, this approach is
similar to Rickman’s in [15, §8.1]. Since the methods are based on those of §5 with the
modifications already introduced in §7, we merely sketch the argument.

Mimicking the proof of Theorem 5.1, we construct a sequence {Sm}m>0 of essential
partitions of n-cells 3m([0, 3]n−1×[−3, 3]) analogous to the sequence {Ωm}m>0. Recall
that

Ω0 =(Ω0,1,Ω0,2,Ω0,3) = ([0, 3]n, [0, 3]n−1×[−3, 0], [3, 6]×[0, 3]n−1)

and Ω1=(3Ω0,1−(A2∪A3), 3Ω0,2∪A2, 3Ω0,3∪A3), where A2 and A3 are atoms.
It is not necessary to define S0, and we set directly

S1 =([0, 9]n−A3, [0, 9]n−1×[−9, 0], S1,2, ..., S1,p),

where (S1,2, ..., S1,p) is the skew partition S(3A3) into p−1 n-cells as in (8.1).

Construction of S2; first generalized modifications.
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We construct S2 from S1 by independent generalized D-modifications; note that Ω2

is obtained from Ω1 by a secondary C-modification, as observed in Remark 5.22. In this
particular case it suffices to observe that, in the construction of Ω2, we extend the atom
3A3 to a molecule M by attaching 1-atoms. Thus, to obtain S2 from S1, it is enough
to extend the skew partition 3(S1,2, ..., S1,p) to a skew partition of M ; cf. Lemma 8.3.
This extension of the skew partition 3S1 into each 1-fine atom is the generalized D-
modification. Thus

S2 =(S2,0, ..., S2,p) = ([0, 27]n−M, [0, 27]n−1×[−27, 0], S2,2, ..., S2,p),

where (S2,2, ..., S2,p) is a skew partition of M .
In later steps, we also use similar generalizations of secondary modifications. Note

that we use these generalizations alongside with (original) D-modifications and secondary
modifications.

Construction of S3; generalized C-modifications.
To obtain S3=(S3,0, ..., S3,p) from S2, we use generalized D-modifications and gen-

eralized C-modifications in rescaled C-cubes. Note that, for Q∈Γint(3A3), the essential
partition Q∩S2 is a skew partition of Q into p−1 skew n-cells meeting the remaining
two elements of S2 analogously as in the situation with a C-cube; recall that 3A3⊂Ω2,3

was adjacent to the domains Ω2,1 and Ω2,2 in Ω2 (see §5.1.3). We therefore call Q a
generalized C-cube.

Using notation related to Q and the skew partition S2, we now describe the gener-
alized C-modification in 3Q. For this modification, we consider cubes in two scales 3−β

and 3−α for α>β>p. Thus we divert here from the convention that side-lengths of cubes
are at least 1.

First, let β>p be an integer, to be determined later, for which we may choose, for
i=2, ..., p, a cube qi∈Mβ(3(Q∩S2)) so that dist∞(qi, qj)>3−β for i 6=j. Note that each
cube in Mβ(3(Q∩S2)) is adjacent to 3S2,0 and 3S2,1.

Second, let α>β, to be determined later, so that Ŝα=(Ŝ1, ..., Ŝp−1), where

Ŝi =Eα,i(3(Q∩S2))∪(|Mα(3(Q∩S2))|∩Si),

is a 1-coarsification of S=3(Q∩S2)=(S1, ..., Sp−1) as in (8.2). By increasing α, if neces-
sary, there exists for each i=1, ..., p−1 adjacent cubes q′i, q

′′
i ∈Qα(Q) so that q′i⊂qi and

q′′i ∈Pi,i−1(Ŝα); when i=1, we assume that q′′1 meets ∂(3Q).
We now modify the cells 3Ŝ2, ..., 3Ŝp−1 in 3Q as follows; the modification of 3Ŝ1 is

similar and postponed to the end of the process.
For each i=2, ..., p−1, let Γi be a maximal tree as in (8.3). Let a′i be the asso-

ciated 3−α−2-fine atom, and let ai=a′i∪q′i; then this allows ai to enter both Ŝi and
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Figure 55. A schematic figure of an atom ai associated with a tree Γi; a detail.

Ŝi−1, see Figure 55. Fix also a small skew partition (ai,1, ..., ai,p−1) of ai so that
(Ŝi−1, ai,1, ..., ai,p−1, Ŝi−ai) is a skew partition of Ŝi−1∪Ŝi with cyclic adjacency graph;
cf. Lemma 8.3.

To connect the cells ai,k to the cells Ŝj for j 6=i and k∈{1, ..., p−1}, note that for
each i=2, ..., p−1 there exists a unique graph isomorphism

θi: Γ(Ŝα)−!Γ(Ŝi−1−ai, ai,1, ..., ai,p−1, Ŝi−ai)

satisfying θi(Ŝi−1)=Ŝi−1−ai and θi(Ŝi)=Ŝi−ai.
Fix now, on each cube qi, a small skew partition (qi,1, ..., qi,p−1) so that qi,j∪(Ŝj−qi)

and qi,j∪θi(aj) are skew n-cells.
Then, by attaching the cells qi,j∪θi(aj) to the cells Ŝj for 26j6p−1, we obtain

cells Qj for which the system (Ŝ1, Q2, ... Qp−1) produces the desired skew partition of 3Q
after we make an analogous extension of both Ŝ1 and Qj along ∂(3Q). We leave this last
detail to the interested reader.

We conclude by noting that, since the atoms ai have side-length 3−α, we do not
need to rearrange their scaled copies before constructing S3+(α+2). At that stage, cubes
in Γint(3α+1ai) are generalized C-cubes. A similar comment applies to the cubes qi and
the construction of S3+(β+2). Note also that it suffices to fix, up to an isometry, one
essential partition for a cube of side-length 3−β for all generalized C-modifications. In
particular, we may fix parameters α and β to depend only on n and p.

Construction of Ω; inductive process.
With these generalized primary and secondary rearrangements at our disposal, we

proceed as in §5 and obtain an essential partition Sm from Sm−1 for everym>3. Similarly
as in the proof of Theorem 1.4 (for p=2) we may arrange it so that these essential
partitions yield an essential partition Ω=(Ω0, ...,Ωp) of Rn satisfying the (generalized)
tripod property; again Ω0 and Ω1 are connected and Ω2, ...,Ωp have 2n−1 components
each.
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Note that the combinatorial length estimate for small skew partitions yields that Ω0,
Ω1, and each component of Ωr for r>2 are λ-collapsible in a natural generalized sense;
in dimension n=3 we use again the particular configurations illustrated in §5.3.4 to
obtain collapsibility. Analogously as in §5.3.3 and §5.4, we obtain that Ω0, Ω1, and each
component of Ωr are bilipschitz to Rn−1×[0,∞). Thus Ω is a skew Rickman partition
satisfying the (generalized) tripod property and we have proved Proposition 8.1.

8.2. Proof of Proposition 1.5

Let Ω=(Ω0, ...,Ωp) be a skew Rickman partition as in Proposition 8.1. Then ∂∪Ω carries
a uniformly bilipschitz triangulation into (n−1)-simplices together with an associated
labeling function.

Due to the cyclic combinatorics of domains in Ω, that is, since Ωj∩Ωj+1 is locally an
(n−1)-cell for j=0, ..., p (mod p+1), we define a parity function ν∂∪Ω: (∂∪Ω)n−1!{±1}
for p>2 analogous to the case p=2 in §6.

To construct a pillow cover over the triangulation of ∂∪Ω it suffices to discuss pillows
over pairs of adjacent (n−1)-simplices. We merely describe the differences from the case
p=2; apart from these slight modifications we proceed as in §7.

Let σ and σ′ be an adjacent pair of (n−1)-simplices on ∂∪Ω and suppose that
ν∂∪Ω(σ)=−1. We may also assume, to simplify notation, that σ∪σ′⊂Rn−1×{0}. In this
case the sheets σ̂1, ..., σ̂p on σ are given by the graph of a function Ψσ:σ×{1, ..., p}!R
similarly as in §7.1. The sheets σ̂′1, ... σ̂

′
p+2 on σ′ are similarly given by the graph of

a function Ψσ′ :σ′×{1, ..., p+2}!R. We require that these pillows satisfy compatibility
conditions analogous to those of Definition 7.7 in §7.2. Since local modifications of pillows
are similar to the case p=2, we leave the finer details to the interested reader and discuss
in detail only the ‘shuffle’ of domains.

Suppose for now that we have fixed the functions Φσ and Φσ′ providing us with
sheets for the simplices σ and σ′, respectively. Let D0, D1, ..., Dp be the components of

(σ×R)\
p⋃

i=1

σ̂i

so that σ̂1⊂∂D0, σ̂i∪σ̂i+1⊂∂Di for i=1, ..., p−1, and σ̂p⊂∂Dp. Let D′
0, ..., D

′
p+2 be the

components of

(σ′×R)\
p+2⋃
j=1

σ̂′j

in the same order, that is, σ̂′0⊂∂D′
0, σ̂

′
j∪σ̂′j+1⊂∂D′

j for j=1, ..., p+1, and σ̂p+2⊂∂D′
p+2.



304 d. drasin and p. pankka

Following the method in §7.2, we may assume that, for the functions Φσ and Φσ′ ,
the sets D0∪D′

0∪D′
p+1, Di∪D′

p+1−i for i=1, ..., p−1, and Dp∪D′
p+2∪D′

1 are connected
components of

((σ∪σ′)×R)\
( p⋃

i=1

σ̂i∪
p+2⋃
j=1

σ̂j

)
. (8.4)

Note that in order to merge the sets Di and D′
j this way it suffices to subdivide the set

τ0⊂τ=σ∩σ′, defined in §7.1, into (n−2)-simplices and to define several openings this
way.

This ‘shuffle’ allows the domains Dp and D′
p to be connected across σ̄∪σ′ and pre-

serves the global adjacency structure on these domains when passing from Ω to Ω̃.

To fix notation, suppose that simplices σ and σ′ in ∂∪Ω are between the domains
Ω` and Ω`+1 for `∈{0, ..., p}, where we understand that `+1=0 if `=p. We may assume
that locally near σ∪σ′, Ω` is contained in (σ∪σ′)×(−∞, 0].

We begin with the negative simplex σ. The adjacency graph Γ(Ω∩(σ×R)) near
σ consists only of an edge between Ω` and Ω`+1. The adjacency graph of the domains
D0, ..., Dp, on the other hand, is an arc from D0 to Dp. By construction of the essential
partition Ω̃, the sets D0, ..., Dp are contained in elements of the essential partition Ω̃.
Since Ω̃ has the same cyclic adjacency graph as Ω and Γ(Ω̃∩(σ×R)) is an arc of length p,
we note that the domains D0, ..., Dp belong to the sets Ω̃`, Ω̃`−1, ..., Ω̃1, Ω̃p, ..., Ω̃`+1, in
this order.

For the positive simplex σ′, we note that, by (8.4) and by the same argument, the
domains D′

0, ..., D
′
p+2 are contained in the domains Ω̃`, Ω̃`+1, ..., Ω̃p, Ω̃1, ..., Ω̃`, Ω̃`+1 in

this order.

As a remark, we note that if we merge the graphs Γ(Ω̃∩(σ×R)) and Γ(Ω̃∪(σ′×R))
by identifying vertices corresponding to the domains D0 and Dp with D′

0 and D′
p+2,

respectively, we obtain a cyclic graph which is a natural double cover of Γ(Ω̃).

This remark concludes the construction of the essential partition Ω̃ and the proof
of Proposition 1.5.

Corollary 8.9. The domains int Ω̃0, ..., int Ω̃p, as well as intΩ0, ..., intΩp, are uni-
form domains.

Proof. Since the domains intΩ′
1, intΩ′

2, and intΩ′
3 are uniform domains by Corol-

lary 5.2, we have that the domains int Ω0, ..., intΩp are uniform domains by bilipschitz
invariance of the uniformity condition. As int Ωk is bilipschitz to (int Ω̃k, dint Ω̃k

), we have
that int Ω̃k is a uniform domain for each k=0, ..., p.



sharpness of rickman’s picard theorem in all dimensions 305

Figure 56. Case p=5. From left to right: the cyclic adjacency graph of Ω̃, the adjacency graphs

Γ(Ω∩(σ×R)) and Γ(Ω∩(σ′×R)), the adjacency graphs Γ(Ω̃∩(σ×R)) and Γ(Ω̃∩(σ′×R)),

and the merge of Γ(Ω̃∩(σ×R)) and Γ(Ω̃∩(σ′×R)).
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