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1. Introduction

1.1. The model

The Lenz–Ising model in two dimensions is probably one of the most studied models for
an order-disorder phase transition, exhibiting very rich and interesting behavior, yet well
understood both from the mathematical and physical viewpoints [B], [MW2], [P].

After Kramers and Wannier [KW] derived the value of the critical temperature and
Onsager [O] analyzed the behavior of the partition function for the Ising model on the
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two-dimensional square lattice, a number of exact derivations were obtained by a variety
of methods. Thus it is often said that the 2D Ising model is exactly solvable or integrable.
Moreover, it has a conformally invariant scaling limit at criticality, which allows one to use
conformal field theory (CFT ) or Schramm’s SLE techniques. CFT provides predictions
for quantities like the correlation functions of the spin or the energy fields, which in
principle can then be related to SLE.

In this paper, we obtain a rigorous exact derivation of the one-point function of
the energy density, matching the CFT predictions [DMS], [C], [BG]. We exploit the
integrable structure of the 2D Ising model, but in a different way from the one employed
in the classical literature. Our approach is rather similar to Kenyon’s approach to the
dimer model [Ken].

We write the energy density in terms of discrete fermionic correlators, of the form
introduced in [S1]. These correlators solve a discrete version of a Riemann boundary
value problem, which identifies them uniquely. In principle, this could be used to give
an exact, albeit very complicated, formula, that one could try to simplify—a strategy
similar to most of the earlier approaches. Instead we pass to the scaling limit, showing
that the solution to the discrete boundary value problem approximates well its continuous
counterpart, which can be easily written using conformal maps. Thus we obtain a short
expression, approximating the energy density to the first order. Moreover, our method
works in any simply connected planar domain, and the answer is, as expected, conformally
covariant.

The fermionic approach to the Ising model was introduced by Kaufman [Ka]. The
fermionic correlators were in particular studied by Kadanoff and Ceva [KC] and later in
Mercat [M], but their scaling limits with boundary conditions were not discussed before
[S1]. Our results have been generalized in [Ho], where the limits of n-point correlation
functions of the energy density are obtained, via the introduction of multipoint fermionic
correlators. Scaling limits of the n-point spin correlations are obtained in [CHI], via the
introduction of spinors and the analysis of their scaling limits.

Recall that the Ising model on a graph G is defined by a Gibbs probability measure
on configurations of ±1 (or up/down) spins located at the vertices: it is a random
assignment (σx)x∈V of ±1 spins to the vertices V of G and the probability of a state is
proportional to its Boltzmann weight e−βH , where β>0 is the inverse temperature of the
model and H is the Hamiltonian, or energy, of the state σ. In the Ising model with no
external magnetic field, we have H :=−

∑
i∼j σiσj , where the sum is over all the pairs of

adjacent vertices of G.
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1.2. The energy density

Let Ω be a Jordan domain and let Ωδ be a discretization of it by a subgraph of the square
grid of mesh size δ>0. We consider the Ising model on the graph Ωδ at the critical inverse
temperature βc= 1

2 log(
√

2+1); on the boundary of Ωδ, we may impose the value +1 to
the spins or let them free (we call these + and free boundary conditions respectively).
Our main result about the energy density is the following.

Theorem. Let a∈Ω and for each δ>0, let 〈xδ, yδ〉 be the closest edge to a in Ωδ.
Then, as δ!0, we have

E+

[
σxδ

σyδ
−
√

2
2

]
=
lΩ(a)
2π

δ+o(δ) and Efree

[
σxδ

σyδ
−
√

2
2

]
=− lΩ(a)

2π
δ+o(δ),

where the subscripts + and free denote the boundary conditions and lΩ is the element of
the hyperbolic metric of Ω.

A precise version of this theorem in terms of the energy density field is given in §1.4.
This result has been predicted for a long time by CFT methods (see [DMS] and [BG]
for instance), notably using Cardy’s celebrated mirror image technique [C]. However,
the CFT approach does not allow one to determine the lattice-specific constant 1/2π
appearing in front of the hyperbolic metric element.

This is one of the first results where full conformal invariance (i.e. not only Möbius
invariance) of a correlation function for the Ising model is actually shown. The proof
does not appeal to the SLE machinery, although the fermionic correlator that we use
is very similar to the one employed to prove convergence of Ising interfaces to SLE(3)
[CS2]. A generalization of our result with mixed boundary conditions could also be used
to deduce convergence to SLE.

In the case of the full plane, the energy density correlations have been first computed
by Hecht [He] using transfer matrix techniques. These results were later generalized by
Boutillier and De Tiliére, using dimer model techniques [BT1], [BT2]. However, their
approach works only in the infinite-volume limit or in periodic domains and does not
directly apply to arbitrary bounded domains.

In the case of the half-plane, the energy density one-point function has been recently
obtained by Assis and McCoy [AM] (passing to the limit the finite-scale results of [MW1]),
using transfer matrix techniques.

The strategy for the proof of our theorem relies mainly on:
• The introduction of a discrete fermionic correlator, which is a complex deformation

of a certain partition function, and of an infinite-volume version of this correlator.
• The expression of the energy density in terms of discrete fermionic correlators.
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• The proof of the convergence of the discrete fermionic correlators to continuous
ones, which are holomorphic functions.

1.3. Graph notation

Let us first give some general graph notation. Let G be a graph embedded in the complex
plane C.

• We denote by VG the set of the vertices of G, by EG the set of its (unoriented)
edges, and by ~EG the set of its oriented edges.

• We identify the vertices VG with the corresponding points in the complex plane
(since G is embedded). An oriented edge is identified with the difference of the final
vertex minus the initial one.

• Two vertices v1, v2∈VG are said to be adjacent if they are the endpoints of an
edge, denoted 〈v1, v2〉, and two distinct edges e1, e2∈EG are said to be incident if they
share an endvertex.

1.3.1. Discrete domains

• We denote by Cδ the square grid of mesh size δ>0. Its vertices and edges are
defined by

VCδ
:= {δ(j+ik) : j, k∈Z} and ECδ

:= {〈v1, v2〉 : v1, v2 ∈VCδ
and |v1−v2|= δ}.

• In order to keep the notation as simple as possible, we will only look at finite
induced subgraphs Ωδ of Cδ (two vertices of Ωδ are linked by an edge in Ωδ whenever
they are linked in Cδ), that we will also call discrete domains.

• For a discrete domain Ωδ, we denote by Ω∗
δ the dual graph of Ωδ: its vertices VΩ∗δ

are the centers of the bounded faces of Ωδ and two vertices of VΩ∗δ
are linked by an edge

of EΩ∗δ
if the corresponding faces of Ωδ share an edge.

• We denote by ∂VΩδ
the set of vertices of VCδ

\VΩδ
that are at distance δ from a

vertex of VΩδ
(i.e. that are adjacent in Cδ to a vertex of VΩδ

) and by ∂EΩδ
⊂ECδ

the set
of edges between a vertex of VΩδ

and a vertex of ∂VΩδ
. The vertices in ∂VΩδ

appear
with multiplicity: if a vertex of VCδ

\VΩδ
is at distance δ to several vertices of VΩδ

, then
it appears as so many distinct elements of ∂VΩδ

. In other words, there is a one-to-one
correspondence between ∂VΩδ

and ∂EΩδ
.

• We denote by ∂VΩ∗δ
the centers of the faces of Cδ that are adjacent to a face of

Ωδ. We denote by ∂EΩ∗δ
⊂EC∗δ the set of dual edges between a vertex of VΩ∗δ

and a vertex
of ∂VΩ∗δ

. For an edge e∈EΩδ
we denote by e∗∈EΩ∗δ

its dual (e and e∗ intersect at their
midpoint).



the energy density in the planar ising model 195

VΩδ

∂VΩδ

VΩ∗δ

∂VΩ∗δ

VΩM
δ

EΩδ

EΩM
δ

∂EΩδ

δ

Figure 1.1. Notation for discrete domains

• We write 	VΩδ
for VΩδ

∪∂VΩδ
and 	VΩ∗δ

for VΩ∗δ
∪∂VΩ∗δ

.
• We denote by EhΩδ

⊂EΩδ
the set of the horizontal (i.e. parallel to the real axis)

edges of Ωδ and by EvΩδ
:=EΩδ

\EhΩδ
the set of the vertical ones.

• We denote by ΩMδ the medial graph of Ωδ: its vertices VΩM
δ

are the midpoints
of the edges of EΩδ

∪∂EΩδ
and the medial edges EΩM

δ
link midpoints of incident edges of

EΩδ
∪∂EΩδ

.
• We say that a family (Ωδ)δ>0 of discrete domains (with Ωδ⊂Cδ for each δ>0)

approximates or discretizes a continuous domain Ω if for each δ>0, Ωδ is the largest
connected induced subgraph of Cδ contained in Ω.

1.3.2. The Ising model with boundary conditions

The Ising model (with free boundary conditions) on a finite graph G (in this paper, G will
be a discrete domain Ωδ or its dual Ω∗

δ) at inverse temperature β>0 is a model whose
state space ΞG is given by ΞG :={(σx)x∈VG :σx∈{±1}}: a state assigns to every vertex x
of G a spin σx∈{±1}. The probability of a configuration σ∈ΞG is

Pβ,freeG {σ} :=
1

Zβ,freeG
e−βH

β,free
G (σ),

with the energy (or Hamiltonian) Hβ,free
G of a configuration σ given by

Hβ,free
G (σ) :=−

∑
〈x,y〉∈EG

σxσy,
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and the partition function Zβ,freeG by

Zβ,freeG :=
∑
σ∈ΞG

e−βH(σ).

Given a graph G with boundary vertices ∂VG (like Ω∗
δ with ∂VΩ∗δ

) the Ising model
on G with + boundary condition is defined as the Ising model on G, with extra spins
located at the vertices of ∂VG that are set to +1 and with energy

Hβ,+
G (σ) :=−

∑
〈x,y〉∈ĒG

σxσy,

where ĒG is the set of edges linking vertices of VG∪∂VG .
In this paper, we will be interested in the Ising model with free and + boundary

conditions on discrete square grid domains Ωδ at the critical inverse temperature

βc :=
1
2

log(
√

2+1),

when the mesh size δ is small.
We will from now on omit the inverse temperature parameter β in the notation and

will denote by Pfree
G and P+

G the probability measures of the Ising model on G at β=βc
with free and + boundary conditions and by Efree

G and E+
G the corresponding expectations.

1.4. The energy density

Let Ωδ be a discrete domain and let aδ∈VΩM
δ

be the midpoint of a horizontal edge of
Ωδ. We introduce the two quantities 〈εδ(aδ)〉freeΩδ

and 〈εδ(aδ)〉+Ω∗δ , called average energy
density (with free and + boundary conditions), defined by

〈εδ(aδ)〉freeΩδ
:= Efree

Ωδ

[
σeδ

σwδ
−
√

2
2

]
and 〈εδ(aδ)〉+Ω∗δ := E+

Ω∗δ

[
σnδ

σsδ
−
√

2
2

]
,

where 〈eδ, wδ〉∈EΩδ
and 〈nδ, sδ〉∈EΩ∗δ

are respectively the (horizontal) edge and the dual
(vertical) edge, the midpoint of both of which is aδ (see Figures 1.2 and 1.3). The
quantity 1

2

√
2 is the infinite-volume limit of the product of two adjacent spins (it can

be found in [MW2, Chapter VIII, Formula 4.12], for instance). The energy density field
is the fluctuation of the product of adjacent spins around this limit: it measures the
distribution of the energy H among the edges, as a function of their locations. We are
considering horizontal edges on Ωδ and vertical edges on Ω∗

δ for concreteness and for
making the notation simpler, but our results are rotationally invariant.

We can now state the main result of this paper, which is the conformal covariance
of the average energy density.
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Figure 1.2. The Ising model on VΩ∗δ
with + boundary condition, with the contours corre-

sponding to its low-temperature expansion.

Theorem 1.1. Let Ω be a C1 simply connected domain and let a∈Ω. Consider a
family (Ωδ)δ>0 of discrete domains approximating Ω and for each δ>0, let aδ∈VΩM

δ
be

the midpoint of the horizontal edge that is the closest to a. Then, as δ!0, uniformly on
the compact subsets of Ω, we have

1
δ
〈εδ(aδ)〉+Ω∗δ !

1
2π
`Ω(a) and

1
δ
〈εδ(aδ)〉freeΩ∗δ

!− 1
2π
`Ω(a),

`Ω(a) being the hyperbolic metric element of Ω at a. Namely, `Ω(a):=2ψ′a(a), where ψa
is the conformal mapping from Ω to the unit disk D:={z∈C:|z|<1} such that ψa(a)=0
and ψ′a(a)>0.

The proof will be given in §1.6.

Corollary 1.2. The conclusions of Theorem 1.1 hold under the assumption that
Ω is a Jordan domain.

Proof. We have that 〈εδ(aδ)〉+Ωδ
and 〈εδ(aδ)〉freeΩδ

are, respectively, non-increasing
and non-decreasing with respect to the discrete domain Ωδ, as follows easily from the
Fortuin–Kasteleyn–Ginibre inequality applied to the Fortuin–Kasteleyn representation
of the model (see [G, Chapters 1 and 2], for instance): if Ωδ⊂Ω̃δ, then

〈εδ(aδ)〉+Ω∗δ > 〈εδ(aδ)〉+Ω̃∗δ
and 〈εδ(aδ)〉freeΩδ

6 〈εδ(aδ)〉freeΩ̃δ
.



198 c. hongler and s. smirnov

+

+

++

+

++

+

+

+

+

+

+

+++

+ + +

+ +

+

+

+

-

-

-

-

-

-

--

-

-

--

-

- -

-- -

-

-

-

-

a

Figure 1.3. The Ising model on VΩδ
with free boundary condition.

If Ω is a Jordan domain, we can approximate Ω by increasing and decreasing sequences
of smooth domains, for which Theorem 1.1 applies, and deduce the result for Ω.

The central idea for proving Theorem 1.1 is to introduce a discrete fermionic cor-
relator which is a two-point function fΩδ

(a, z); it is defined in the next subsection. We
then relate fΩδ

to the average energy density and prove its convergence to a holomorphic
function fΩ.

1.5. Contour statistics and discrete fermionic correlators

1.5.1. Contour statistics

Let Ωδ be a discrete domain. We denote by CΩδ
the set of edge collections ω⊂EΩδ

such
that every vertex v∈VΩδ

belongs to an even number of edges of ω: in other words,
by Euler’s theorem for walks, the edge collections ω∈CΩδ

are the ones that consist of
edges forming (not necessarily simple) closed contours. For an edge e∈EΩδ

, we denote
by C{e+}Ωδ

the set of configurations ω∈CΩδ
that do not contain e and by C{e−}Ωδ

the set of
configurations that do contain e.

Set α:=
√

2−1. For a collection of edges ω⊂EΩδ
, we denote by |ω| its cardinality.

For e∈EΩδ
we define

ZΩδ
:=

∑
ω∈CΩδ

α|ω|, Z{e+}Ωδ
:=

∑
ω∈C{e+}

Ωδ

α|ω| and Z{e−}Ωδ
:=

∑
ω∈C{e−}

Ωδ

α|ω|.

We now have the following representation of the energy density in terms of contour
statistics.
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Proposition 1.3. Let e∈EhΩδ
be a horizontal edge and let its midpoint be a∈VΩM

δ
.

Then we have

〈εδ(a)〉+Ω∗δ =
Z{e+}Ωδ

ZΩδ

−
Z{e−}Ωδ

ZΩδ

−
√

2
2

=2
Z{e+}Ωδ

ZΩδ

−
√

2+2
2

and 〈εδ(a)〉freeΩδ
=−〈εδ(a)〉+Ω∗δ .

Proof. From the low-temperature expansion of the Ising model (see [P, Chapter 1],
for instance), there is a natural bijection between the configurations of spins σ on VΩ∗δ

with + boundary condition on ∂VΩ∗δ
, and the edge collections ω∈CΩδ

: one puts an edge
e∈EΩδ

in the edge collection ω if the spins of σ at the endpoints of the dual edge e∗∈EΩ∗δ

are different. It is easy to see that the probability measure on CΩδ
induced by this

bijection gives to each edge collection ω∈CΩδ
a weight proportional to (e−2β)|ω|, and

hence to α|ω|, where α=
√

2−1 as above (since β=βc= 1
2 log(

√
2+1)). The event that

the spins at two adjacent dual vertices x, y∈VΩ∗δ
are the same (respectively are different)

corresponds through the natural bijection to C{e+}Ωδ
(respectively C{e−}Ωδ

), where e∈EΩδ
is

such that e∗=〈x, y〉. Using that Z{e+}Ωδ
+Z{e−}Ωδ

=ZΩδ
, we deduce the first identity.

From the so-called high-temperature expansion (see [P, Chapter 1]) we have that
for the Ising model on Ωδ with free boundary condition, the correlation of two spins
z1, z2∈VΩδ

is equal to ∑
ω̃∈CΩδ

(z1,z2)
(tanhβ)|ω̃|∑

ω∈CΩδ
(tanhβ)|ω|

,

where CΩδ
(z1, z2) is the set of edge collections ω̃ such that every vertex in VΩδ

\{z1, z2}
belongs to an even number of edges of ω̃ and such that z1 and z2 both belong to an
odd number of edges of ω̃. At β=βc, we have tanhβ=α (the fact that tanhβc=e−2βc

actually characterizes βc).
Let us now take z1 and z2 adjacent, set e:=〈z1, z2〉∈EΩδ

, and denote by C+
Ωδ

(z1, z2)
and C−Ωδ

(z1, z2) the sets of ω̃∈CΩδ
(z1, z2) such that e∈ω̃ and e /∈ω̃ respectively. From

each ω̃∈C+
Ωδ

(z1, z2), we can remove e and obtain an edge collection in C{e+}Ωδ
(this map

C+
Ωδ

(z1, z2)!C{e
+}

Ωδ
is bijective) and to each ω̃∈C−Ωδ

(z1, z2), we can add e and obtain an

edge collection in C{e−}Ωδ
. Hence we have

〈εδ(a)〉freeΩδ
=

∑
ω̃∈C+

Ωδ
(z1,z2)

α|ω̃|

ZΩδ

+

∑
ω̃∈C−Ωδ

(z1,z2)
α|ω̃|

ZΩδ

−
√

2
2

=
α

∑
ω∈C{e+}

Ωδ

α|ω|

ZΩδ

+
α−1

∑
ω∈C{e−}

Ωδ

α|ω|

ZΩδ

−
√

2
2

=
αZ{e+}Ωδ

+α−1Z{e−}Ωδ

ZΩδ

−
√

2
2
.

Using the relation Z{e+}Ωδ
+Z{e−}Ωδ

=ZΩδ
, we obtain the second identity.
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1.5.2. The discrete fermionic correlator in bounded domains

If a∈VΩM
δ

is the midpoint of a horizontal edge e1∈EhΩδ
and z∈VΩM

δ
is the midpoint of an

arbitrary edge e2∈EΩδ
∪∂EΩδ

, we denote by CΩδ
(a, z) the set of γ consisting of edges of

EΩδ
\{e1, e2} and of two half-edges (half of an edge between its midpoint and one of its

ends) such that
• one of the half-edges has endpoints a and a+ 1

2δ;
• the other half-edge is incident to z;
• every vertex v∈VΩδ

belongs to an even number of edges or half-edges of γ.
For a configuration γ∈CΩδ

(a, z), we say that a sequence e0, e1, ..., en is an admissible walk
along γ if

• e0 is the half-edge incident to a;
• en is the half-edge incident to z;
• e1, ..., en−1∈EΩδ

are edges;
• ej and ej+1 are incident for each j∈{0, ..., n−1};
• each edge appears at most once in the walk;
• when one follows the walk and arrives at a vertex that belongs to four edges or

half-edges of γ (we call this an ambiguity), one either turns left or right (going straight
in that case is forbidden).

It is easy to see that, for any γ∈CΩδ
(a, z), such a walk always exists, though in

general it is not unique (see Figure 1.4).

Given a configuration γ∈CΩδ
(a, z) and an admissible walk along γ, we define the

winding number W of γ, denoted W(γ)∈R/4πZ, by

W(γ) := 1
2π(nl−nr),

where nl and nr are the number of left turns and right turns, respectively, that the
admissible walk makes from a to z: it is the total rotation of the walk between a and z,
measured in radians. More generally, we define the winding number of a rectifiable
curve as its total rotation from its initial point to its final point, measured in radians.
The following lemma shows that the winding number (modulo 4π) of a configuration
γ∈CΩδ

(a, z) is actually independent of the choice of the walk on γ.

Lemma 1.4. For any γ∈CΩδ
(a, z), the winding number W(γ)∈R/4πZ is indepen-

dent of the choice of admissible walk along γ.

The proof is given in Appendix A.

Due to Lemma 1.4, we can now define the discrete fermionic correlator fΩδ
that will

be instrumental in our studies of the energy density.
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a

z

Figure 1.4. An admissible walk in a configuration in CΩδ
(a, z). There are sixteen different

choices of such walks in this configuration.

Definition 1.5. For any midpoint of a horizontal edge a∈VΩM
δ

, we define the discrete
fermionic correlator fΩδ

(a, ·):VΩM
δ
!C by

fΩδ
(a, z) :=

1
ZΩδ

∑
γ∈CΩδ

(a,z)

α|γ|e−(i/2)W(γ) and fΩδ
(a, a) :=

Z{e+}Ωδ

ZΩδ

,

where |γ| denotes the number of edges and half-edges of γ, with the half-edges contribut-
ing 1

2 each.

In this way, z 7!fΩδ
(a, z) is a function whose value at z=a gives (up to an additive

constant) the average energy density at a. As we will see, moving the point z across the
domain will allow us to gain information about the effect of the geometry of the domain
on the energy density.

1.5.3. The discrete fermionic correlator in the full plane

As mentioned above, the 1
2

√
2 appearing in the definition of the average energy density

(§1.4) is the infinite volume limit (or full-plane) average product of two adjacent spins,
which one has to subtract in order for the effect of the shape of the domain to be
studied. We now introduce a full-plane version of the discrete fermionic correlator, whose
definition a priori seems quite different from the bounded domain version. It will allow
us to represent the energy density (with the correct additive constant) in terms of the
difference of two discrete fermionic correlators.
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Definition 1.6. For a, z∈VΩM
δ

with a 6=z and a being the midpoint of a horizontal
edge, define fCδ

by

fCδ
(a, z) := cos

(π
8

)
eπi/8

(
C0

(
2
(
a+ 1

2δ
)

δ
,
2z
δ

)
+C0

(
2
(
a− 1

2 iδ
)

δ
,
2z
δ

))
+sin

(π
8

)
e−3πi/8

(
C0

(
2
(
a− 1

2δ
)

δ
,
2z
δ

)
+C0

(
2
(
a+ 1

2 iδ
)

δ
,
2z
δ

))
,

where C0(z1, z2):=C0(0, z2−z1) is the dimer coupling function of Kenyon (see [Ken]),
defined (on {(z1, z2)∈Z2 :z1+z2 is odd}) by

C(0, x+iy) :=
1

4π2

∫ 2π

0

∫ 2π

0

ei(xθ−yφ)

2i sin θ+2 sinφ
dθ dφ.

We set fCδ
(a, a):= 1

4 (2+
√

2). This value corresponds to the limit of fΩδ
(a, a)=Z{e+}Ωδ

/ZΩδ

when Ωδ!Cδ. We will not use this fact, though, but rather that fCδ
(a, ·) and fΩδ

(a, ·)
have the same discrete singularity at a (see Propositions 2.6 and 2.9).

From our definitions up to now and from Proposition 1.3, we deduce the following
result.

Lemma 1.7. Let Ωδ be a discrete domain and a∈VΩM
δ

be the midpoint of a horizontal
edge of Ωδ. Then the average energy density can be represented as

〈εδ(a)〉+Ω∗δ =2(fΩδ
−fCδ

)(a, a) and 〈εδ(a)〉freeΩδ
=−2(fΩδ

−fCδ
)(a, a).

1.6. Convergence results and proof of Theorem 1.1

The core of this paper is the convergence of the discrete fermionic correlators to continu-
ous ones, which are holomorphic functions. Let us define these functions first: for a, z∈Ω
with a 6=z, we define

fΩ(a, z) :=
1
2π

√
ψ′a(a)

√
ψ′a(z)

ψa(z)+1
ψa(z)

and fC(a, z) :=
1

2π(z−a)
,

where ψa is the unique conformal mapping from Ω to the unit disk D with ψa(a)=0 and
ψ′a(a)>0 (this mapping exists by the Riemann mapping theorem). Note that z 7!fΩ(a, z)
and z 7!fC(a, z) both have a simple pole of residue 1/2π at z=a and that (fΩ−fC)(a, z)
hence extends holomorphically to z=a.

We can now state the key theorem of this paper.
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Theorem 1.8. For each δ>0, identify a∈C with the closest midpoint of a horizontal
edge of Cδ and z∈C with the closest midpoint of an edge of Cδ. Then, as δ!0, we have
the following convergence results:

fΩδ
(a, z)
δ

! fΩ(a, z) for all a, z ∈Ω with a 6= z,

fCδ
(a, z)
δ

! fC(a, z) for all a, z ∈C with a 6= z,

(fΩδ
−fCδ

)(a, z)
δ

! (fΩ−fC)(a, z) for all a, z ∈Ω,

where the convergence of fΩδ
/δ is uniform on the compact subsets of Ω×Ω away from

the diagonal {(w,w):w∈Ω}, the convergence of fCδ
/δ is uniform on C×C away from the

diagonal {(w,w):w∈C} and the convergence of (fΩδ
−fCδ

)/δ is uniform on the compact
subsets of Ω×Ω.

From this result, the proof of the main theorem follows readily: since we have
(Lemma 1.7)

〈εδ(a)〉+Ω∗δ =2(fΩδ
−fCδ

)(a, a) and 〈εδ(a)〉freeΩδ
=−2(fΩδ

−fCδ
)(a, a),

and since (fΩδ
−fCδ

)/δ converges to (fΩ−fC)(a, a), it suffices to check that(√
ψ′a(a)

√
ψ′a(z)

ψa(z)+1
ψa(z)

− 1
z−a

)
!ψ′a(a) as z! a,

which follows readily by verifying that√
ψ′a(a)

√
ψ′a(z)

ψa(z)
− 1
z−a

! 0 as z! a.

To prove this, notice that since√
ψ′a(a)

√
ψ′a(z)

ψa(z)
=

1
z−a

+A+O(z−a) as z! a,

by squaring this expression, it suffices to check that the residue of ψ′a(z)/ψ
2
a(z) at z=a

vanishes. By contour integrating on a small circle C around a and using the change of
variable formula (since ψa is conformal), we have

4πiA
ψ′a(a)

=
∮
C

ψ′a(z) dz
ψa(z)2

=
∮
ψ−1

a (C)

dw

w2
=0.
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1.7. Proof of convergence

The rest of this paper is devoted to the proof of the key theorem (Theorem 1.8). This
proof consists mainly of two parts:

• The analysis of the discrete fermionic correlators fΩδ
and fCδ

as functions of
their second variable (§2):

– We prove that fΩδ
(a, ·) and fCδ

(a, ·) are discrete holomorphic (in a specific
sense) on VΩM

δ
\{a} and VCM

δ
\{a}, respectively (Propositions 2.5 and 2.6).

– We show that fΩδ
(a, ·) and fCδ

(a, ·) have the same discrete singularity at
a: their difference (fΩδ

−fCδ
)(a, ·) is hence discrete holomorphic on VΩM

δ

(Propositions 2.7–2.9).
– We observe that fΩδ

(a, ·) has some specific boundary values on ∂0VΩM
δ

(Proposition 2.10).
• The proof of convergence of the functions fΩδ

/δ, fCδ
/δ and (fΩδ

−fCδ
)/δ (§3):

– The convergence of fCδ
/δ follows directly from the convergence result of

Kenyon for the dimer coupling function (Theorem 3.1).
– We show that the family of functions ((fΩδ

−fCδ
)/δ)δ>0 is precompact on the

compact subsets of Ω×Ω: it admits subsequences which converge as δ!0
(Proposition 3.2). Hence (fΩδ

/δ)δ>0 is also precompact on the compact
subsets of Ω×Ω away from the diagonal.

– We identify the δ!0 limits of subsequences of fΩδ
/δ with the function fΩ

(Proposition 3.6). This allows us to conclude the proof of Theorem 1.8.
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2. Analysis of the discrete fermionic correlators

In this section, we study the properties of the discrete fermionic correlators fΩδ
and fCδ

that follow from their constructions. In the next section, we will use these properties to
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prove Theorem 1.8.
We study both correlators as functions fΩδ

(a, ·) and fCδ
(a, ·) of their second variable,

keeping fixed the medial vertex a∈VΩM
δ

(which is the midpoint of a horizontal edge of Ωδ).
Let us first introduce the discrete versions of the differential operators ∂̄ and ∆ that

will be useful in this paper: for a C-valued function f , we define, wherever it makes sense
(i.e. for vertices of VΩδ

∪VΩ∗δ
),

∂̄δf(x) := f
(
x+ 1

2δ
)
−f

(
x− 1

2δ
)
+i

(
f
(
x+ 1

2 iδ
)
−f

(
x− 1

2 iδ
))
,

∆δf(x) := f(x+δ)+f(x+iδ)+f(x−δ)+f(x−iδ)−4f(x).

In the case where one has that a vertex y∈{x±δ, x±iδ} belongs to ∂VΩδ
in the definition

of ∆δ, the boundary vertex is the one identified with the edge 〈x, y〉∈∂EΩδ
.

If e=−→xy∈~EΩδ
is an oriented edge with x, y∈	VΩδ

and f is a function 	VΩδ
!C we

denote by ∂ef the discrete partial derivative defined by ∂ef :=f(y)−f(x).

2.1. Discrete holomorphicity

It turns out that the functions fΩδ
(a, ·) and fCδ

(a, ·) are discrete holomorphic in a specific
sense, which we call s-holomorphicity or spin-holomorphicity.

Let us first define this notion. With any medial edge e∈ECM
δ

, we associate a line
`(e)⊂C of the complex plane defined by

`(e) := (d−v)−1/2R = {(d−v)−1/2t : t∈R},

where v∈VCδ
is the closest vertex to e and d∈VC∗δ is the closest dual vertex to e. On the

square lattice, the four possible lines that we obtain are e±πi/8R and e±3πi/8R. When
`:=eiθR is a line in the complex plane passing through the origin, let us denote by P`

the orthogonal projection on `, defined by

P`[z] := 1
2 (z+e2iθ z̄) for all z ∈C.

Definition 2.1. Let Mδ⊂VCM
δ

be a collection of medial vertices. We say that
f :Mδ!C is s-holomorphic on Mδ if for any two medial vertices x, y∈Mδ that are
adjacent in CMδ ,

P`(e)[f(x)]= P`(e)[f(y)],

where e=〈x, y〉∈ECM
δ

.
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eπi/8R

e−πi/8R

e3πi/8R

e−3πi/8R

Figure 2.1. The lines associated with the medial edges of Ωδ .

Remark 2.2. Our definition is the same as the one introduced in [S2], except that
the lines that we consider are rotated by a phase of eπi/8, and that our lattice is rotated
by an angle of 1

4π, compared to the definitions there. In [CS2] this definition is also used,
in the more general context of isoradial graphs.

Remark 2.3. The definition of s-holomorphicity implies that a discrete version of
the Cauchy–Riemann equations is satisfied: if f :Mδ⊂VCM

δ
!C is s-holomorphic and

v∈VCδ
∪VC∗δ is such that the four medial vertices v± 1

2δ and v± 1
2 iδ are in Mδ, then we

have
∂̄δf(v) = 0.

This can be found in [S2] (it follows by taking a linear combination of the four s-
holomorphicity relations between the values f

(
v± 1

2δ
)

and f
(
v± 1

2 iδ
)
), as well as the

fact that satisfying this difference equation is strictly weaker than being s-holomorphic.

Remark 2.4. If λδ={−−−→vivi+1∈~EΩM
δ

:i∈Z/nZ} is a simple counterclockwise-oriented
closed discrete contour of medial edges and Λδ is the collection of points in VΩδ

∪VΩ∗δ

surrounded by λδ, then it is easy to check that for any function f :VΩM
δ
!C we have

∑
−−−−→vivi+1∈λδ

f(vi)+f(vi+1)
2

(vi+1−vi) = iδ
∑
z∈Λδ

∂̄δf(v).

In particular this sum vanishes if f is discrete holomorphic.

Proposition 2.5. The function fΩδ
(a, ·) is s-holomorphic on VΩM

δ
\{a}.

Proof. Let z, w∈VΩM
δ
\{a} be two adjacent medial vertices and let e∈EΩM

δ
be the

medial edge linking them. Suppose that z is the midpoint of a horizontal edge and that w
is the midpoint of a vertical edge. We prove the result in the case where w=z+ 1

2 (1+i)δ
(the other ones are symmetric). Denote by h the half-edge between z and z+ 1

2δ∈VΩδ

and by h̃ the half-edge between z+ 1
2δ and w. For any γ∈CΩδ

(a, z), define ϕ(γ):=γ⊕h⊕h̃
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as the symmetric difference of γ with {h, h̃}: if h is not in γ, add it, otherwise remove it,
and similarly for h̃. Clearly, ϕ is an involution mapping CΩδ

(a, z) to CΩδ
(a,w) and vice

versa. Moreover, for γ∈CΩδ
(a, z), we have

Pe−3πi/8R[α|γ|e−(i/2)W(γ)] = Pe−3πi/8R[α|ϕ(γ)|e−(i/2)W(ϕ(γ))]. (2.1)

This identity follows from considering the four possible cases, as shown in Figure 2.2:
(1) If h /∈γ and h̃ /∈γ, then we have e−(i/2)W(γ)∈R, |ϕ(γ)|=|γ|+1 and

e−(i/2)W(ϕ(γ)) = e−πi/4e−(i/2)W(γ).

(2) If h /∈γ and h̃∈γ, we have e−(i/2)W(γ)∈R, |ϕ(γ)|=|γ| and

e−(i/2)W(ϕ(γ)) = e−3πi/4e−(i/2)W(γ);

there are a number of subcases, as shown in Figure 2.2, for which these relations are
satisfied.

(3) If h∈γ and h̃∈γ, we have e−(i/2)W(γ)∈iR, |ϕ(γ)|=|γ|−1 and

e−(i/2)W(ϕ(γ)) = e−πi/4e−(i/2)W(γ) :

in this case, we can always choose an admissible walk on γ that is like in Figure 2.2.
(4) If h∈γ and h̃ /∈γ, we have e−(i/2)W(γ)∈iR, |ϕ(γ)|=|γ| and

e−(i/2)W(ϕ(γ)) = eπi/4e−(i/2)W(γ).

In all the four cases, it is then straightforward to check that equation (2.1) is satisfied.
By the definition of fΩδ

(§1.5), we finally deduce that

Pe−3πi/8R[fΩδ
(a, z)]=

1
ZΩδ

∑
γ∈CΩδ

(a,z)

Pe−3πi/8R[α|γ|e−(i/2)W(γ)]

=
1

ZΩδ

∑
γ̃∈CΩδ

(a,w)

Pe−3πi/8R[α|γ̃|e−(i/2)W(γ̃)] = Pe−3πi/8R[fΩδ
(a,w)],

which is the s-holomorphicity equation.

The full-plane discrete correlator is also s-holomorphic.

Proposition 2.6. The function fCδ
(a, ·) is s-holomorphic on VCM

δ
\{a}.

Proof. This follows directly from the definition of fCδ
(Definition 1.6) and from

Lemma B.1.
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w
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w

z

w

z

(1)

(2)

(2)

(2)

(2)

(3)

(4)

Figure 2.2. The four possible cases in the proof of Proposition 2.5: how a configuration is
changed after two half-edges between z and w are removed or added.
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2.2. Singularity

Near the medial vertex a, the functions fΩδ
(a, ·) and fCδ

(a, ·) are not s-holomorphic:
they both have a discrete singularity, but of the same nature, and consequently the
difference (fΩδ

−fCδ
)(a, ·) is s-holomorphic on VΩm

δ
, including the point a. Rather than

defining the notion of discrete singularity, let us simply describe the relations that these
functions satisfy near a. For x∈{±1±i}, let us denote by ax :=a+ 1

2xδ∈VΩM
δ

the medial
vertex adjacent to a, by ex∈EΩM

δ
the medial edge between a and ax, and by `x the line

`(ex) (as in Definition 2.1). Let e∈EhΩδ
be the horizontal edge with midpoint a. Recall

that fΩδ
(a, a) is defined as Z{e+}Ωδ

/ZΩδ
(see Definition 1.5).

Proposition 2.7. Near a, the function fΩδ
(a, ·) satisfies the relations

P`1+i [fΩδ
(a, a)]= P`1+i [fΩδ

(a, a1+i)],

P`1−i [fΩδ
(a, a)]= P`1−i [fΩδ

(a, a1−i)],

P`−1+i
[fΩδ

(a, a)−1]= P`−1+i
[fΩδ

(a, a−1+i)],

P`−1−i
[fΩδ

(a, a)−1]= P`−1−i
[fΩδ

(a, a−1−i)].

Proof. The first two relations are the s-holomorphicity relations and they are ob-
tained in exactly the same way as the s-holomorphicity relations away from a. Indeed,
let us use the same notation as in the proof of Proposition 2.5. First recall that for
γ∈CΩδ

(a, a1±i) the half-edge of γ starting at a goes to a1. Now consider the involutions
ϕ1+i: C{e

+}
Ωδ
!CΩδ

(a, a1+i) and ϕ1−i: C{e
+}

Ωδ
!CΩδ

(a, a1−i) defined by

ϕ1+i(γ) := γ⊕〈a, a1〉⊕〈a1, a1+i〉 and ϕ1−i(γ) := γ⊕〈a, a1〉⊕〈a1, a1−i〉,

respectively: as in the proof of Proposition 2.7, we have that these involutions preserve
the projections on `1+i and `1−i respectively (a configuration γ∈C{e+}Ωδ

is interpreted as
a configuration with winding number 0).

For the last two relations, we have that the involutions ϕ−1+i: C{e
−}

Ωδ
!CΩδ

(a, a−1+i)

and ϕ−1−i: C{e
−}

Ωδ
!CΩδ

(a, a−1−i), respectively defined by

ϕ−1+i(γ) := γ⊕〈a, a−1〉⊕〈a−1, a−1+i〉 and ϕ−1−i(γ) := γ⊕〈a, a−1〉⊕〈a−1, a−1−i〉,

are such that for any γ∈C{e−}Ωδ
we have

−P`−1+i [α
|γ|] = P`−1+i [α

|γ|e−(i/2)W(γ)] = P`−1+i [α
|ϕ−1+i(γ)|e−(i/2)W(ϕ−1+i(γ))],

−P`−1−i [α
|γ|] = P`−1−i [α

|γ|e−(i/2)W(γ)] = P`−1−i [α
|ϕ−1−i(γ)|e−(i/2)W(ϕ−1−i(γ))],

where γ is interpreted as a configuration with a path from a to a that makes a loop,
with winding number ±2π. This follows from the same considerations as in the proof
of Proposition 2.5. Hence, since Z{e−}Ωδ

/ZΩδ
=1−fΩδ

(a, a), we obtain, by summing the

above equations over all γ∈C{e−}Ωδ
, the last two identities of Proposition 2.7.
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The function fCδ
(a, ·) has the same type of discrete singularity as fΩδ

(a, ·).

Proposition 2.8. Near a, the function fCδ
(a, ·) satisfies exactly the same projec-

tion relations as the ones satisfied by the function fΩδ
(a, ·), given by Proposition 2.7.

Proof. See Proposition B.2 in Appendix B.

From Propositions 2.5–2.8, we readily deduce the following result.

Proposition 2.9. The function (fΩδ
−fCδ

)(a, ·):VΩM
δ
!C is s-holomorphic on VΩM

δ
.

2.3. Boundary values

A crucial piece of information to understand the effect of the geometry of the discrete
domain Ωδ on the average energy density at a∈VΩM

δ
is the boundary behavior of fΩδ

(a, ·).
On the set of boundary medial vertices ∂0VΩM

δ
, which link a vertex of Ωδ and a vertex of

∂Ωδ, the argument of fΩδ
(a, ·) is determined modulo π. For each z∈∂0VΩM

δ
, with z being

the midpoint of an edge e∈∂EΩδ
between a vertex x∈VΩδ

and a vertex y∈∂VΩδ
, denote

by νout(z)∈∂~EΩδ
the oriented outward-pointing edge at z, identified with the number

y−x: it is a discrete analogue of the outward-pointing normal to the domain.

Proposition 2.10. On ∂0VΩM
δ

, the argument of the value of fΩδ
(a, ·) is determined

(modulo π): for each z∈∂0VΩM
δ

, we have

Im(fΩδ
(a, z)ν1/2

out (z))= 0.

Proof. From topological considerations, we have that if z∈∂0VΩM
δ

and γ∈CΩδ
(a, z),

then Im(e−(i/2)W(γ)ν
1/2
out (z))=0: the winding number of any admissible walk from a to

z is determined modulo 2π (see Figure 2.3) and it is easy to check that e−(i/2)W(γ) is a
real multiple of ν−1/2

out (z). Hence, the result follows from the definition of fΩδ
.

Remark 2.11. This is the same kind of Riemann-type boundary conditions as in [S2]
and [CS2]. Notice that in these papers, the argument of the function on the boundary is
fully determined (not only modulo π).

2.4. Discrete integration

An essential tool that we will use for deriving the convergence of fΩδ
(a, ·) is the possi-

bility to define a discrete version of the antiderivative of the square of an s-holomorphic
function, cf. [S2].
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z

a

Figure 2.3. When z∈∂0VΩM
δ

, the winding number of the walks on CΩδ
(a, z) is determined modulo 2π.

Proposition 2.12. Let f :VDM
δ
!C be an s-holomorphic function on a discrete do-

main Dδ and let x∈	VDδ
∪	VD∗

δ
(where 	VDδ

=VDδ
∪∂VDδ

and 	VD∗
δ
=VD∗

δ
∪∂VD∗

δ
). Then

there exists a (possibly multivalued) discrete analogue Ix,δ[f ]: 	VDδ
∪	VD∗

δ
!R of the anti-

derivative

z 7−!−Re
(∫ z

x

f2

)
,

uniquely defined by the equation

Ix,δ[f ](b)−Ix,δ[f ](w) =
√

2δ|P`(e∗)[f(y)]|2 =
√

2δ|P`(e∗)[f(z)]|2

for all b∈VΩδ
and w∈VΩ∗δ

such that |b−w|=δ/
√

2, where e∗=〈y, z〉∈EDM
δ

is the medial
edge which is between b and w, and by the condition Ix,δ[f ](x)=0. If Dδ is simply
connected, then the function Ix,δ[f ] is globally well defined (single-valued). When the
choice of the point x is irrelevant, we will omit it and simply write Iδ[f ].

Remark 2.13. It follows from the definition of Iδ[f ] that for any pair of adjacent
vertices x, y∈	VDδ

we have

Iδ[f ](x)−Iδ[f ](y) =−Re
(
f
(x+y

2

)2
(y−x)

)
,

and similarly if x, y∈	VD∗
δ

are adjacent dual vertices. From there it is easy to see that if
the mesh size is small, Iδ[f ] is a good approximation of −Re(

∫
x
f2).

We denote by I�x,δ[f ] and I�x,δ[f ] the restrictions of Ix,δ[f ] to 	VDδ
and 	VD∗

δ
respectively.

We have the following result.
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Proposition 2.14. The function I�δ[f ]: 	VDδ
!R is discrete subharmonic and the

function I�δ[f ]: 	VD∗
δ
!R is discrete superharmonic: we have

∆δI�δ[f ](v) > 0 for all v ∈VDδ
,

∆δI�δ[f ](v) 6 0 for all v ∈VD∗
δ
.

If m∈∂VDM
δ

, then we have

∂νout(m)I�δ[f ] = Im(f(m)ν1/2
out (m))2−Re(f(m)ν1/2

out (m))2,

where νout(m)∈∂~EDδ
is the oriented edge from a∈Dδ to b∈∂Dδ, the midpoint of which

is m.

Proof. For the subharmonicity/superharmonicity deduced from the s-holomorphicity
of f , see [S2, Lemma 3.8] (the fact that the phases are different does not affect the result).
The normal derivative statement follows directly from the definition of Iδ[f ].

In the case of the discrete fermionic correlator fΩδ
( · , ·), the boundary condition for

Iδ[fΩδ
(a, ·)]( ·) becomes particularly simple.

Proposition 2.15. The function I�δ[fΩδ
(a, ·)]: 	VΩ∗δ

!R is constant on ∂VΩ∗δ
and for

each m∈∂0VΩM
δ

,
∂νout(m)I�δ[fΩδ

(a, ·)]=−|fΩδ
(a,m)|2.

Proof. The first statement follows from the construction of I�δ[fΩδ
(a, ·)] and from

the boundary condition for fΩδ
(Proposition 2.10).

The statement for I�δ[fΩδ
(a, ·)] follows directly from Proposition 2.14 and the bound-

ary condition for fΩδ
(Proposition 2.10 again).

Remark 2.16. Note that Iδ[fΩδ
(a, ·)] is single-valued (as a consequence of Proposi-

tion 2.15) and well defined on 	VΩδ
∪	VΩ∗δ

but that the presence of a singularity near a
implies that and I�δ[fΩδ

(a, ·)] and I�δ[fΩδ
(a, ·)] are (at least a priori) not subharmonic or

superharmonic near a (more precisely at a± 1
2δ and a± 1

2 iδ).

3. Convergence of the discrete fermionic correlators

We now turn to the convergence of the three functions fΩδ
/δ, fCδ

/δ and (fΩδ
−fCδ

)/δ
as δ!0 (Theorem 1.8). For this, we use the discrete results derived in the previous
section: the s-holomorphicity, the discrete singularity and the boundary values. As we
will discuss convergence questions, we will always, when necessary, identify the points of
the complex plane with the closest vertices on the graphs considered. In this way, we
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will extend functions defined on the vertices of the graphs Ωδ, Ω∗
δ and Ωmδ to functions

defined on Ω. In particular, for the discrete holomorphic fermionic correlators, when
we write fΩδ

(a, z) or fCδ
(a, z) for a, z∈Ω, we identify a with the closest midpoint of a

horizontal edge of EhΩδ
and z with the closest midpoint of an arbitrary edge of EΩδ

.
The convergence of fCδ

almost immediately follows from the work of Kenyon [Ken].

Theorem 3.1. For any ε>0, we have

fCδ
(a, z)
δ

! fC(a, z) as δ! 0

uniformly on {(a, z)∈C2 :|a−z|>ε}, where

fC(a, z) =
1

2π(z−a)
.

Proof. See the last paragraph of Appendix B.

For the convergence of fΩδ
/δ and (fΩδ

−fCδ
)/δ, we proceed in two steps: we first

show that the family of functions ((fΩδ
−fCδ

)/δ)δ>0 is precompact. Precompactness for
(fΩδ

/δ)δ>0 will then readily follow from Theorem 3.1. We then identify uniquely the
limits of subsequences of (fΩδ

/δ)δ>0; this also identifies the ones of ((fΩδ
−fCδ

)/δ)δ>0.

3.1. Precompactness

We now state our main precompactness result.

Proposition 3.2. The family of functions(
(a, z) 7! (fΩδ

−fCδ
)(a, z)

δ

)
δ>0

is precompact in the topology of uniform convergence on the compact subsets of Ω×Ω,
and hence the family of functions(

(a, z) 7! fΩδ
(a, z)
δ

)
δ>0

is precompact in the topology of uniform convergence on the compact subsets of Ω×Ω
that are away from the diagonal.

Proof. Set fCδ

Ωδ
:=fΩδ

−fCδ
. By Proposition 2.10, we have that for any x∈∂0VΩM

δ
,

Im(fCδ

Ωδ
(a, x)ν1/2

out (x))=− Im(fCδ
(a, x)ν1/2

out (x)).
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By Theorem 3.1 and the fact that ∂Ω is smooth (and hence the number of medial vertices
in ∂0VΩM

δ
is O(δ−1)) we deduce that the family of functions

(
a 7!

∑
x∈∂0VΩM

δ

Im
(
fCδ

Ωδ
(a, x)
δ

ν
1/2
out (x)

)2

δ

)
δ>0

is uniformly bounded and equicontinuous on the compact subsets of Ω (since fCδ
/δ is

uniformly convergent by Theorem 3.1). By Proposition 3.3 below, we obtain that the
family of functions (

fCδ

Ωδ

δ
:VΩM

δ
×VΩM

δ
!C

)
δ>0

is uniformly bounded and equicontinuous and hence we get the desired result by extending
the functions fCδ

Ωδ
in a uniformly continuous way to Ω×Ω (for instance by piecewise-linear

interpolation) and by using then Arzelà–Ascoli theorem.

Proposition 3.3. There exists a universal constant C>0 such that for each δ>0
and any s-holomorphic function uδ:VΩM

δ
!C, we have, for any v∈VΩM

δ
\∂0VΩM

δ
,

|uδ(v)|6C

√√√√∑
x∈∂0VΩM

δ

Im(uδ(x)ν
1/2
out (x))2δ

dist(v, ∂0VΩM
δ

)
,

‖∇δuδ(v)‖2

δ
6C

√√√√∑
x∈∂0VΩM

δ

Im(uδ(x)ν
1/2
out (x))2δ

dist(v, ∂0VΩM
δ

)3
,

where ∇δuδ(v)=(uδ(v+δ)−uδ(v), uδ(v+iδ)−uδ(v)).

Proof. Consider the function Iδ[uδ], normalized to be 0 at an arbitrary point. By
subharmonicity (Proposition 2.14), a discrete integration by parts, and again by Propo-
sition 2.14, we obtain

0 6
∑
b∈VΩδ

∆δI�δ[uδ] =
∑

x∈∂0VΩM
δ

∂νout(x)I
�

δ[uδ]

=
∑

x∈∂0VΩM
δ

((Im(uδ(x)ν
1/2
out (x)))

2−(Re(uδ(x)ν
1/2
out (x)))

2)

and from the last identity we also deduce that∑
x∈∂0VΩM

δ

|uδ(x)|2 6 2
∑

x∈∂0VΩM
δ

(Im(uδ(x)ν
1/2
out (x)))

2.
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On the other hand, from the construction of Iδ[u], it is easy to see that

max
z∈∂VΩδ

∪∂VΩ∗
δ

|Iδ[uδ](z)|6
√

2
( ∑
x∈∂0VΩM

δ

|uδ(x)|2δ
)
.

By subharmonicity of I�δ[uδ], superharmonicity of I�δ[uδ] and the construction of Iδ[uδ]
(Proposition 2.12), we have

max
w∈	VΩδ

∪	VΩ∗
δ

|Iδ[uδ](w)|= max
z∈∂VΩδ

∪∂VΩ∗
δ

|Iδ[uδ](z)|.

By [CS2, Theorem 3.12] (the construction there is the same as the one of our paper, up
to a multiplication by an overall complex factor, which does not affect the result), there
exists then a universal constant C̃>0 such that for any v∈VΩM

δ
\∂0VΩM

δ
,

|uδ(v)|2 6 C̃
maxw∈	VΩδ

∪	VΩ∗
δ

|Iδ[uδ](w)|

dist(v, ∂0VΩM
δ

)
,

‖∇δuδ(v)‖2 6 C̃
maxw∈	VΩδ

∪	VΩ∗
δ

|Iδ[uδ](w)|

dist(v, ∂0VΩM
δ

)3
.

We therefore deduce the desired inequalities.

3.2. Identification of the limit

We can now uniquely identify the limits of subsequences of (fΩδ
/δ)δ>0 as δ!0 (we will

often make a slight of abuse of notation and simply denote the family of functions by
fΩδ

/δ). Let us start with a characterization of the continuous fermionic correlator fΩ(a, ·)
(defined in §1.6).

Lemma 3.4. The function fΩ(a, ·) is the unique holomorphic function such that

z 7−! fΩ(a, z)− 1
2π(z−a)

is bounded near z=a and such that

Im(fΩ(a, z)ν1/2
out (z))= 0 for all z ∈ ∂Ω, (3.1)

where νout denotes the outward-pointing normal to ∂Ω.
The boundary condition (3.1) is equivalent to the condition that the antiderivative

F (z) =−Re
(∫ z

f2
Ω(a,w) dw

)
is single-valued on Ω\{a}, constant on ∂Ω and satisfies

∂νout(z)F 6 0 for all z ∈ ∂Ω,

where ∂νout(z)F denotes the normal derivative of F in the outward-pointing direction.
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Proof. It is straightforward to check from the definition (§1.6) that fΩ(a, ·) has a
simple pole of order 1 and residue 1/2π at z=a, and satisfies the boundary condition
(3.1).

Let f̃ be another function with the same pole and boundary condition. Then the
function g defined by g(z):=fΩ(a, z)−f̃(z) extends holomorphically to Ω and satisfies

Im(g(z)ν1/2
out (z))= 0 for all z ∈ ∂Ω.

The function G: Ω!C defined by G(w):=
∫ w

g2(z) dz has constant real part on ∂Ω and
hence is constant on Ω, by the maximum principle and the Cauchy–Riemann equations.
Hence fΩ(a, ·)=f̃( ·).

For the second part of the statement, notice that the boundary condition (3.1)
implies that f2

Ω(a, ·)νout( ·) is purely real on ∂Ω, and hence F must be constant on ∂Ω
(when going along the boundary, one integrates f2

Ω(a, ·) dτ , where τ is the tangent to the
boundary, which is orthogonal to the normal νout); this implies that F is single-valued
on Ω\{a} (since Ω is simply connected) and that

∂νout(z)F =−|fΩ(a, z)|2 for all z ∈ ∂Ω.

Conversely, it is easy to check that if F is constant on ∂Ω, then for any z∈∂Ω, we
have f2

Ω(a, z)νout(z)∈R. Moreover, for any z∈∂Ω, we have that ∂νout(z)F60 implies
f2
Ω(a, z)νout(z)>0, which is equivalent to Im(fΩ(a, z)ν1/2

out (z))=0.

Let us also give a lemma which will be useful to connect the discrete correlators to
the continuous ones.

Lemma 3.5. We have the uniform bound

sup
δ>0

∑
z∈∂0VΩm

δ

|fΩδ
(z)|2δ <∞.

Proof. This follows directly from the the proof of precompactness of ((fΩδ
−fCδ

)/δ)δ
(Proposition 3.2), the convergence of fCδ

/δ (Theorem 3.1) and the fact that ∂Ω is smooth
(the number of medial vertices in ∂0VΩm

δ
is O(δ−1)).

We now identify the limits of subsequences of fΩδ
(a, ·)/δ as δ!0.

Proposition 3.6. Let δn be a sequence with δn!0 as n!∞ such that

fΩδn
(a, ·)
δn

! f( ·) as n!∞

uniformly on the compact subsets of Ω\{a}. Then f( ·)=fΩ(a, ·), where fΩ(a, ·) is
defined in §1.6.
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Proof. For each δ>0, set fδ( ·):=fΩδ
(a, ·)/δ.

Let us first remark that f( ·) is holomorphic on Ω\{a}, as it satisfies Morera’s
condition: the integral of f( ·) on any contractible contour vanishes, since it can be ap-
proximated by a Riemann sum involving fδn

( ·) (for δn small), which vanishes identically
as explained in Remark 2.4. Fix a point p∈Ω\{a}. By Lemma 3.4, to identify f with
fΩ(a, ·), it suffices to check that F , defined by

F (z) :=−Re
(∫ z

p

f2(w) dw
)
,

satisfies the conditions of the second part of that lemma.
Let Fδ: 	VΩδ

∪	VΩ∗δ
!R be the discrete antiderivative Ip,δ[fδ], as defined in Proposi-

tion 2.12, and let F �

δ and F �

δ denote the restrictions of Fδ to 	VΩδ
and 	VΩ∗δ

, which are
discrete subharmonic and superharmonic respectively (away from a), by Proposition 2.14.
By Proposition 2.15, the function F �

δ is constant on ∂VΩ∗δ
; denote by Fδ(∂Ω) this value.

Fix a smooth doubly connected domain Υ⊂Ω\{a} such that ∂Ω⊂∂Υ and dist(a, ∂Υ)>0
(one of the components of ∂Υ is ∂Ω and the other is a simple loop surrounding a). Let
us write F �

δ=:H�

δ+S
�

δ and F �

δ=:H�

δ+S
�

δ, where
• H�

δ : 	VΥδ
!R is discrete harmonic, with H�

δ :=F
�

δ on ∂VΥδ
,

• S�

δ: 	VΥδ
!R is discrete subharmonic, with S�

δ :=0 on ∂VΥδ
,

• H�

δ : 	VΥ∗
δ
!R is discrete harmonic, with H�

δ :=F
�

δ on ∂VΥ∗
δ
,

• S�

δ: 	VΥ∗
δ
!R is discrete superharmonic, with S�

δ :=0 on ∂VΥ∗
δ
.

Let us further decompose H�

δ as A�

δ+B
�

δ, where
• A�

δ is discrete harmonic with

A�

δ :=
{
Fδ(∂Ω) on ∂VΩδ

,
H�

δ on ∂VΥδ
\∂VΩδ

.

• B�

δ is discrete harmonic with

B�

δ :=
{
H�

δ−Fδ(∂Ω) on ∂VΩδ
,

0 on ∂VΥδ
\∂VΩδ

.

The situation is hence the following: for any z∈VΩδ
and w∈VΩ∗δ

such that |z−w|=δ/
√

2,
from the construction of Fδ, the superharmonicity of F �

δ and the subharmonicity of F �

δ ,
we have

H�

δ(w) 6F �

δ (w) 6F �

δ (z) 6H�

δ(z) =A�

δ(z)+B
�

δ(z). (3.2)

It follows easily from Remark 2.13 that, as n!∞, we have that Fδn!F , uniformly
on the compact subsets of Ω\{a} (since fδn!f).
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Let us now check that F satisfies the conditions of Lemma 3.4. H�

δn
and H�

δn
are

uniformly close to each other on ∂Υ\∂Ω (they are equal to F �

δn
and F �

δn
there, and

these functions are uniformly close to each other near ∂Υ\∂Ω, as follows easily from the
convergence of fδn). To control Bδn , we use the following lemma, which is proven at the
end of the section.

Lemma 3.7. As n!∞, B�

δn
!0 uniformly on the compact subsets of Υ.

Observe that Fδn
(∂Ω) is uniformly bounded. Suppose indeed that it would not be

the case and (by extracting a subsequence) that Fδn(∂Ω)!∞ (say). We would have
H�

δn
!∞, since H�

δn
is harmonic and bounded on ∂Υ\∂Ω (as it is equal to F �

δn
there).

We also would have A�

δn
!∞, for the same reasons. By equation (3.2) and Lemma 3.7,

it would imply that Fδn
would blow up on Υ, which would contradict the fact that it

converges uniformly to F on the compact subsets of Υ.
We deduce that H�

δn
and A�

δn
are uniformly bounded on 
Υ.

We have that H�

δn
!F and A�

δn
!F as n!∞, uniformly on the compact subsets

of Υ. From the discrete Beurling estimate (see [Kes]) and the uniform boundedness of
H�

δn
and A�

δn
near ∂Ω, we readily obtain

lim sup
n!∞

|A�

δn
(z)−Fδn(∂Ω)|! 0 as z! ∂Ω,

lim sup
n!∞

|H�

δn
(z)−Fδn(∂Ω)|! 0 as z! ∂Ω,

and we deduce that F continuously extends to ∂Ω and is constant there.
To show that ∂νout(z)F60 for all z∈∂Ω, we consider the harmonic conjugate C: it is

the unique function C (defined on the universal cover of Ω\{a} and normalized to be 0 at
an arbitrary interior point x) such that F+iC is holormophic. By the Cauchy–Riemann
equations, we have

∂νout(z)F = ∂τccw(z)C for all z ∈ ∂Ω,

where ∂τccw(z) is the tangential derivative on ∂Ω in the counterclockwise direction and
the condition ∂νout(z)F60 becomes ∂τccw(z)C60. This latter condition is equivalent to
the one that C is non-increasing when going counterclockwise along (the universal cover
of) ∂Ω.

Let us now check that this condition is satisfied. Take Υ as before and denote its
universal cover by Υ̃.

For each δ>0, let C�

δ: 	VΥ̃∗
δ
!R be the discrete harmonic conjugate of H�

δ (lifted
to VΥ̃δ

), defined by integrating the discrete Cauchy–Riemann equations

∂̄δ(H�

δ+iC
�

δ)(z) = 0 for all z ∈VΥ̃M
δ
,
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and with the normalization C�

δ(x)=0. By subharmonicity of F �

δ , we have F �

δ6H�

δ on
VΥM

δ
and hence, since F �

δ=H�

δ on ∂VΩM
δ

,

∂νout(z)H
�

δ 6 ∂νout(z)F
�

δ 6 0 for all z ∈ ∂VΩM
δ
,

and we deduce by the discrete Cauchy–Riemann equations that C�

δ is non-increasing
when going along the universal cover of ∂VΩ∗δ

in counterclockwise direction.

On the compact subsets of Υ̃, since the (normalized) discrete derivatives of H�

δn

converge uniformly (see [CS1, Remark 3.2]) to the derivatives of F , it is easy to check
that C�

δn
also converges uniformly to C. Since C�

δ is non-increasing (when going along
the universal cover of ∂Ω), we have that C�

δn
is locally uniformly bounded (uniformly

with respect to n) on the universal cover of ∂Ω (if it would blow up there as n!∞, it
would also blow up on Υ̃), and hence it is bounded everywhere on the closure of Υ̃.

From this, we deduce that C is non-increasing on the (counterclockwise-oriented)
universal cover of ∂Ω: if it would not be the case, using again the discrete Beurling
estimate [Kes], we would obtain a contradiction (in the n!∞ limit) to the fact that C�

δn

is non-decreasing.

Proof of Lemma 3.7. For z∈∂VΥδ
, let us write Pδ(z, ·): 	VΥδ

!R for the discrete har-
monic function such that Pδ(z, ·)=1{z}( ·) on ∂VΥδ

(this is the discrete harmonic measure
of {z}). By uniqueness of the solution to the discrete Dirichlet problem, we can write

Bδ(y) =
∑

z∈∂VΩδ

Bδ(z)P (z, y) for all y ∈VΥδ
.

As δ!0, we have that Pδ(x, ·)!0 on the compact subsets of Υ, uniformly with respect
to x (this follows directly from [CS1, Proposition 2.11]). By the construction of Fδ and
the boundary conditions (Propositions 2.10 and 2.15), we have

Bδ(z) =Fδ(z)−Fδ(∂Ω) =
√

2 cos
(

3
8π

)
|fδ(m)|2δ

for any z∈∂VΩδ
, where m∈∂0VΩM

δ
is the midpoint of the edge between z and its neighbor

in VΩδ
. Since ∑

m∈∂0VΩM
δn

|fδn(m)|2δn

is uniformly bounded by Lemma 3.5, we readily deduce that Bδn!0 uniformly on the
compact subsets of Υ.
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a

z

Figure A.1. The oriented loop L formed by adding the curve µ (dotted) to λ. In this case,
N1=6 and N2=4.

Appendix A. Proof of Lemma 1.4

We here give the proof of Lemma 1.4: for a configuration γ∈CΩδ
(a, z), the winding

number (modulo 4π) of an admissible walk on γ (see Figure 1.4) is independent of the
choice of that walk.

Proof of Lemma 1.4. Without loss of generality, half-edges of γ emanate from z and
a in the same direction, so the winding is a multiple of 2π.

Add a curve µ from z to a, which emanates in opposite direction from γ and run
slightly off the lattice, so that µ is transversal to γ when an intersection occurs (see
Figure A.1). Let N1 be the number of intersections of µ with γ.

Take any admissible walk λ along γ. The rest of γ can be split into disjoint cycles.
So, if N2 is the number of intersections of µ with λ, then N2≡N1 (mod 2). Indeed, their
difference comes from cycles, which are disjoint from λ and so intersect µ an even number
of times (see Figure A.1).

The concatenation of λ and µ (when oriented) forms a loop L, which has several
intersections (when λ and µ run transversally). At each of those, change the connection
so that there is no intersection, but instead two turns—one left and one right. Each of
N2 rearrangements either adds or removes one loop, so after the procedure L splits into
N3 simple loops with N3≡N2 (mod 2) (see Figure A.2).

Each of the N3 simple loops has winding number 2π or −2π, so W(L)≡2πN3≡2πN1

(mod 4π). We conclude that, modulo 4π, W(λ)=W(L)−W(µ)=N1−W(µ) and so
W(λ) (modulo 4π) is independent of its particular choice.
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a

z

Figure A.2. The five simple loops obtained from L after four rearrangments (and discarding
the loops that were not part of λ).

Appendix B. The full-plane fermionic correlator

We here prove some technical results concerning the discrete full-plane correlator, in-
troduced in §1.5.3. Let us denote by Cδ( · , ·):=C0(2 ·/δ, 2 ·/δ) the rescaled version of
Kenyon’s coupling function (defined in [Ken]).

Lemma B.1. With the notation and assumptions of Proposition 2.6, the functions

G1:VCM
δ
\{a}−!C,

z 7−! eπi/8
(
Cδ(a+ 1

2δ, z
)
+Cδ

(
a− 1

2 iδ, z
))
,

G2:VCM
δ
\{a}−!C,

z 7−! e5πi/8
(
Cδ

(
a− 1

2δ, z
)
+Cδ

(
a+ 1

2 iδ, z
))

are s-holomorphic.

Proof. Set η :=eπi/8 and for any vertex z and any µ∈{±1,±i}, set zµ :=z+ 1
2µδ. By

translation invariance, we have

G1(z) = η(Cδ(a, z−1)+Cδ(a, zi)) and G2(z) = iη(Cδ(a, z1)+Cδ(a, z−i)),

where, on the right-hand sides, the two values of Cδ(a, ·) are orthogonal: one is purely
real and the other purely imaginary. Let x, y∈VCM

δ \{a} be two adjacent medial vertices,
with x being the midpoint of a horizontal edge of EΩδ

and y the midpoint of a vertical
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one, and let e:=〈x, y〉∈ECM
δ

. Then, there are four possibilities for the line `:=`(e):
• If `=ηR, we have x=y+ 1

2 (1+i)δ and

P`[G1(x)]= ηCδ(a, x−1) = ηCδ(a, yi) =P`[G1(y)],

P`[G2(x)]= iηCδ(a, x−i) = iηCδ(a, y1) =P`[G2(y)].

• If `=η̄3R, we have x=y− 1
2 (1+i)δ and

P`[G1(x)]= ηCδ(a, xi) = ηCδ(a, y−1) =P`[G1(y)],

P`[G2(x)]= iηCδ(a, x1) = iηCδ(a, y−i) =P`[G2(y)].

• If `=η̄R, we have x=y+ 1
2 (1−i)δ and

P`[G1(x)−G1(y)]=
η̄√
2
(Cδ(a1, x−1)+iCδ(a1, xi)−iCδ(a, y−1)−Cδ(a, yi))

=
iη̄√
2
(∂̄δCδ(a, ·))(y) = 0,

and similarly

P`[G2(x)−G2(y)]=
η̄√
2
(−Cδ(a, x1)+iCδ(a, x−i)+Cδ(a, y−i)−iCδ(a, y1)).

• If `=η3R, we have x=y+ 1
2 (i−1)δ and

P`[G1(x)−G1(y)]=
1√
2
(Cδ(a, x−1)−iCδ(a, xi)+iCδ(a, y−1)−Cδ(a, yi))

=− η3

√
2
(∂̄δCδ(a, ·))(x) = 0,

and similarly

P`[G2(x)−G2(y)]=
η3

√
2
(−Cδ(a, x1)−iCδ(a, x−i)+Cδ(a, y−i)+iCδ(a, y1))

=
iη3

√
2
(∂̄δCδ(a, ·))(y) = 0.

This concludes the proof of the lemma.

We now turn to the singularity of fCδ
(Proposition 2.8).

Proposition B.2. Near the midpoint of a horizontal edge a∈VCδ
, for x∈{±1,±i},

set ax :=a+ 1
2xδ∈VCM

δ
and by ex :=〈a, ax〉∈ECM

δ
. Then the function fCδ

(a, ·) satisfies the
relations

P`(e1+i)[fCδ
(a, a)]= P`(e1+i)[fCδ

(a, a1+i)],

P`(e1−i)[fCδ
(a, a)]= P`(e1−i)[fCδ

(a, a1−i)],

P`(e−1+i)[fCδ
(a, a)−1]= P`(e−1+i)[fCδ

(a, a−1+i)],

P`(e−1−i)[fCδ
(a, a)−1]= P`(e−1−i)[fCδ

(a, a−1−i)].
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Proof. Set c:=cos
(

1
8π

)
and s:=sin

(
1
8π

)
and η :=eiπ/8. The following exact values of

the coupling function C0 can be found in [Ken] (see Figure 6 there):

C0(0, 1) =−C0(0,−1) =
1
4
,

C0(0, i) =−C0(0,−i) =− i
4
,

C0(0, 2+i) =C0(0,−2+i) =−i
(

1
π
− 1

4

)
,

C0(0, 1+2i) =C0(1−2i) =
1
π
− 1

4
,

C0(0, 2−i) =C0(0,−2−2i) = i

(
1
π
− 1

4

)
,

C0(0,−1−2i) =C0(0,−1+2i) =
1
4
− 1
π
.

Using these values and the definition of fCδ
, a straightforward computation gives

fCδ
(a, a1+i) =

η

2

(
c

(
2
π
− 1+i

2

)
−is

(
−2i
π

+
1+i
2

))
,

fCδ
(a, a1−i) =

η

2

(
c

(
1+i
2

)
−is

(
2i+2
π

− 1+i
2

))
,

fCδ
(a, a−1+i) =

η

2

(
c

(
−2+2i

π
+

1+i
2

)
+is

(
1+i
2

))
,

fCδ
(a, a−1−i) =

η

2

(
c

(
2i
π
− 1+i

2

)
+is

(
2
π
− 1+i

2

))
.

If we compute the projections of these values on the lines associated with the medial
edges ex, a straightforward computation gives

Pη̄3R[fCδ
(a, a1+i)]=

η̄3c

2
√

2
=Pη̄3R

[
2+

√
2

4

]
,

Pη3R[fCδ
(a, a1−i)]=

η3c

2
√

2
=Pη3R

[
2+

√
2

4

]
,

Pη̄R[fCδ
(a, a−1+i)]=− η̄s

2
√

2
=Pη̄R

[
2+

√
2

4
−1

]
,

PηR[fCδ
(a, a−1−i)]=− ηs

2
√

2
=PηR

[
2+

√
2

4
−1

]
,

which is the desired result.

We now recall the result of Kenyon concerning the convergence of the function C0.
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Theorem B.3. ([Ken, Theorem 11]) As |z|!∞, we have

C0(0, z) =


Re

(
1
πz

)
+O

(
1
|z|2

)
, if z=2m+(2n+1)i, with m,n∈Z,

i Im
(

1
πz

)
+O

(
1
|z|2

)
, if z=(2m+1)+2ni, with m,n∈Z.

From this, we can prove Theorem 3.1.

Proof of Theorem 3.1. By rescaling the lattice of the theorem above, one readily
deduces that

C0

(
2
δ

(
a+

δ

2

)
,
2
δ
z

)
+C0

(
2
δ

(
a− iδ

2

)
,
2
δ
z

)
! 1

2π(z−a)
as δ! 0,

uniformly on the sets {(a, z):|a−z|>ε}. The proof of the theorem then follows from the
definition of fCδ

.
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