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1. Introduction
1.1. Main goals

In a recent important breakthrough D. Christodoulou [C] has solved a long standing prob-
lem of general relativity of evolutionary formation of trapped surfaces in the Einstein-
vacuum space-times. He has identified an open set of regular initial conditions on a finite
outgoing null hypersurface leading to a formation of a trapped surface in the correspond-
ing vacuum space-time to the future of the initial outgoing hypersurface and another
incoming null hypersurface with prescribed Minkowskian data. He also gave a version of
the same result for data given on part of past null infinity. His proof, which we outline be-
low, is based on an inspired choice of the initial condition, an ansatz which he calls short
pulse, and a complex argument of propagation of estimates, consistent with the ansatz,
based, largely, on the methods used in the global stability of the Minkowski space [CK].
Once such estimates are established in a sufficiently large region of the space-time, the
actual proof of the formation of a trapped surface is quite straightforward.

The goal of the present paper is to give a simpler proof by enlarging the admissible
set of initial conditions and, consistent with this, relaxing the corresponding propagation
estimates just enough that a trapped surface still forms. We also reduce the number
of derivatives needed in the argument from two derivatives of the curvature to just one.
More importantly, the proof, which can be easily localized with respect to angular sectors,
has the potential for further developments. We prove in fact another result, concerning
the formation of pre-scarred surfaces, i.e. surfaces whose outgoing expansion is negative
in an open angular sector. We only concentrate here on the finite problem, the problem

from past null infinity can be treated in the same fashion as in [C] once the finite problem
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is well understood. The problem from past null infinity has been subsequently considered
in a recent preprint by Reiterer and Trubowitz, [RT].

We start by providing the framework of double null foliations in which the result
of Christodoulou is formulated. We then present, in §1.3, the heuristic argument for
the formation of a trapped surface. In §1.4 we then introduce Christodolou’s short-pulse

ansatz and discuss the propagation estimates which it entails.

1.2. Double null foliations

We consider a region D=D(u.,u,) of a vacuum space-time (M, g) spanned by a double
null foliation generated by the optical functions (u,u) increasing towards the future,
0<u<u, and 0<u<u,. We denote by H, the outgoing null hypersurfaces generated by
the level surfaces of u and by H, the incoming null hypersurfaces generated by the level
hypersurfaces of u. We write S, ,=H,NH, and denote by &) and ﬁg‘l’“” the
regions of these null hypersurfaces defined by w1 <u<us and u; <u<Lusg, respectively. Let

L and L be the geodesic vector fields associated with the two foliations and define
10%=—g(L,L)"". (1.1)

Observe that the flat value(!) of Q is 1. As is well known, our space-time slab D(u., u.) is
completely determined (for small values of u, and u,) by data along the null, character-
istic, hypersurfaces Hy and H, corresponding to u=0 and u=0, respectively. Following
[C] we assume that our data is trivial along H, i.e. assume that Hy extends for u<0
and that the space-time (M, g) is Minkowskian for u<0 and all values of u>0. Moreover
we can construct our double null foliation such that 2=1 along Hy, i.e.

Q(an):]-v 0<u<u,.
Throughout this paper we work with the normalized null pair (es,es), with
es=0L, e,=QL and g(es, eq)=-2.

Given a 2-surface S(u,u) and an arbitrary frame (e;)q=1,2 tangent to it, we define the

Ricci coefficients

F()\)(u)(u) :g(e(A)aDE(,)e(u))7 )\,‘[L,I/:L27374. (12)

(1) Note that our normalization for Q differs from that of [KN].
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These coeflicients are completely determined by the following components:

Xab:g(Dae4,eb)a Xab:g(Daei%eb)a
Na=—39(Dseq,€14), na=—39(Dseq,e3), 3)
w=—1g(Dyes,es), w=—2g(Dseq,e3),
Ca= %Q(Dae% 63)7
where Da:Dc(a>. We also introduce the null curvature components
b= R(eq, €4, €, 1), aap=R(eq, €3, ¢p, €3),
ﬁa: %R(ea,€4763,€4)7 ﬁa: %R(ea,€3,63764), (14)
0= %R(L€4,63,64,€3), U:%*R(€4,63,€4,€3).

Here *R denotes the Hodge dual of R. We denote by V the induced covariant
derivative operator on S(u,u), and by Vs and V4 the projections to S(u,u) of the
covariant derivatives D3 and Dy, respectively, see precise definitions in [KN]. Observe
that

w=—1V,4logQ, w=-1V3logQ,
? ? (1.5)
na:<a+va IOgQ, TNa= 7Ca+va IOgQ

The connection coefficients I" satisfy equations which have, very roughly, the form
Via'=R+VI+IT and V3I'=R+VI4+IT. (1.6)

Similarly, the Bianchi identities for the null curvature components satisfy, also very

roughly,
V4R=VR+T'R and V3R=VR+IR. (1.7)

The precise form of these equations is given in §3, see (3.1)—(3.4). Among these
equations we note the following two, which play an essential role in Christodoulou’s

argument for the formation of trapped surfaces:

Vatrx+3(trx)? = —[x]*—2wtrx, (1.8)
VsX+3(trx)x = V@n—i—?g;?—%(tr X)X—i—n@n. (1.9)
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Figure 1. The highlighted region on the right represents the domain D(u,u), 0<u<d. The
same picture is represented, more realistically on the left. The lower region on the left is the
flat portion of Hp, u=0, while the upper region, corresponding to large values of u, is trapped
starting with u=4.

1.3. Heuristic argument

We start by making some important simplifying assumptions. As mentioned above we
assume that our data is trivial along H ), i.e. assume that Hy extends for u <0 and that
the space-time (M, g) is Minkowskian for u<0 and all values of u>0. We introduce a
small parameter § >0 and restrict the values of v to 0<u<J, i.e. u,=9J.

We also assume that the following conditions hold in the entire slab D(u,d). We
denote by r=r(u,u) the radius of the 2-surface S=S(u,u), i.e. |S(u,u)|=4rr?. We
denote by 7 the value of r for S(0,0), i.e. ro=7(0,0).

e For small §, v and u are comparable with their standard values in flat space, i.e.
uri(t—r+rg) and ur S (t+r—rg). We also assume that Q~1 and dr/du~—1.

e We assume that tr y is close to its value in flat space, i.e. tr y~=—2/7.

e We assume that the term E=V<§m+2g)?—%(tr X)X—H]@n on the right-hand side
of equation (1.9) is sufficiently small and can be neglected in a first approximation. We
assume also that we can neglect the term (tr x)w on the right-hand side of (1.8).

Given these assumptions we can rewrite (1.8) as

or, integrating, as

u 9 u
() S0~ [ RPr) ' = e TR a (110)
0 r(u,0)  Jo
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Multiplying (1.9) by X, we deduce that
P S22
— t =XF
Ju X )X =X
or, in view of our assumptions for tr x and dr/du,

d a2 2 d <2 dr o 21512 2dr 2
— =r‘— 2r— = —t -— FE
S PIRP) = R+ ISP = 2IRP (xS 50 ) 47

2\ 2/. d
=r?[x)? (— <trx+) += (1+r>> 1r2RE=:F,
=y T du

P2IR12 () = (0, ) [RI(0, ) + / POl u) d.
0

Therefore, as fou |F| du' is negligible in D, we deduce that

that is

21X (u, w) =% (0, w) X (0, ).
We now freely prescribe X along the initial hypersurface Héo’é), i.e.
X(0,u) =Xo(w) (1.11)

for some traceless 2-tensor Xo. We deduce that

R r2(0,u
R ()~ )

or, since |u|<d and r(u,uw)=ro+u—u,

LR

~ T ~
|X|2(U,y)%m|><0|2(y)~

Thus, returning to (1.10),
2 re

t <= T
TX(U,E/) B To—u (T‘o*’u)2

U
/ IXo|? (1) du’ + error.
0
Hence, for small 4, the necessary condition to have tr x(u,u)<0 is
2(ro—u o
% </ |XO|2 du’.
To 0

Analyzing equation (1.8) along Hy, we easily deduce that the condition for the initial

hypersurface Hy not to contain trapped hypersurfaces is
)
N 2
/ |X0 ‘2 dU/ <—,
0 To
i.e. we are led to prescribe X such that
2(ro—u J N 2
#</ IXo|? du’ < =. (1.12)
o 0 To

We thus expect, following Christodoulou, that trapped surfaces may form if (1.12) is
satisfied.
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1.4. Short-pulse data

To prove such a result however we need to check that all the assumptions we made above
can be satisfied. To start with, the assumption (1.12) requires, in particular, an L

upper bound of the form
Kol S6712.

If we can show that such a bound persists in D then, in order to control the error terms

F we need, for some ¢>0,

2 d
ry+-=0(5%), T4+1=0(5), n=0(5"1/2+),
s du (1.13)

w=0("""°) and Vn=0(5"1/*%°).

Other bounds will however be needed, as we have to take into account all null structure
equations. We face, in particular, the difficulty that most null structure equations have
curvature components as sources. Thus we are obliged to derive bounds not just for
all Ricci coefficients x, w, 1, x, w and 7 but also for all null curvature components «,
0, 0, o, a and S. In his work [C] Christodoulou has been able to derive such estimates
starting with an ansatz (which he calls short pulse) for the initial data Xo. More precisely
he assumes, in addition to the triviality of the initial data along H, that X, satisfies,
relative to coordinates v and transported coordinates w along Hy (i.e. transported with
respect to d/du),

Ro(w,w) =612 fo (6 u, w), (1.14)

where fy is a fixed traceless, symmetric S-tangent 2-tensor along Hy. This ansatz is
consistent with the following more general condition, for a sufficiently large number N

of derivatives and a sufficiently small ¢ >0:
SR IVEV ™ol 20wy <00, 0<k+m< N and 0<u <. (1.15)

Notation. Here || - || 12(y,4) denotes the standard L? norm for tensor fields on S(u, u).
Whenever there is no possible confusion we will also denote these norms by || - ||z2(s)-
We shall also denote by |- ||2() and ||- || 2z the standard L? norms along the null
hypersurfaces H=H, and H=H,, respectively.

Remark 1.1. In [C] Christodoulou also includes weights, depending on |u|, in his
estimates. These allow him to derive not only a local result but also one with data at
past-null infinity. In our work here we only concentrate on the local result, for |u|<1,

and thus drop the weights.
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Assumption (1.15), together with the null structure equations (1.6) and null Bianchi
equations (1.7) leads to the following estimates for the null curvature components, along
the initial null hypersurface Hy:

Sl 2 a0y H Bl L2 (210 +672||(0,0) | 22 (F10) +673/2”,/8HL2(H0) < oo. (1.16)

Consistent with (1.15), the angular derivatives of «, (3, o, o and 8 obey the same scaling

as in (1.16), while each V4 derivative costs an additional power of ¢:

5||V@||L2(Ho)+||Vﬂ||L2(H0)+571/2||V(Q, U)||L2(Ho)+573/2”V§”L2(Ho) <00,

(1.17)
8[| Vacr|| 22 (#10) + 01| VaBl| L2 (1) + 02| Valo, o) || 22 (a10) +0 2| VBl L2 (1) < 00-

Moreover one can derive estimates for the Ricci coefficients, in various norms, weighted
by appropriated powers of §. Note that if one were to neglect the quadratic terms in

(1.7), then the expected scaling behavior in ¢ would have been

Sllell pzcrre) + 11BN 22 (ro) +0 (05 ) p2(rr0) +6 21181l L2 (1) < 00

Most of the body of work in [C] is to prove that these estimates can be propagated in
the entire space-time region D(us, d), with u, of size 1 and § sufficiently small, and thus
fulfill the necessary conditions for the formation of a trapped surface along the lines of
the heuristic argument presented above. The proof of such estimates, which follows the
main outline of the proof of stability of Minkowski space, as in [CK] and [KN], requires
a step-by-step analysis to make sure that all estimates are consistent with the assigned
powers of §. This task is made particularly taxing in view of the fact that there are many

non-linear interferences which have to be tracked precisely.

1.5. Outline of Christodoulou’s propagation estimates

To see what this entails it pays to say a few words about the strategy of the proof. As in
[CK] and [KN] the centerpiece of the entire proof consists of proving space-time curvature
estimates consistent with (1.16). In this case however the primary attention has to be
given to the stratification of the estimates for different curvature components based on

their §-weights. This is done using the Bianchi identities
DieRagplys =0,

the associated Bel-Robinson tensor @ and carefully chosen vector fields X whose defor-

mation tensors (X)7 depend only on the Ricci coefficients y, w, 7, X, w and 1. These
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vector fields can be used either as commutation vector fields or multipliers. In the latter

case we would have
D (Qapre X°YPZ2°)=Q( M7, Y, 2)+.... (1.18)
As multipliers X, Y and Z we can choose the vector fields ez and e4. The choice
X=Y=Z=e

leads, after integration on D(u,u), to
Il 0y HI gy = Wl + [ 30(Omevsen), 19)

where 7 is the deformation tensor of e4. Since the initial data at Hy satisfies (1.16), we

write
P10y, V) =0T, +30° [ @(Omeae

and expect to bound the double integral term on the right. One can derive similar
identities for all other possible choices of X, Y and Z among the set {es, e4}. This allows
one to estimate both the L?(H) norms of a, 3, o, o and 3, and the L?(H) norms of (3, o,
o, a and 3, with appropriate J-weights, in terms of the corresponding d-weighted L?(Hy)
norms of a, 3, o, o and 3, and space-time integrals of Q(, e, e,) and Q(®r, €us€v)
with u, v=3,4. We can thus extend the initial estimates (1.16) to every null hypersurface
H, in our slab provided we can bound all the double integrals on the right-hand side of
our integral identities. Now, both deformation tensors M7 and ()7 can be expressed
in terms of our connection coefficients x, w, 1, x, w and 7. Since @ is quadratic in
R, to be able to close estimates for our null curvature components we need to derive
sup-norm estimates for all our Ricci coefficients. This leads us to the second pillar of
the construction which is to derive estimates for Ricci coefficients in terms of the null
curvature components, with the help of the null structure equations (1.6), see also §3.1.
Combining these equations with the constrained equations, on fixed 2-surfaces S(u,u)
(see (3.2)) and the null Bianchi identities (see (3.7)), we are lead to precise d-weighted
estimates of all Ricci coefficients in terms of §-weighted L*(H) and L?(H) norms of all
null curvature components and their derivatives. Thus, in a first approximation, the error
terms in the above integral identities are quadratic in R and linear in the deformation
tensors W7 and )7, which depend, indirectly, on R and its first derivatives. Therefore,
to be able to close, one needs to do the following:

(1) Derive higher-derivative estimates for the curvature components;

(2) Make sure that all error terms can be controlled in terms of the principal terms,
in the corresponding energy inequality, or terms which have already been estimated at

previous steps.
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Note that (2) here seems counterintuitive in view of the large data character of the
problem under consideration. Indeed, typically, in such situations one cannot expect to
control the non-linear error terms by the principal energy terms. The miracle here is
that the error terms are either linear (in the main energy terms), or they contain factors
which have been already estimated in previous steps, or are truly non-linear, in which
case they are small in powers of § relative to the principal energy terms. This is due to
the structure of the error terms, reminiscent of the null condition, in which the factors
combine in such a way that the total weight in powers of § is positive.

In his work, Christodoulou derives estimates for the first two derivatives of the
curvature tensor by commuting the Bianchi identities with the vector fields L and
S :%(ueg, +uey), and rotation vector fields O. This process leads to a proliferation of
error terms. Moreover not all error terms which are generated in this way satisfy the
following essential requirement, alluded above: that they lead to an overall factor of €,
with a positive exponent c, and thus can be absorbed on the left, for sufficiently small §.
Due to non-linear interactions, Christodoulou has to tackle anomalous error terms which
are O(1) in §. Yet he is able to show, by a careful step-by-step analysis, that all such
terms are, indeed, linear relative to terms which have already been estimated and thus
only quadratic (i.e. linear in the principal energy norm) relative to the remaining com-
ponents. They can therefore be absorbed by a standard Gronwall inequality. A similar

phenomenon helps him to estimate, step by step, all Ricci coefficients.

1.6. New initial conditions

As explained above, the main purpose of this paper is to embed the short-pulse ansatz
of Christodoulou into a more general set of initial conditions, based on a different under-
lying scaling. The new scaling, which we incorporate into our basic norms, allows us to
conceptualize the separation between the linear and non-linear terms in the null Bianchi
and null structure equations and explain the favorable appearance of additional positive
powers of § in the non-linear error terms mentioned above. Though the initial conditions
required to include Christodoulou’s data do not quite satisfy this scaling, the generated
anomalies are fewer and thus much easier to track.

We start by observing that a natural alternative to (1.14) which comes to mind,

related to the familiar parabolic scaling on null hyperplanes in Minkowski space, is
Xo(u,w) =62 fo(67 u, 67/ 2w). (1.20)

This does not quite make sense in our framework of compact 2-surfaces S(u, u), unless of

course one is willing to consider the initial data ¥o(u,w) supported in the angular sector
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w of size §%/2. Such a support assumption would however be in contradiction with the
lower bound in (1.12) required to be satisfied for each weS?.

The following interpretation of (1.20) (compare with (1.15)) makes sense however:

sk+m/2 sup [VEV™ X0l 220wy <00, 0<Ek+m<N. (1.21)
0<u<s B
Just as in the derivation of (1.16), we can use the null structure equations (1.6) and the
null Bianchi equations (1.7) to derive, from (1.21), that

5"\l L2 are) + 18N 2 r0) +6 2N (0, 0) | 2 r10) +6 1Bl 2 (110 < 00,
5||V04||L2(H0)+51/2\\V5HLZ(HO)+HV(Qa U)HL?(HO)+5_1/2HV§HL2(HO) < o0, (1-22)
82|V acr]| 12 (11) + 0N VaBl L2 (r0) +6 2V a0, ) 2110y + | VaBl L2 (11 < 00

We refer to these conditions, consistent with the null parabolic scaling, as §-coherent
assumptions. Note that, unlike in Christodoulou’s case, each V derivative costs §~1/2.
It turns out that proving the propagation of such estimates can be done easily and
systematically without the need of the step-by-step procedure mentioned earlier. In
fact one can show, in this case, that all error terms generated in the process of the
energy estimates are either quadratic in the curvature and can be easily taken care by
Gronwall’s inequality or, if cubic, they must come with a factor of 6*/2 and therefore can
all be absorbed for small values of 4.

The main problem with the ansatz (1.20), as with the initial conditions (1.21),
however, is that it is inconsistent with the formation of trapped surface requirements
discussed above. One can only hope to show that the expansion scalar trx along H,,
at S(u,u), for some u~1, will become negative(?) in a small angular sector of size §'/2.
This is because, consistent with (1.22), condition (1.12) may only be satisfied in such a
sector.

At this point we abandon the ansatz formulation of the characteristic initial data
problem for the Einstein-vacuum equations and replace with a hierarchy of bounds,
which “interpolate” between the regular d-coherent assumptions (1.22) and the estimates
(1.16)—(1.17) following from Christodoulou’s short-pulse ansatz.

At the level of curvature, the new assumptions correspond to
8llevll L2 (o) + 181 22 (a0 +6 2 (1(2, 0) | 2 (1) + 8 1Bl 2110 < 004
S|Vl L2 (1) + 821V BN 2(110) FIIV (0, )| 22110y +0 /2 IV Bll L2(110) < 00, (1.23)
52HV4CY||L2(HO) +(5||V45HL2(H0)+(51/2||(V4Q, V4U)||L2(Ho)+||v4§||L2(H0) < 0.

(%) We could call such a region locally trapped, or a pre-scar.
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Observe that, by comparison with (1.22), the only anomalous terms are ||c||z2(#,)
and || Vaa| 22 (fy)-

In the next section we make our initial data assumptions precise, state the main
results and explain the strategy of the proof. We close the discussion here with a summary
of our approach:

(1) Replace the short-pulse ansatz of Christodoulou with a larger class of data sat-
isfying (1.23).

(2) Prove propagation of the curvature estimates consistent with (1.23) through the
domain of existence and show that these (weaker) estimates are sufficient for the existence
result.

(3) The propagation estimates involve only the L? based norms of curvature and its
first derivatives, but generate non-linear terms involving both the Ricci coefficients and
its first derivatives. To close such estimates requires addressing two major difficulties:

e Regularity problem: show that the L? propagation curvature estimates are suffi-
cient to control the Ricci coefficients (in L°°) and its first and even second derivatives in
appropriate norms required by the non-linear terms in the curvature estimates

e J-consistency problem: show that the non-linear terms are either effectively linear
(in curvature and its derivatives), and thus can be handled by the Grénwall inequality, or
contain a smallness coefficient generated by an additional power of the parameter §. Our
approach, based on the weaker propagation estimates (1.23), is particularly suitable for
dealing with this problem in that (a) it generates fewer borderline terms of the first kind,
and (b) it naturally lends itself to the introduction of a notion of scale-invariant norms
relative to which the structure of the non-linear terms and their §-smallness become
apparent and nearly universal.

(4) The propagation estimates consistent with (1.23), and the corresponding Ricci-
coeflicient estimates which they generate, are not strong enough to prove the formation of
a trapped surface. However, once such estimates have been proved in the entire domain
D(ur1,u=4), it is straightforward to impose slightly stronger conditions on the initial
data and show that they lead to space-times which satisfy all the necessary conditions

to implement, rigorously, the informal argument presented above.

2. Main results
2.1. Initial data assumptions

We define the initial data quantity

7O = sup 7O (w), (2.1)
0<u<s
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where, with the notation convention in (1.15),

2
TO(u) = 6"2[Roll L= 0.0+ ) 62 1(6V4)* Kol 20,0
k=0

1 4
+3° 3 62529 (6V.)F VR0l 20
k=0 m=1

Our main assumption, replacing Christodoulou’s ansatz, is
70 <00, (2.2)

We show that, under this assumption and for sufficiently small § >0, the space-time
slab D(u,d) can be extended for values of u>1, with precise estimates for all Ricci co-
efficients of the double null foliation and null components of the curvature tensor. We
can then show, by a slight modification of this assumption together with Christodoulou’s
lower bound assumption on fo(s |Xo0|? du’ (see equations (14) and (15) in [C]), that a
trapped surface must form in D(u~1,4). As in the case of [C], most of the work is
required to prove the semi-global result concerning the double null foliation. Once this is
established, the actual formation of trapped surfaces is proved by making a slight modifi-
cation of the main assumption (2.2) and following the heuristic argument outlined before.
In addition, we show that a small modification of the regular d-coherence assumption

leads to the formation of a pre-scar.

2.2. Curvature norms
To give a precise formulation of our result we need to introduce the following norms:
Ro(u, 1) =6l o + 18] o+ (2, 0) oo +67 1Bl o

R1 (’LL, H) = 5||VC¥||H”(10,E) +51/2HvﬁHHfLO’E) + ||V(Q, U)”H,,(f’»w +5_1/2”v§”]{ff’*ﬂ>

+(5HV4CY||HI(‘0,H),
s ) (2.3)
Ro(u, u) :=6]18] 0.0 11 (0 0| o +6 72181l o +6~ el oo

Ry (u,u) := 0]V oo +6" 2V (0, 0) | o + VBl oo +67 2 Ve 0.0

4071 ||V3Q||E(ﬂo‘u).

We also set Ry and R to be the supremum over u and u in our space-time slab
of Ro(u,u) and Rq(u,u), respectively, and similarly for the norms R. Also we write
R=Ro+R1 and R=R,+R;. Finally, R©) denotes the initial value for the norm R, i.e.

RO = sup (Ro(0,1)+R1(0,u)) =Ro(0,8)+R1(0,6).

0<u<s
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Note that the only V4 derivative appearing in the norms above is that of «. All other
V4 derivatives can be deduced from the null Bianchi equations and thus do not need to

be incorporated in our norms. We denote the norms of a specific curvature component

¥ by Ro[t] and Rq[v)].

2.3. Ricci-coefficient norms

We introduce norms for the Ricci coefficients X, tr x, w, 7, X, w, n and tArZ(:trx—trXO,
with tr xo=—4/(u—u+2ro), the flat value of tr x along the initial hypersurface H .
For any S=S(u,u) we introduce following norms (%O, ,(u, u):
DO, 00 (u, ) = 6" 2(|| x| oo (5) + @l L (5)) + 1l o< () + 1l] o< )
+671/2(HX”L°°(S)+||@||L°°(S)+”£"”L°°(S))7
(3)00,4(%@) :51/2HX||L4(S)+51/4||W||L4(S)+5_1/4(||77||L4(s)+HﬂHm(s))
+671/2||X”L4(S)+573/4(”@”L4(S’)+H‘£||L4(S)>a (2.4)
S0 4(w,w) =6 ([V x| La(s) + IVl Lags) +3 IVl Lags) + 1 VAl acs))
+67 (VX Lags) IVl Lacs))s
015 (u, w) =6 2([V Xl p2(5) + V@l 2(5)) + 1 V0l 225+ VAl 2(s)
+67 2 (IVxl L2(s) I V@l z2(s))-

Also,
DO, 1) = 82| VX o g0, + IVl 2 0.0
V20l 2 g0y IV o gggo0,)
+37 2 (172X 2 0.0, H IV 2 00
and

(ﬂ)o(uaﬂ) = 51/2(”V2X”L2(ﬂ§£’“)) + HV2WHL2(E$’“)))
FUVZnl 2y HIVE T 2 )
FOT2 (V2 o, IV s o)

We define the norms ()0 4, (9 Op o, DOy 4, 0O 4, FO and H)O to be the supre-
mum over all values of u and w in our slab of the corresponding norms. Finally we set

the total Ricci norm to be

O= (S)Oo,oo+(S)Oo74+(5)0172+(S)O174+(H)0+(E)O
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and denote by O©) the corresponding norm of the initial hypersurface Hy. We further dif-
ferentiate between the first-order norms, Oy =0 4+ 0y 5, and second-order ones,
O =0y 4+ 0O+ O,

2.4. Main theorems

We are now ready to state our main result. The first result follows from analyzing

assumption (2.1) on the initial hypersurface Hy.

PROPOSITION 2.1. In view of our initial assumption (2.2) we have, for sufficiently
small §>0, along Hy,
RO +00 <7, (2.5)

The proof of the proposition follows by analyzing the null structure and null Bianchi
equations restricted to the initial hypersurface Hy, as in [C, Chapter 2]. In view of
this result we may replace assumption (2.1) with (2.5), as an initial data assumption.
Alternatively we may assume only that R(?) <Z() Tt is not too hard to see, following
roughly the same steps as in the proof of Proposition 2.1, that, for small §, we would
also have O <70,

THEOREM 2.2. (Main theorem) Assume that RO <T©) for an arbitrary constant
TO). Then, there exists a sufficiently small §>0 such that
R4AR+O<TO), (2.6)
THEOREM 2.3. Assume that, in addition to (2.1), we also have, for 2<k<4,
1(6**V) %ol 220w < & (2.7)
for a sufficiently small parameter € with 0<d<e. Assume also that Xo satisfies (1.12).

Then, for 6>0 sufficiently small, a trapped surface must form in the slab D(u==1,4).

Proof. We sketch below the proof of Theorem 2.3.
Step 1. We reinterpret (2.7) in terms of the curvature norms according to the

following result.

PROPOSITION 2.4. Under the smallness condition (2.7), the initial curvature norms

satisfy, in addition to the estimates of Proposition 2.1,

51/2||Vﬂ||Héo,a) + ||V(Q, 0) HH(()O,s) +571/2||V§||Héo,a) <Le. (2,8)
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The proof is standard and will be omitted.

Step 2. We show, see the end of §15, that this condition can be propagated in the
entire slab D(u~1,J).

PROPOSITION 2.5. Under the assumptions (2.7) we have, uniformly in u<1 and
u<9, for 6 sufficiently small,

51/2”v5”]—]£0&) + ||V(Qv J) HHQ(LO&) +6_1/2 ”VQHHS]&) <g,

(2.9)
3121V (2, 0)ll o0 + VBl o+~ 2 Vel yow <e.

Step 3. We return to the system (1.8)—(1.9),

Vatr x+3(trx)? = —|x* —2wtrx,
VsX+ 3 (tr x)X = Van+2wx — 3 (tr x)X+n®n,

responsible, as we have seen, for the formation of a trapped surface. Theorem 2.2 implies
that the terms ignored in our heuristic derivation are negligible. Specifically, the bounds
|w tr x| <6712 and |wX]|+|(tr x)X|+|n&n| <1 should be compared to the principle terms
of size =1 and §~'/2 in the first and second equation, respectively. We can also easily
verify the other bounds in (1.13) with the exception of that for V&7. The additional
condition (2.7) is imposed in fact precisely in order to assure that the linear term V&n

in (1.9) is sufficiently small. To control this term we rely on the following proposition.

PROPOSITION 2.6. Under the assumptions of Theorem 2.3, the solution ®)¢ of the
problem V§3)¢=V®n, with trivial initial data on Hy, satisfies

(Do < Co/2e14, (2.10)

The proof of Proposition 2.6, which appears in §15.6, depends on the arguments of
811, in particular Proposition 11.8. The argument for the formation of a trapped surface
then proceeds as above with a renormalized quantity ¥—®) ¢ in place of . Note that in
view of the estimate on ¥ ¢, the size of {—®) ¢ is comparable to that of Y. An important
comment in this regard is that our curvature propagation estimates do not allow us to
control the L norm of V&, let alone prove the bound stated in (1.13). This regularity
problem, which is discussed in the two remarks below, is resolved with the help of the
renormalized estimates for the Ricci coefficients in §11, of which Proposition 2.6 is an
important example. O

Remark 2.7. We remark that, while a loss of derivative occurs when passing from
assumption (2.2) to assumption R(?) <Z() in the main theorem, no further derivative

losses occur in (2.6).
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Remark 2.8. By contrast with [C], where two derivatives of the curvature and up to
three derivatives of the Ricci coefficients are needed, here we only need one derivative of
the curvature and two of the Ricci coefficients. This is due to our new refined estimates
for the deformation tensor of the angular momentum vector fields O. As mentioned
above, these vector fields are needed to derive estimates for the angular derivatives of
the null curvature components. These new estimates for the deformation tensor of the
angular momentum vector fields O are based on the renormalized estimates for the Ricci
coefficients developed in §11. Together with the trace estimates for the curvature com-
ponents, which serve as a replacement for the failed H!(S)CL*(S) embedding on a
2-dimensional surface S, proved in §12, they allow us to limit the degree of differentia-
bility required in the proof to the L? norms of curvature and its first derivatives. Similar
ideas related to the gain of differentiability via renormalization and trace estimates were

exploited in our earlier work [KR1].

Our next and final result concerns the formation of a pre-scar in an angular sector

of size §1/2.

THEOREM 2.9. Let € be a small parameter with 0<d<e. Assume that the initial

data Xo satisfies

1 4
32 [RollL=+) Y ell(e™6"2V) ™ (6V4) Roll 2 (0.u) < 00
k=0 m=0

and that the lower bound in (1.12) is satisfied in an angular sector wEN of size 6*/2.
Then, for §>0 sufficiently small, a pre-scar must form in the slab D(u=1,9), i.e. the
expansion scalar tr x(u,u,w) becomes stricly negative for some values of u~1, u=4 and
all weA.

Remark. Theorem 2.9 corresponds to the initial data consistent with the ansatz
Xo(w,w) =071 fo(07 u, 67 ?ew)

and localized in an angular sector of size §'/2¢~!. This should be compared with the data
discussed in (1.20). As in Theorem 2.3, additional smallness provided by the parameter
€ is only needed to guarantee the formation of a pre-scar but not required for the proof
of the existence result. A direct comparison shows that the data of Theorem 2.9 is
significantly more regular than that of Theorems 2.2 and 2.3. In particular, it essentially
corresponds to the d-coherent assumptions, consistent with the natural null parabolic
scaling discussed in (1.22). Thus the proof of Theorem 2.9 is significantly easier than

that of our main result and will be omitted.
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2.5. Strategy of the proof

We divide the proof of the main theorem into three parts. In the first part we derive
estimates for the Ricci-coefficient norms © in terms of the initial data Z(®) and the

curvature norms R. More precisely we prove the following result.

THEOREM A. Assume that O <oo and R<oco. There is a constant C depending
only on OO, R and R such that

O<COY R,R). (2.11)

Moreover,
)0 4[x] SOV +C(TV, R, R)SM/*. (2.12)

We prove the theorem by a bootstrap argument. We start by assuming that there

exists a sufficiently large constant A such that
(S)Oo,oo < Ao. (2.13)

Based on this assumption we show that, if ¢ is sufficiently small, estimate (2.11) also
holds. This allows us to derive a better estimate than (2.13).

In the second part we need to define angular momentum operators O and show that
their deformation tensors satisfy compatible estimates, stated in Theorem B, at the end
of §13.

Finally in the last and main part we need to use the estimates of Theorems A
and B to derive estimates for the curvature norms R and thus end the proof of the main

theorem.

THEOREM C. There exists § sufficiently small such that
R+R S Zo. (2.14)

Theorem C is proved in §14 and §15.

2.6. Signature and scaling
Our norms are intimately tied with a natural scaling which we introduce below.

Signature. To every null curvature component «, (3, ¢, o, a and 3, to every null
Ricci-coefficient component x, ¢, w, 7, w and 7, and to the metric v we assign a signature

according to the following rule:

sgn(¢) = 1N4(¢)+5Na(9) +0N3(¢) — 1, (2.15)
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where Ny(¢), N3(¢) and N,(¢), a=1,2, denote the number of times e4, ez and e,
respectively, appear in the definition of ¢. Thus,

sgn(a) =2, sgn(f)=1+3, sgn(o,0)=1, sgn(8)=3 and sgn(a)=0.

Also,

sgn(x) =sgn(w)=1, sgn(¢,n,n)=3 and sgn(x)=sgn(w)=sgn(y)=0.

Consistent with this definition we have, for any given null component ¢,
sgn(Vad) =1+sgn(¢), sgn(Ve)= %Jrsgn(qb) and sgn(Vs¢o) =sgn(o).

Also, based on our convention,

sgn(¢1d2) = sgn(o1)+sgn(gsz). (2.16)

Remark. All terms in a given null structure or null Bianchi identity (see equations
(3.1)-(3.7)) have the same overall signature. Remark also that the definition (2.15)
applies only to the null components of the curvature tensor and Ricci coefficients and

not to their tensor products (i.e. not to null decompositions of tensor products).

We now introduce a notion of scale for any quantity ¢ which has a signature sgn(¢),
in particular for our basic null curvature quantities o, 3, g, o, a and (3, and null Ricci-
coefficient components x, ¢, w, 17, w and 5. This scaling plays a fundamental role in our

work.

Definition 2.10. For an arbitrary horizontal tensor field ¢, with a well-defined sig-
nature sgn(¢), we set

sc(¢) = —sgn(¢)+3. (2.17)

Observe that sc(V¢)=sc(¢)—1, sc(Vp)=sc(¢)— 1 and sc(Vp)=sc(¢). For a given

product of two horizontal tensor fields, we have

sc(pr¢2) = sc(d1)+sc(d2)—3- (2.18)

2.7. Scale-invariant norms
For any horizontal tensor field ¢ with scale sc(v)), we define the following scale-invariant
norms along the null hypersurfaces H:Hqgo’é) and ﬂ:ﬂ(go’l):

191l 2

) —5 sc(¢)—1||¢||L2(H) and lelﬁfsc)(ﬁ) =5 SC(¢)_1/2”¢HL2(5)~
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We also define the scale-invariant norms on the 2-surface S=S,, , by

[l er () =07 CI7P|[| o).

(se)

In particular,

(=0 2yl ag) and [y ee

23 =0l s).

191l 22

(se)

Observe that we have

u u
2 _ 51 2 ’ 2 _ 2 l
||/lp||[“’?5¢)(H’fLo‘g)) =0 /0 ||,(/)H,C%SC)(u7g/) d@ and ||¢HL(QSC) (ELO,U)) - /() ||,(/)H,C%SC)(u/,y) du'.

We denote the scale-invariant L° norm in D by |||z

oo
(sc)

Remark. Note that the norms above are scale invariant if we take into account the

scales of the L? norms along H and H, given by
1 1
sc(]| - ||L2(H3,5)) =1, sc(|- ||L2(ﬂi,1)) =5 and  sc(||- [l Lr(s)) = »
Moreover, they are consistent with the convention
Vi~d™t, Vs 2 and Vil

In view of (2.18), all standard product estimates in the usual LP spaces translate

into product estimates in Ly spaces with a gain of 812, Thus, for example,

(5) S8 211l ez,

|12 ]| 22

2 ®llvallez s)

and

amlvellez, (- (2.19)

(sc)

lortallez ) S 8210l cze,

Remark 2.11. If f is a scalar function constant along the surface S(u,u)CD, we

have

[ 0ller, sy SIPler, (s

or, if f is also bounded on H,

£l 22

2 SIlez oy

(se)

This remark applies in particular to the constant tr xyo=4/(2ro+u—u).
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We can reinterpret our main curvature and Ricci-coefficient norms in light of the

scale-invariant norms. Thus (2.3) can be rewritten in the form(?)
Row,):=0"?all s _ o, +1(5: 0,0, g
Ra(w): =02 IVaal gy o) +19( 50,0, 8)l 3 oy
Ro(u,): =828 12 _ e, 100,05 ) oo,
Ry(u,u): = ||V3@||5(25C>(H$10>) +IV(3, 0,0, Q’§)||ﬁ?w>(ﬂf’“))'

Remark 2.12. All curvature norms are scale invariant except for the anomalous
||oz||£?ﬁc)(H1<bo,ﬂ>)7 HV404||£%SC)(H£0,@)) and Hﬁ”qic)(ﬂi“’o))' By abuse of language, in a given

context, we refer to «, resp. 3, as anomalous.

To rectify the anomaly of « we introduce an additional scale-invariant norm
[ —
Role]:= sup |lellzz oy,
SHCH

where °H is a piece of the hypersurface H=H? obtained by evolving a disk S CSy,o of
radius 6'/2 along the integral curves of the vector field ey.

The Ricci-coefficient norms (2.4) can be written as

()00 1,0) = | (077X, B2 e 51
S0, alu,u)= 51/4(||X||c§15c)(5)+HX”ﬁic)(S))""H(trX’w?777@7%9)”63“)(5)’
SOy a(u,u) = |V (x,w, m, tr X, X w, )| 2 £ (9);
S0y 5(u,uw) =V (x, w,n, trx, X w, Mlez, )
0, u) = V206w, 1, X R Dl 2 oy

Remark 2.13. All quantities are scale invariant except for ¥ and X in the E?SC)(S)
norm.

As before we complement the anomalous norms for ¥ and X by the local, non-

anomalous, scale-invariant norms
Og[X](U u) = sup HX”L4 5S) and (98[ X](u, u) = sup HX||L4 (3S)
5ScS 5SCS

where 96 is a disk of radius 6'/2 obtained by transporting from the initial data embedded

in Su,O-

(3) We use the short hand notation

(8,00, ﬁ)ll ) T ||3H L u>)+||QH e ﬂ))+||0||E?SC)<H<o ) +Hﬂ|l L HE);
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3. Main equations. Preliminaries
3.1. Null structure equations

We recall the null structure equations (see [KN, §3.1] or [C]):

Vix=—-xx—2wx—a,
Vix=—xx—2wx—a,

Van=—x(n-n)-5,

(3.1)
Van=—x(n—n)+5
Vaw=2ww+§[n—n* =5 (n—n)(n+n) -k In+n*+ e,
Vsw=2ww+3n—n*+1(n—n)(n+n) - §In+n°+3e
and the constraint equations
divy =3V trx—3(n—n)(Xx— 3 trx) -5,
divy=5Vtrx+5n-n)(X—3trx)+5, 52

curlp = — curln = o +XAX,
K= —g—l—%)?X—i(trx) try,

with K being the Gauss curvature of the surface S. The first two equations in (3.1) can

also be written in the form

Vatrx+3(trx)? =—[x[*—2wtry,

Vax+(trx)X = —2wx—a,

(3.3)
Vs trz—l—%(trz)z = —2gtr>7<—|X|2,
VX +(tr )X = —2wx —a.
Also, with g=p— XX,
Vatr x+2(trx) tr y = 2wtr y+26+2div p+2|n/?, 5.0

Vs tr x+ 3 (tr x) tr x = 2w tr x+25+2 divn+2|n|?

and(4)

(*) Recall the notation (u@v)ab:uavb—l—ubva—(u~v)6ab.
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Remark. The transport equations for w and w in (3.1) are obtained from the null
structure equation

Vaw+Viw = ((n—n) —nn+iww+o
and the commutation relation for a scalar f (see [KN, Proposition 4.8.1])
[Vs, Vil f = —2wVs f+2wVa f+4CV f (3.6)

applied to f=log .

3.2. Null Bianchi identities

We record below the null Bianchi identities (observe that we can eliminate (= %( -n)

in the equations below):

Vsa+5(trx)a = VEF+iwa—3(Xo+ Xo)+((+4n) &5,
VaB+2(tr )8 =diva—2wl+na,
V304 (tr x) B = Vo+2wh+"Vo+2X8+3(ne+ o),
Vio+35(trx)o = —div B+ 35X a—("B—2n"B,
Vda—i—%(trx)o —div ﬁ+1A*a ¢*B—2n"3, (3.7)
Vio+3(tr x)o =div f—5Xa+(B+210,
Vso+3(trx)o=—div f—3Xa+(5—21p,
Vaf+(trx)p=—Vo+*Vo+2wh+2X3-3(no—"no),
V3B+2(tr x) 3= — diva—2wlB+na,
V4g+%(trx) = —V®ﬁ+4wa 3(Xo—"Xo)+ ((—4@)@@.
Next, we record commutation formulas of V with V4 and V3.
LEMMA 3.1. For a scalar function f,
[Va, VIf = 5(n+n)Daf =XV f, (3.8)
[Vs, VIf = 3(n+n)Dsf—xV . (3.9)

For a 1-form tangent to S,

[v4a va]U = 7Xacv Ub+ Eac*/BbU +l( +ﬂa)D4Ub7XacﬂbUc+XabgUa
[v37V ] XacV Ub+ Cac ﬁbU +35 ( ﬂa)DSUb_Z{acnb Uc+l(aan-
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In particular,

[V, div]U = =L (tr x) divU =XVU+BU+ 1 (n+1)VaU
—nxU — 5 (tr x)nU +(tr x)nU,
[V, div]U = =L (tr x) divU —XVU = BU+ 1 (n+1)V3U

—nxU — %(tr X)nU+(tr x)nU.
We also have, for any scalar function f,

[L,L]f=2(n—n)Vf.

3.3. Integral formulas

Given a scalar function f in D we have(®)

a4 _ A r
du s(u,u)f_/S(u,u)<du+Q(t X)f) /S(uyu)9(64(f)+(t X)f),

el _ @ g _ 0 |
du Js(uu) / /S(u’u) <du * (trX)f) /S(u,u) (es(f)+(trx)f)

As a consequence of these, we deduce, for any horizontal tensor field 1, that

1
1613 st =W rcstuon'+ [, 22(99a04 g0,

=

(3.10)
1605w = Vol * [ ., 22970+ 50000 ).
Proof. The first formula in (3.10) is derived as follows:
2 2 “d 2
1022 (s (um)) = ||¢||L2(S(u,0))+/0 du(/sw,u) |9] )
Wl acstuon* [ ., 209000+ 50001 ).
The second formula is proved in the same manner. O

3.4. Hodge systems

We work with the following Hodge operators acting on the leaves S=5(u, u) of our double

null foliation.

() See for example [KN, Lemma 3.1.3].
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(1) The operator D takes any 1-form F into the pairs of functions (div F, curl F).

(2) The operator Dy takes any S-tangent, symmetric, traceless tensor F into the
S-tangent 1-form div F.

(3) The operator *D; takes the pair of scalar functions (g,c) into the S-tangent
1-form(%) —Vo+*Vo.

(4) The operator *Ds takes the 1-form F on S into the 2-covariant, symmetric,
traceless tensor —%EF\’Y with Lgv being the traceless part of the Lie derivative of the

metric 7y relative to F, i.e.
(LEY) g = VoFa+VaFy—(div F)ygp.
The kernels of both D; and Dy in L2(S) are trivial and *Dy, resp. *Ds, are the

L? adjoints of Dy, resp. Da. The kernel of *D; consists of pairs of constant functions
(0,0), while that of *Ds consists of the set of all conformal Killing vector fields on S. In
particular the L? range of D; consists of all pairs of functions (p,o) on S with vanishing
mean. The L? range of D consists of all L? integrable 1-forms on S which are orthogonal
to the Lie algebra of all conformal Killing vector fields on S. Accordingly, we shall
consider the inverse operators Dy Land Dy ! and implicitly assume that they are defined
on the L? subspaces identified above.

Finally we record the following simple identities:
*D1D; = —-A+K, D1*D1 =—A, (3.11)
*DoDy=—3A+K, Dy*Do=-1(A+K). (3.12)

PROPOSITION 3.2. Let (S,7) be a compact manifold with Gauss curvature K.
(i) The following identity holds for vector fields 1 on S:

Javuk1wr) = [ (divop+ieat o) = [ D (313)

s s s

(ii) The following identity holds for symmetric, traceless, 2-tensor fields ¢ on S:
[avvrrariopy =2 [ avop =2 [ ok (314)

(iii) The following identity holds for pairs of functions (0,0) on S:

[(9ef+19af)= [ [=Vor(Toy = [ 1Dile.o)l. (3.15)

(iv) The following identity holds for vectors ¢ on S:

/ (VP — K[pf?) =2 / Dy, (3.16)
S S

(6) Here (*Vo)a=€qp Vpo.
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4. Preliminary estimates

As explained in the introduction, the proof of Theorem A is based on the bootstrap
assumption (2.13), i.e. (S)Oomng. In this section we use this bootstrap to prove
various preliminary results. In the following three sections we then derive estimates for

the Ricci-coefficient norms (910 4, (DO 5 and (9O, 4, respectively.

4.1. Preliminary results

We prove here results which follow easily from our bootstrap assumption (S)OoméAo.

We first derive an estimate for 2. To do this, we use the definition of
1d -1

_ 1 _1 i_ld
w= §VglogQ—2QV3(Q) _2du( )

Thus, since Q= 1=2 on H,,

”Q_l _2||L°°(u,g) </ ||£U||L°°(u’,y) du/ 5 61/2 (5)00700[@] 5 61/2A0'
0

Thus, if § is sufficiently small, we deduce that ‘Q—a is small, and therefore

<0<4 (4.1)

PN

We now prove the following proposition.

PROPOSITION 4.1. Under assumption (2.13), we have the following estimates for an

arbitrary horizontal tensor field :

1l 22y S 1 22y + / Va0 2 )
0 (4.2)

u

1l 22y < 101l 220 + / 1V 5201 22 r d

More generally, the same estimates hold in LP(S) norms.

Also,
||w|‘%2(u,g) S ||¢Hi2(u,o)+||¢HL2(H,€,M>)HV4¢||L2(H§,°'H’)’ (4.3)
101y S 10800y + 80 g V480 g '
COROLLARY 4.2. Under the same hypothesis,
190, e S 19l o+ | 6719l uar
0 (4.4)

19t o) S 16, o+ | 1930l 0 0
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and

Hw”%?sc)(u,g) 5 ‘WHQL?“)(u,O) + ||"/JH/;%SC) (Hﬁo’ﬁ)) ||V4¢||£%Sc) (H£O=H))7 (4 5)
19125,y S 1912 0190 s o IVl o o

More generally, let S'C Sy, and let S,

null generators of H, and H,, respectively. Then

and S;’H, be obtained by evolving S’ along the

U

1%l cr

(sc)

s Sl e (5;70)-5-/0 5t

(sc)

Vath (b )9
p

u
||¢||c§;c)(5/) N ||¢||£{SC)(56&)+/0

vgw%(tr 0%

Loy (S )

Proof. The corollary follows immediately from the proposition and definition of the
scale-invariant norms. The last statement of the corollary follows by applying (4.4) to
the function x, where the cut-off function x is first defined on S, ,, as the characteristic
function of S’ and then extended by solving the transport equations V4x=0 and V3x=0.
To prove the proposition, we first make use of (4.1) and (2.13),

b x| e S Aod ™2,

and deduce from the first equation in (3.10) that

u

1
60t S Vs [ ([ 1|Tawegru])
§||¢\\%2(s(u,o))+/0 90 L2y (I Varpll L2 (s) + D002 (|l L2(s)) de’
§||¢H%2(S(u,o))+/0 ||1/JHL2(S)||V4¢HL2(S)dﬂ/+Ao571/2/0 [9[172 sy '

Thus, by Gronwall’s inequality, since u<J,

1N Z2 () S ||w||i2(s<u,o>)+/0 IVatbll 22 () 190 22 . e’

from which we easily derive the V4 equations in both (4.2) and (4.3).

To prove the V3 estimates, we need to take into account the anomalous character
of tr x. From our bootstrap assumption we deduce (recall that tr xo=—4/(u—u+2ro) is
the flat value of tr x) that

lltr x —tr xol o S Ayd/2.
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Thus,
leliz(s(u,y))S||1/)||%z(s<o,g))+/o </S

S ||1/}||2L2(S(0,g))+/0 191l 2(5) (130 [| L2(5) + D06 2|9 £2(s)) d’

ol Tt 500 )

(u’,u)

4 / e xoll 2 1112 sy d
0

S ||¢||2L2(S(o,g))+/0 ||¢||L2(S)(||V3¢HL2(S)+(1+A051/2)HwHL2(5))dul-
Thus, using Gronwall’s inequality and the smallness of 6'/2A,, we deduce that

u
10112 sy S 1612 250 + / bl e sy IVl s,

from which both (4.2) and (4.3) follow. O
We next prove an improved estimate for tr .

PROPOSITION 4.3. For 6'/2Aq sufficiently small, we have for all S=5(u,u),
6 x| oo (5) S AF (4.7)
Proof. We recall that tr y satisfies the transport equation
Vytry= —%(tr X)2—|5<\|2—2w try,
and

(trx)2+|>?|2+2wtrx>.

N |

d
—trxy=—
du X <

Thus, since ||(x, )|z~ S6~1/2A,,

u

||trXHL°°(u,g)§/0 HXHLm(u,g’)(HXHL“’(U,y’)+HwHLw(u,y/))dﬂlsAg'HSl/zAO- O

4.2. Transported coordinates

We define systems of local, transported coordinates along the null hypersurfaces H and H.
Starting with a local coordinate system = (#',62) on UCS(u,0)C H,, we parameterize
any point along the null geodesics starting in U by the corresponding coordinate 6 and
affine parameter u. Similarly, starting with a local coordinate system 6=(6',6%) on
VCS(0,u)CH,, we parameterize any point along the null geodesics starting in V' by
the corresponding coordinate 6 and affine parameter u. We denote the respective metric

components by yap and vqp-
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PROPOSITION 4.4. Let 1Y, denote the standard metric on S*. Then, for any 0<u<1
and 0<u<d and sufficiently small 5'/2 Ay,

Yab =% <6200 and  |yab—70| <A
In addition, the transported coordinates satisfy
V50°| 080, [VO°| ST, |Va0?|S6A0 and [V S1 (4.8)
for a=1,2. The Christoffel symbols Tape and Lape obey the scale-invariant estimates(”)

) SO0n,  N0alabellz2 sy S Opays (4.9)

(se)

”Fabc ||£?Sc)

||£abc||£2 (8) 50[2] (410)

(se)

Proof. We will only show the argument in the case of 4. In the transported coor-

dinate system the metric v,; satisfies

d
—Yab = 20X ap-
dng Xab

Therefore,

o
|vab—72b|<2/ s dt’ < 672 A0,
0

where in the last inequality we used that |xas|<|x||y~!| and ran a simple bootstrap
argument.

The transported system of coordinates 8¢ satisfies the system of equations
V40%=0.

Commuting these equations with V3 and taking into account the commutation formula
(3.6), we obtain
V4V30® =2wV30*—4(VO°.

Using the bootstrap assumptions (2.13), the inequality |[V8*| <1 and the triviality of the
data for V360%, we obtain that
[V30¢ S 0A.

To verify that |[V0%| <1, we commute the transport equation for % with V to obtain,
according to (3.8), that
V4Vo* = —xVo°,

(") We can attach signatures to I and T, setting sgn(F):% and sgn(E):%.
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which together with the bootstrap assumption (2.13) gives the desired result.
To prove (4.9), we differentiate the transport equation for 74, to obtain

d
@ (ac’}/ab) = 2acQXab + 2QachLb-

Taking into account that
100 SIVQ<[nl+nl and  [dexa| SIVXI+IT] [x],

we derive that

10cabll L2 () S/Ou(||77L4(u,u’)+77|L4(u,u/))|X|L4(u,U’) du/

+/Ou(Vx||L2<u,u'>+||FLZ(u,u')IXIILw(u,u')) du’
<334 00 4[]S O an, n]+ S O1 2 [x]+6712 A /Ou T 22 g,y dd”.
Thus, by Gronwall’s inequality,
Tl 22 0y S 2 O1,2 464 OF 4.

The desired estimate for I" follows by Gronwall’s inequality. The second estimate of (4.9)
can be derived by an additional differentiation of the transport equation. The estimates

(4.10) are proved in the same manner. We omit the details. O

4.3. Estimates for RS

Using the transported coordinates of the previous subsection, we now derive estimates

for the R[] norm of the anomalous curvature component a.

PROPOSITION 4.5.
Rolo](u) SRY[a](0)+R.

Proof. Recall that R[a]:=supsy g Ha||£?ﬁc)(aH), where °H is the subset of H, gen-
erated by transporting a disk °S of radius 6'/2, embedded in the sphere S, ¢, along the
integral curves of the vector field e,. We denote by 5S@ the intersection between °H and
the level hypersurfaces of u, and by %S, , the sets obtained by transporting %S, along
the integral curves of e3. According to (4.6),

du’.
L%sc) (5Su’ ,u)

1
Vgoz—l—i(trx)oz

u
lolles, o5, S lollez o500+ |
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We note that (4.8) implies that 95, ,, are contained in the intersection of 2°H, and the
level hypersurfaces of u. Therefore,

du'.
£2,(H,)

1
Vga—i—g(trx)a

u
ledlze e,y S ||a||LfSC)(26HO)+/O

(se)
Using the equation for a,

Vaat5(tr x)a = VE[+dwa—3(Yo+"Xo) +(C+4n) @0,
and the bootstrap assumptions (2.13), we obtain that

< HV3OZ+%(U'X)QHE?SC)(H“’)

<IIVBlez, (a1, +6'2 50 Ro SR+6"?AgRy.

||V304+%(trli)o‘Hg?ﬁc)(?éHu/)

It remains to observe that

ez eomg) S Ro[e](u=0),

<)

which follows from a simple covering argument. O

4.4. Calculus inequalities

PROPOSITION 4.6. Let (S,v) be a compact 2-dimensional surface covered by local

charts (disks) Uy, in which the metric v satisfies
i — 0331 < 5

Let d denote the minimum between 1 and the smallest radius of the disks U;. Then, for

any p>2,
1 2 1/2 —
1]l zscs) S NI4T 1V ot sy +d ™2l 2(s) (4.11)
]l e sy S ||¢||’zé<{’;4) IVl +d =4 D ]| o s, (4.12)

More generally,

1/2

1o S 1900 oo, 12|l g2, (4.13)
4 4 4 _
9]| Lo (s <sup<\|w||’;£’;7) ||W||JJ”J) +d= YDy || 1 o). (4.14)

Here, the disk U] is a doubled version of U;.
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We can combine the above proposition with Proposition 4.4 to obtain the following

result.

COROLLARY 4.7. Let S=85,, and Ss;CS denote a disk of radius 62 relative to

either the coordinate system 6 or 6. Then, for any horizontal tensor 1,

1/2 1/2
1l zags) S 1l sy 1V ot )+l 223 (4.15)
4) 4 4
1l g5y S IR DIVl N D + 1 o s (4.16)
and
1611 (55) S 64UVl L2(500) +0 /A1l 25, (4.17)
[llz(5) S 5B 0"Vl 250 07 s(20)- (4.18)
5

Also, in the scale-invariant norms, we have the following result.

COROLLARY 4.8. Let S=85,, and Ss;CS denote a disk of radius 62 relative to

either the coordinate system 6 or 6. Then, for any horizontal tensor 1,

1/2 1/2
[lles, o SN 5 IVUIE (o6 Wlles, o). (4.19)

4 4 4)
¥l ces () S ||w||p/<”+ IVelz” (6 +6 bl s (4.20)

and

[¥llca, sy SIVlez,
191l s

(s¢)

(Sza)+||¢||z:§sc)(s%)> (4.21)
Vllca (Ss))- (4.22)
(s)

(S) < Sllp (vanc(gc) S2é)+

4.5. Codimension-1 trace formulas
We will use the L*(S) trace formulas(®) along the null hypersurfaces H and H, see [CK],
[KN] and [KR2].
LEMMA 4.9. The following formulas hold for any 2-sphere S=S(u,u)=H (u)UH (u)
and any horizontal tensor 1:
9l zs) S Ul 2 IV L2 )2 (1l L2y + I Va2 ) V2,
91 zagsy S Ullzzcon IV L2 ) V2 W 2 o)y + V39 22 ay) V2.

(®) Our bootstrap assumption are more than enough to verify the conditions of validity of these
estimates.
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Also, in scale-invariant norms, we have the following result.

PROPOSITION 4.10. For a fized S=S(u,u)=H(u)NH(u)CD and any horizontal

tensor 1, we have

l|9]] £ (5)5(51/2|W||5(256)(H)+|W1/}||c2 )(H))1/2(51/2||¢||a2

(sc (sc (sc)

1llcs, 5 S GV20ea oy IV lLea )22l 2

)1/2

)

T IVadliez )
)+ ||V37/’||L%SC)(LI))1/2'

4.6. Estimates for Hodge systems

Consider a Hodge system
Dy =F,

with D being one of the operators in §3.4. In view of Proposition 3.2, we have

VP + | KWW SIFIZ:s),
S S

where
K=—p+3xXx—5(trx)try
is the Gauss curvature of S. Hence,
IVl 725y SIKL2(5) 1901745y + 1 F 122 (5)-
Making use of the calculus inequality on S,
19017405y S IVl L2y 191l2(s)
we deduce that
IVl Z2(s) S IElL205) V9 2(5) 19011225y + I F T2 sy
and consequently that
IVYl[r2(s) S K L2(s) ¥l L2s) +I Fll L2 (s)-
We state below the same result in scale-invariant norms.
PROPOSITION 4.11. Let 9 satisfy the Hodge system
Dy =F.
Then,

IVl sy 551/2||K||.c(2“)(3)||¢H.c§m)(3)+||F||L(2$C)(S)-
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To obtain the second derivative estimates for the Hodge system Dyp=F, we apply
the operator D* and write the resulting equation schematically in the form

A = Ko+ D*F.
Multiplying by A%, integrating over S and using that [|D*F||12(s) S|V F| £2(s), we get
1A L2(s) SNl L2)[[¢ ]| Loe (5) HIVF | L2(5)-

Using Bochner’s identity, see e.g. [KR2],

2
IVl 25y S ||K||L2(S)Hw”LOC(S)"’HKHEQ(S)||vw||L4(S)+||A1/)HL2(S)- (4.23)

We then obtain the following result.

PROPOSITION 4.12. Let 9 satisfy the Hodge system
Dy =F.
Then,

|\V21/)||c<2“)(5) SOV2K | g2

(sc)

1/2
@lYlzz, 6 +0 KNI I Veller 6 HIVE e, (s)-

5. (5)00,4 and (S)(’)o,z estimates
5.1. Estimates for x, n and w

The null Ricci coefficients x, n and w satisfy transport equations of the form

V4w(s) _ Z w(sl)w(SZ)_i_\I;(s'*‘l). (51)

S1+s2=s5+1

Here (*) denotes an arbitrary Ricci-coefficient component of signature s, while ¥(*)

denotes a null curvature component of signature s. In view of Proposition 4.1, we have

199 leg ) S99 Neg ot [ 57 IVaw ey
0

/
(sc)(uvﬂ/) dﬂ :

To estimate HVM/J(S)HU(P , we make use of the scale-invariant estimates

) (u,u’)

I60lles_ s) <826l cx

(sc

(@ l[Plza cs)-
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Hence,

||V4¢(S)||£;ﬂsc)(5)S||‘I’(S+1)||Lgsc)(3)+5l/2 > Hw(SI)||£‘(>§C)(S)||1/}(S2)HL‘(‘SC(S)-
S1+s2=s+1

At this point we remark that if all Ricci-coefficient and curvature norms (5 )(90,4 and Ro

were scale invariant, we would proceed in a straightforward manner as follows:

V4| 2a

{5y () S ”\II(SH) Hﬂ?sc)(s) +61/2(9) 00,00(5)00,4

< ||q,(s+1) ”ﬁ?sc)(s) +51/2A0(5)(’)074.

Hence,

s wan S 19l

<l

(u10)+/0 5*1||\I/(S+1)||L?SC)(U7E,) dy’+51/2A0(5)0074
(o) TR PR P46 AR +61/2 00D 0 4,

where in the last step we used the interpolation inequality (4.19) for the curvature Ws+1.

Thus, since the initial data is trivial along u=0,

(w,n) ||%C)(u,y) < R(l)/27z}/2 1oYAR, +51/2A0(S>0074.

We only have to be more careful with the cases when || ¥+ ||£21 [(9) is anomalous,
ie. ¥=q, and both ¥ and ¢(*2) are anomalous. The first situation (but not the
second) appears only in the case of the transport equation for X, while the second one

appears only in the transport equation for try:
ViX+(tr )Y =—-2wx—a and Vytry+3(tr X)2=—|x*—2wtry.

Thus, for a fixed u, we estimate, with °S,, denoting a disk of radius 6'/? transported from
the data at S, o (recall also the triviality of the initial data on Hy),

U
IRlet s S [ 8 alley s, . du/+6220 On
| .
Using (4.21), we obtain
“ o
-1 /
| et 65, 80 S ol gy s, 190l o) S Réfe)+ Rl

Therefore,

Ixll2s,,, 35, < ||>?||£?SC)(550)+Rg[a]+R1[a]+51/2A0(S)OO,4,
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from which we derive the scale-invariant § estimate for y, that is
S 0F 4K S R[] +Ri[a] +6 2069 O 4. (5.2)

We can also estimate directly the anomalous (¥)Og 4[] from

IRlles, 5 S / 5 alles s, ) du'+3V2 008 Oy .

Using the scale-invariant interpolation inequality (4.19), we deduce that

1/2
£(2sc) (H?SO’E))

1/2

ey (1 +012 802000,

Xl (s.) < Nl Vel

1/4
(sc) )+5 ||a||£(250)(

HﬂELO&))

~
)

Taking into account the anomalous character of Rola] and the definition of ()0 4[X]
we deduce that

509 4[X] S Rola]'*(Rue]+Rola]) /2 +5*A¢ S O 4. (5.3)

On the other hand,

U
ltrxliza, uaw S ||tTX||£gSC)(u,o)+/O 5_1/2A0”trX”L',?SC)(u,g’) du/
+5_1/2A0/ ”)?”L"?sc)(u’l") dyl+61/2A()(S)OO,4
0
< ”trX”ﬁ?sc)(u,O) +51/4A0(S)(9074.

We summarize the results of this section in the following proposition.(?)

PROPOSITION 5.1. Under the bootstrap assumption (S)Oo’mng and assuming that
8Y2 N is sufficiently small, we derive that

SOy 4w, 1] S Ro+RY PR +64 Ro 462205 Oy 4,
SO altr x] S1+64269 Op 4,
Oy 4[X] S Ro[a]Y?(Ra[a]+Rola]) /2 +64 A0 Oy 4.

Also,

ORI SRuy+02 00 O 4.

(°) Recall the triviality of our initial conditions at u=0.



246 S. KLAINERMAN AND I. RODNIANSKI

5.2. Estimates for w, x and n

The Ricci coefficients x, w and 7 satisfy equations of the form

1 ;
V() = —57“(“2()1/}(3) + > Iyt ul),

S1+S2=s
with k being a positive integer. Writing trX:trXO—i—tr/z, with tr xo=—4/(u—u+2ro),

we derive that
(5.4)

1
ng(s):f§k(trxo)1/1(s)+ Z P (52) L g(s)

S1+s82=s

In this case, we observe that the curvature term ¥(*) is never anomalous and the only
time when both (1) and (*2) are anomalous is in the case of the transport equations

for X and trx. In all other cases, we can write, proceeding exactly as before,

199 et u S 19 et ot | 1935 e,y

and
(wa)+ ||\p(s) ”ﬂzlsc)(“»li) +51/2(S’) (90700(5)00,4'

1959 les_ ua < 16 s

Thus, in these cases,
(O,g)—"_/ ||‘I’(s)||5§%)(u/,g) du’—|—61/2(5)00,oo(5)00,4
0 ’ (5.5)

||¢(5) ||£?SC)(u,g) 5 ||¢(S) ||[’zlsc)
1/231/2+51/4RO+51/2A0(S)0074.

Sy s 0.0+ Ro

Similarly,
(0.w) TR0+ 20O 4. (5.6)

ey S 16z

It thus only remains to estimate try and Y. We first estimate Of[x] from the

~

equation
V3X = —a+(tr xo)X — (tr x)X —2wX.

Clearly, for fixed u,
llll 24 (5Su)+IlXHﬁ?‘Sc)(‘;Su)+51/2(S)00,00(S)OO,47

(sc)

||VSX+%(trx)Xqusc)(ésu) S

and thus, after a standard application of the Grénwall inequality,

U
50 SIRlet o+ [ lalley s,

IRles
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Taking into account the scale-invariant interpolation inequality (4.19), we deduce that
Ixlles, s SIX s, 0s0) +Ry *[a Ry *[a] +0Y/ 4Ry a] +82 20D Og 4
and, since ”X”E“ (SSO)NO(O)
IR1cs 5.y S OO +Ry [0l (R *[a]+8"*Rolal) +6"/> A0 ) O 4.
Proceeding in the same fashion,

Xz,

150 SRl ez s+ R0 )Ry 2 [a]+6" Ry la] +6" 220D Op 4.

Now, observe that the only anomaly on the right-hand side is due to [|X]| £, (S0)" In fact,

IXIles, (s0) SO~ 1400,

Thus,
50, 4alXI S O(O)+51/4R1/2[ ]Riﬂ[Q]+51/230+53/4A0(S)00,4~

To estimate trfgztr X —tr X0, we start with the equation
Ds trz(+%(trl()2 = —2gtrl<—|2|2.
Since Dsu=0"", D3u=0 and tr xo=—4/(u—u+2rq), we have
D3 trxo = 77(2 (trXO) )
Hence, using t/rz(:tr)l—tr X05

1

Vg@—&—(trxo)@ ~3q

1 — |~
(Q—) (trl(o)2+2g trKO—Qgtrx—|X|2.
Now, taking into account the anomalous scaling of (3)00)4[2(\] and the estimate
1
||Q*§HL§SC)(S) Slwllez )
(which can be easily derived using the transport equation V3Q=w), we derive that

IVstr xll e (s) S lltrxl s

Lo Tlelies s +6149) 04 0 4,
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from which

!/

u
67Xt w0 S 17X 0 [ IVt 0

u
S (IR N P
0

+/ Hg”[’?sc)(u/?y) dul+(51/4A0(S)(9074.
0

By Gronwall’s inequality, and using the estimate for w derived in the previous section,

we have

e Xl s gy S Il o) + Ry PRy 2+ R 4514 20D Oy 4.

(sc

Thus,
(5)00,4[@] SOOLRGR, +6Y4Ro+04A0 S Oy 4.

We summarize the result of this subsection in the following result.

PrOPOSITION 5.2. We have, for sufficiently small 4,

& 0g4a[n,w] SOV +R, JrE(l)/QE}m +6YAR 461200 Oy 4,

(S)OOA[S(\] 5 O(O)+51/4E(1)/231/2 +51/2E()+53/4A0(S)OO,4,

(8)00,4[{1‘3{] SOO L RR +6Y4Ro+6Y4200 N O 4.

Also,
O R SOO+RY PRI +6Y Ry +5"2 069 Op 4.

5.3. Summary of (5) Op,4 estimates
Putting together the last two propositions, we deduce the following result.
PROPOSITION 5.3. There exists a constant C depending only on O©) and R such
that, if 6Y/2Aq is sufficiently small, we have
()04 S C. (5.7)

Moreover,

Ro[o]2(Ry[o]+Ro[a]) /2 +6Y4C,
(9(0)_,_51/40.
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5.4. (S)Oo,g estimates
The following estimates will also be needed.

PROPOSITION 5.4. There exists a constant C depending only on O©) and R such
that, if 6Y/2Aq is sufficiently small, we have

)0y, < C. (5.8)

Proof. This is similar but somewhat simpler, once we already have the (5 )0074 esti-

mates. Indeed, starting with (5.1) (dropping indices for simplicity), we write as before

1925 o S 1, 00+ | 5 IVl a0

and, assuming the worst case scenario when both factors in 1 are anomalous, i.e. both
satisfy [[¢]|zs (s SCI 4,

IVatlizz  (s) < ||‘I’HL§SC>(S)+51/2||¢||L§SC)

Sz, 5+ PO 4 SIVlez 5y +C>.

@ Ples (s

Thus,
1Pl ) S+ /O Il 2 (uwry A +C* SN2 (a1, +C*.

U can only be the anomalous « in the case of the transport equation for . Thus,
@, Mlez,, ) <Ro+C? and Ixl22,., uu) S 57?Rolal
or, with a constant C=C(0©) R, R),
SO a[tr ¥, X w, ] S C.

The estimates for tr x, X, w and 7 are proved in the same manner. O

6. O, estimates

6.1. General strategy

To get the first and second derivative estimates for the Ricci coefficients we cannot
proceed as we did in the previous section. Following a path first pursued in [CK] and
continued in [KN], [KR1] and [C], we introduce new quantities('?) ©(*) with signature s,

(19) Different components © appear in (6.1) and (6.2). It may in fact be more appropriate to denote
by © the components which appear on the left of the V4 equation and by © those appearing on the left
of the V3 equations.
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depending on the first derivative of the Ricci coefficients and which satisfy transport
equations of the form(!!)

V,00) = (tr x)(0®) 4+ Vips=1/2)) 1 Z P (Vep(s2) 4 gs2))
s1+so+1/2=s+1

6.1
+ Z (trX0)1)/)(51)¢(52)+ Z w(s1),¢}(52)w(33)’ ( )
sitsamstl s1+s2tsz=s+1
v3@(s) — (trx)(@(g)_i_vw(s—l/ﬂ)_’_ Z w(ﬂ)(vw(s‘z)_"_\y(eg))
s1+s2+1/2=s (62)

+ Z (tr x0) () () 4 Z (D) (52) g (59).

$1+852=s $1+82+S3=s

Here (%) are components of all the Ricci coefficients try, X, w, 7, tr/z, X, w and 7 with

signature s, while U(*) are curvature components with signature s.

The main idea behind our strategy is to show that once we control the E?SC) (S) norms
of these quantities ©, we derive all O; estimates by using the elliptic Hodge systems.

The most general form of such systems is given by
er(s) :@(3+1/2)—|—\I/(S+1/2)+(tr Xo)w(s+l/2)_’_ Z zb(sﬂw(sz)7 (63)
B s1+s2=s+1/2

where D is one of the Hodge systems of §3.4. Observe also that both Hodge systems have
non-anomalous curvature source terms 3 and 3, respectively, and no quadratic anomalies

in ¢ (relative to the Oy norm).

6.2. Explicit ® variables and Hodge systems

In this section we introduce explicit variables ©(*) and derive transport equations of type
(6.1) and (6.2).

Transport-Hodge systems for x and x. First observe that the Codazzi equations

div;?:%Vtrx—%(n—g)()?—%trx)—ﬁ, (6.4)
divX:%Vtrz—&-%(n—g)(g—%trx)—kg (6.5)

can be written as Hodge systems of type (6.3), with D being the Hodge operator Dy,
discussed in §3.4, and ©=V trx, resp. O=Vtr x.

(1) We neglect to write possible constants in front of each term on the right of our equations.
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We now derive a V, transport equation for V tr y. Using the commutation formula
[Va,VIf=2(n+n)Dsf—xVf, we obtain that
VaVirx=—(Vitry)trx—2(tr x)Vw—2wV tr x—2(VX)X (6.:6)
+3 () (=3 (trx)? —2wtr x = |XI*) —xV tr x,

which is clearly of the form (6.1) with no curvature terms present and no triple anomalies
(relative to the Oy norm, i.e. among the cubic terms at least one of the factors is not
anomalous).

To derive a transport equation for V tr x, we start with the transport equation
Vatrx = —%(trl()2+F, F=-2wtrxy— \X|2 = —2wtr xo—2w H\X —|X|2.
Using the commutator formula [V3, V]f=—xV f+3(n+n)Dsf, we deduce that
VsViry=—xVitry—3(trx\)Vtrx— (V+i(n+n)) F—3(n+n)(trx)?,

that is, writing tr y=tr xo —&-@,

VsVitrx=—xVitrx—3(trxo)V trx—%(@)v trx

(6.7)
—(V+3m+n) F—L(n+n)(trx)*.

This is clearly a system of the form (6.2) with no curvature terms present and no anoma-

lous cubic terms.

Transport-Hodge systems for p, p, Vi and Vn. We start with the equation
curlp = — curln = o +XAX.

We get equations for divyn and div 5 by taking the divergence of the transport equations:

=
~
-
—
=
[
13
N~—
|
=2
=
|
13
N~—
|
2@

Using the commutation Lemma 3.1, we derive that
Vadiv = div(—5(tr x)(n—1) =X (n—n) =) — 3 (tr x) div =XV —nB+ 5 (1n+1)Van
= —div f—%(tr x)(2divn—divy) —(n—n) (3 V tr x+div )
=XV (2n=n)=nB+5n+1)Van.
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Using the null Codazzi equation
%V tr x+divy=Vtr X+%C try—0,
we derive that
Vydivy=— divﬁ—%(tr X)(2divy—divy) =XV (2n—n)—(n—n)V trx
—nB—1(trx)(n—n)*+5(n+n) (=5 (tr ) (n—1) =X (n—1) - B)
+3(n=n)X(n—n)
= —div -5 (trx)(2divn—divn) =XV (2n—n) - (n—1)V tr x
=5 Bn+m)B—5(trx)(Inl* —1m) = 5 (n+m)X (=1 + 5 (=) X (n 1),
that is
Vydiv g+ (tr x) div g = — div 8+ 3 (tr x) divng— XV (2n—n) — (n—n)V tr x
=3 Bn+m)B— 5t x)(Inl* ) =5 (n+m)X(n—1)
+3 (=X (n—1).
On the other hand,
Vio+3(trx)o=divB—3Xa+(B+2np.
Adding the two equations and setting u=— divn—p, we get
Vap+(trx)p=—3(trx) divyg+(n—n)Vtr x+XV(2n—n)+ixa—(n—3n)8+1(tr x)o
+3(trX) (Inl* =) + 3 (n+m)X(n—1).
Similarly, setting p=—divn—o, we derive that
Vap+(tr x)p= =5 (tr x) divn+(n—n)V tr x + XV (2n—1)+ 3 X — (1-3n) 8+ 5 (tr x)
+5(tr ) (|nl* =)+ 5 (n+m)X(n—n).
We summarize the results above in the following lemma.
LEMMA 6.1. The reduced mass aspect functions
p=—divnp—o and p=-—divn—o
satisfy the transport equations
Vapt(trx)p = —5(tr x) div g+ (n=1)V tr x+XV (2 1)+ 35X~ (1-37) B+ 5 (tr x)e
+3 (trx) ([ —nm)+ 3 (+m)X (0 —1n), (6.8)
Vst (tr x)p=—5(tr x) divp+(n—n)V tr x+XV(20-n) +5 Xa— (1-3n)f+3(tr x)o
+3(tr ) (1* =)+ 5 (n+) X (n—n). (6.9)
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Remark 6.2. Observe that our mass aspect functions differ from those of [CK] and
[KN]. Thus, in [KN], p=—divn—o+3XX satisfies (see [KN, equation (4.3.32)])
Vapt(trx)p=X(V&N)+(n—n)(V tr x+(tr x)O)+ 5 (tr x) (u+div(n—n))
= 3(tr )R>+ 3 (tr ) (RX+20— nI*) +2(nxXn—nB).

The reason we prefer our definition here is to avoid the presence of triple anomalous

terms on the right-hand side of the transport equations for y and p.

We write (6.8) symbolically in the form

Vap=1p(Vip+ ) +Xa+iii, (6.10)

which is of the form (6.1), with 1, € {tr x, X, w,n, tr x,w,n} and ¥, {3, 0,0, 5}. We can

also write, in shorter form,

Vap = (Vip+ )+,

and recall that ¢¥ contains the more difficult term Yo anomalous in both ¢ and V.
We also rewrite (6.9) symbolically. In this case we have to keep track of the terms

proportional to tr x=tr xo +@. We thus write, symbolically,

Vap = (tr xo) (V4 )+ (Vip+ W) +3g S+ (tr X0) Y1y +1ii)y. (6.11)

Here U, e{0,0,a,3}. Observe that at least one of the factors ¢ in (tr xo)¢1), and Pi),
can be anomalous. Unlike in the case of the V4u equation, there are no terms of the
form 8 with ¢ also anomalous (recall that § is anomalous for R,).

We combine the transport equations (6.10) and (6.11) with the Hodge systems,

divn=—p—o,
(6.12)
curln = U—%S(\/\X
and
divn=—-p—o,
- - (6.13)

curlp=—o+3YAX.

They are both systems of type (6.3). Note that the quadratic term XX is anomalous with

respect to both factors.

Transport-Hodge systems for s, »x, Vw and Vw. We look for transport equations for

quantities connected to Vw and Vw. Recall that

Viw=230+F, F=2ww+3n—nl>—3n-n)(n+n)—Lin+n
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and
Vsw=g0+F, F=2ww+3n—n*+10-n)(n+n)—gln+n*. (6.14)

We introduce the auxiliary quantities w! and w' by

V' =10, (6.15)

1
2
Viw! = %a, (6.16)

with zero boundary conditions along H, and Hy, respectively. We introduce the pair of
scalars (w)=(w,w’) and (w)=(—~w,w'), and apply the Hodge operator *D; (see §3.4)

*Dﬂgj)z—Vg—k*ch and *Dq (w):VoJ—F*VwT.

Next we derive a V4 equation for (w) and a V3 equation for (w). To do this, we write

the commutation relation (3.9) in the form

Vi, V]f=—2(tr \)Vf =XV f+3(n+n)Dsf,
[V4,*V]g=—2(tr x)*Vg+X *Vg+3(n* +1")Dag.

Thus, for a pair of scalars (f, g),
[Va,*Dil(f, 9) = —5(trx) *Di(f, ) +X(Vf+"Vg) = 5(n+n)Vaf +5 (0" +1") Dag.
Therefore,

Vi *Di{w) ="D1(0,0) = VF+ [Vy, " D1](w)
=*Di(0,0)—VF—1(trx) *D1(w) +X(Vw+*Vwh)

=3 (ntn)(e+F)+3(0"+n")o.
On the other hand, we have the Bianchi equation
Dyf+(tr x)B="D1(0,0)+2wp+2X3—-3(no—"no).
Thus, introducing the new horizontal vector
x:="Di(w)—18="D(w, wh— 13=-Vw+*Vw'-13, (6.17)

we deduce that

Vi =—(trx)x—wB—xXB+2(no—"no)—3(n+n)o+3(n*+n*)o

(6.18)
+X(Vw+*Vw') = VF— L(n+n)F.
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Similarly we set
s:="Di(w)—1B="Di(~w,w') - 1B =Vw+*Vui-1
and, using the Bianchi equations
D3 B+ (tr x)B =Di(—0,0)+2wB+2XB+3(no+ o),
we derive that
Vase = —(tr x) % —wB—XB+35 (no+"no) =5 (n+n)o+3(n +n*)o
+X(=Vw+*Vw )+ VE+3(n+n)F.
To estimate Vw, we combine the V4 equation (6.18) with the Hodge system
*Dy(w,w') =+ 18.

(6.19)

And t60 estimate Vw, we combine the V3 equation (6.19) with the Hodge system
*Di(—w,wh) =s+36.

Clearly, the transport equations for s and s are of the form (6.1) and (6.2) provided
that we extend the set of Ricci coefficients 1) to also include the new scalars w! and w.
We observe that w! has the same signature as w, and w' has the same signature as w.
Moreover w! and w satisfy equations similar to those satisfied by w and w. Thus, for
example, we can easily derive both L%SC) and E‘(lsc) estimates for them. Indeed, from
(6.15), we easily derive that

u
|IgTH£§SC (u,g)g/ 5—1||U||c’g‘sc)(u,g,) du' <Rolo].
0

)
Similarly, from (6.16),

ol c2

u
o [ olles & SRolol.

It thus makes perfect sense to extend the definition of the set of Ricci coefficients as well
as the definition of the norms (9O, (5)00,4, (S)Ol)g and (5)01,4 to include them. We
therefore also assume, from now on, that the main bootstrap assumption (2.13) includes
wl and wf.

Finally we observe that equations (6.18) and (6.19) can be written in the form
Vize=—(trx) 2+ (Vg + Vi) + iy,
V3= —(tr x) s+ (¥ + Vo) +pihihy,
with ¥,e{3, 0,0,3} and wge{trx,w,uﬂ,n,‘crf\)j,g,gtg}. Since s can be expressed in

terms of Vw, Vw' and 3, we can also write the first equation in the form

Vs =Y (Vg + V) +ahihrhy.

The second equation can be written in the form

V3= —(tr xo) 2+ (¥ g+ Vip) +rha),. (6.20)
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6.3. Main O, estimates

We start by rewriting systems (6.1), (6.2) and (6.3) in short form, dropping the reference

to the signature,

VO = (VY + W)+ (tr x0)P1hg +111bg, (6.21)
V30 = (tr xo) VY + 9 (VY +0)+ (tr xo) oy +¢¢idy, (6.22)

where 1, denotes an extended Ricci-coefficient term (i.e. including w' and w' defined

below) which is not anomalous in the (5)00)4-n0rm. Also,
Dy = O+ W+ (tr x0)1by + i) (6.23)

Remark 6.3. In reality equation (6.22) should also contain a term of the form tr x¢©,
as seen in (6.7), (6.11) and (6.20). We observe however that such terms can be easily

eliminated by a standard Gronwall inequality.

Remark 6.4. The curvature terms ¥ appearing on the right-hand side of (6.21)
belong to the admissible('?) set {a, 3, 0,0, 3}. Special attention needs to be given to
terms of the form('3) Yov.

Remark 6.5. The curvature terms ¥ appearing on the right-hand side of (6.22)

(14

belong to the admissible(**) set {3, 0,0,a, 3}. Special attention needs to be given to

terms of the form 93, since R[] is anomalous. We observe however that among all

possible terms of the form 3, 1 is never anomalous.

Remark 6.6. The curvature terms ¥ appearing on the right-hand side of (6.23)
belong to the set {8, 0,0, 8}

Remark 6.7. 14 denotes an extended Ricci coeflicient which is not anomalous in
the Op norm. Whenever we write simply v, we allow for the possibility that it may be
anomalous. For example the terms of the form ¥ in (6.23) may be both anomalous (as

happens to be the case for the div-curl systems for 1 and 7, due to XX).
Remark 6.8. Due to the triviality of our initial data at u=0, we have
1Oz, w0y =0-
In view of the definition of ©, we have

182z, 00 S 00 +RO).,

(12) This are the curvature components appearing in the main curvature norms R and R1.
(13) Such a term appear in the transport equation for .
(%) This are the curvature components appearing in the main curvature norms Ry and R, .
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We start deriving estimates for (6.21). As in the proof of the Oy estimates

11, wan 1€ o+ | 5 IVl oo '

Recall that none of the L75,(S) norms of the Ricci coefficients ¢ or the E%S ¢ () norms
of their derivatives Vi) are anomalous. Moreover,

[l 2

(bc)(S)+51/4ng||ﬁ‘(‘“)(s) SW0p4(9) SC,

where C' is the constant in Proposition 5.3. Also,

19l cee

(DC)(S)NCSUZAQ and ||V1/)||£2 )(S 012

Now, according to (6.21), for 6'/2A¢<1,

IVaO|[ 2

2 ()5 HT/)‘I’HL(SC)(S)+51/2||¢||£°o &IVElez s

o)
‘*‘51/2“1#”[:3&) (5) 0¥l

Sz 50280l Vel 2 (5)+8"/4C2.

Wl

() Yty ||c<(gc)(S)

()l

(sor(

Recalling the triviality of the initial conditions at u=0, we deduce that

1127 0 % [ 71940 uar

(sc

5 (5_1 / ||’(/}\I/||E?SC)(“)E/) dy//—‘rAO(sl/Q(S)OLQ +51/4CQ.
0

Among the terms of the form W, the most dangerous(*®) is Xa which is anomalous in
both ¢ and W. In this case, recalling estimate (5.7),
xllea, ) <0~ Vi,

we deduce that

Ixellez, s) <51/2|\X||z:;gc)(3)\|04||L;gc)(s>

1/2 1/2
SENCAIValL (s llallZ s +0" llalls, s)-
All other terms are better in powers of §, i.e.
1/2 1/2
[09les, i) SSCUVIE G IVUIL 681 s))

(1) This is the case for the V4 equation for .
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Therefore, recalling Remark 6.4 and the definition of the scale-invariant norms E?S 0 (Hy),

— “ — “ 1/2 1/2
5 1/ [9%ll2 0y ' S C8 3/4/ I o VI (o
0 0 (sc) (WL (sc) (W

. u 1/2
5 06_1/4 (/O ||\II||%?SC) (uvﬂ‘/) d@/ /0 ||V\IIH%%SC)(U7E/) du’)

SORY*(Ro+R1)V2.
We have thus established that
”@”L?sc)(u,y) S51/2A0(S)01,2+CR(1)/2(R0—|—R1)1/2+51/402.

We next estimate the © components which satisfy the V3 equation (6.22). The only
terms which do not appear in (6.21) are of the form (tr xo)V. Thus, exactly as before,

IV3Ollzz (s) S Hi/)‘I’HL%SC)(S)+(1+51/2A0)||V¢||L§SC>(S)+51/402-

In view of Remark 6.5, ¥€{f, 0,0, a, 8} and there are no double anomalous terms - .
Thus, proceeding exactly as above,

S1Ollez

(sc

1Ol

SC)(uvﬂ)

)(o,u)+/ IVsOllz2, () dut
0

< [ IV, oy +52 8001

+C«51/4Ré/2(gl +RQ)1/2+C251/4~

Combining this with (6.3), we deduce, for a constant C=C(O®, R, R) and a sufficiently
small §, that

1©1] 2

(sc

) () g C+/0 ||V’ll)||£%5c)(u/’g) du’+51/2A0(’)1. (624)

It remains to discuss estimates for the Hodge systems (6.23). The following propo-

sition will be needed.

PROPOSITION 6.9. There exists a constant C=C(O©) R, R) such that, if § is suf-
ficiently small, the following estimates hold:

”(/87 0, Uv@)”[l?:w)(S) §C7 (625)

1Kl 2, (s) S C- (6.26)
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In view of Proposition 4.11, we derive from (6.23) that

IVl 2

(sc

1/2
) SONKNE 514l ey

(sc

)(S)‘FH@H&C)(S)
+ ||\I/||£%sc)(s> Hllvgllez ) Hllvdllez s)-

According to Proposition 6.9, HKHLZ ($S <C. Thus, even if the term ||¢||£2 NE) multi-
plying HKH[;? (S is anomalous, (1) i.e. ||¢||£? (u, W) S0” 1480y 4 <C6™ 1/4 we deduce
that, for some C:C(O(O),R,E),

1/2
SNKNL el o)

Also, since ||\I/||L2 (5)<C' for Ye{p,0,0,3} and |\¢gHL?SC)(S)<(’)O[wg]§C’, we deduce
that

IVl 2

2 9 SCHOlcz o)+ 1¥ellez (s)-
Among the remaining quadratic terms ||11)]] 2, (s), we can have terms such as Y¥, in
which both factors are anomalous.(1”) For such terms,

sllvlles s SC

SVl INE

(>L>

vl cz

(e (S
Henceforth,
IVYllez 9 S C'2+||@||L§SC)(S)~

Combining this with (6.24), we deduce that

IVl 2

s 5 SO [ 10l (5, A0+82800%,

from which, by Gronwall’s inequality,
V%l 22, (50 SC* 8200501,
and thus
0, 2+19llzz (5) S c?
as desired. We summarize the results in the following proposition.

PROPOSITION 6.10. Consider systems of the form (6.1)—(6.3) satisfying the proper-
ties discussed in Remarks 6.3-6.7 above. There exists a constant C’:C((’)(O),R,E) such
that

||@||L?SC)(S)+(S)O1,2 SC.

(16) This situation occurs only for the Hodge system div ¥, see (6.4), since Op[X] is anomalous.
(17) In fact XX appears in the Hodge systems for n and 7, see formulas (6.12) and (6.13).
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6.4. Curvature estimates

In this subsection we prove Proposition 6.9 concerning E?SC)(S) estimates for the curva-
ture components 3, g, 0 and 3. We also provide estimates for o and o which will be
needed later. Recall the Bianchi identities

VafB+2(tr x) 3 =div a—2w— (2¢+n)a,
V4Q+%(trX)Q:divﬂ—l-l)/(\a—gﬁ_%lﬂ’
V4U+%(tr><)0 —div "B+3X "a—("B-2n"8,

(1x X) = ~Vo+ *Vo+ 20+ 28530~ "10).

wm

40+ (trx

Thus (3, g, o and j satisfy equations of the form

V0 = ggstl/2) Z P pls2),
s1+s2=s+1

Among the curvature terms on the right, we have to pay special attention to multiples

of the curvature term « with signature 2. We write schematically
V¥V, =V¥+y¥,

with U,e{0, 0,0, 5}, while ¥e{a, 5, 0,0, 8}
Thus,

||V4‘I’g H[:2

<
s SV s

(sc

() +6 2|9 o<

s)Hllavlle: Wyllz2

(sc) (sc) (M)

Now, as in the estimates for © in the previous section, the worst case scenario estimate

for ||a1p||£2 [(5) for anomalous v, has the form

[Pl z2

1/2 1/2
) SCEHIVallZ g llalls o+ lallcz, (s):

We deduce that

IVallcz sy SNV W2z, S)+51/2Ao||‘1’ ez, ¢
+cal/4<|\wuzgf o ||”2 )+51/4||a||,;z )

from which

[yl z2

(S Wollez oy +Ra+0"280Ro+CRy (0] Ry 0]+ CRola].
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Thus, since the initial data ||\Ifg||£% (w0) 18 trivial,

|\\I/g||£?sc)(u,g) <Ri +51/2A0R0+CR(1)/2[04]R1/2[(1]+C720 [a]

or, with a new constant C=C(0©) R, R),

gl 2

<
(sc) (u,g) ~ C

as desired.

It remains to estimate the C%SC)(S) norm of the Gauss curvature
K = =0+ 3% §(trx) trx = 0+ X8 (trx) tr xo— § (trx) trx .
Thus,

1K1 2

@IRles s il +8Aollirxlcs

) Sllollzz s)+6" 21X 2 -

(sc) (sc)
<C+62 ARy,

from which the desired estimate follows:
1Kl 2, (s) SCO,R,R).

In the next proposition we derive estimates for the remaining curvature components.

PROPOSITION 6.11. There exists a constant C=C(O©®), R, R) such that, for §'/2A,
sufficiently small,

lellez sy < Cs~'% and lellez sy <C.

Proof. To prove the estimate for a we use the Bianchi equation for Vsa, which can

be written schematically in the form
Via = (tr xo)a+ya+VU+4p¥,
with ¥ from the set not containing . We therefore obtain
lellez, (suu) S ||01||.c§“>(so,£)+(1+51/2A0) /Ou ledllez (s, ) du’
+El+51/2A0||‘I’“£?sc>(ﬂﬁ)'

In the worst case when W=/, which is anomalous, we have || U|| .2 <§71/2R,. Thus,
(sc) (Hy)~ 0

by Gronwall’s inequality,

lellez, (s Sllallez, so.0) TR

(sc)\Fu,u
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Similarly, the equation for V4« has the form
Via=VU+yU,
where the curvature term in VW is not ¢ and Y#« in the non-linear term. Therefore,
using the triviality of initial data,

lellzz | waw SR +512A /O (el ez, ) T 1l 22w ) d

with ¥,€{p,0,8}. The result then easily follows by Grénwall’s inequality and the
L{,.)(H) curvature bounds for . O

7. Second angular derivative estimates for the Ricci coefficients

To obtain second angular derivative estimates for the Ricci coefficients, we differentiate
(6.1)—(6.3) with respect to V.

7.1. Basic equations

Based on the experience with the first derivative estimates, we expect that the V3 equa-
tion for VO is slightly more challenging as it contains a lot more tr x terms. Thus,

differentiating (6.22), we get
V3VO = (tr x0)(VO+ VU + V) +)(VO+ VU + V) + (Vi) (0+ T+ V1))
+(tr x0) ¥V +99p Vi +[Vs, V]O.
According to commutation formulas of Lemma 3.1, we write symbolically
[V3,V]O = (tr x)VO+XVO+TO+(tr x)YO+1YYO+1V30
= (tr x0) VO+9VO+ VO (tr x0)YO+9YpO+1V30.
Hence,
V5VO = (tr x0) (VO+ VU + V) +4)(VO+ VU + V) + (V) (0+ T+ V)
+OV+(tr x0) (Y VY +190)+1h (Vi +9O+V30).

Ignoring the term of the form (trxo)VO which can be easily eliminated by Gronwall’s
inequality, and observing that ©, resp. VO, on the left can be expressed in terms of Vi
and U, resp. V2 and V¥, we write

VsVO = (tr xo+) (V¥ +V?9)+(tr xo) (VY +90) + (V) (¥ + V)
LOU PV O+ V50) (7.1)
= +F+F3+Fy+ Fs.
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Similarly,
ViVO = (VU4 V2p) + (V) (¥ + V) +OU +4pnp Vi) + [V, V]O
and
[V4, VIO =y VO+TO+p1pO +hV,0
so that

ViVO = (VU V) + (V) (U + V) + b (Vi +10+V,0)
=G1+G2+Gs.

(7.2)

Equations (7.1) and (7.2) will be combined with the differentiated Hodge system for ¢
n (6.23):
D*Dyp =D*(O+ Y +ip+(tr xo)1),

which can be schematically written in the form

A= Kp+VO+VUA (Vi )ih+(tr xo) V.

7.2. Estimates for VO and V32

We now collect estimates for the terms on the right-hand side of the transport equations
(7.1) and (7.2):

IFllzz, s) S (1+51/2A0)(||V2¢||£2 () HIVzz ()
o) L
1F2l 2, (s) 51/2A0(||@||c2w)(5) + ||V7/’||c(sc)(5)),

||F3||L2 o(S) <51/2HV¢H£4 s IVl s

s+l

L)

1Fales, 5 S 6720l sl

1Esllcz, (s) S 5200 (62 Ao || (VY Ollcz, ) TVsOllez (s))-

(S)»

Similarly,

1Gillzz sy < 61/2A0(||V@”L2SC)(S +||V21/)H£2c)(S)‘i'”V\IJHL(w)(S))a

)
||G2||Lgsc)(5)N51/2||V1/1Hz:‘(1) YUIVOliza o)+ I1Plles, ()

1Gsll2, (5) S 67280 (8 220 l|(V4, ©)ll 22 (5) + V4Bl 22 (5))-
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We note that the curvature terms ¥ present in the F' terms belong to the admissible
set {0, 0,0, a, B}, while the curvature terms ¥ appearing in the G terms belong to the
set {a, 3,0,0,8}. We also recall that, according to the (S)(’)m estimates and their

consequences proved in the previous section,
VY[ L2(s)+ 1O L2(5) + | VaOll L2 () + [ V3O || L2 (1) < C-
Using the L* interpolation estimate from (4.19), which imply that

Vel ca

(sc)
1€1lct. 5 SIOIE () IVOIL (5 +5"41Ollcz  (s) SCIVOIL

) SIVOIZ IV 5 +0" IV elles ) SOV () +8"/1C,

<)

1/4
(S)+5 C,

][z

1/2 1 2
@Sl / IV / 5+ (s)s
(sc) ) ')

we obtain, for §'/2A, sufficiently small, that
I96lcs, s S 198Ny, o+ [ 19350l
SIV6les 0 +C [ (IV*Wley, +IT W)
4020 [V VI IV
+ENTRNE (I () d’

£2,,)(S)

()
ez () du' +6"/C.

+5'°C / (IVOIZ IIZ IVl (s

+6HIVOIL (sl

We kept track of the terms containing ||J|| £2,,(8) 8 they may lead to the potentially

anomalous norm ||| c2,,, () in the case when U=0. However, even in that case
||‘I’||L2 () S SOTER,,.
By Gronwall’s inequality, and recalling the definition('®) of R, we have

VOl

(sc) (u u

) SV

(sc)(O’y) +C/O ||V21/}HL(280)(U',M) du/-i-CBl. (73)

In view of the estimates for the G terms, we similarly obtain

IVOlicz, (waw SIVOI .z

(sc)

(uw,0)+C /7 ||v2¢|‘£(250)(w,) du' +CR;. (7.4)
0

(1®) Mote again that o does not appear among the ¥’s.
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We now couple this with the second derivative estimates for the Hodge system

D=0+ (tr xo)+90.
Using Proposition 4.12, we deduce that

||V21/JH£(QSC)(S) SOVPK ] g2

1/2
) Wl )+ IEIZ (o IVles, )

+IVOIlz s TVl (5)+||(tfg<o)V¢||L§ ) UVl e (s)

(sc) (sc)

sc)

By Proposition 6.9, ||K||£2 (S)<C with a constant C=C(O©®, R, R). Therefore,

)
+HIVOlicz )+ IV¥licz s+ IVYllez, (s) +51/20A0||V1/J||a§56)(sy

IV*¢llez () S 82 CR0+8CUVHNE. IV 6+ IVl ez s

Using the Cauchy—Schwarz inequality and the boundedness of the (S)C’)Lg norm, we get
||V2¢||L2 NEIRS S O+||V@||L2 (S)+||V‘I’||L 20 (8): (7.5)

We note that the curvature terms ¥ involved in the above inequality belong to the set

{B,0,0,8}. In particular,
||V\IJ||L'%SC)(H)SR1 and |‘V\I/||£2 )(H) Rl

Therefore, substituting the estimate for HV21/)||£? [(9) into (7.3) and (7.4), and using
Gronwall’s inequality, we obtain that

||V@||Lfsc)(u,g) SIVOllez, J(0a) TORy,
IVOlicz, (waw SIIVOIz, (wo)y+CRa-

This, together with (7.5), in turn implies the following result.

PROPOSITION 7.1. There exists a constant C=C(O©®) R, R) such that all second
derivatives V21 of the Ricci coefficients

Y e{try, X, w,m, trx, X, w,m}
and the first derivatives of the quantities

@6{Vtrx,Vtrx,dlvn—i—g,dlvn—i—g, Vw+*Vw!— —Vw+*Vuw! %5}

satisfy

”V@”L(QSC)(u,g)+||V2'(/)HE(QSC)(HM)+HV Y|l 2

<
2 ) SO
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7.3. 01,4 estimates

Proposition 7.1, together with Corollary 4.8, has the following consequence.

COROLLARY 7.2. There exists a constant C=C(O©) R, R) such that, for §'/2A,

sufficiently small,

&0, , <0,

We end this section by deriving a slightly more refined estimate on the second
angular derivatives of 7. These estimates are needed in the application to the problem
of formation of a trapped surface. We review the system of equations for 7: written

schematically it has the form
curln=oc+¢, divp=—p—p and Vau=9(Vip+O+T-+1)1)).

We note the absence of tr xo terms in this system. Applying D* to the Hodge system for

n and commuting the equation for y with V, we obtain

An=Vo+Vo+Vu+(Vi)p+Kn,
ViVu= (V) (Vip+0+T+11)) + (V2 +VO+V U+ (Vi))o).

The absence of tr xo terms allows us to estimate Vy in terms of its (trivial) data on Hy

and an error term of size 6%/2. Indeed,

(V) (V+O+V+9) 22 ()

SV o () IVl

» o IOl ) +Wlcs s

(sc (sc

+0' 2 [Wlleg, IVl e

(s))

+6 29 e, IV 22

) 2 o) HIVOI2 ) +HIVUIez )

+6' 2 llcg, IV 9llez, o)
<8'2C.
In the final estimate the only dangerous term is | ¥/| £, (9); which may be §~/4 anoma-

lous in the case when ¥=q. It is not difficult to check however that Y=« does not
appear in this system but, even if it did, the size of the error term would have been §'/4

instead of §/2. As a result of this estimate and the trivial data for Vu, we obtain

IVillez, s) S6tre.
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To estimate 7, we remember that K=o+ (tr xo)¢y+v1). Therefore,

1A 22

(Sc)(Hu)§HVQHL2 (H) HIVal 22 (Hu)+||vMHC(2$C>(Hu)

(s¢) (se)

+0' 29I, 1V 2

= 2 (H)T | Q||L(25C> () Vg ||L§SC) (Ho)

+0 29l e, 190

(sc)

le2  (m.))

(sc)

SIVollzs

2 ()T HVO.HL%SC)(H“) +612¢.

Using the Bochner identity, we obtain

2
1920z

S AUHL(?SC)

(Hu)

1/2
(i + IR 2 a0l ez, + VIS 0 IV, o)

S ”VQHL(QSC)(Hu)+||VUH£?SC)(HU)+61/4C~

The same estimates also hold along the hypersurface H,,.

We summarize this in the following proposition.

PROPOSITION 7.3. The Ricci coefficient n satisfies the estimates

HVZHHL‘%SC)(HU) S ||VQ||L§SC)(HU,)+||VUH£§SC)(HU)+51/4O,

IVl c2

8. Remaining first and second derivative estimates

In the previous sections we have derived estimates on the first and second angular deriva-
tives of the Ricci coefficients. In this section we examine their Vs, V4, VV, and VV3

derivatives.

8.1. Direct V3 and V4 estimates
These are derived directly from the null structure equations (see §3.1).

PROPOSITION 8.1. There exists a constant C=C(O©) R, R) such that, for §'/2A,
sufficiently small and any S=95, 4,

IVatex|

2 HIVanllez ) +HIVawllez )+ IVatrxllez s <O,

{s0)
va@”%c)(s) HIVanllez ) +1Vawliez )+ Vs trxlez ) <O

IVaxllez, sy TIVaXliez )+ 1VaXlicz, )+ [Vaxllez s) < Cs 12,
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Remark. Note the anomalous estimates of the last line. The anomaly of V4X is due
to the curvature term « in the second equation in (3.3). The anomaly of VX is due to
the term (tr x)X in the fourth equation in (3.3) . The anomalies for V3X and VX are
explained by the presence of (tr x)X in both equations of (3.5).

Proof. The claimed estimates follow directly from all the estimates derived so far.
We need the full set of ||¥|;2(g) estimates for all null curvature components ¥ which
were derived in Propositions 6.9 and 6.11. We also need to make use of the (S)OO’Q
estimates of Proposition 5.4. As an example, we prove the estimate for V4Y in more

detail. We start with V4X=—(tr x)X—2wX—«, which we write in the form
Vix = 1/)g56\+04-
As a result,

IVaxllzz, s) S1aXlcz, sy Fllellez, (s) SV |y s

2 ) ) ||XH£;*SC> + ”O‘”%c) (S)
SOVSOF +C5TP S 06T

as desired. Similarly, we write

VX = (tr x0)ts +1g1+ V),
with 14 and ¥, non-anomalous and v, anomalous. Hence,

IV3X|| 2

(sc

) 1Yl za )(s)+|\v¢||52 (S)

(sc (sc)

() S 1ollez

(sc

() Hllvglles

<6 V2045102 +-C
More generally, all of our null structure equations have the form

Vit = (tr o) +¢¢+V+ ¥,
Vst = (tr xo) Y+ ¢+ Vip+ ¥

and one can easily see that the only anomalies occur for V3 and V4 of x and X. O

8.2. Estimates for V3n, V41, Vzw and Vyw

The above proposition does not address the fate of the V3n, V4n, Vaw and V,yw deriva-
tives which do not appear in the null structure equations. These can be estimated by

commuting the valid transport equations for these quantities with the desired derivative.
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PROPOSITION 8.2. There exists a constant C=C(O©) R, R) such that, for §'/2A,
sufficiently small,

IVanlizz sy +IVawlicz )+ 1Vanllez, ) +I1Vawllez (s) <C.

Proof. As all the arguments are similar, we will only derive the estimate for V47.

Commuting the transport equation

~

Vsn=—3(trx)(n—n)—x(n—n)+p

with V4 (according to Lemma 3.1), we obtain

V3Van=—5(Vatrx)(n—n)—5(trx)Va(n—n)
—(Vax)(n—n) =xVa(n—n)+Vaf
—2(n—n)Vn+2wVan—2wVs1—2(1ally —1M6Na— Eab )b,
which we symbolically write as

V3Van = (tr xo)(Vag+Van+1ihy )+ (Vap+Van)
(VY +T g 44hipg )+ V4.

Remark. In the above expression, V41 denotes quantities already controlled by the
previous proposition and, among them, V41, denote those which are not anomalous.
Also ¥, is a curvature component different from «. Furthermore we can eliminate V443

using to the null Bianchi equations
Vaf+(trx)f=—-Vo+"Vo+2wi+2X3-3(no—"n0).
Thus,

V3Van = (tr xo)(Vag+Van+1viby )+ (Vap+Van)
Y (V+¥g+191,)+ VT,

Therefore,

IVaVanllzz (s)

S (1+51/2A0)HV4QH£(2“)(S)+||V4¢g||a’g‘sc)(5)+51/2A0 IVatllez (s)
Flelleee, ) (IPgllez, ) TIVElez, 9+ ¥l ez, 9) IV Wllez ()
S (1+51/2A0)HV47JH£§SC)(S)+||V‘I’g||cgsc)(3)+0-
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Therefore,

IVanllz2  uw) SIVanllze 0w+ [ 1VsVanllze  ur w du’
(sc (sc) 0 (s¢)

)
< ||v4ﬂ”£%sc)(0ﬂi)+(1+51/2A0) /0 ||v417||£(2sc)(u’,y) du'
+ / IV, 2y ) ' +C
SOO+(1+6280) [ [Vanles oy ' +Ry+C.
0

Thus, by Gronwall’s inequality,

IVanlizz | (uw o0+ [

8.3. Direct angular derivative estimates

Here we derive angular derivative estimates for all the quantities which appear in Propo-

sition 8.1. We shall first prove the following result.

LEMMA 8.3. If 62, is small, there exists a constant C=C(O©), R, R) such that,
for all Ricci coefficients 1,

Ve, VIdllez 5y SC and  [[[V3, VY2 () SC-
As a corollary we also have,
Ve, VIdlzz oy + Ve, VY2 ) SC,
Vs, V1Yl ez oy + Vs VIdl 2 ) SC-
Proof. We write
[Va, VI =V + B +1pg Vap +1pg o),
[V, VY = (tr xo) VY + Vi + B+ Vah+epgi).

Hence, in view of the previous estimates ()0, 5 <C and HﬂHﬂ? [(9) < C and the possibly

anomalous estimate HV4¢||L? )(5)56’6—1/2, we derive that

[V, VWJHL%SC)(S) SN (VY| 2 )+ HBHL%’SC)(S) + ||V4¢H£§SC)(S)) SC.

(s)
Similarly,
Vs, VIPlicz (s) S (1+51/2A0)HVQﬂHcfsc)@:)+51/2A0(||§||£(256)(5)+||V31/}||cfsc)(5)) <G,

from which the estimates of the lemma quickly follow by integration. O
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PROPOSITION 8.4. There exists a constant C=C(O©) R, R) such that, for §'/2A,
sufficiently small,

IVVaxc2

(sc)

HVVNI"XHc?S +||VV477H£2 H)+||vv4w”£l2 (H)+||VV4X||L2 o H) S <C,
@ <O

(H)+||VV477HL2 (H)+||VV4@”L"’ (H)+||VV43<||L J(H) S <C,

IVVaxlicz o +HIVVsnllez | an+IVVawllez i+ 1V Vaxllez,

) c)

HVVBUAXHE%SC)(H) HIVVanllez o +IVVawlicz ) +IIVVaxlicz ) <C-

Remark 8.5. Note the absence of anomalies. This is analogous to the situation with
(5)01’2 estimates: additional V derivatives eliminate the anomalies due to « and the

Ricci coefficients X and X.

Remark 8.6. The quantities VV4X and VV3Y are controlled only along H and H,
respectively. This is due to the absence of the corresponding estimates for Va and Va

along H and H, respectively.

Remark 8.7. As a consequence of the lemma above, the same estimates hold true if

we reverse the order of differentiation.

Proof. Consider the V4 transport equations satisfied by ¢ €{trx, X, 777@, X,w}:

Vi) = (tr x0) Y+ +Vip+ Ty,

with curvature components V,€{a, 3, 0,0}. Clearly,

[VVap ez

i SUVl ez, HIVall ez )+ 148Vl oy S C.

Also, along H,
IVVatllcz ) S (||V21/)||L2C>(H)+HV‘1/4||£2 )+ (1+51/2)||V¢\|£fsc)(g)§C7

provided that ¥4« (i.e. the original ¢ on the left is not X).
On the other hand, the V3 transport equations satisfied by ¢ € {tr x, X, w, @,X,g}

are of the form

V3th = (tr xo)Y+9p+ V43,

with the curvature components ¥3€{p,0,a,8}. The corresponding estimates follow

precisely in the same manner. O
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8.4. Estimates for VV3n, VV,n, VV3w and VV4w
In this subsection we prove the following result.

PROPOSITION 8.8. There ezists a constant C=C(O©), R, R) such that
INVanllez i +IVVanllez o HIVVanllez o +1IVVanllcz o) <C.

Remark 8.9. Together with the previous proposition, this proposition allows us to
control all angular derivatives of all V3 and V, derivatives of all the Ricci coefficients ¥,
w, n, trx, t/r\Z(, X, w and 7 (in some LI%SC)(H) or E%SC) (H) or both), except for VV4w and
VV3Q.

Proof. To control VV3n and VV,n, we make use of Lemma 6.1. Recall that the

reduced mass aspect functions p and p satisfy equations of the form

Vap=9(V tr x+Vip+Wa) +hihig,

(8.1)
Vap = (tr xo)(V tr x +Vo+U3)+(V tr x + Vo +U3)+(tr xo0) by +ih,
which are to be coupled with Hodge systems of the form
D(n,n) = (k, p)+o+0+1). (8.2)

Here ¥yc{a B, 0,0} and ¥3€{p,0,0, 3}

Remark. We note the absence of the Ricci coefficients w and w among the v variables
in the above equations, in particular among the terms of the form V1. This fact is very
important in view of the lack of estimates for VV, 4w and VV3w. Equally important is
the absence of the terms (tr xo)y with 1»€{X, X} in equation (8.1). Such terms would

lead to an unmanageable double anomaly.

To estimate VV,47, we need to commute the above equations for n and p with V.

Making use of Lemma 3.1, we derive that
V3Vapu= (Vatrxo)(Vtr x+Vap)+(tr xo)(VaV tr x +V4Vy) +4Vpu
+ Va4 (V tr x+ Vo +W3)+1(VaV tr x+ V4 Vip+ Vi U3+ Vyn)
+(Vatr xo) Pty + (tr x0) (Va) P+ (Vi)Y +wVap+wVsp,
'DV4Q = V4H+V4(‘Q, o) +$(V4¢+Vﬂ+ Uy).

Proceeding as many times before, we write

u
IVastler, o S IVt et 0a+ [ 1935l
0
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and (with H(u,u)=H2%)

L 19Vl 'S [ 196001y @+ [ Vsl g @
HI(Va)Wsllz o (uy) VALVl o)
HIOVatlicz | uw) H19Va¥sllez
+YVplez

(sc)

(H(u,u))

(=L) <)

() TI9Vaplle | arw)-

We have kept on the right only the most problematic terms. We now write

NVa) sl 2 oy S8 Vatll

s Wslles

Using the interpolation estimates of Corollary 4.8,

IVatblles, e SIVVAIZE o) IVaEIEE gy 48" IVal oy

1/2
1%slles, ) SV

)

1/2
(H)\|\I/3|| / +51/4||\I/3||£(QSC>(H)'

Taking into account the possible anomaly of | V41| £2(S) (recalling also that 1 here

differs from w and w!), we deduce that
IVatll ) <SO57YY and 1sllzs, ) S C-
Therefore,
1(Va) sz ) S cott.
Similarly, taking into account the estimates for (5)0174 of Corollary 7.2,

I(Var) Vel ez ) S0Y2IVatllca

s lVoles SO,

To estimate |\1/JV4\I/3||£% ) We write, using the Bianchi equations,
VU3 = V\I/g—|—¢\ll—|—w\1',

where U,e{f3, 0,0, 8}. Recalling the estimate H‘I’H[:% ) (ﬂ)ng’l/z, encountered before,
and ||V\I/g||£%sc)(ﬂ)§E, we have

[¥VaWslicz (1 <51/2W||L3§C)(H)(||V‘I’ 2

s ¥l ) SC.

~

(;c)
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The term |[(V4)|| £2,,, (i) May contain a double anomaly. We estimate it as

(Ve )l an S 8219 le,

IVatllez, ) SC

All other terms in E%SC) (H) can be estimated in the same manner to derive

u
Vst wan S IVasler o+ | 19l oy
0

u
+/ ||V4V¢||E?SC)(’U/,L&) dUI+C
0
or, by Gronwall’s inequality,

IVastler, o SNVl ez a0t [ IVl cp oy i +C:
0

Now,

u

/0||V4V1/)||c(2“)(ugg)dulg/o ||V4vﬂ|‘ﬁfsc)(u’,g)du/—’_||v4vwg||£?sc)(ﬂ(u,g))v

where ¢, e{tr x, X, n, @,X} Thus, in view of the estimates of Lemma 8.3 and Propo-
sition 8.4,

u u
| 90wy 5 [ 19,y 4.

and therefore

u
IVapllez | uw S IVapllez 0w +/O IVVanllcz | w) du'+C. (8.3)

Using the elliptic estimates of Proposition 4.11 applied to the Hodge system for V4,
we derive that
IVVanlicz sy S IVapllez )+ I1Vale 0)llez cs)
+0' 200 (IVall ez () HIVWll ez () HIWall 2 (s)

+012| K 2

2 (s 19z )

Now,
Vi(o,0) =VE+1pUs+wly,

with U,e{a, 5, 0,0}. Moreover,

IValo, o)lle2

2 () S ||Vﬂ||/:§“>(5)+51/2A0H‘I’4||L§SC)(S)-
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In the particular case when Ws=q (recall that the a component is not allowed in the
definition of the curvature norms R), we recall (see Proposition 6.11) the estimate

ledllez, ) S s~
Therefore, in all cases,

1llez () S o2,
and consequently

Va(o, 0)||£(2SC)(S) N HvﬁHzfsc)(S)JrO,

with C=C(0©), R, R). Therefore,

IVVanlizz sy SIVapllez ) +1VBIlez, (s)+C- (8.4)

Integrating,

u

|19l @' S [ 19l o i+ [ 198, oy d+C

S [ 19y g ded +R4C.
0

ie.,
u

| Il @' S [Vt o i (8.5)
Combining with (8.3) and applying Gronwall’s inequality again, we deduce that
IVapliez uaw) SINVapllez o0 +C-
It is easy to check, on the initial hypersurface Hy, that
IVaplicz 0. S 0.
On the other hand, returning to (8.4), we deduce that
IVVanllez s SC+IVBI ez (s)-
Hence,

IVNVanllzz i +IVVanlez ) SC

)
as desired.

The remaining estimate
IVVanllez i +IVVanllez o SC

is proved in exactly the same manner. O
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9. O estimates and proof of Theorem A

In this section we combine the estimates obtained so far to derive L> estimates for all
our Ricci coefficients and thus verify the bootstrap assumption (2.13). This will also
allow us to conclude the proof of Theorem A. To achieve this, we combine the () Oo 4,
O1.2, MO, O and the remaining second derivative estimates with the interpolation
results of Proposition 4.10. We will only require results before and culminating with
Proposition 8.4. In particular, we do not need the estimates of Proposition 8.8.

For the Ricci coefficients ¢ € {tr x, X,w,n} we make use of the interpolation estimate
of Proposition 4.10 together with (9 O; 5 +F)O<C and ||V4V¢H£z (H)NC of Proposi-
tion 8.4, to derive that

HVQﬁHa?SC) (51/2||V¢||c?bc)(H) + ||V2¢||cgsc)(H))1/2

X (51/2||V¢||z:§sc)(H)+HV4V1/JHL:(ZSC)(H))1/2 S
Similarly, for zﬂe{@,g,g,g}, using the estimates ()0 o +EH)O<C and estimate
IVsVYllez oy SC
of Proposition 8.4, we get

IVYllea, (s) S (82V| 2

(sc

)(H)+||V2¢||£§Sc) D2

<021Vl ez o HIVEVIL2 ar))'2 S C

Next, for the non-anomalous coefficients € {tr x, w, n,t/rzc,g,g}, we use the inter-

polation inequality

[¥llzx,

1/2 1/2
50 SIVOIE 6 1Z 548" Iy s,

which leads to the desired estimate

[¥lles, sy <

In the anomalous case when ¢ €{X, X}, we use the interpolation inequality (4.22)

Wl S sup(IVle,,

) Yl ¢9));
which gives

[¥llcee, s

Goy(
as desired. We deduce the following result.
PROPOSITION 9.1. There ezists a constant C=C(O) R, R) such that, for §'/2A,
sufficiently small, we have
() OO o) /S C.
In particular, choosing Ay~C and ¢ >0 sufficiently small, depending only on C, we

dispense of the bootstrap assumption and derive the conclusion of Theorem A.
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10. [,‘(ls c)(S) estimates for curvature and the first derivatives

of the Ricci coefficients

In this section we establish E?SC)(S) estimates for all first derivatives of the Ricci coef-
ficients 1. In the previous section we have already established such estimates for V.
The Ricci coefficients satisfy the structure equations

Vit = (tr xo)Y+¢p+Vep+¥  and  Vzip = (tr xo)+yp+Vip+ 0.

We note that the double anomalous terms (tr xo)X and (tr xo)X appear only in the VX,
V3X and V3X equations. Similarly, the anomalous o curvature component only appears
in the V4X equation.

For the remaining equations, we estimate

IVat)| ca

Lo S8l )+ lezs

(se) Go
S 0p4+64 00,0600 4+ 01,4+ 1Wllzs, ()

(S) ||7/’||£‘(1SC)(S) + HV%//”L;;C)(S) + H‘I’Hﬁ?sc)(s)

where the §'/# takes into account a potential anomaly of the ||1/1||54(1 (s) term. To estimate

||\I/||£E1SC)(S) we use the interpolation estimates

1Wlza,

19l

) S (51/2||‘I’||L§SC)(H) + ||V‘I’||c§m(H))1/2(51/2||‘I’||£<2“)(H) + HV4\II||£?SC>(H))1/27

(S)§(51/2||‘1’||L(25C)(H)4‘||V‘I’||L2 )(ﬂ))1/2(51/2”\I/”L'(’SC)(LI)+HV3\II||L%SC)(LI))1/2-

(sc

Each of the null curvature components W satisfies either the V4 or V3 equation. These

equations can be written schematically in the form

V4\I/(S) :V\I!(S+1/2)+ Z 1/}(51)\:[1(52),
S1+s2=s+1

vs\p(S):vqj(s—l/2)+(trX0)\ps+ Z P gls2),

S1+s2=s
Let us consider the V3 equation, since the presence of the tr xo makes it more difficult
to handle. We estimate
V30 HL%SC)(E) Svets=/2) ||L§SC)(LI)+H‘I’SH£§SC> (H)
1/2 (1) )] poo
675 )|,

81+82=s

(s2)
R

(H)-

Note that the terms H\I/‘sﬂﬁ(z () and || P2 HL(z () are anomalous only for s=so=2, that

is in the case of the estimate for . We summarize these estimates in the following result.



278 S. KLAINERMAN AND I. RODNIANSKI

LEMMA 10.1. For a constant C=C(Z,0,R,R) and V{0, 0,0,a, 8},
51/4||04H£§m)(5)+||‘I’||.cgsc)(5) <C.

Combining this result with V41 and V31 equations, as described above, gives us

the estimates

IVat)| ca

1 TIVsdlles s <C
for those derivatives, with the exception of ¥»€{X,X}. On the other hand, the anomalies

present in their respective equations lead to the anomalous estimates

IVaxlles  cs)+ ||V3>A<||L§SC)(S) + ||V4X||L§SC)(S) + ||V3X||L§SC)(S) <0

It remains to estimate V3n, V41, Vaw and V4w which do not satisfy direct equations.
We argue as in §8.2 and §8.4. Using the interpolation estimates stated in the beginning
of this section and the bounds

HVV377||L<2M)(H)+||V4V377||cfsc)(H) <C,
IVVanlizz e +1VsVanllez iy <C

of §8.2 and §8.4, we obtain the desired E‘(*SC) (S) estimates for V3n and V7. However, we
cannot obtain the corresponding estimates for V 4w and Vsw. We summarize the second

main result of this section.

LEMMA 10.2.

IVOlles o) HIVaanliza sy T1Vsanles )+ Vawlles )+ Vawlles  s) <C

IVaxlles

o HIVeXles o) HIIVaXlics ) +HIVaXles sy < co1A,

(s¢) (s)

11. Renormalized estimates
11.1. Trace theorems

The results of this section rely on sharp trace theorems which we discuss below. We
introduce the following new norms for an S-tangent tensor ¢ with scale sc(¢) along

H:Hﬁo’y), relative to the transported coordinates (u, 8) of Proposition 4.4,

u 1/2
||¢>||msc)(H>=6‘SC(¢)‘1/2( sup /|¢(u7u,,9)|2du/> _
0

0€S(u,0)

Also, along ﬂ:ﬁ(go’“) relative to the transported coordinates (u, ) of Proposition 4.4,

1/2

||¢||TY<SC)(H):55C(¢)< sup /|¢(U/,U,9)|2du'>
0

0€S(u,0)
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ProOPOSITION 11.1. For any horizontal tensor ¢ along H:Hﬁo’y),

IVl oy iy S (IVESll 22

< (IV*¢l| c2

(s0)

+HIVaVellez

Jr”d’HL‘{C)(H)+51/20(”¢”£?§C)+||V4¢||L‘4 NE) ks
(H)+51/2C(||¢H£(bc) )2

+IVolles
yHl9lle, +IVelcz, s (11.1)

where C' is a constant which depends on O©, R and R.

(u,0)

Also, for any horizontal tensor ¢ along H=Hy ', and a similar constant C,

IVadllTe .. i (HV3¢||L§SC)(H)+||¢HL SC)(H)+61/QC(||¢”£(SC) +||V3¢||£‘(‘SC>(S)))1/2
< (192 )00l e, +I Tl co_ )2
VsVl +Hdllex, +IVollez - (11.2)

The proof relies on the classical (euclidean) trace inequality formulated in (u, ) or

(u, 8) coordinates.

(0,u)

LEMMA 11.2. For any scalar function ¢ along H=H, ', supported in a coordinate

chart, we have

u 1/2
([ 10wttt o) ) S 1086l 0% ol zn) 210801

(11.3)
+1|060u || L2 (1) + 0|00 || L2 (21
For any scalar function ¢ along ﬂ:ﬁ(go’“), supported in a neighborhood patch,
“ /2 1 2
([ 100t 0P an') SRl o) 100y
0 .

+1090ull L2(11) + 109Dl L2 (21) -
In scale-invariant norms, we have

10ub sy i1 S 10201 3, oy +10 2 a0) 2 NOBOL oy

+1960udll 2, )+ 110063, )

(%)

and

10u@ll vy ar) S (102 2 )15

+1000ull 22, (1) + 1000 22 (a1)-

)y ol z2

(<) (s<)
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Proof. We start by making the additional assumption that ¢(u, ) is compactly
supported for v’ € (0, u).
Integrating by parts in 0=(0!,62),

/ * 10u0(u, 0) 2 d
0

/ 102 / 046, 0)0u (', 0') du O
oL J o2 0

5/
D
S/

D

+/ /7 1090, p(u',0")|* du’ db’.
DJO

de’

O Oy / CDu(u, 00,6, 0') du!
0

dy’

/ 00 020,01, 0) Dy (ol 0') it
0

Now, integrating by parts in w,

/7 091 0g20,0(W,0) 0y p(u', 0) du’ = — /7 D91 02 (1, 0)02 (v, 0) dut.
0 0 o
Hence,
/0 |6g¢(2a9)|2d@/5”6§¢HL2(H)Haz¢||L2(H)+||698g¢”2L2(H)' (11.5)

To remove our additional assumption concerning the compact support in (0, u), we simply
extend the original ¢ to —d <u <20 in such a way that all norms on the right-hand side of
(11.3), on the extended interval, are bounded by a constant multiple of the same norms
restricted to the original interval (0,u). We then apply a cut-off to make the extended
¢ compactly supported in the interval (—d,20), and finally use (11.5) in the extended
interval to get the desired result. The proof of (11.4) is exactly the same. The scale

version of these estimates is immediate. O

We now pass to the proof of Proposition 11.1. It suffices to prove (11.1), the proof
of (11.2) is exactly the same.

One can easily pass from the coordinate-dependent form of the trace inequalities to
a covariant form with the help of the estimates of Proposition 4.4.

According to that proposition we have, for C’:C(O(O), R,R),

”F”L%’SC)(S)+||VFHL%SC)(S) S

Thus,
v4?21)(1 = 9718g¢a _Xab(bb-

As a consequence, along H=H,,,

IVa@llrv o 1) S N0 lln ey () +6" 2z, 9N 22,
S ||ay¢HTr(sc)(H)+C51/2||¢H£(°:C>~
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Also, schematically, ignoring factors of € (which are bounded in L°°), we have, with

ve{x,wt,
Vig=0,0+90up+ad+ine.
Thus, in view of our estimates for the Ricci coefficients v, we have
|\52¢||£25C>(H) S HV4¢H£%§C) H) 51/2||1/1H£(°;) Vadllcz
(SC)(H)+||¢||L<°§C))

+5"2gll ez, (lolle
<I936les, i+ C6 (Va2 iy +dll s, )

(H)

We next note that for a horizontal tensor we can convert 0y into a covariant V derivative

according to the formula d9y=V+TI". Therefore,

10allc2_5) SIV8llez ¢

S)+61/2”FH£2 s)ll@llcoe

2  SIVollez, (s)+51/20||¢||ﬁ

(sc)

(sc

and

105 ball 2

2 () S V202

(sor

SIV2llcz, s)+62CIl s, HIVEller (s)-

) +8210 22 () I ll e, +6" 2Tl 22

<, 109 VOl z4

(s (S

Also,

||608u¢a”£2

2 (9 S IVVa| 25y +6" 20T || 125 |l Lo+ 2T oy | Vadl| Lacs)

SIVVadlcz )+ Cllglleg, +IIVadler(s)-

(sc) (sc)

According to the scale-invariant estimate of Lemma 11.2,
1/2
191y S 022 o+ 102, a0 21BN

+11000ull 2. () + 1008l 22 -

Combining this with the previous estimates, we obtain the desired result, which can be
clearly extended to any ¢ along H,, not necessarily restricted to a coordinate patch, by
a simple partition-of-unity argument. This proves the desired estimate (11.1). Estimate

(11.2) is proved in exactly the same manner.

11.2. Estimate for the trace norms of Vx and Vx

Our main goal in this subsection is to derive estimates for the trace norms ||Vx||ry,., (&)
and [|Vx|1y,, ). In view of Proposition 11.1 we could achieve this goal if we could
write VX=V4¢ and VX=V3¢, where ¢ and ¢ are such that the norms on the right-hand
sides of (11.1) and (11.2), respectively, are finite. We prove the following proposition.
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ProrosiTION 11.3. Consider the following transport equations along H=H,, resp.
H=H

u?

resp.
Vip=VX, ¢(0,u)=0. (11.7)

(1) The solution ¢ of (11.6) satisfies the estimates

1Dllcz, syt ldlles, ) FIVElez sy HIVadllez (s) SCs (11.8)

(se) (sc)
IVVadllz ) +IVidl ez ) S C (11.9)

with a constant C=C(O©®) R, R). Moreover,

IVl 2

(sc

) SV trxllez oy +C-
As a consequence (see the calculus inequalities of §4.4) we also have
Illezs, SNV trxllez, ) +C
and, as a consequence of the trace estimate (11.1),
IVl oy iy SV trxll 2 o) +C- (11.10)

(2) The solution ¢ of (11.7) satisfies the estimates

19llcz, sy lles ) TIVElez  (s)FIVadliez (s) SCs (11.11)
||VV3<P||c?SC)(LI)+||V§¢||£§SC)@) <G, (11.12)

with a constant C=C(O©®) R, R). Moreover,

||V2?||L§SC)(E) % trxliez ) +C- (11.13)

As a consequence (see the calculus inequalities of §4.4) we also have

Illcge, SIV? trxllcz ) +C

)

and, as a consequence of the trace estimate (11.1),

V39 me ey ) S |v? trX||L§SC)(H)+O~ (11.14)
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Proof. Estimates (11.8) and (11.9), resp. (11.11) and (11.12), follow easily from
(11.6), resp. (11.7), in view of our estimates for X, resp. X, and their first two derivatives
derived in the previous sections. The second V derivative estimates are subtle; they
require a non-trivial renormalization procedure, nothing less than another series of mir-
acles. As always we expect the estimates for ¢ to be somewhat more demanding in view
of the presence of tr x=tr xo —l—@. We shall thus concentrate on them in what follows.
No other anomalies occur at this high level of differentiability. The idea is to first derive
a transport equation for A¢ and hope somehow that the principal term on the right, i.e.
VAY, can be re-expressed as a V3 derivative of another quantity depending only on two

derivatives of a Ricci coefficient. We write
V3A¢p=AVX+([Vs, Alo.

Now, recalling commutation Lemma 3.1, we write schematically (we eliminate § using

the Codazzi equation)

V3, V]p=xVo+(V3)p+1P3Vip+xiso,
Vs, V2]¢ = xV?0+(Vh3) (Vd+V30) +(V13)p+103VV3+V (Xh30)
+3V3Vo+X1sV,
where 3 €{n, @,X, n}.
Hence, using our estimates for 13 as well as the estimates (11.11) and (11.12) for ¢,
we can write
V3, Alp= (trXO)V2£Z>4—XV2£;H—Err¢7 (11.15)
Errgll ez iy S C6YH(CHIV30l 2 (ar))- (11.16)

Indeed we have, for example,

||V2w3?||£éc)(ﬂ) 5 51/2”?”[/(0:0) ||V2¢3||L?SC)(E) S 61/2CH?||£(O:C)
S O8I0l s, )+ IV V@l o+ 19, o)
g051/2||V2¢H£§SC)(H)+C251/2'

Consequently,

V3A¢=AVY+(tr xo)VZp+x VZp+Err,. (11.17)

Since

[A,V]p=KVp+VEKo,



284 S. KLAINERMAN AND I. RODNIANSKI

we have

1AVl 22y SIK s, @IVl er i HIVE 2z a9l cgz,

SO 2|V 2 )+ C?02.
Hence, also,

V3A¢=AVX+(tr xo)V¢+X V2o +E, (11.18)
1Bl zz,, ) S s (C+ ||V251>||c§sc)(g))-

Now, according to the Codazzi equations,
DoxX =3~ %V tr x + (tr )3 +131)s3.
Thus,
*DoDyX =*D2B— 5 DV tr x+*Da((tr x) b3 +1P3¢3)
or, making use of (3.12),
— LAY+ KX ="D2— 3" DoV tr x+*Da((tr )13 +10313).
Thus, differentiating once more,

VAY=V?B+V3tr x+ KVY+Err, (11.19)
Err = (VK) X+ (tr x) V23 + V2 (¢31)3).

Here, and in what follows, Err denotes an error term such that
HEH”L(QSC)(ﬂ) SC.

On the other hand, we recall the structure equation
Van=p+x(n—n).

Thus, commuting and writing as before,

V3, VIn=xVn+(V3)n+1sVan+xisn,
[V, V2= xV20+(V3) (Vn+Van) + (V23 n+13 VVsn+V (Xsn)
+1/13V3V17+X¢3Vﬂ.
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Observe that
Vs, Vinliez | an €
and, consequently,

V2§:V3V23+EH’ (11.20)
Err=V?(x(n—n))+[Vs, V.

Clearly,
[Errlzz ) S C- (11.21)

Therefore, we deduce that
VAX =V3V?n+V? tr x+ KVX+Err.
Commuting V with A again,
AVY=VAX+KVX+(VK)X.
Hence, since VX=V34,
AVY =V3V2n+V? tr x+ KV3¢+Err. (11.22)
Back to (11.18), we rewrite

V3A¢=—V3V?n+V? tr x+(tr x0) VZo+ K Vs+Err,
[Errollcz ) S C(1+51/2HV2?||£§“) @)

which we could rewrite in the form
V3(Ag+V2n—K¢) =V tr x+(tr xo) V?¢— (V3K)¢p+Err,. (11.23)
Recall that K=p— i(tr X) trx— %)?X Hence, we easily find
IVaKlz2 ) SC-
Thus,

IV3(A¢+V2n—KX)ll ez () SIVZ tr Xl 22wy V0N 22 e H BTG 22 s
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ie.,
188122 (uy S 192022 (g +OF2 K |2 iy HIV 0 xll 2 o

(sc)
+(1+51/2C) /0 ||v2?||£(2“)(u/&) dul+ HEI‘I‘¢||£(2SC)(E).

Now, using the elliptic estimates discussed in §4.6 and our estimates for K, we deduce
that

128l c2 (s) S NADlI 2 (5 +0 2UIVEl 22 () I8l ) HIE e ) IVl ()

S HA?HL‘%SC)(S)+51/2(”?H£(°§C>(S)JF”v?Hﬂz‘SC)(S))
SIAdl ez, (s) +8'2(C+ IV2¢llc2 car)- (11.24)

Thus,

19262, guy S IVl c2, gy +CO2UK L2 IV Lz

+(1+51/2C)/ [ 52‘25”5% y (W w) du'JFC(lJF‘Sl/QW C2¢||£§ y(H)*
0 soy (52t TIL ey (H
Using Gronwall’s inequality,

19%llc2 (uy S IVl (uy +C8 21K L2 gy IV tr Xl

(11.25)
+C(1—|—51/2)||V2£;§||L(zsc)(ﬂ).
Integrating, we deduce, for C§'/? sufficiently small, that
V2@l ez iy SCHIV? tr xllez ooy
as desired. O

To close the estimates of Proposition 11.3 it remains to estimate ||V? tr XHL% ()

and ||V3 trZ(||L?_ () To achieve this, we start with the transport equation for tr y,
Vatrx= f%(tr)i()27|g|2f2gtrz,
which we rewrite in the form

Vstry' = 7%971(“@27971@12,

try’ =01 trx.
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The plan is to derive a transport equation for the quantity AVtry’. We make use
of the following commutation formulas, written schematically, for an arbitrary scalar f

satisfying the equation V3 f=F,
VsV f=VF+xV[f+ysF,

VsV2f =V(VE+xVf+sF)+xV2 f+ BV f+3V3V f)
=V2F+3VE+(V3) F+x V2 f+(VX)V f+ sV V f+XUs V f,

Vs V3 f = V3 F+1p3 V2 E+ (Vs VE+(V23) F+X V2 f+ (VX)) V2 f+ (VX)) V f
+V(U3VaV f+ X3V ) +08V f+43V3 V2 f,
that is
Vs V3 f = VP F+1p3 V2 E+ (Vs VE+(V23) F+X V2 f+ (VX)) V2 f+ (VX)) V f
+1p3V3V2 f+(Vibs) V3V f+ 15[V, V3]V f+ V(X3 V f)+ BV .
Applying the calculations above to f=Q"!'try and F=—21Q"1(trx)2—Q~!x[?, and

using V(Q1)=—Q72VQ=—-107"2(n—n) we derive, omitting factors of € which are
bounded in L°, that

V3AV trx' = YAVY+XV? tr x+(VX) V2 X+ (VX)V? tr x+ F,

F = (tr x0) (s V934 (Vtb3) Vb3 + 1313 Vi)s)
+1p313 V2 1h3 + 13 (Vihs) Vips +3thsths Vips.
Making use of our estimates for ¢, we easily derive, with a constant C=C(O®), R, R),

that
< §1/2
1l ez, ) S07°C.

Thus,

V3AV try' = YAVY+xV? tr x+ (VX)) V2X+(VX)V? tr x+Fi, (11.26)

12, oy NLEaLel

Observe that neither the principal term ¥ VAX nor the lower-order term (V) \%& X appear
to satisfy an E(Qs C)(H ) estimate. The principal terms seem particularly nasty, since we
cannot possibly expect to estimate three derivatives of X using norms which involve only
one derivative of the curvature components. Clearly another renormalization is needed.

In fact, we make use of equation (11.17), which we write in the form

AVX =VsAd—(tr x0)V?¢—X Vo —F.
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We can thus replace the dangerous term AVY in (11.26) and obtain

V3AV trx’ :ngAib+XV3 trK+(VX)V2X+ (Vx)v2 tr x+Fs,
Fy=F—((trxo) V29X VZo—E)X.

In view of our estimates for ¢, we have
122 o) 5051/2(14'51/20)||V2<?Hcﬁsc)(g)-
Now, recalling also the definition of ¢,

V3(AV tr Y’ —XA¢) = —(V3X) A+ (tr x0) V> tr x+13 V2 tr x4+ (V39) VZy
+(Vtrx) V2 tr x+Fb.

Hence,

1AV ¥ L2z SIAV X L2 0 +C8 2R,

A?Hﬁfm(u,g)
+(1+C(51/2)/ ||V3 trX||L?SC)(u/7E) d'U/

0
+C8 V3Rt () 180 22 (i)

+51/2||V3525||Tr<sc>(ﬂ) ||V2X||L§SC)(E)

+51/2||Vtr)7(||[;?:c)

2
V=t xllez )
I E2llez, -

Using the calculus inequalities of §4.4 and our estimates for V2V tr X5

|‘Vtrl(||gw < C+||V3 trXHll(sc)(ﬂ)'

(5e) ™~

Also, in view of the trace estimate (11.14),
IV3@llms ey 21y S CHIVE tr Xl £y 1) -
Hence,
AV tr X”Lfsc)(u,g) SIAVtr X’Hcfm (o) FC/? HVQ?HL%SC) (u,1)
+(14+C512) /O“ V3 trXHﬁ?s@("/vﬂ) du’

+C6" | VaX te oy (1) 180l 22, )

+C 2V bl ez ) +CP62
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Now,
AV terHl:%SC)(u,M) <AV U"X”%c)(u,g)+51/QC(‘|V2@IIggSC)(u,g)+C51/2)-
Using the elliptic estimates discussed in §4.6 and our estimates for K, we deduce that

[v? trxlicz ) SIAVErxlez (s)
+51/2(||VK”L‘(QSC)(S) IV trxliee, )+ 1Kl eo o) IV trxlles ()
SIAVtrxlicz s +32(|v trxllex, ) HIV2trxles ()

S ||AVtTXHc?SC)(S)‘H;lm(C‘*‘HV3 trxllez )
Hence, after using Gronwall’s inequality,

19° trxle e SIVP 00Xz 09+ 82V 2 HI V0l 22 )

(o)
+C6" || V3Rt oy (1) 1A® 2, )

+C8 2V bl ) +C?62,

Thus, after integration,

||V3 trXHZ[%SC)(ﬂ(O,w) fs 02+026/0 HVSXH?H(SC) (H©u) HA(PHQK%SC)(LNU'”')) du’. (11'27)

It remains to estimate the trace norm ||V3XHTr( (o) We claim the following.

LEMMA 11.4. There exists a constant C depending only on O, R, R as well as
HVSQHQZC) () such that
IVaXlItr .o () < co1/2,

Proof. In view of the trace estimate (11.2), for H=H"") we have
IVaXl ey ) S IVEXN 22,y HIV VX2 )
(s0) (s0)
FIV2 Rl o+ IRl o, ) +(L+CE/) R

Observe that
IVsXllzz, i +IXNcz, ) S col2.

We also claim that

IVEXl ez, o) < C571/2+HV39||L§SC)(ﬂ)~
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Indeed, differentiating,

Thus,
\E
Hence,

||V§X||c§sc)(ﬂ) SIVsallez

<CoV? 4 IVaallzz )

) +Ixllez

sc)

which completes the proof of our estimate.

<)
I
|
<
w
[
|
<
w
-+
]
l<,
=)
|
T
<
<
w
\>|<>
X
<
w
1€
=)
|
1€
<
w
1)

(H) +C51/2(HV3@||1:§SC)@) +IVaxllez )

O

Returning to (11.27), we have, with a constant C' depending on 00 R, R as well

as ||Vzg||cgsc) (H)

u
V9 trxl gomy SCHHC? / 192012, rc0un

u
<C? (H—/ IN& trM\i? )(H(O,u/))du’)
0 sc) \=

Thus, applying Gronwall’s inequality once more, we derive that

Iv? trXHigsc)(gw,u)) <C2

This finishes the proof of the second part of the following proposition.

PROPOSITION 11.5. The following estimates hold true with a constant C' depending

on OO R, R as well as sup, \|V4a||£?vc)(Hu) and sup,, ||V3Q||L?_C)(ﬂu).

(1) We have, along H=H,,

I9° trxlea o) 9 trxllezs, SC.

(se) ™~

Sup [ VXl )+ VR 1y SC-

(2) We have, along H=H

uw’
|v? trxlicz an +HIVErxlleg SC

up [ Vs, )+ IV a1 S C
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11.3. Estimates for the trace norms of Vn and V7g

As in the previous subsection, we need a series of renormalizations. The proof follows,

however, the same outline as above. We first prove the following result.

PRrROPOSITION 11.6. Consider the following transport equations along H=H,,, resp.
H=H

= —=uw’

ViWeo=vn, @e0,u)=0, (11.28)
ViWo=vn,  @e(0,u)=0, (11.29)
and

Vs®o=vn, @¢(0,u)=0, (11.30)

Vs @g=vn,  ¢(0,u)=0. (11.31)

(1) Solutions ¢p=( ¢, W) of (11.28) and (11.29) satisfy the estimates

10llcz, sy Fldllcs, ) HIVElez sy FIIVadllez (s) SC (11.32)
||VV4¢H£(2SC)(H)+||Vi¢||z:’g‘dc)(H) <G, (11.33)

with a constant C=C(O©®) R, R). Moreover,
V20| c2

(sc

() S ||V2H||L§SC)(H)+C-
As a consequence (see the calculus inequalities of §4.4), we also have
[8llcee, < HVQMHL%SC>(H)+07
and as a consequence of the trace estimate (11.1),
Vi@l e () S HVQM”LfSC)(H)"‘C- (11.34)
(2) Solutions ¢=(® ¢, ®¢) of (11.30) and (11.31) satisfy the estimates
191z, sl ) HIVElez sy +IIVadllez (s) SCs (11.35)
||VV3?H1:(25C>(E)+||V§¢||agsc)(g) SC, (11.36)
with a constant C=C(O©) R, R). Moreover,
19290, D)z o) SIVsll 2 iy +C- (11.37)
As a consequence (see the calculus inequalities of §4.4), we also have
[(®g, (3)?)”&?;6) N HVQBH%C)@)‘FG

and as a consequence of the trace estimate (11.2),

1V3(®Do, D) tv, (21) S IV2pll ez oy +C- (11.38)
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Proof. We start with
Vs®p=vn and V;®p=vn.

Commuting both equations with A, and proceeding exactly as in the derivation of (11.18),

we get

V3A® 6 =VAn+(trxo) V2@ o+ 3 V2@ B, (11.39)
V3A @ g =VAn+(trxo) V2 Do +x vV Po+ E, (11.40)
1Bl cz,, o S CoY2(C+|V? (3)¢HL§SC)(§))7
1El 2, ) S Co' 2 (C+||V? (3)?||L§SC)(g))-

Recall, see (6.12) and (6.13), that

divn=—p—p, curlp=0—35XAX,
divg=—p—o, curlp=—0+iYAY,

i.e., schematically,

*D1D177 :*Dl(_M_Q7 0-_5(\/\2)7
*D1D1n="D1(—p—0,0 —XAX)-

Proceeding as in the derivation of (11.19) we find, schematically,

VAUZVQIH'VZ(Q, O-)+F15
VAQ:V2H+V2(Q, o)+ I,

IFllzz ) S C-
We now make use, see (6.14) and (6.16), of the equations

Vsw = g0+ 2ww+3|n—n*+1(n—n)(n+n)— g In+nl*,
ngTzéo.

Proceeding now exactly as in the derivation of (11.20) and (11.21), we deduce that

V2(p,0) =V3V?(w, wT)-i-Fg,

12|z, ) S C-
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Therefore, just as before for the derivation of VAY, schematically,
VAn=V3V%(w,w)+V?u+F,
VAQ:V3V2(w,wT)+V2H+E
[(F, Bl 2oy 21y S C-
Thus, back to (11.39) and (11.40), we deduce (just as in (11.23)) that
V3(AW o=V (w,0") = V2t (tr x0) VP94 X VO o+ E,
1Bl 2 ) SCA+62IV2 Dol 22 o))
and
Vs(A -V (w,wh)) = V?p+(tr o) V2 Do+ XV Do+ E,
”EHL%SC)(LI) SCO(1+6"2)v? (3)?||L§SC>@))-

We then proceed with elliptic E%SC) estimates, exactly as in (11.24) and, after using also
Gronwall’s inequality, we find (as in (11.25)) that

IV 0l c2 ) S IV @Dt [ 1920l o)
0

(11.41)
+CA+8) VD 22 (o)
and
I9° Ol o 192 Mz o | IVl
+C(1462)|v? (3)?||L?SC)(ﬂ)'
Integrating, we deduce, for C3'/? sufficiently small, that
V2 (3)¢H£(250)(ﬂ) §C+||V2u||a‘g‘sc>(ﬂ)7
IV @8l oy S CHIVZHll ez
as desired. )

It remains to estimate HVQMHL(Q () and ||V2H||L§ () As before, we treat only
the estimate for the slightly more difficult case of y. In view of the proof of the previous

proposition, we have (neglecting signs and constants, as before)
VAn=V3 A® ¢+ (tr xo) V2P o+ 3V g+ E,
VAR=V3A® ¢+ (trxo)V2 P+ V2ot B,
1Bl 2, ) S Cs'/2(C+||V? (3)¢H£(QSC)(E))
IEll 2 ) S C82(CHIV2 Dz ).
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We start with the transport equation (6.9),

Vapu+(tr x)p= —%(trx) divn+(n—n)V trX+XV(2gfn)+%Ag—(g73n)§

Commuting with the laplacian, we derive

V3Au=XAV(p+n)+(tr x) A divy+(Vn+Vn) VER+ (tr x) A

+(V2n+ V) VX+iXAa—(n—3n)AB+21(tr x) Ao+Err.
Here, and in what follows, Err denotes any term which allows a bound of the form
[Exles, ) S C- (11.43)
Using the equation Vizx=—a—(tr xo)X+313, we write
Aa = —V3AX+Err.
Using the equation V3n=p+x(n—n), we can write
Ap=V3An+Err.
Using the equation ng:%gJﬂ/}w, we can write
Ap=2V3Aw+Err.
Therefore, we can write
V3Ap=xVsA(D o+ @)+ (tr x)VsA(F o+ Do) +(V5(P o+ Do) V2x
+(V2(n+n) VX + (tr X) Vs Aw+ (n+1) VsAn+X Vs A +Errg,
with Erry verifying
IErrgll ez iy SCAHIV(Pot Do)l ez ) SCAHIVpll ez (a)-

Therefore, introducing the renormalized quantity

h=Ap—xA(P o+ O )~ (tr x) Aw—(n+1)An—YAX, (11.44)

we have

Vash=—(Vax)A(B o+ Pp13)— (Vs tr )A(D o+ Do)+ (Vs (P o+ @g)) Vg
+(V2(+1)) VX + (Vs tr ) Aw+ (V3 (n+n)) An+Erry.
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Consequently,
12, o S 021 95% e i | V(D4 D64+l oy
+62)V3(P gt ©9) w1V 2 2. ot
+0Y2 Vs (n40) vy e V20 22 (o)
2|V iy (2 IV (1) 2 a1y
We recall from the previous subsection, see Lemma 11.4, that
V3 Xy (21 S COH2,
with a constant C' depending only on O R, R as well as HV;;QHE%_)(H). Also, from
the previous subsection, we have (see Proposition 11.5)
VXt ey (1) S C-
Also, in view of (11.38),

195(@6, ©0) I () S IVl 2 a1y +C-

Also, we can easily show, with the help of the trace estimates of Proposition 11.1 and

our Ricci-coefficient estimates, that

Vs mllez, iy SC

Consequently,

1l 2wy S Nl ez, 0.0 F1H+COV2IV 0l 22 cary-

On the other hand,

||E||£§Sc)(u,g) S ||AH||£?SC)(u,g)+ HVQ&)HL’;‘SC)(u,g)+C51/2||V277||c§“)(u,g)

+061/2 H V2X| ‘ ll(ZSC) (u,u)*

Hence,

1Apl ez, ) S ALz, 0,0 +||V2&U|\L§sc)(u,g)+C51/2||V277||L(250)(u,g)

+ IIVZHII%C)@) +C6'/? ‘|V2HH£§SC)(E)'

We can now proceed precisely as in the last part of the proof of Proposition 11.5 to

deduce, after applying elliptic estimates and integrating, that
U
2 < 1(0) 1/2 2 , ’
v H||£(QSC)(LI<HO,1L))N(’) +(14+C¢ )/0 v HHL?SC)(LILO’“))du +C,

from which the desired estimate follows. We have thus proved the second part of the

following result.
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ProrosITION 11.7. The following estimates hold true with a constant C' depending
on OO R, R as well as sup, HV4O‘”£%SC)(Hu) and sup,, ||V3Q||L?SC)(EE).
(1) We have, along H=H,,

IV (1 )ty (1) S C-

(2) We have, along H=H

u?

1V (n, ﬂ) HTr(SC)(ﬂ) SC.
(3) Also,

Sup IV mles, s SC

11.4. Refined estimate for )¢

We end this section by establishing a more refined estimate on (*)¢. This estimate is
needed in the argument for the formation of a trapped surface described in our introduc-

tion. We examine the equation

Vs 3o =wn.
Commuting with V, we obtain
VsV &g = (tr xo+9)V g+ (0 +9p) D+ V2.

Taking into account the triviality of the data for V (3)¢, the non-anomalous estimates

for ¥ appearing in this equation and Gronwall’s inequality, we obtain

IV &) 2

(sc) (S) 5 ||V2n||ﬁ%sc) (ﬂg) +61/20

Using Proposition 7.3, we get

IV & )| 2

(sc

() SIVelle )(ﬂg)+||VUHL%SC>(LIE)+51/4C'

(sc

Combining with the interpolation estimates

1/2 1/2
196le, 5 SIDBIE o IVONLE 6 +07 1D lce (o),

1/2 1/2
IV ©dlles ) SIV DL IV (DD (5 +0 IV Dllcz ).

we conclude the following result.

PROPOSITION 11.8. The solution ()¢ of the problem V33 ¢p=Nn with trivial initial

data satisfies

1901l ¢z

(sc

y(9) S C(HVQHL(?SC)(LIE) + ”VJ”l:?SC)(ﬂg))1/4+051/16-
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12. Trace estimates for curvature

PROPOSITION 12.1. Under the assumptions of finiteness of the norms R and R,

which include ||V304H£2 o (H,,) and the anomalous norm ||V4a||£?v_)(Hu), we have

letll e .., 21y < 67HAC,
1B, 0: ) ooy (1) < C,
(2,0, B) I oy 21y < C
el te .oy 1y <O7HAC.

The proof is based on the application of the trace inequalities of Proposition 11.1
and the null structure equations (3.1) and (3.3)—(3.5). According to these, the curvature

components ¥, €{a, 5, 0,0} can be expressed in the form
Uy =Vigs+oo,
while ¥3€{p, 0,0, 8} can be represented as
U3 = V3p3+(tr xo)o+09,

with(*?) ¢s€{X,n, (w)} and ¢3e{(w),X,n}-
Therefore,

[P all e ) S ||v4¢4||Tr(SC)(H)+51/2”¢H2£°O ;
193]l e .., 2y S ||v3¢3||Tr(gc)(H)+(1+51/2||¢||£(<C))||¢HL<SC)

By Proposition 11.1, we have

|\V4¢4\|Tr<§L>(H>N(||V4¢4||L(2w) Jr||¢4||£(2“)(H)+51/20(H¢4”L‘f§c)+||V4¢4||£?w) NEE
x([IV ¢4||L2SC)(H)+61/20(H¢4HEE’:€>+||V¢4||L‘(‘SC)(S)))1/2
HIVaVoullez iy +ldall ez, +1Vealcz ),

1V39slme.., (||V3¢3||L(SC)(H)+||¢3||L’(‘SC)(H)+51/2C(H¢3||£(“) +||V3¢3||L§SC)(S)))1/2
<(IV2sll 2,y +8"2Cll19sll s, +IVsllee (s))?

+IVaVosllez | ay+l9sllee, +IVoslicz )

(sc) c)

We observe that all the involved norms, with the exception of

Hvid)4||ﬁfsc)(H) and |\V§¢3||z:§sc>(g),

have already been estimated.

(19) Recall that (w)=(w,w’) and (w)=(—w,wT), see (6.15) and (6.16).
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Recall that the derivatives with no estimates are the E‘(*SC)(S) norms of Vyw and

Vsw, and either the E%sc)(H) or the L%SC) (H) norms of VV4w and VV3w, while VV4X

and VV3YX are controlled only along H and H, respectively. Finally, the E%s C)(S ) and
E?SC)(S) estimates for X, X, V34X and V34X are 6~1/2 and §—1/4 anomalous. Therefore,
for ¢4=¥, i.e. ¥y4=q,

IVaXl iy (1) S CUIVER N 22, ) OV 1-C,
and for ¢p3=Y, i.e. Uz=q,

IVaXIlTe oy (21) S C(||V§X||L§SC)(L1)+C5—1/2)1/2+C-
The remaining ¢4 and ¢3 satisfy

IVadallte iy S CUIVESall ez a1y +C)V2+C,
I1V33ll e .o 20 S CIVE51 22, 11y +C) /2 +C.

We now express
Viga=VaWi+Vipp and Vids=Vs¥s+Vsou.
Therefore,

IVidallez o) < HV4‘I’4||L§SC)(H)+51/2||V4¢||L§SC>(H) Dllcee,) SNVaWallez ) +C
IV36sllc2 o) SIVsWsllcz o +0" 21 Vsl ez 1l ezs,) SIUVaWallez oy +C,

(s¢) (s¢) (se) ™

where we took into account possible §~1/2

anomalies of ||v4¢”5?sc>(H) and ||V3¢||£?SC)(H).
These immediately yield the desired trace estimates for o and «. For the remaining

components ¥, and V3 we may express from the Bianchi identities
Vil =VU*4+¢T and V303=VU?+(trxo)U+¢7,
where U*e{a, 3} and ¥3€{q, 8}. Therefore,

IVaWallez ) S ||V‘I’4||L§SC)(H)+51/2||¢Hz:<(>§c)

w0 SNV ez i+ U6l )l

[l

s

o (H) SR+C,

VaWs] z2

2 ) SR+C.

In the last step we have to be careful to avoid the double anomalous term (tr xo)o. Its

appearance is prohibited by the signature considerations, according to which

1 >sgn(VsWs) =sgn((tr xo)a) =2.
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13. Estimates for the rotation vector fields

We define the algebra of rotation vector fields (VO obeying the commutation relations
(0,9 0) = Eijk *®o0,

obtained by parallel transport of the standard rotation vector fields on S?=S,, 0C Hy, o

along the integral curves of e4. Suppressing the index () we obtain
v401) = Xchc-
Commuting with V and V3, we obtain

V4VO =xVO+B0+(Vx)O+xn0,
ViV30 = (n—n)VO+(x+w)V30+00+(wx+1m)O0+(V3x)O.

The only non-trivial components of the deformation tensor m,3=2%(Vo05+V30,)

are

T34 = _2(n+n)a0aa Tab = %(vaOb_FvbOa) and T3a = %(V3Oa_l(abob) = %Za

13.1. Estimates for H and Z

The quantity Z satisfies the following transport equation,(?°) written schematically

ViZ =(V(n+1)0+(n—n)VO+wZ+(c+0)0+(n—n)(n+n)0.
Let Hu,=V,0 denote the non-symmetrized derivative of O. Then,
ViH = xH+30+(Vx)O+xnO0.

We now rewrite these equations schematically in the form

ViZ = (Vip3s)O+1p3a H+(x+w) Z+ ¥ 0 +1341p340,

(13.1)
ViH =y H+(04+V1y)O+91h340.

Here ¥34€{n,n} and ¥,€{p,0}. In what follows ¢34 will be treated either as a 13 or a 4

quantity, depending on the situation. The quantities H and Z can be assigned signature

(2%) Note the absence of x and w.
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and scaling (consistent with those for the Ricci-coefficient and curvature components)
according to

sgn(H)—%=sc(H)=0 and sgn(Z)—1=sc(Z)=-1. (13.2)
In view of equations (13.1) we derive, by integration,

12022, S IVl 1 Tgllne ey +8 216 Leos, (1l ess, + 1 H ez, +1Z s

)

(sc) (sc)

Thus, according to the trace estimates of Proposition 11.7 for ¢, €{n,n} and Proposi-
tion 12.1 for ¥,, we derive

1Z]l e, SC+8*C(| Hl| e

(sc)

2l cee

(sc) (sc) )

Similarly,
ez, S 9%l +1€all e, +3 2012 (Il

SC+62C(C+|H| e,

+Hlex,)

Therefore we have proved(?!) the following result.

PrOPOSITION 13.1. The quantities Z and H satisfy the estimates

1H zee, 2]l cge, SC

(se) ™~

(s¢)
with a constant C’zC(I(O),Rm,Em).
We add a small remark concerning the symmetrized V derivatives of O.

ProproOSITION 13.2. Let
H(EZ) :=V,0p+V.0p=Hgp+ Hyp,.

Then, in addition to all the estimates for H, H®) also enjoys the non-anomalous E(bc (S)

estimate

|1H ) [EINEPS

Similarly,

1212z, sy S C-

<)
The result easily follows from the transport equation for H’, which is virtually the
same as for H, and, crucially, from the triviality of the initial data for H®. The claim

for Z follows from the same considerations.

(2') Note the triviality of the data for Z on H,. Otherwise the term xO in the definition of Z
might have caused an L:‘(fc) anomaly. The data for H however is not trivial. Initially ||H||fcc ~1, which

means that while it is anomalous in E (S) it is not in £<bc>
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13.2. LT

We prove below the following result.

(S) estimates for VH and VZ

PROPOSITION 13.3. The following estimates hold true with C:C(I(O),R,E)7

IVH| 2 (s)+IVZ] 22 (s) SC,
IVaVH|l g2y +IVaVZllg2 ) SC-

Proof. We first commute the transport equations for H and Z with V:

ViVH=VH+(V)H+(VO,+V3,)O+(0,4+¥,)H
+ (V) O+p34 VaH 1)  H,
VaVZ = (Vh30) O+ (Vo4 0, (H+Z)+(VH4V Z)+(V¥,)O
+O(VY)O+YY(H+Z) +1p34V 4 Z.
The term V¥, is in fact V(c+0). The estimate for VH follows immediately from the
following estimates:
WV Hl 2 oy S50l es,
|V Hllez, oy 81 Hll e, V0l 2 oy S 62C,
1(VO)Ole2. iy S IVOllez () S C.
1(V?9)O| z2 (H)§||V2¢||L§SC)(H)§Q
1(O+Vy)Hl 2 (1)< 52| H | g (I®llzz,, an+1¥llez () S §'/%c,

VH\ 2 iy S6PCIVH 2 ).

(se)
(sc)

VOl s iy S8l e, IVl ez iy S67°C,

(sc)
[ogHll 2 iy SOz, 1 H ez, [¥gllez, o) S OC,

(s¢) (se) (so) (
[OVaH] z2 () S 52 s IVaHl| 2z (m) S §2C.

(sc)

The estimates for VZ are proved in exactly the same manner. O

13.3. L{(S) estimates for VH and VZ
The results of the previous proposition can be strengthened to give the following result.

ProprosITION 13.4. We have

IVH | zs 5)+ IV Zl s s) SC-
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Proof. The arguments can be followed almost verbatim, as in the last proposition,
with the exception of the analysis of the two terms

(V*34)0 and (V¥,)0=(V(c+0))O.
We recall that 134 €{n,n} and, according to Proposition 11.6, we can write
Vipy3 =V,
with ¢ satisfying the estimates

||V2¢||LQSC>(H) +[[V2¢|l 22

o)
IVadlizz (s)+IVaVea

) HIVolle s+l ) <O

S)"’_H(b”ﬁ(bc) + HV¢||L;§C)(S) S

22, ¢

‘We now write

V29130 = Va((V)O) = (Vé)xO—[V4, V]$O
= Va((V§)0)+x(Ve)O+ ¥ pO+1(Vih) O+4¢0.

We estimate

o / ICVOIXOll s, )(Su,g)dﬂlﬁ‘slm sup [[Vollzs (s, llxllee, $6'2e,

51 / 19,60l s, A

1/2
SEPUVELE iy 1WollEe (i +6 1%z

(sc)(H))”d)H,C(SC) N51/207

o

5 / (V)9O s, )(SM)du/<51/zsup||Vw||g§sc)(su,ﬂ)WHE@)551/20

Sua) 19125, S 6C

u
51 [ w0l ey sy’ S5sup 6l s

On the other hand, the null structure equations give, for (w)=(w,w’),

Valw) = (0,0) +1gvy.

As a result,

V(0,0)0 =V4((V(w))O)+ (@ V+xV{(w) + ¥4 (w) + 1 ¥y +1hthy ((w) +1y))O
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We can estimate

suwlXllez, $672C,

51 [ NT@NOley, 5.y S5 s0p [Vl s

/nwoucu !

1/2 1/2
SEPUVYE Il i+ 1%y e,

) lWlles, <8¢,

(se) ™~

[ U0l 5. A’ S8 00 |Vl

G5y ( u,g)”wH[,oc <51/20

(se) ™~

[ )00l 5.y S8 sup )+l

w'<u (sc)

sl <0C.
These allow us to conclude that

51 /07 IVal(VH, V2)~(V$)O~ (V(@)Oll s s, ) du”

<6Y% sup ||(VH, V)1, (., FsEe.

u' <u

Making use of the E‘(lsc) (S) bounds on both V¢ and V(w), we finally obtain the estimate

5 [ IVATHV D) ey s, ' S5 sup [(VH.V D)y 5, 0 +C5

u' <u

from which the conclusion of the proposition easily follows. O

13.4. Estimates for V32

We now examine the equation for V32
VaV3Z =V3Vih3s+(Vhza) Z+(Vihza) X +(Vsthza) H +1p34 V3 H

+(Vax+V3w)Z+wV3Z+(V3V,)O+(0+0)Z
WX+ (V3134) V34 +10341034 7 +1P34034 X -

To estimate the right-hand side of this equation we will need to use the first and second
derivative estimates for 1 of Propositions 8.1, 8.2, 8.4 and 8.8, keeping in mind possible

anomalies of x, V4, V3X and VY, the relationship

Vs(040)=Vp+(tr xo+1)¥
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given by the null Bianchi identities, and the £ ) (S) curvature estimate(*?)
1Wllez sy <C
of Propositions 6.9 and 6.11. Thus,

IVaVibaalicz ) S C

1Y) 2l 2, a1y S321Z e,

(V) xllcz, cmy S0 2 Ixllem, V¥l 22 (i) S C
(sc) (sc) (sc)
1(Vathsa) Hl 2 () SOV H | e, [Vatsall 2, >(H)§51/QC7

(H) N5l/2||¢||.c<g;) IVaH|| 2 ) S51/2C||V3H||c(2“)(1{)7

|V1/JHL{C>(H) <6'2C,

WV H | 2

||(V3W)Z||L2 (H)stl/QHZHLOo HV3W”£2 (H)<51/

(sc)
(V) Zllcs

lwVaZllez ) S 52 [lwllzee,

) SIVBIez, I (tr xo+9) ¥l 22 | 1y SR1+C,
< 51/20

(H) <51/2||Z||£(bc) |V3XHL(2$C)(H ~

V3Z||c2ﬁc)(1{) 51/20\\VSZ||52 [(H)>

IVa(e+0)lcz.,

Wy 2|2

i SOV Z e, 19 2

(sc) (sc)
) S 51/2||X||£(DC>

(H) N51/2||¢||£f:c)

) Sl Zl s, Il e,

(H) ~

) SO,

LA

IVatsallez ) S 52,

Wllez m S62C,

Wl e, byl 2

(sc)

1Zoxlles,

|(Vath3a)9|| 22

(sc)

[V Z] 2

(sc)

[hsax|| 2

(sc)

< 51/20

(H) §5||XH£(°§C) (H) S

13.5. Estimates for ||V3H||£2 ) (H)

The only quantity still requiring an estimate is HV3H||£% () We use the relation(??)

V3sH =V3V0O=VV30+ [V, V3]O e VZ+(VX)O+§O+1/134Z+¢34Z(O
Therefore,

2 ) TIVxllez

+51/2||¢34||L§SC)

SIVZlez, ) +C-

)(s)‘i‘H‘I’ [l c2

121z, +5"Ixles, sl 2 s

(sc (sc) (S

IVaHl 2z (s) SIVZ] 2

(?2) Note that ¥ in the non-linear term may contain an o component but not the anomalous «
term.
(%%) Note the crucial cancellation of the anomalous term yH.
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This immediately implies the bound
IVsHll 2 (s)+VaZllez,, ) +1VaVsZllcz ) SC-

A similar argument allows us to immediately strengthen the ||VsH|| £z (s) estimate

(unlike the one for V3Z) to the E?SC)(S) norm:

IVsHl|zs sy <C.
Furthermore,

V4V3H =V ,NVZ+ (V4VZ()O+ (VX)XO—!— (Vaf)O+Y xO+(Varpsa)Z
+134V4Z +(Vah34) XO+134(Vax) O+ 134 x X O.

We once again remind the reader of the possible anomalies for Y and X in L'%SC) (S), double
anomaly for tr x in E%SC) (S) and a simple anomaly in E‘(’;’C), anomalies for VX and V3.

We estimate

IVaVZ| 2 ) SC
IVaVXliez ) SC
IOVl 2, ) S 6772
IVaBlicz, i SIV¥licz 19l ez ) ST +4t/2¢,
\IIQHSCQ(H) 551/26'7
1(Vatsa)xll ez iy S8 2lIxllcs, I Vatbsall ez iy S C,
[¥3aVaxlicz i S 32 e, IVaxllez o) S 52,
¢34\|L§SC>(H) NEae

) SO Xl e, IVXllez o) <ot

) S [Ixll o

T2

(sc)

Xl ez

lbsaxxllze () SOlxllees <,

(sc) (sc)
As a consequence we now established the following result.

PROPOSITION 13.5. There exists a constant C:C(O[g],(’)w,R[l],E[l]) such that

IVsHllzz sy +1IVa 2z () HIVaVaZllez )+ VaVsH | 22 ) S C.
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13.6. Derivatives of the deformation tensor

We now compute the derivatives of the deformation tensor D

Dymyq =0, Dymsy = —2(Va(n+1))0—2(n+n)x0,
Dyms3=1nZ, Dymsa = 3VaZ+n(n+n)— %QH(S),

Dyma0 =0, Dymar =V4H?,

D3myy =0, Dsmsy = —2(Vs(n+1))0—2(n+n)(Z—x0)—i1Z,
D3m33 =0, Dymsa = 3V3Z,

Dymyq =—n(n+n)—inH®), Dmap =V3H +1nZ,

Demas =0, Demsq==2(V(n+1)0=2(n+n)H* — 3xZ,
D.m3z = —3xZ, D3 =1V Z—xH® —2x(n+n)O0,

DTy =—xH® —2x(n+1)0, D.mo,=VH® —xZ.
Based on the results of the previous section, we easily deduce the following result.
PROPOSITION 13.6. There exists a constant C=C (O, OOO,R[”,ED]) such that
D7l zz sy S C-
The only potentially problematic term is x H*, which can be estimated as

|H®)||» <C.

(s0) ™~

IxH ez 9 S 5| xll e,

It is precisely this term that requires a non-anomalous E%SC)(S ) estimate for H () which

incidentally does not hold for the non-symmetrized derivative H.

13.7. Theorem B
We are now ready to state the main result of this section, mentioned in the introduction.

THEOREM 13.7. (Theorem B) The deformation tensors Oz of the angular momen-
tum operator O satisfy the following estimate, with a constant CzC(I(O),R,E):

17l s

(SC)(S)+H(O)7T||LE>SOC)(S),SC. (13'3)

Also all null components of the derivatives DO, with the exception of (D3 (0)71')3(1,

satisfy the estimate

ID@xlles (s S C. (13.4)
Moreover,

<C.
L2(s) "™

||(D3(O)7r)3a—V3Z||L4(S)+Hsup |vgz|‘
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14. Curvature estimates I
In this and in all the remaining sections of the paper C' denotes a constant which depends

on the initial data Zy and all the curvature norms R and R, including |\V4a||£2 (O
(sc) Hu

and ||V30¢H£2 ( Using the results of the previous sections, we assume that the
o)

ELO,u)).
norms O of the Ricci coefficients are bounded by C.

14.1. Preliminaries

Let W be a Weyl tensor field, with Hodge dual *W satisfying the Bianchi equations with
sources

DiviW=J and Div*W=J%, (14.1)
where J and J* are Weyl currents, i.e.
Jiag) =0, Japy=—Jars and g7 Jg.5=0,

and J;BW:%JQWEW 3~ is the right Hodge dual of J. Following the definitions of [CK],
we let Q[WW] be the Bel-Robinson tensor of W. As proved there, we have the following
result.

PROPOSITION 14.1. Assume that W satisfies (14.1). Given vector fields X, Y and
Z, and P[W]=PW]|(X,Y,Z) defined by PIW]*:=Q[W]ap,sX Y Z%, we have

Div P[W] = Div QW](X, Y, 2)+ L (QIW]-7)(X, Y, 2),
where
(QW]-m)(X,Y,2): = QW](Mm, Y, 2)+ QW ]|(Mm, X, 2)+ QW] (Wm, X, V).
Thus, integrating on our fundamental domain D=D(u,w),
/ QUYL XY 2)+ / QWY 2 D)

= [ QWIL X,Y,Z)+ [ QW|(X,Y,Z,L)
Hy Hy,

+//D(u’u) Din[W](X,KZ)+;//D(M)U)(Q[W].W)(X’Y’Z).

In the particular case when W is the curvature tensor R (and thus J=J*=0),

recalling that the initial data on H( vanishes, we have the following result.
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COROLLARY 14.2. The following identity holds on our fundamental domain D(u, u):
| Qrexy.2 [ QRxY.ZL
H, H,
1
- [ emewxy.2; [[ - @rwy.2),
Hy D(u,u)

On the other hand, given a vector field O, we have

Div(£oR)=J(O,R) and Div(*£oR)=J*(O,R), (14.2)

where J(O, R) is a Weyl current (calculated below in Lemma 14.4) and £o R denotes the
modified Lie derivative of the curvature tensor R, i.e. (following [CK])

LoR=LoR-1}(tr PDm)R-1 (%R
and
( (O)ﬁR)aﬁvé = % ZWM@W& + @) gWaﬁwé + @)% l;Waﬁué"‘ @)% gWaﬁwv

where (97 is the traceless part of (9, that is (Or= ()7 +%(tr (@)7)g. Observe that
LoR is also a Weyl field and that the modified Lie derivative commutes with the Hodge
dual, that is Lo (*R)=*LoR. The following is a corollary of Proposition 14.1 and [CK,
Proposition 7.1.1].

COROLLARY 14.3. Assume that O is a vector field defined in our fundamental do-
main D(u,u), tangent to Ho. Then, with H,=H,([0,u]),

/ QIULoR|(L XY, 7)+ / QULoR|(X,Y, Z,L)
H, H,

= [ QUeoRILX.Y.2)+5 //D QORI XY, 2)t //D L DROXY.2)

Hgy
where D(O, R):=Div Q[LoR] is given by the formula

D(O, R)B% = ([:OR)ﬁﬂél/J(Ov R)MWV“‘('@OR)BILWUJ(Oa R)uév
+*(LoR)p" " T (0, R)usu+"(LoR)" " T* (O, R)s-

The Weyl current J(O, R) is given by the following commutation formula, see [CK,
Proposition 7.1.2].
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LEMMA 14.4. We have
Div(LoR)=J(O,R):=J* (O, R)+.J*(O, R)+.J%(O, R),

where

J! (0, R)gys = % ©% " Dy Ryupys,

JQ(Ov R)BWS = % (O)pAR)\ﬁ“ﬂs’

TH0,R)y5 = 5(1V0am B 5+ D gan B 5% 5+ (D gasr R 5, )
and

Dp, =D Dt ay) and  Pg=Dy D% 0—Dy D g 5(p19a5— Ppsgar)-
In the remaining part of this section we should establish estimates for the norms Rg
and R,. We start with o.

14.2. Estimate for o

Applying Corollary 14.2 to X=Y =Z=ey, we get
[otale [ s [ laPs [ @R OmEee).  143)
0 o o D)

Based on conservation of signature, we write schematically
(QIR]- Wm)(es, e,ea) = > @D Wl2)gls), (14.4)
s1+s2+s3=4
with Ricci coefficients ¢ {x,w,n,w,n}, null curvature components ¥ and labels s1, s2
and s3 denoting the signature of the corresponding component. In scale-invariant norms,

we have
2 . 2 o S 2 . 1
||a||£%sc)(H£O,A))+‘|ﬂ||L%SC)(HéO,u)) ~ ||a||£(2$C) (H(()O,A))—’_ )
with

u
1/2 )
[=o'2 %" ||¢(81)||EE’5C>/ H\II(SQ)Hz:?m(Hi?'”)||‘I'(sd)||c?sc><Hfﬁ’ﬂ)>d“/'
s1+s2+s3=4 0
By far the worst term occurs when so=s3=2 and s;=0. Observe also that, since the

signature of a Ricci coefficient ¢(*1) may not exceed s;=1, neither s, nor s3 can be
zero, i.e. & cannot occur among the curvature terms on the right. Using our estimates
[l 2=, SC, with C=C(Z° R, R), we deduce that
2 2 2 1/2)) 112
02, oy 1812, oy Sl o) +C8 20l oy
1/2 1/252
+CRy6 Ha||L(QSC)(H&o,E>)+C(5 Rg-
Therefore, recalling the anomalous character of Ry[a] and R[], we deduce that

Rola]+R,[8] ST°+C**R.
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14.3. Remaining estimates

We follow the procedure outlined in the introduction. Define the energy quantities
Qo (u, u) =6 /
H 1(10,3)

+51/7{<01u) Q[R](e3763764564)+52\/7—{ Q[R](63,63,63764)

(0,u)

QIR](ex, e4, €4, 1)+ / QIR (€3, e, ea, e4)

H 1(;),&)

and

Q) =8 [ QRlenerenet [ | QURferenese)

+5_1 (0 )Q[R}(€4,63,63,63)—|—(5—2 (© )Q[R](63763,€3,€3).
Ha o H \u

According to Corollary 14.2, for all possible choices of the vector fields X, Y and Z in
the set {e4,e3}, we are led to the identity

Qo (u, 1) +Qq (u, u) ~ Qo(0, 1) +Eo (u, u), (14.5)

where

& =42 RI(@ (4

o(u, ) //D QR Omey e+ //D QIO e,
+//D( )Q[R]((3’7r,e4,e4)+61//73( QIR
+5—1//D( )Q[R]((3)7r,e4,63)+5_2//D( )Q[R]((3)7T,63,63),

with W7 and ®)7 being the deformation tensors of e4 and es, respectively. Every term
appearing in the above integrands is linear in (Y7 or )7 and quadratic with respect to
R. Also, all the components of (Y7 can be expressed in terms of our Ricci coefficients ¥,

w, n, w and 7. In fact one can easily check that

(4)71—44 - (4)7r4a = Oa
W34 = g(Dses, es) +g(Daea, e3) = 4w,
W33 =2g(Dsey, e3) = —8w,
(4)7rab = 2Xab7
D75 = g(Daes, e3)+9(Dsea, €q) = 20 +21a.
Similar formulas hold for ®)7, with x replaced by X- Observe, in particular, that the

term trx can only occur in connection with ®)7z. Thus, all terms appearing in the &£
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integrand are of the form ¢W¥; ¥y, where ¢ is one of the Ricci coeflicients and ¥, and Uy
are null curvature components. Consider first the contribution to Qg of the anomalous

terms

[ AReenene)+8 [ QiRjenencrea)
H H
obtained in (1.18) in the case when X=Y =Z=e,. Since
Q[R](€4,€4,64,€4):|O[|2 and Q[R}(€4764,64,63):|/6|2,
we derive that
||a||i2(H&0’£)) +||BH2L2(LI$“)) ~ Ha”iz(H(()U&))—i_gOl (u7y’)7

SOl(uay)z// Q((4)7T7647€4)~
D(u,u)

As all the terms of the form ¢W, W5 have the same overall signature 4. Thus, it is easy

to derive the scale-invariant norm estimates

2 2 < {1]]2
s gy HIBIZ, oy ShalZy o) +Eon

and .
< 51/2 - - , ,
501 ~ ] ||¢||E(SC) /0 ||\Ill ”E?SC)(HQ(LO& )) ||\II2||E%SC)(HT(JO& ))' (146)

The gain of §'/2 is a reflection of the product estimates of type (2.19). Now, the only
null curvature component which is anomalous with respect to the scale-invariant norms
£

; C)(HQ(LO’E)) is . On the other hand, the only Ricci coefficient which is anomalous in

E(OSOC) is tr x. Indeed we have to decompose tr X:@ +tr 0, where tr xo is the flat value
of tr xo and therefore independent of §. This leads to a loss of 0 /2 in the corresponding
estimates. Now, since tr x cannot appear among the components of W7, we can lose at
most a power of § on the right-hand side of (14.6), which occurs only when ¥y =Us=q.
Fortunately the terms on the left of our integral inequality are also anomalous with
respect to the same power of §. Therefore, since ||¢||£E’§C>SC7 with C=C(Z°, R, R) we

derive
Rola]+R3[8] < (T0)* 46 2CRE.
Hence, for small §>0, we derive the bound

Rola]+Ro[81 STV +5*C(R, R), (14.7)
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with C' being a universal constant depending only on the curvature norms R and R. We
would like to show that all other error terms can be estimated in the same fashion, i.e.

we would like to prove an estimate of the form
Ro+Ry STO+6V4C(R, R). (14.8)

Assuming that a similar estimate holds for R1+R;, we would thus conclude, for suffi-
ciently small § >0, that
R+R S To.

To prove (14.8), we observe that all remaining terms in (14.5) are scale invariant (i.e. they
have the correct powers of §). In estimating the corresponding error terms, appearing on
the right-hand side, we only have to be mindful of those which contain tr x and . All
other terms can be estimated by §'/2p(R, R) exactly as above. It is easy to check that
all terms involving tr x can only appear through () 734, Thus, it is easy to see that all

such terms are of the form
Q3140 @7 ~ — |8 tr x,

Q31307 = —(0* +0?) try,
Q3433 7% = —| 6 tr x.

Hence, since tr X:@ +tr xo, we easily deduce that all error terms containing trx can

be estimated by
5 [ ol du +52C(R,R).
0
It is easy to check that the integral term can be absorbed on the left by a Gronwall-type

sc>(H1(¢O’H))’ Wthh

we have already estimated above. These lead to error terms with no excess powers of 4,

inequality. It thus remains to consider only the terms linear(?*) in ||c|| £

which could be potentially dangerous. In fact we have to be a little more careful, because

we would get an estimate of the form
Ro+Ry STV +C(R,R),

which is useless for large curvature norms R and R. To avoid this problem we need to
refine our use of the (5 )(’)0700 norms. We observe that, among all the terms ¢W; W5 linear

in a, we can get better estimates for all, except those which contain a Ricci-coefficient

(?4) By signature considerations there can be no terms quadratic in a.
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component ¢ which is anomalous in £{,(S). All other terms gain a power of 5174,
Indeed the corresponding error terms in & can be estimated by(?°)

1/2 1/2

5 (51/4 (5)00747307?,0 [a]1/2R1 [04]1/2.

52 gllze ¢

¥l o 19011

H(O u))

Denoting by &, all such error terms, we thus have
£, S81C(R.R).

It remains to check the terms linear in o for which the Ricci-coefficient is anomalous in
the £4

(sc)

no terms linear in o which contain ¥, and thus we only have to consider terms of the

norm, i.e. terms for which ¢ is either X or X. It is easy to check that there are

form XYaW, which we denote by &. As ||XH£4 (u,u) loses a power of 5174, we now have

1/2 1/2
RNt ¥l o rgoam IV ol

(s0) o (HO™)

<o, 4[XIRoRo|a J'2Ry (] /2.

o (H™™)

Since we are left with no positive power of §, we must now be mindful of the fact that
the estimates for (5)00,4 depend at least linearly on the curvature norms R and R, in
which case &, is super-quadratic in R and R. We can however trace back the 6'/* loss
of HXHL?SC)(u,y) to initial data, i.e. upon a careful inspection we find (see estimate (2.12)
of Theorem A)

IRl et o S5 IO +C(R R).

Thus,
& STORGRo[a)Y?R1[a])V2+6V4C(R, R).

The above considerations lead us to conclude, back to (14.5), that
Ro+Ro ST +cRola] /R[] /?+6'/5C(R, R), (14.9)
with a constant c=c(Z (0)) depending only on the initial data.

Remark. In the analysis above we have not considered the possibility that, among
the terms in the integrands of &y, we can have terms of the form ¢W¥; V5 with at least one
of the curvature terms being the null component o, which cannot be estimated along H,,.
Among these terms, only those containing tr x lead to terms which are O(1) in §. These
can be treated using H, which leads to estimates of the form

Qo(u,u)—l—QO(u,u)SIg—&—(/ Qo ,u) du' +67! /QO(Uau’)du’) +C6Y/2,
0 0

(?%) This follows from the Gagliardo—Nirenberg inequality ”O‘H2L4(u u)sHVOCHLQ(u,g)HaHLQ(u,LL)'



314 S. KLAINERMAN AND I. RODNIANSKI

with C=C(Z(®,R,R). The final estimate will follow from the lemma below (which can
be easily proved by the method of continuity).

LEMMA 14.5. Let f(x,y) and g(x,y) be positive functions defined in the rectangle
0<z <z and 0<y<yg which satisfy the inequality
T Yy
fa)+oley) ST+a [ f6 ) da+d [ gley)dy
0 0
for some non-negative constants a, b and J. Then, for all 0<x <z and 0<y<yo,

flx,y), g(z,y) S Tt

We summarize the results of this section in the following proposition.

PROPOSITION 14.6. The following estimates hold with constants C=C(Z(®), R, R)
and c=c(Z")), and a sufficiently small §:

Rola]+R[8] STV +C5%/4,
Ro+Ry STO +cRYV246V8C.

15. Curvature estimates II

We shall now estimate the first derivative of the null curvature components appearing in
R1 and R,. We apply (14.3) for the angular momentum vector fields O as well as for the
vector fields L and L. We prefer to work here with the vector fields L and L instead of
e4 and ez, as in the previous section, because their deformation tensors do not include w,
respectively w. This will make a difference in this section because we do not have good
estimates for V4w and V3w which would appear among the derivatives of W7 and O,
On the other hand, since es and ey4 differ from L and L only by the bounded factor €2,

no other estimates will be affected.

15.1. Deformation tensors of the vector fields L and L

Below we list the components of Lm,5 and L7,4:

L L

m44=0, “my3=0, Lgg=—80" 1w,
L7T4a: 0, L7T3a: Q_l(na+ga)+ﬂ_lva log Q, Lﬂ-ab: Q_1Xab;

L L L —1
“m33=0, “my3=0, == =807 w,

Lﬂ'Ba: 0, L47T4a: Qil(ﬂa"’(a)"'gilva log €2, L7Tab: QilXab-

We start first with a sequence of lemmas.
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15.2. Preliminaries

Given a vector field X, we decompose both LxR and DxR into their null components
o(LxR),B(LxR),...,a(LxR) and a(DxR),3(DxR),....a(DxR). We consider these
decompositions for the vector fields (note our discussion above concerning X =L, L and
eq, a=1,2). In the spirit of our discussion above, we write e4 and ez instead of L and L,
respectively. In the following lemma, we estimate the null components of Dx R, for

X =e3z,e4,€q, in terms of R and R.

LEMMA 15.1. Denoting the restrictions of the norms R and R to the intervals [0, u]
and [0,u] by R, and R,, respectively, we have, with C=C(0O,R,R), the anomalous

estimate
61/2||a(D3R)||E%SC)(H£o,E>)+51/2||5(DGR)||£<QSC)(H£0&)) <7O 45140,
We also have the regular estimates
HO[(DQR) H/;%sw (HOW) + ||/8(D3R) HL‘%S@ (HOW) + ||/8(D4R) Hﬁ%sc) (HOW)
+l(e. Y DaR) s ooy + (@ NDaB g3 o0, 1.V Da)l gy o
HIBDB) gy oy HIBDaB) gz ooy HI2DaR)l gy o) SRu+6Y/4C
and
HB(D3R) ”g?sc)(HéUv“)) + H (Qv U)(D4R) ”E?SC)(HS)’“)) + H (97 U) (D3R) Hg(?sc) (HL™)
eV DaB)l gy ooy HIBDB o oo +HIBDR gy o
+||@(DCLR)||£?SC)(HLO,u))+||Q(D4R)||£(QSC)(H;O,1L))+HQ(DQR)HE%SC)(HLO,WA)) ,SEQ+61/4C.

Remark 15.2. We note the special nature of the anomalies in (D3 R) and 3(D,R).
Specifically, we can show that both terms can be written in the form G+ F with

G = (trxo)a
and F' obeying the estimate
”F”‘C(ZSC)(HLO’H))+||F||['%SC)(HLO’E)) < C.

Proof. Let ¥(*) (Dx R) denote the null components of Dx R and #'*) Ricci-coefficient
components of signature s. Then, for X €{L, ey, ea, L}, recalling that sgn(X)=1, %, 0 for
X=L,e,, L, respectively, we write

T (DyR)=Vx U 4 > Pl s2), (15.1)
s1+s2=s+sgn(X)
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Ignoring possible anomalies, we write

|¥*)(DxR) | SIVxYS(R) +3129 0y R

H/:%SC)(HI(LO»H) ||£%sc)(Hv(¢0&))

<|IVxUE)(R) +C8Y2,

”%c) (H)
(15.2)

||‘l/(s)(DXR) ) < ||VX\IJ(S)(R) )_’_51/2(8)00’0030

H[;%SC)( HL%SC)(ELO’M)

<|IVxUE(R) +CO8Y2,

||c?sc) HL™)

We only have to pay special attention to the case when qﬁ(sl):trx and W02 =q. If
S$9=2, i.e. \I'(52):a, then s; can be 1, % and 0. The case s;=1 occurs only if X =ey,
which is not covered by the lemma. The case so=2 and 81:% is regular. Indeed, in that
case s+sgn(X):g. Thus, either s=2 and X=e¢,, or s:% and X =L. In both cases, we
simply estimate the worst quadratic term, on the right-hand side of (15.1), with so=2,
by

1/2
||¢)a||£?ﬁc)(H7(Lo‘ﬂ)) 5 5 ||¢||£4(lsc) (H,(‘,U’H)) ”aHﬁ‘(lsc) (HI("UYH))

1/2 1/2
S8 D00aldlall s IVl o)

S0 4[¢]Rola] 2Ry [a] 2 S OS2

The principal term is either Va in the first case or V3 in the second. In the second
situation, using the null Bianchi identities (proceeding as above with the term of the

form ¢a), we have
||VL/8H£%SC)(H1(‘0,E)) < ||Va|‘£%sc>(H£o,ﬁ))+C§1/4.

In the case s2=2 and s;=0, tr x can appear among the quadratic terms on the
right. In that case s+sgn(X)=2. The case s=2 and X =L corresponds to the anomalous

estimate for a(DgR). In that case the estimate is
1/2 1/2
”a(DLR)Hg%SC)(HT(‘O&)) 5 HVLOZHL?SC)(HWSO’E))+(1+6 C)HOZH»C(QSC)(H&O’H))JFa C.
Also, in view of the Bianchi identities (3.7),
1/2
IVLollzs | oy SIVBILe ey tlel s g, +C07.
Hence, in view of our estimate for « in the previous section,

6'/2||a(DLR) <82 Viall
(s

0,u 0,u
|V@¢H&>>~ o (H)

<TI0 451

+(1+51/2c)51/2||a\|£(286)(H£o,ﬂ>)
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as desired. We also need to consider the case so=2, s1=0, s:% and X =e,. Then, due
to the term (tr xo)a on the right-hand side of (15.1), we have

||ﬁ(DaR)||£(QSC)(H£o,E)) < ||v,6||£?sc)(H1(LO,y))+||0(H£?SC)(H1(LO,H)) +O8Y4,
Thus,

612\ 3(D4R) SNVARENGL A

||£(2sc)(HvSO&>)
which is the second anomalous estimate.

It remains to consider the case when s, <2 and s;=0. In the worst case, when a
quadratic term on the right-hand side of (15.1) is of the form (trxo)¥(*2), we make the

following correction to estimate (15.2):

1¥*)(DxR) SIVxEP(R)

||£(QSC) (H’I(LO’E)) ~ Hﬁ?ﬁc)(

SIVxE®(R)

e HIP s o, +Co

HL:(2 )(HT(LO&)) +Ru+061/47

||‘1’(s)(DXR)”c?sc)(ﬂL"’“)) S HVX‘I’(S)(R)Hz:?m(ﬂio'“)) @) ||c?sc)<ﬂi°’“))+051/4

<|Vx T (R) +R,+C8Y1.

H[:(2SC> (ﬂg),u))
These imply the regular estimates of the lemma for the case X=e,. For the case
when X €{L, L}, we can express Vx¥(*)(R) using the Bianchi identities

Vel = et/ R gl 0<s <,

S1+s2=s

Vi) =vutt2 N gl og<s<2.
S1+s2=s+1

The worst quadratic terms which can appear on the right are of the form (tr X)\I/(s) with
s$<2, which can be easily estimated. We thus derive all the regular estimates of the

lemma. O

LEMMA 15.3. The following estimates for the Lie derivatives Lx R, with respect to
Xe{L,L,O0}, hold true:

||Oé(‘éLR)7vLa”[1% )(H&O&)) ,Sca (153)

52|l o(LLR) =V o 5 <SRo+C8/1. (15.4)

) (H)
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Also,
NEHLLR) = (Vi®) g (o) SCE, 1<s< 3, (15.5)
N LLR) = (VL0) Il 00y SRo+COVE 1< <, (15.6)
e (ﬁLR)—(vﬂ)mH% (o) SRo+C84, s< 3. (15.7)
For X=0 we have the estimates
10 (LoR) = (Vo) s (o) SC3, 1K<,
10 (LoR)~(Vo) o (o, SCIV, 5<5<2

Proof. We will make use of the regular E?;’C) estimates for Ricci coefficients

¢ € {x,w,n, X, tr X, w, n}.

We also make use of the following estimates for VO and (O,
We write, recalling the definition of the Lie derivative and with E denoting the set
{61, €2, €3, 84},

\P(S)([:XR)Z \IJ(S Z Z X Y (51)\11(52)
s1t+s2=s YEE

q;(S) Z Z ([X,Y)) (81) Ly(s2)

s1t+s2=s YEFE

(15.8)

Here £ ,(¥(*)) denotes the projection of the Lie derivative on the surface S(u,u)
and [X,Y]! the orthogonal component of [X,Y], i.e.

[X7 Y]L = —%g([X, Y}v 63)64_%9([)(7 Y]7 64)63

Consider first the case when X €{L, L}. In that case [X,Y]* depends only on the regular
Ricci coefficients w, 7, w and n. Therefore, taking into account the worst possible case
when « appear among the quadratic terms (in which case we appeal to E sc) estimates),

we derive

LR = (£ 9) Dl (o) SOV, 1< <3,
[T (LLR)— (£, ¥) ||£2 (Hmu)),vcal/‘l 1<s<2, (15.9)
[WLLR) = (£ L9) g (00, SCOVE, 0S5 <5,

On the other hand, schematically,

¢L\p(8) =V, U0 4 Z pE W2
S1+s2=1+s
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with ¢(Sl)e{x,n,g}. In the particular case s=3, we can have a double anomaly of the
form ya. In that case,

H¢La—vm||£%sc)(mo,g) 5051/2||a||£%56)(H£0,2))+051/2.

Therefore, [|£ o=V ial ., (H(M))SJC, from which, combining with (15.9),
(sc) (Hu

Ha(ﬁLR)_vLaHﬁ(?sc)(HﬁU’y) 5 C.
Recalling the definition of LR, we deduce that
HOZ(ELR) _vLchz (H(O»u)) S_, 07

as desired.
‘We now consider all other cases, 1§s<%. Since there are no double anomalies, we

deduce (using L‘(ls ¢ () estimates for the term containing o) that
12,99 =(T29) Ol gy o) SCI.
Hence, combining with (15.9),

1 (LLR) (VW) , SCatt.

(s) ||£?SC)(H1(LO,H)
Recalling the definition of ¥(*)(£; R), we deduce that
W LLR)=(Ve®) DIy oy SO, 1555,
(sc) Hu

as desired.

We now consider the estimates for L. We have

ﬁL‘I’(s)ZVL‘I/(S)—F(UXO)‘I/(S)—F Z pVw(s2)

S1+s2=s

with QS(Sl)G{n,X,U/z,g}. Observe that the worst terms (tr xo)o can only appear for

s=2. In that case,
||;¢L04—VL04H£% )(Hfto’ﬂ)) S ||Ol||£? )(Hi(bo.g))+0(51/4 S 6—1/2R0+C61/4.
Thus, combining with (15.9),

32l LLR) =V ol gz (0w SRo+CE™.
(sc) \HHu
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Finally, recalling the definition of a(LyR), we deduce that
52 |a(LLR) =V ial s o) SRo+CE/,

as desired.

In all other cases, 1<s< %, we have
12,9 =(Vu0)Ollgs o) SNy o) +C8 S Ro+Co

Hence, combining with (15.9) and recalling the definition of £, we deduce that

||\I/(s)(ﬁLR)f(VL\I/)(8)”£? () <Ro+C5Y4,
as desired.

We now consider the case when X=0. In view of (15.8),
s s 1/4
”\II( )(‘COR)_(ﬁO\II)( )||£%SC)(H7(‘9«H)) 5 o / :

Indeed the projections of [0, e4] and [O, e3] on ez and ey, respectively, depend only on
O and the Ricci coefficients w, 7, w and 7, while [0, e,], a=1,2, are tangent to S(u,u).
On the other hand, £ ,¥(® differs from (Vo)) by terms quadratic in VO and ¥. We
recall that [|[VO|| cge, SO, Le. they are regular in the supremum norm. Thus, as before,

< O§54,

12,0 — (Vo)) ez oy S

Combining this with the estimate above and recalling the definition of LoR, as well as

the estimate ||(O) 7|z <C, we derive, for all s>21, that
(se) ~ 2

||\If(s) (EAoR) — (Vo\ll)(s) ”ﬁ? )(Hi(bo,g)) < Cs/4,
Similarly we prove, for sgg, that

< Oosl/4, O

WS (LoR)—(Vou)® Hﬁfsc)(ﬂio’“)) S

15.3. Estimate for ||V4a||£?sc)(H)

It is important to observe throughout this section that the deformation tensor (“)r of L

does not contain w, and similarly (&7 does not contain w.
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We apply Corollary 14.3 to O=L and X=Y =Z=e4, and obtain

[P [ 0B [ (QULRI D) (eenen)
B H*

D(u,u)

(15.10)
+/ D(L,R)(64,64,€4).
D(u,u)
In view of the conservation of signature, we can write schematically
(Q[ELR}'(4)7T)(€4764,64) = Z (b(sl)‘lf(sz)[ﬁ4R]\IJ(s3)[£A4R] (15.11)

s1+s2+s3=6

D(L,R)(es,easea) = Y WEDL,R]()ED(DW)) 4 (Dyp) 50 w2,
s$1+82+s3=6
(15.12)

with Ricci coefficients ¢ {x,w,n,w,n} and ¢ €{x,n,w, n}, null curvature components ¥

and labels s1, s3 and s3 denoting the signatures of the corresponding components. Thus,

Ja(EL R o) SNaCLRI, o+t Tt T,
where
I :51/2 Z ||¢(Sl)||£‘(’;’c) /0 H\Ij(sz)(["LR)”L%SC)(HS&))”\II(SS)('CA4R)||[I%SC)(H$&)) du/

s1+52+53=6

u
I, =42 Z ||w<sl)||£?:c)/0 H‘I’(”)(@R)||L;ZSC)(H§9’H>>H(D‘I’)(sg)IIZ;?SC)(H;?M)du’
Ss1+82+53=6

B 3 [ IR e DU gy
s1+s2+53=6"0 () (se) Uy

Among the terms Iy, the worst are those in which sp=s3=3, in which case s;=0. As tr x

cannot appear among our Ricci coefficients here, and H¢||£§’§ <C, with C=C(Z°, R, R),

c)
we have

i< 051/2/0 la(ZL B, dul.

0,u
(sc) (Hz(ﬂ L))

All curvature terms ||¥(*) (ﬁLR)||L2 (g With s<3 can be estimated according to
(o)

Lemmas 15.1 and 15.3 to derive that
LR 2 a1,y SRo+8VCSC, 5<3,

Therefore, estimating all remaining terms in I7, we deduce that

I, (u,u) S C6V/2 / (la(ZLR)I2,
0

A 1/2p2
oy HIOCELR) g o) R) dul +9 12R2.

(HG
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The term I5 can be estimated in exactly the same manner. Since 0<s1<1 and 1<s2<3,
we have 2<s3<3. This implies that the term (DW¥)*3 may be estimated along H,. With
the exception of the term «(DyR), these estimates are given in Lemma 15.1. Among
those, there are two anomalous terms «a(D3R) and §(D,R). We then obtain

IQ(U, LL)

5051/2/0 (la(LLR)IZ, fyow,+(COIHTO6 ) a(LLR) du!

(<)

”ﬁ?sc)(Hfﬁ&)))

+ZO1/2 o514

<ost/? / ||a(ﬁLR)||2L% ) (H(M))du’+I(0)6’1/2+Cd’1/4. (15.13)
0 sc u!

It remains to estimate Is. We note that, in the worst case, the term D1 can be written
in the form
(DY) = (Vo) +(trxo)p ™)+ D0 gyl
s11+s12=351
Observe that (V1))*! #(Vaw, Vaw). Indeed Viw cannot occur, since 1) €{x,n,w,n}.
On the other hand, V3w cannot occur, by signature considerations. Indeed in that case
s1=sgn(Vsw)=0, which is ruled out since s;+s2+s3="6 while s2 <3 and s3<2.
Thus, since (V)1 #(Vaw, Vaw) (for which we do not have L',‘(lsc) estimates!), we
derive
||(D¢)(sl)\11(83)||/;%SC)(H(9&>)

u

SEPITO 1y ) |7

w0 X e,

s11+s12=51

3)
It o)

(s12) ] . +51/2 ($1) ] oo P (s3) ”
00 e, +8 216 g, )y i

<C.

~

Observe that in the last step we have used the E‘(lsc) estimates for the first derivatives
of the Ricci coefficients 1€ {x,7,n} and the null curvature components, and allowed for

the worst possible scenario in which U(%3) =q,

|| (vw)(sl) Hl:‘(lsc) (Hieyﬂ)) + ||\I/(SS) ||[:4(LSC)(H1(L9&)) g 0(571/{

[ ss) ”C?SQ(HS’E)) <52,

As a consequence, we derive that

Blun) SC [ NalEa)l gy o, du'+C.
i e
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Combining the estimates for I, Is and I3, we derive that

o £sB2, o,

SllalLaR)I2,

oy T+ [T NalLaR)l s o, du+C32,

Therefore, in view of the anomalous character of Ha(ﬁLR)H[;% [(H,)»

A 2 A 2 3/2
SIaELRIZ, o) SANQLLRIE, o +CO)
from which we infer that, for some C=C(Z°, R, R),
61/2||a(/:‘LR)||L? )(Hgo,g))§51/2||a(EALR)||L? )(Héo,ﬁ)ﬁcal/?510+051/2.

On the other hand, in view of the definition of L LR, we have
a(ﬁLR) =Via+ Z ¢(81)\I;(32).
$1+s2=3

Hence,
||V404|\£%SC>(H750&>) S ||04(ﬁLR)||£%SC)(H1<Lo,H))+CR0~
Therefore we deduce the following result.

ProOPOSITION 15.4. The following estimate holds true for sufficiently small >0,
with a constant C=C(Z°, R, R):

<6 V21040 (15.14)

||V4OCH£(2SC) (Hi(to,ﬂ)) ~

15.4. Estimate for ||V3g||,;? J(H)

Applying Corollary 14.3 to O=e3 and X =Y =Z=e3, we derive
[ o lalbeRPS [ lateimPe [ iBELR) (15.15)
Hy

HLO,u) H(()O’u)

+/ (Q[@R}@w)(eg,es,e3>+/ D(L, R)(e3, 3, e3).
D(u,u) D

(w,u)
In view of the conservation of signature we can write schematically (we need to take into

account the signature associated with the integrals)

(QILLR- ) (es ez, e3) = Y EIWEDLRIWE[L4R], (15.16)
s1+s2+s3=1

D(L,R)(es,es,e5)= > WEDLL R (DW)E) 4 (Dy)D W),
s1+s2+s3=1

(15.17)
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with Ricci coefficients ¢ € {w, n, x, 7}, null curvature components ¥ and labels s1, s and
s3 denoting the signatures of the corresponding components. We now need to be careful
with terms which involve tr xy and Vztrx. In (15.16) the only terms which contain tr x
have the form (tr X)|§([:LR)|2 which we write in the form

(tr x0)[B(LLR) P+ (tr X)IB(LLR) .
In (15.17) the only terms which contain V3 tr xy must be of the form
Vg(trx)\IJ(SQ)(ﬁLR)\II(S“, So+s3=1.
Recall that
Vstry=—3(trx)® —2wtr y—|x/°.
Thus, writing tr x=tr xo —l—t/rg, we schematically have
Vs trx = — 3 (tr xo0)?+ (tr x0) g+ 2.
We have
HQ(LALR)HESC)(HLOM) < ||Q(ﬁLR)||i%SC)(Héo,u>)+P1+P2+P3+J1+J2+J3,

where P;, P, and P; are the terms corresponding to the terms in tr Xo:

Z 671 /07 ||\I/(52)(ACALR)||£2 (0 u))”\II 53) (‘CLR)H£2 (0 u)) du

sa+s3=1
—1 U (s2)( f o) /
E ) /0 ”\IJ 2 (ELR)Hﬁ?sc)(HB’“))”(D\Il) 3 Hﬁ(ic)(ﬂ(!ol,u))dy’
s2+s3=1
g 5*1/0 ||\IJ(S2)(ﬁ3R)||L?SC)(H;0,’“))H\II H£2 (H(Ou))du
sa+s3=1

and Ji, Jp and J3 are the remaining terms with Ricci coefficients 1€ {n, X, n}:

H=2 0 e

s1+s2+s3=1
></ WD L) s o 1P L5 o oo,
0 sc)\=uy

g A DR [Vl / 19C2(LaR) gz oo | (D)l gz 0,
s1+s2+s3=1

“ 2 5 s
Jg = Z 5—1/0 ||\1;(sz>(LSR)HE%SC)@;W)||(D¢)<sl)\1;( 3)”% = u))du

s1+s2+s3=1
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It clearly suffices to estimate the principal terms P. Indeed, the J terms can be treated
exactly as in the previous subsection.(?%) We have

Pso™t [IBELRIR, o0 du
According to Lemma 15.3, we have
H@(‘CALR)Hi(Q )(ﬁ(()/u)) rs ||V3§||2ﬁ% )(E(‘:’u))+go+51/4c'

1<,

In view of the Bianchi identities, for
V3B =diva—2(tr x)f—2wf+na.
Therefore,
||@(£LR)||i?SC)(H§o.u>) < HVQH;SC)@Sw)+Eo+51/4co

W

Consequently,

P1(u,@)§5‘1/7(\\V@Hiz o T Ro(u,u')) du' +C5'/*
0 2 ) (H™)

<ot /f R2(u,u') du/ +6/*C.
0
The terms P, and Ps can be estimated exactly in the same manner. First, observe that
in P, the terms of the form (DW)(3) obey the bounds
DV o oy SRt ) +55C.
This follows from the restriction s3<1. Similarly, for so<1,

||\I’(52)([',LR)||£fsz )(E(U,,u)) < HQ(‘éLR) +R(u, y/)+51/20.

HEESQ(LI;‘%“))

Therefore,

Py(u,u) < 51 /
0

Similarly,

u

la(£LR) du/ 51 / "R (u, ) du/ +612C.
0

2
”ﬂfsc)(ﬂff“))
Ps(u,u) <671 / a(ZsR)] 4 (o Ru, ) du’ +57 / R (u, ) du/ +6Y/2C.
0 (se) 22 0
Therefore, using Lemma 15.3, we derive the following result.

ProroSITION 15.5. The following estimate holds true for sufficiently small 6>0,
with a constant C=C(Z°, R, R):

HVZ),Q”i? )(E(EQ,“)) 5 ||V3Q||2£? )(ﬂég,u))-l-E—HS_l/O E(u)g/)Q dg/+(51/40.

(?6) Remark that, in Ja, (D\I/)(3) differs from V3w, because \11(53)6{1.0,7),&,777}, and from V4w, by
signature considerations.
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15.5. Estimates for the angular derivatives of R
Applying Corollary 14.3 to the angular momentum vector fields O and X, Y, Z€{es, e4},
we derive

[ o WOComPs [ w2 Lor)? (15.18)
Hy*

HT(LO,U)

s [ VLR [ (QUorimXY.2)+ [ DO.BX.Y.2)
H" D(u,u) D(u,u)

In view of the conservation of signature, we can write schematically
(QILoR] m)(X.Y. Z)=(trxo) D W (LoRW[LoR]
So+s3=2s

+ S U L RwE £,

S1+82+s3=2s

(15.19)

with a Ricci coefficient ¢p€{y,w, n,X,t/rE,g,g}. Also, recalling that 7r:fr+%(tr m)g,

DOR)(X,Y.2)= > WEILoR( ) (D)) + (DO m)w ),
S1+Ss2+s3=2s

(15.20)
with (@ 7(s) being the null components of the deformation tensor of O. Thus, for all
s>%7

19O (LoR)|2,

2 (H;O’“))

oy HIT D Lo,

sc)

SO (LoR)|2,

(gg)(Héo’!)) + L+ 1+ 13,

where
e I is the integral in D(u,u) whose integrand is given by (15.19),
e I, is the integral in D(u,u) whose integrand is given by
Z \11(52)@03] (‘3)7-‘-(51)(13\11)(53)7
S1+82+s83=2s
e I3 is the integral in D(u,u) whose integrand is given by
Z WD [LoR)(DO) ) g(ss),
S1+82+s83=2s
In what follows we make use of the estimate for the deformation tensors of the

angular momentum vector fields established in Theorem 13.7, that is

I (O)WHc;lSC)(S)Jr | (O)W||L;>§c)(s) SC.
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Also, all null components of the derivatives D@, with the exception of (D3(@))s,,
satisfy the estimates
1D 7 e (5) S C- (15.21)

Moreover,
(D5 )0~ T2+ fsup V57

LZ(S)

The term I; can be easily estimated, since none of the curvature terms are anomalous.

Indeed, in view of Lemma 15.3, we have, for all s>%,

||\P(S)(£OR)||L(25C>(H1(L0’ﬂ))SH\IJ(S)<£OR> VO‘I/ ”52 (H(Ou))+||Vo\I/ ||52 (H(Ou))
SR(UJJ)?

while, for s:%,
|w(/2) <30R)||£(2SC)(ﬂgﬂo,u>) SR(u,w).

Consequently, for s> %,

L<y / [V LOR)E, i du'+5V/2C.
s>1 !

. _1
while, for s=3,

I <Z§ / |© S)(LOR)H (H(O u>)du’—|—51/20.

s<2

Therefore,

B [, o, i

s>1

+y 67 /||‘1’(‘9)(ﬁOR)Hi(zc)(ffgm)dﬂ’+51/20'

s<2

Among the terms I, the only possible anomalies may occur in the case s3=3,
i.e. (DW)©3)=a(Dy4R), or in the easier cases (DW¥)(*3)=a(D3R) and (D¥)(*3)=3(D,R)
(i.e. s3=2). We denote by Io; all terms in I» except those which correspond to these

anomalous cases. For all other terms we have either

H(D\I’)(SS)||£?Sc)(H1(ﬁv“>)50 or H(D\I/)(s3)|‘ﬁ%bc)(E52M),SC



328 S. KLAINERMAN AND I. RODNIANSKI

Using also ||(O)7r\|5(oscc)§0 and

192 (LoR) C, s9>1,

||£’(sc)(H7(10’2)) §

192) (Lo R) C, $3<2,

||£%sc)(HL0’u)) S

we derive that
I <ovAc.

We now consider the terms Iy which contain (D¥)(*3)a(D3R) and (DW)3)=3(D,R),

but not a(D4R). In this case we write, according to Remark 15.2,

(DW)(3) =G F(s3),

| F(ss c, s3> 1,

) <
ez o) S

HF(SS)‘|£(ZSC)(E(EO)1L)) 507 53<2,
where G=(tr xo)a. Clearly, the terms corresponding to F’ (s3) can be estimated exactly as
above. To estimate the terms corresponding to GG, we make use of the ﬁ‘(lsc)(S) estimate

”G”ﬁ?sc)(5)<05_1/4' Using also that || (0)77||5?SC>(5)<C’ we obtain

L, <6V,

It remains to estimate the terms in I3 which contain a(D4R). The integrand which

contains a(D4R) has the form

Dys= > Dxt)wl=)(LoR)a(DyR).
S1+82=25—3

This term is potentially dangerous! In view of Lemma 15.3, W(2)(£oR) differs from
(Vo®)(*2) by lower-order terms. It thus suffices to estimate

Dy= Y Oa)(Vow)2)a(DyR).
S1+82=25—3

We also decompose

a(DiR)=Via+ ¢l
s3+84=3

where (;5(53)6{(4),77717}. This forces s4<2 and hence, since there are no anomalies, we
derive that

la(DyR) =V <cs2,
(s

) (H)
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Therefore, we can safely replace a(D4R) by V4a, and hence it remains to estimate

D= Y Ore)(Vow))v,a.

S1+s2=2s5—3

Because of the anomaly of V4, the best we can do by a straightforward estimate is to
derive an estimate of the form I53<Z(9)4C, which is not acceptable. Because of this,

we are forced to integrate by parts, ignoring the boundary term

/ (©) 231 (Vo 1) (52

—u

for a moment, obtaining

/ (0)7() (Vo 1))V 10
B} (15.22)
= —/ (V4(O)7T(Sl))(vo\11)(32)a—/ O)z(1)(V4(Vo)2))a.
D D
We write schematically, with ¢(1/2) e{n,n},
V4(VO\I/)(52) = V4VO(\I/)(32*1/2)

=VoVa(0)E21/2) 4 Z P(s3) glsa) 4 Z /D)

s3+sa=s2+1 s4=52+1/2

We can therefore replace the integrand D3 by
Doz = —Da31— Daza — Doz — Dasa,
where

Dogq = Z (V4(O)7T(sl))(v()\l,)(sz)a7

S1+82=25—3

Dago = Z Oz (1) (Vo v, 0 5211/2)) o,
S1+82=25—3

D33 = Z O glsn) ( Z \11(53)\11(84)> a,
s1+52=25—3 s3+s4=s2+1

Day= 3 ©xle) ( Z ¢(1/2)\I,(54)>a.
s1+82=25—3 s4=s2+1/2

Accordingly, we decompose Io3=1I531+ I230+ I233+1234. Now,

Ipg1 S0V a0 1

o
tolelley s /0 I(Vo ) Dl g d S8/C.

(se)
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The terms Ip33 and 34 are clearly of lower order in §, and thus we derive that
Ioga+ T30 S6V20.

It remains to estimate I35, for which we need to perform another integration by parts.

We write
/ <0>7T(sl>(VOV4\I,<S2+1/2>)Q:_/(VO<0>7T(sl>)(v4\1,<S2+1/2>)a
D D
_/ (©) (1) (7, 5(=2+1/2) )V o
D

_/ (0) (60 (7, W (s+1/2)) (720, ).
D

By the Bianchi identities, since 52+%<3,

T o) SHTREHDN, i +62 0l ez,

Vzz, (s <C.

Therefore,

/(Vo(O)ﬂ(sl))(V4\IJ)(SQ+1/2)a
D

<62V OnD) 4

<sc>(S)||O‘HE4 (S)/O ||(V4\I/)(52+1/2)||[/(SC)(H$’E))du’§§1/40.

(sc)

Also,

/<O>7r<51>(v4\1/)<82+1/2>v0a
D

S0 [ 1900l g TR gy 1O 9 S82C,

The remaining integral in Io3o is clearly of lower order in §. For the boundary term in
(15.22), we have

’/ O 2 (Vo) | < 612|(To W)
H,

(s¢)

(S)”aHL4 (S)

)@l

(se)
<sY4c.

We therefore deduce that
I, <oV,

Consider now I3. Ignoring powers of §, we have to estimate the integral

/(D<O)7T)(sl>q,(s2>(gOR)\I,@s).
D
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Recall the estimates
DOz (5 SC

for all components of (D(O)ﬂ')(sl), with the exception of the term D5 (@) 73, which corre-

sponds to the signature s;=0. In this latter case, we have

<C.

1Ds O3V Z| s () SC and |sup|(DsOm)aal|| , S
¢ u L(SC)(S)

In the case (D(©)7)(1) £ D3O s, we have

/(D(0>7r)<s1>\1,<s2>(gOR)\I,(sS>
D

@I 2a (o)

(sc)

<ot/ / I(VoW) Dy (o du’ WD m) ey

<ole,
where we considered the worst case in which ¥(3)=q, and thus is anomalous, and
(Vo®)(*2) has to be estimated along HS,J’“).
For this case, we can replace, without loss of generality, (DV(O)71)(1) by V32Z.

Indeed, the remaining error term can be estimated exactly as above. In this case, since

s1=0, signature considerations dictate that s3>1, as follows from the conditions
S1+8o+83=28, S3€ {s, s—%} and s>1.
This implies that we may use the trace theorem along H,,
1T |y i) S 64O,

where in fact 6~/ only occurs in the case when W(*3) =q, for all other terms the behavior
in ¢ is better. We thus give the argument only for W(53) =q, other cases are even easier.

Recalling also Lemma 15.3,

/ V3 ZW(52) (ﬁoR)\If(S3)
D

6257 [T, g, du [sup V2]
0 sc ! u

ﬁ? )(S) Slip H\II(SS) ||’I‘r(bc)(Hu)

<sY4c.

We finally observe that the only borderline terms not resulting in positive powers of the
parameter § and arising from coupling with try, involve only 3, o, o and 3 components

of the curvature.
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Combining all our estimates for I, I3 and I3, and using Lemma 14.5, we derive that

2 (LR gy ooy +1¥ D (LoR) gy
1<s<5/2 | >

><HL°*“>>)

5 (15.23)
$ Y WOLoR g g, +0"1C:

1<s<2

More precisely, we easily check the estimate
Ha(‘COR) ||£(2SC)(H,£0,H)) + Hﬁ(‘COR> HL(QSC)(H;O’”)) 5 Ha(‘COR) ||£(2SC)(H(§0,H)) +§1/4C~
For s<2 we have

>_ (¥ (LoR) ||£?Sc><H£°’H)> et (Lo R) ”c?sc)(HLO’“)))

s<2

SNV LR s o, +6Y/1C.

s<2

Using the estimates of Lemma 15.3, we derive that
||Voz||£?sc)(H£o,l))+\|Vﬂ\|£(gsc)(Héo,u>) S ||V0¢HL%SC)(H(50,M>)+51/4C.

For s<2 we have

S UTO s oo IOy o)

s<2

(15.24)
s 1/4
STy o 61,
s<2
We summarize the result above in the following proposition.
PROPOSITION 15.6. The following estimates hold true for § sufficiently small and
C=C(Z",R,R):

> (|\v\1/<5>||£(2_ )(Hgo,w)+||w/<5*1/2>Hﬁﬁ )(Hgo,w))gzﬁcal/‘*.
1<s<5/2 B

Combining this result with Propositions 15.4 and 15.5, we get
Ri+R, STo+CoY4
Finally, combining this with Proposition 14.6, we derive that
R+R<To+C64.

This ends the proof of our main theorem.
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15.6. Proof of Propositions 2.5 and 2.6

The proof of Proposition 2.5 is an immediate consequence of estimate (15.24) together
with the initial assumptions derived in Proposition 2.4. Indeed, under initial assumptions
(2.8), we derive that

SUTD gy oy HITDET Dy ) Setdt/ic,

s<2

which gives, for sufficiently small §, estimate (2.9).
We combine this result with Proposition 11.8 to prove the following scale-invariant

version of Proposition 2.6 in the introduction.

PROPOSITION 15.7. The solution ®¢ of the problem V§3)¢:V17 with trivial initial
data satisfies
||(3)¢||£§’;?c)(5> <O os1/18,
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