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1. Introduction

The main goal of the present work is to study geodesics in the random metric space called
the Brownian map, which appears as the scaling limit of several classes of discrete planar
maps. We prove in particular that a typical point of the Brownian map is connected by
a unique geodesic to the distinguished point called the root. We are also able to give an
explicit description of the set of those points that are connected to the root by at least
two distinct geodesics. In particular, we obtain that this set is dense in the Brownian map
and is homeomorphic to a real tree. Moreover we show that countably many points are
connected to the root by three distinct geodesics, but no point is connected to the root by
four distinct geodesics. Because of the invariance of the distribution of the Brownian map
under uniform re-rooting, similar results hold if we replace the root by a point randomly
chosen according to the volume measure on the Brownian map. Although the Brownian
map is a singular metric space, there are striking analogies between our analysis and the
classical results known in the setting of Riemannian manifolds.

Our main results have direct applications to uniqueness properties for geodesics in
discrete planar maps. One indeed conjectures that the Brownian map is the universal
scaling limit of discrete random planar maps, in a way similar to the appearance of Brow-
nian motion as the scaling limit of all discrete random paths satisfying mild integrability
conditions. If this conjecture is correct, the present work will provide information about
the behavior of geodesics in large discrete random maps in a very general setting. The
preceding analogy with Brownian motion also suggests that the Brownian map should
provide the “right model” for a Brownian random surface.

To motivate our main results, let us start by describing some typical applications
to discrete models. Recall that a planar map is a proper embedding of a connected
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graph in the 2-dimensional sphere S2. Loops and multiple edges are a priori allowed.
The faces of the map are the connected components of the complement of the union of
edges. A planar map is rooted if it has a distinguished oriented edge called the root
edge, whose origin is called the root vertex. Two rooted planar maps are said to be
equivalent if the second one is the image of the first one under an orientation-preserving
homeomorphism of the sphere, which also preserves the root edge. Two equivalent planar
maps are identified. Given an integer p>2, a 2p-angulation is a planar map where each
face has degree 2p, that is 2p adjacent edges (one should count edge sides, so that if an
edge lies entirely inside a face it is counted twice). A 2p-angulation is bipartite, so that
it cannot have loops, but it may have multiple edges. We denote by Mp

n the set of all
rooted 2p-angulations with n faces. Due to the preceding identification, the set Mp

n is
finite.

Let M be a planar map and let V (M) denote the vertex set of M . A path in M with
length k is a finite sequence (a0, a1, ..., ak) in V (M) such that ai and ai−1 are connected
by an edge of the map, for every i∈{1, ..., k}. The graph distance dgr(a, a′) between two
vertices a and a′ is the minimal k such that there exists a path γ=(a0, a1, ..., ak) with
a0=a and ak=a′. A path γ=(a0, a1, ..., ak) is called a discrete geodesic (from a0 to ak) if
k=dgr(a0, ak). If γ=(a0, ..., ak) and γ′=(a′0, ..., a

′
k′) are two paths (possibly with different

lengths), we set

d(γ, γ′) =max{dgr(ai∧k, a′i∧k′) : i> 0}.

Throughout the present work, we fix an integer p>2, and consider a random 2p-
angulation Mn, which is uniformly distributed over the set Mp

n. We denote the vertex
set of Mn by mn=V (Mn) and the root vertex of Mn by ∂n∈mn. Note that, by Euler’s
formula, #(mn)=(p−1)n+2 . For every a, a′∈mn, we denote by Geon(a, a′) the set of
all discrete geodesics from a to a′ in the map Mn.

Proposition 1.1. For every δ>0,

1
n

#{a∈mn : there exist γ, γ′ ∈Geon(∂n, a) such that d(γ, γ′) > δn1/4}! 0,

as n!∞, in probability.

Recall that if R(Mn)=max{dgr(∂n, a):a∈mn} is the radius of the map Mn, it is
known that n−1/4R(Mn) converges in distribution to a positive random variable ([13]
if p=2, and [27], [40] in the general case). Thus typical distances between vertices of
Mn are of order n1/4. Proposition 1.1 means that when n is large, for a typical vertex
a of Mn there is essentially a unique discrete geodesic from the root vertex to a, up to
deviations that are small in comparison with the diameter of the map.
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One can get a stronger version of Proposition 1.1 by considering approximate geo-
desics. Fix a non-negative function θ(n), n∈N, such that θ(n)=o(1) as n!∞. An
approximate geodesic from a to a′ is a path from a to a′ whose length is less than
(1+θ(n))dgr(a, a′). Denote the set of all approximate geodesics from a to a′ in Mn by
Geon(a, a′). Then the statement of Proposition 1.1 still holds if Geon(∂n, a) is replaced
by Geon(∂n, a).

Proposition 1.1 is concerned with discrete geodesics from the root vertex to a typical
point of mn. What happens now if we consider exceptional points? To answer this
question, fix δ>0, and for every a, a′∈mn, let Multn,δ(a, a′) be the maximal integer k
such that there exist k paths γ1, ..., γk∈Geon(a, a′) with d(γi, γj)>δn1/4 if i 6=j. Define
analogously Multn,δ(a, a′) by replacing discrete geodesics with approximate geodesics.

Proposition 1.2. We have, for every δ>0,

lim
n!∞

P (there exists a∈mn such that Multn,δ(∂n, a) > 4) =0.

In other words, when n is large, there cannot be more than 3 “macroscopically dif-
ferent” discrete geodesics connecting a point of mn to the root vertex. Can the maximal
number 3 be attained? The next proposition provides an answer to this question.

Proposition 1.3. We have

lim
δ!0

lim inf
n!∞

P (there exists a∈mn such that Multn,δ(∂n, a) = 3) =1.

It should be emphasized that the root vertex ∂n plays no special role in the preceding
propositions. These statements remain valid if ∂n is replaced by a vertex chosen uniformly
at random in mn.

The proofs of Propositions 1.1, 1.2 and 1.3 depend on analogous results concerning
the Brownian map. We will now explain how the Brownian map can be obtained as the
continuous limit of rescaled uniform 2p-angulations [24]. We first observe that (mn, dgr)
can be viewed as a random compact metric space, or more precisely as a random variable
taking values in the space K of isometry classes of compact metric spaces. We equip K
with the Gromov–Hausdorff distance dGH (see [11], [18] and §8 below), and the metric
space (K, dGH) is then Polish. It is proved in [24] that we can find a sequence {nk}k>1

of values of n converging to ∞ and then construct the random maps Mnk
in such a way

that along the sequence {nk}k>1 we have the almost sure convergence

(mn,�pn
−1/4dgr)

a.s.−−! (m∞, D), as n!∞, (1)

in the Gromov–Hausdorff sense (here �p is a positive constant depending on p). The
limiting random metric space (m∞, D) is called the Brownian map. At this point we
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need to comment on the necessity of taking a subsequence in order to get the conver-
gence (1). As will be explained below, the space m∞ is obtained as a quotient space of
the well-known random real tree called the continuum random tree, by an equivalence
relation which is explicitly defined in terms of Brownian labels assigned to the vertices of
the continuum random tree. However the metric D, which induces the quotient topology
on m∞, has not been completely characterized, and it is conceivable that different sub-
sequences might give rise to different limiting metrics D in (1). Still one conjectures that
the space (m∞, D) does not depend on the chosen subsequence, nor on the integer p,
and that a convergence analogous to (1) holds for more general classes of random planar
maps. In the present work, we abusively talk about the Brownian map, but it should
be understood that we deal with one of the possible limits in (1) (our terminology is
thus different from [29], where the Brownian map refers to the same space m∞, but with
a specific choice of the distance, which may or may not coincide with D). Despite the
lack of uniqueness, the topological or even metric properties of (m∞, D) can be inves-
tigated in detail and yield interesting consequences for large planar maps. For instance
the non-existence of small “bottlenecks” in large 2p-angulations was derived in [25] as a
consequence of the convergence (1) and the fact that (m∞, D) is homeomorphic to S2.
Our study of geodesics in the Brownian map is motivated in part by the same strategy.

Let us now give a more precise description of the space m∞. We use the notation
(Te, de) for the random rooted real tree known as the continuum random tree, which was
introduced and studied by Aldous [1], [2]. The notation Te is justified by the fact that
Te can be defined as the tree coded by a normalized Brownian excursion e=(et)06t61.
Precisely, Te=[0, 1]/∼e is the quotient space of the interval [0, 1] for the equivalence
relation ∼e such that s∼et if and only if es=et=min[s∧t,s∨t] er. The distance de(a, b) is
defined for a, b∈Te by de(a, b)=es+et−2 min[s∧t,s∨t] er, where s (resp. t) is an arbitrary
representative of a (resp. b) in [0, 1] (see §2.3 and §2.4 below). The root %e of Te is the
equivalence class of 0 in the quotient [0, 1]/∼e, and the uniform probability measure on
Te is the image of Lebesgue measure on [0, 1] under the canonical projection.

We then introduce Brownian labels assigned to the vertices of the continuum random
tree: Conditionally given the tree Te, Ze=(Ze

a)a∈Te is the centered Gaussian process
whose distribution is characterized by the properties Ze

%e =0 and E[(Ze
a−Ze

b )
2]=de(a, b)

for every a, b∈Te.
We are in fact interested in the pair (Tē, (	Za)a∈Tē), which may be defined as the

pair (Te, (Ze
a)a∈Te) conditioned on the event {Ze

a>0 for all a∈Te}. Some care is needed
here, since the latter event has zero probability. The paper [26] provides a simple explicit
construction of the pair (Tē, (	Za)a∈Tē): If a∗ denotes the (almost surely unique) vertex of
Te such that Ze

a∗=min{Ze
a :a∈Te}, then Tē coincides with the tree Te re-rooted at a∗, and
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the new labels 	Za are obtained by setting 	Za=Ze
a−Ze

a∗ , so that the label of the new root
is still 0. We can again write Tē=[0, 1]/∼ē, where the equivalence relation ∼ē is defined
as above from a random continuous function ē which has a simple expression in terms
of e (see §2.4 below) and the root %=%ē of Tē is the equivalence class of 0 in [0, 1]/∼ē.
If a, b∈Tē, we denote by [a, b] the subset of Tē which is the image under the projection
[0, 1]![0, 1]/∼ē of the smallest interval [s, t] such that s (resp. t) is a representative of
a (resp. b) in [0, 1], and s6t. If there exists no such interval [s, t], we take [a, b]=Tē
by convention. Informally, [a, b] corresponds to those points of Tē that are visited when
going from a to b “around the tree” in “clockwise order” and avoiding the root. We
define an equivalence relation on Tē by setting, for every a, b∈Tē,

a≈ b if and only if 	Za = 	Zb = min
c∈[a,b]

	Zc or 	Za = 	Zb = min
c∈[b,a]

	Zc.

The space m∞ is then defined as the quotient space Tē/≈. We denote the canonical
projection from Tē onto m∞ by Π. The metric D induces the quotient topology on m∞,
and satisfies the bound

D(Π(a),Π(b))6 	Za+	Zb−2 min
c∈[a,b]

	Zc (2)

for every a, b∈Tē. We use the same notation % for the root of Tē, and for its equivalence
class in Tē/≈, which is a distinguished point of m∞.

If (E, δ) is a compact metric space and x, y∈E, a geodesic or shortest path from
x to y is a continuous path γ=(γ(t))06t6δ(x,y) such that γ(0)=x, γ(δ(x, y))=y and
δ(γ(s), γ(t))=|t−s| for every s, t∈[0, δ(x, y)]. The compact metric space (E, δ) is then
called a geodesic space if any two points in E are connected by (at least) one geodesic.
The space (mn, dgr) is not a geodesic space, but it is easy to construct a geodesic space
whose Gromov–Hausdorff distance from (mn, dgr) is bounded above by 1. From (1) and
the fact that Gromov–Hausdorff limits of geodesic spaces are geodesic spaces (see [11,
Theorem 7.5.1]), one gets that (m∞, D) is almost surely a geodesic space. Our main goal
is to determine the geodesics between the root % and an arbitrary point of m∞.

Before stating our main result, we still need to introduce one more notation. We
define the skeleton Sk(Tē) by saying that a point a of Tē belongs to Sk(Tē) if and only
if Tē\{a} is not connected (informally, Sk(Tē) is obtained by removing the leaves of the
tree Tē). It is proved in Proposition 3.3 below that, with probability 1, the restriction
of the projection Π to Sk(Tē) is a homeomorphism, and the Hausdorff dimension of
Π(Sk(Tē)) is equal to 2. We write Skel∞=Π(Sk(Tē)) to simplify notation. Since the
Hausdorff dimension of m∞ is equal to 4 almost surely [24], the set Skel∞ is a relatively
small subset of m∞. The set Skel∞ is dense in m∞ and from the previous observations
it is homeomorphic to a non-compact real tree. Moreover, for every x∈Skel∞, the set
Skel∞\{x} is disconnected.
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The following theorem, which summarizes our main contributions, provides a nice
geometric interpretation of the set Skel∞ (see Theorems 7.4 and 7.6 below for more
precise statements).

Theorem 1.4. The following properties hold almost surely. For all x∈m∞\Skel∞,
there is a unique geodesic from % to x. On the other hand , for every x∈Skel∞, the
number of distinct geodesics from % to x is equal to the number of connected components
of Skel∞\{x}. In particular , the maximal number of distinct geodesics from % to a point
of m∞ is equal to 3.

Remarks. (i) The invariance of the distribution of the Brownian map under uniform
re-rooting (see §8 below) shows that results analogous to Theorem 1.4 hold if one replaces
the root by a point z distributed uniformly over m∞. Here the word “uniformly” refers
to the volume measure λ on m∞, which is the image of the uniform probability measure
on Tē under the projection Π.

(ii) The last assertion of the theorem easily follows from the previous ones. Indeed,
we already noticed that the (unrooted) tree Tē is isometric to the continuum random tree
Te, and standard properties of linear Brownian motion imply that the maximal number of
connected components of Sk(Te)\{a}, when a varies over Te, is equal to 3. Furthermore
there are countably many points a for which this number is 3.

The construction of the Brownian map (m∞, D) as a quotient space of the random
tree Tē may appear artificial, even though it is a continuous counterpart of the bijections
relating labeled trees to discrete planar maps (see in particular [7]). Theorem 1.4 shows
that the skeleton of Tē, or rather its homeomorphic image under the canonical projection
Π, has an intrinsic geometric meaning: It exactly corresponds to the cut locus of m∞

relative to the root %, provided we define this cut locus as the set of all points that are
connected to % by at least two distinct geodesics. Note that this definition of the cut locus
is slightly different from the one that appears in Riemannian geometry (see e.g. [16]),
since the latter does not make sense in our singular setting.

Remarkably enough, the assertions of Theorem 1.4 parallel the known results in the
setting of differential geometry, which go back to Poincaré [34]. Myers [33] proved that
for a complete analytic 2-dimensional manifold which is homeomorphic to the sphere, the
cut locus associated with a given point A is a topological tree, and the number of distinct
geodesics joining A to a point M of the cut locus is equal to the number of connected
components of the complement of {M} in the cut locus (see Hebda [19] and Itoh [21]
and the references therein for more recent related results under C∞ or C2-regularity
assumptions). On the other hand, Shiohama and Tanaka [38] give examples showing
that in the (non-differentiable) setting of Alexandrov spaces with curvature bounded
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from below, the cut locus may have a fractal structure.

We are able to give explicit formulas for all geodesics from the root to an arbitrary
point of m∞. Indeed all these geodesics are obtained as simple geodesics, which had
already been considered in [29]. The main difficulty in the proof of Theorem 1.4 is to
verify that there are no other geodesics from the root. To this end, we define for every
point x∈m∞ a minimal and a maximal geodesic from the root to x. Loosely speaking,
these are defined in such a way that any other geodesic from % to x will lie “between”
the minimal and the maximal one: See §4 for more exact statements. Then one needs
to check that for a given point x∈m∞\Skel∞, the minimal and the maximal geodesic
from % to x coincide, and therefore also coincide with the simple geodesic from % to x.
For this purpose, the key step is to prove that a minimal (or maximal) geodesic cannot
visit a point of Skel∞, except possibly at its endpoint. The technical estimates of §5
and §6 below are devoted to the proof of this property. Some of these estimates are of
independent interest. In particular Corollary 6.2 gives the following uniform estimate on
the volume of balls in (m∞, D): For every β∈]0, 1[, there exists a (random) constant Kβ

such that the volume of any ball of radius r in m∞ is bounded above by Kβr
4−β , for

every r>0. In the multifractal formalism, this means that the multifractal spectrum of
the volume measure λ on m∞ is degenerate.

A rather surprising consequence of our results is the following remarkable confluence
property of geodesics. For every ε>0, there exists a (random) constant α>0 such that,
if γ and γ′ are two geodesics starting from the root and with length greater than ε, we
have γ(t)=γ′(t) for every t∈[0, α] (Corollary 7.7). Some calculations related to a discrete
version of this property can be found in Bouttier and Guitter [9] in the particular case
of quadrangulations.

Let us comment on recent results related to the present work. The idea of studying
continuous limits of discrete planar maps appeared in the pioneering paper of Chassaing
and Schaeffer [13]. The problem of establishing a convergence of the type (1) was raised
by Schramm [37] in the setting of triangulations. Marckert and Mokkadem [29] considered
the case of quadrangulations and proved a weak form of the convergence (1). See also
[27] for a generalization to Boltzmann distributions on bipartite planar maps. As an
important ingredient of our proofs, we use a bijection between bipartite planar maps and
certain labeled trees called mobiles, which is due to Bouttier, Di Francesco and Guitter [7].
The recent work of Miermont [30] and Miermont and Weill [32] strongly suggests that
a convergence analogous to (1) should hold for planar maps that are not bipartite, such
as triangulations. In a recent paper [31], Miermont has obtained, independently of the
present work, certain uniqueness results for geodesics in continuous limits of discrete
quadrangulations, in a setting which is however different from ours. See also the recent
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work of Bouttier and Guitter [8] for a detailed discussion of the number of geodesics
connecting two given points in a large planar map, and of exceptional pairs of points
that can be linked by “truly” distinct geodesics. In a different but related direction,
the papers of Angel and Schramm [5], Angel [4] and Chassaing and Durhuus [12] study
various properties of random infinite planar maps that are uniformly distributed in some
sense.

To complete this presentation, let us mention that planar maps are important objects
in several areas of mathematics and physics. They have been studied extensively in
combinatorics since the pioneering work of Tutte [39]. Planar maps, or maps on more
general surfaces, have significant geometric and algebraic applications: See the book of
Lando and Zvonkin [22]. The interest in planar maps in theoretical physics first arose
from their connections with matrix integrals [20], [10]. More recently, planar maps have
served as models of random (discrete) surfaces in the theory of 2-dimensional quantum
gravity: See in particular the book of Ambjørn, Durhuus, and Jonsson [3]. Bouttier’s
recent thesis [6] provides a nice account of the relations between the statistical physics
of random surfaces and the combinatorics of planar maps.

The paper is organized as follows. §2 contains a detailed presentation of the ba-
sic objects which are of interest in this work. In particular we discuss the Bouttier–
Di Francesco–Guitter bijection between bipartite planar maps and the labeled trees called
mobiles [7], which plays an important role in our arguments. Such bijections between
maps and trees were discovered by Cori and Vauquelin [14] and then studied in particular
by Schaeffer [36]. Theorem 2.2 restates the main result of [24] in a form convenient for our
applications. §3 is devoted to some preliminary results. In §4, we recall the definition of
simple geodesics, and we introduce minimal and maximal geodesics. The main result of
this section is Proposition 4.1, which shows that the so-called minimal geodesic is indeed
a geodesic. §5 proves the key technical estimate (Lemma 5.1). Loosely speaking, this
lemma bounds the probability that the range of a minimal geodesic intersects (the image
under the canonical projection of) an interval containing the right end of an excursion
interval of ē with length greater than some fixed δ>0. The estimate of Lemma 5.1 is
then used in §6 to prove Proposition 6.3, which shows that the range of a typical minimal
geodesic does not intersect Skel∞. As another ingredient in the proof of Proposition 6.3,
we use our uniform estimates for the volume of small balls in m∞. §7 contains the proof
of our main results Theorems 7.4 and 7.6, from which Theorem 1.4 readily follows. §8
discusses the re-rooting invariance property of the Brownian map. Finally §9 provides
applications to large planar maps, and gives the proofs of Propositions 1.1, 1.2 and 1.3.
The proof of two technical discrete lemmas is presented in the appendix.

Let us conclude with a comment about sets of zero probability. As usual in a random
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setting, many of the results that are presented in this work hold almost surely, that is
outside a set of zero probability. In a few instances, such as Lemma 3.4, this set of zero
probability depends on the choice of a parameter U∈[0, 1], which corresponds to fixing
a point of m∞. In such cases, we will always make this dependence clear: Compare
Propositions 7.1 and 7.2 below for instance.

Acknowledgments. I am indebted to Frédéric Paulin for useful references and for
his comments on a preliminary version of this work, and to Grégory Miermont for sev-
eral stimulating conversations. I also thank Jérémie Bouttier and Emmanuel Guitter
for keeping me informed about their recent work on geodesics in random planar maps.
Finally, I wish to thank the referee for his careful reading of the original manuscript and
several useful remarks.

2. The Brownian map

2.1. Real trees

As was already mentioned in the introduction, the Brownian map is defined as a quotient
space of a random real tree. We start by discussing real trees in a deterministic setting.
A metric space (T , d) is a real tree if the following two properties hold for every a, b∈T .

(a) There is a unique isometric map fa,b from [0, d(a, b)] into T such that fa,b(0)=a
and fa,b(d(a, b))=b.

(b) If q is a continuous injective map from [0, 1] into T , such that q(0)=a and
q(1)=b, we have q([0, 1])=fa,b([0, d(a, b)]).

A rooted real tree is a real tree (T , d) with a distinguished vertex %=%(T ) called the
root.

Let us consider a rooted real tree (T , d) with root %. To avoid trivialities, we assume
that T has more than one point. For a∈T , the number d(%, a) is called the generation
of a in the tree T . For a, b∈T , the range of the mapping fa,b in (a) is denoted by
[[a, b]]=[[b, a]]: This is the line segment between a and b in the tree. We will also use
the obvious notation ]]a, b[[, [[a, b[[ and ]]a, b]]. For every a∈T , [[%, a]] is interpreted as the
ancestral line of vertex a.

More precisely we can define a partial order on the tree, called the genealogical
order, by setting a≺b if and only if a∈[[%, b]]. If a≺b, a is called an ancestor of b, and
b is a descendant of a. If a, b∈T , there is a unique c∈T such that [[%, a]]∩[[%, b]]=[[%, c]].
We write c=a4b and call c the most recent common ancestor to a and b. Note that
[[a, b]]=[[a4b, a]]∪[[a4b, b]].
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The multiplicity of a vertex a∈T is the number of connected components of T \{a}.
In particular, a is called a leaf if it has multiplicity one. The skeleton Sk(T ) is the set
of all vertices a of T which are not leaves. Note that Sk(T ) equipped with the induced
metric is itself a (non-compact) real tree. A point a∈Sk(T ) is called simple if T \{a} has
exactly two connected components. If T \{a} has (at least) three connected components,
we say that a is a branching point of T .

If a∈T , the subtree of descendants of a is denoted by T (a) and defined by

T (a) = {b∈T : a≺ b}.

If a 6=%, a belongs to Sk(T ) if and only if T (a) 6={a}.

2.2. Coding compact real trees

Compact real trees can be coded by “contour functions”. Let σ>0 and let g be a
continuous function from [0, σ] into [0,∞[ such that g(0)=g(σ)=0. To avoid trivialities,
we will also assume that g is not identically zero. For every s, t∈[0, σ], we set

mg(s, t) = min
r∈[s∧t,s∨t]

g(r),

and

dg(s, t) = g(s)+g(t)−2mg(s, t).

It is easy to verify that dg is a pseudo-metric on [0, σ]. As usual, we introduce the equiv-
alence relation s∼g t if and only if dg(s, t)=0 (or equivalently if and only if g(s)=g(t)=
mg(s, t)). The function dg induces a distance on the quotient space Tg :=[0, σ]/∼g, and
we keep the notation dg for this distance. We denote by pg: [0, σ]!Tg the canonical pro-
jection. Clearly pg is continuous (when [0, σ] is equipped with the Euclidean metric and
Tg with the metric dg), and therefore Tg=pg([0, σ]) is a compact metric space. Moreover,
it is easy to verify that the topology induced by dg coincides with the quotient topology
on Tg.

By [15, Theorem 2.1], the metric space (Tg, dg) is a (compact) real tree. Furthermore
the mapping g 7!Tg is continuous with respect to the Gromov–Hausdorff distance, if the
set of continuous functions g is equipped with the supremum distance. We will always
view (Tg, dg) as a rooted real tree with root %g=pg(0)=pg(σ). Note that dg(%g, a)=g(s)
if a=pg(s).

If s, t∈[0, σ], the property pg(s)≺pg(t) holds if and only if g(s)=mg(s, t). Suppose
that 06s<t6σ. Then [[pg(s), pg(t)]]⊂pg([s, t]), and in particular pg(s)4pg(t)=pg(r) for
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any r∈[s, t] such that pg(r)=mg(s, t). Such simple remarks will be used without further
comment in the forthcoming proofs.

Let a∈Tg and let s(a) (resp. t(a)) denote the smallest (resp. largest) element in
p−1
g (a). Then Tg(a)=pg([s(a), t(a)]). Hence, if g is not constant on any non-trivial

interval, a vertex a 6=%g belongs to Sk(Tg) if and only if s(a)<t(a), that is if p−1
g (a) is

not a singleton. Moreover, if g does not vanish on ]0, σ[, then %g /∈Sk(Tg). The last two
properties will hold a.s. for the (random) functions g that are considered below.

2.3. The Brownian snake

Let g be as in the previous subsection, and also assume that g is Hölder continuous
with exponent δ for some δ>0. We first introduce the Brownian snake driven by the
function g.

Let W be the space of all finite paths in R. Here a finite path is simply a continuous
mapping w: [0, ζ]!R, where ζ=ζ(w) is a non-negative real number called the lifetime of
w. The set W is a Polish space when equipped with the distance

dW(w,w′) = |ζ(w)−ζ(w′)|+sup
t>0

|w(t∧ζ(w))−w′(t∧ζ(w′))|.

The endpoint (or tip) of the path w is denoted by ŵ=w(ζ(w)). For every x∈R, we set
Wx={w∈W :w(0)=x}.

The Brownian snake driven by g is the continuous random process (W g
s )06s6σ taking

values in W0, whose distribution is characterized by the following properties:
(a) For every s∈[0, σ], ζ(W g

s )=g(s).
(b) The process (W g

s )06s6σ is time-inhomogeneous Markov, and its transition ker-
nels are specified as follows: If 06s6s′, then

• W g
s′(t)=W

g
s (t) for every t∈[0,mg(s, s′)], a.s.;

• the random path (W g
s′(mg(s, s′)+t)−W g

s′(mg(s, s′)))06t6g(s′)−mg(s,s′) is indepen-
dent of W g

s and distributed as a 1-dimensional Brownian motion started at 0 and stopped
at time g(s′)−mg(s, s′).

Informally, the value W g
s of the Brownian snake at time s is a random path with

lifetime g(s). When g(s) decreases, the path is erased from its tip, and when g(s)
increases, the path is extended by adding “little pieces” of Brownian paths at its tip.
The path continuity of the process (W g

s )06s6σ (or rather the existence of a modification
with continuous sample paths) easily follows from the fact that g is Hölder continuous.

Property (b) implies that if s∼gs′ then W g
s =W g

s′ a.s., and this property holds si-
multaneously for all pairs (s, s′) outside a single set of zero probability, by a continuity
argument. Hence we may view W g as indexed by the tree Tg=[0, σ]/∼g. We write
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Zgs=Ŵ g
s for the endpoint of Ws. According to the preceding remark, we can view Zg as

indexed by the tree Tg: If a∈Tg, we interpret Zga as the spatial position of the vertex a.
Then it is not difficult to verify that, for every r∈[0, dg(%g, a)], W g

a (r) is the spatial
position of the ancestor of a at generation r.

The process (Zga)a∈Tg can be viewed as Brownian motion indexed by Tg: Indeed it
is a centered Gaussian process such that Zg%g

=0 and E[(Zga−Z
g
b )

2]=dg(a, b) for every
a, b∈Tg.

We now randomize the coding function g. Let e=(et)t∈[0,1] be the normalized Brow-
nian excursion, and take g=e and σ=1 in the previous discussion. The random real tree
(Te, de) coded by e is the so-called continuum random tree. Using the fact that local
minima of Brownian motion are distinct, one easily checks that points of Te can have
multiplicity at most 3 (equivalence classes for ∼e can contain at most three points).

We then consider the process (W e
s )s∈[0,1] such that conditionally given e, (W e

s )s∈[0,1]

is the Brownian snake driven by e. Notice that for every s∈[0, 1], W e
s =(W e

s (t), 06t6es)
is now a random path with a random lifetime es. As previously, we write Ze

s=Ŵ e
s for

the endpoint of W e
s . We refer to [23] for a detailed discussion of the Brownian snake

driven by a Brownian excursion, and its connections with non-linear partial differential
equations.

2.4. Conditioning the Brownian snake

In view of our applications, it is important to consider the process (W e
s )s∈[0,1] conditioned

on the event

W e
s (t) > 0 for every s∈ [0, 1] and t∈ [0, es].

Here some justification is needed for the conditioning, since the latter event has probabil-
ity zero. The paper [26] describes several limit procedures that allow one to make sense
of the previous conditioning. These procedures all lead to the same limiting process �W
which can be described as follows from the original process W e. Set

Z∗ = min
t∈[0,1]

Ze
t

and let s∗ be the (almost surely) unique time in [0, 1] such that Ze
s∗=Z∗. The fact that

the minimum Z∗ is attained at a unique time ([26, Proposition 2.5]) entails that the
vertex pe(s∗) is a leaf of the tree Te. For every s, t∈[0, 1], set

s⊕t=
{
s+t, if s+t6 1,
s+t−1, if s+t> 1.
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Then, for every t∈[0, 1], we set
• ēt=es∗+es∗⊕t−2me(s∗, s∗⊕t);
• 	Zt=Ze

s∗⊕t−Z
e
s∗ .

Note that 	Z0=	Z1=0 and 	Zt>0 for every t∈]0, 1[. The function ē is continuous on [0, 1],
positive on ]0, 1[, and such that ē0=ē1=0. Hence the tree Tē is well defined, and this tree
is isometrically identified with the tree Te re-rooted at the (minimizing) vertex pe(s∗):
See [15, Lemma 2.2]. To simplify notation, we will write %=%ē for the root of Tē.

One easily verifies that s∼ēt if and only if s∗⊕s∼es∗⊕t, and so 	Zt only depends
on the equivalence class of t in the tree Tē. Therefore, we may and will often view 	Z as
indexed by vertices of the tree Tē.

The conditioned Brownian snake (�Ws)s∈[0,1] is now defined by the following proper-
ties. For every s∈[0, 1], �Ws is the random element of W0 such that

(a) the lifetime of �Ws is ēs,
(b) we have �̂W s=	Zs, and more generally, for every r∈[0, ēs], �Ws(r)=	Zas(r), where

as(r) is the ancestor of pē(s) at generation r in the tree Tē.
To interpret this definition, note that 	Z and �W can both be viewed as indexed by

the tree Tē, which is identified with the tree Te re-rooted at the minimal spatial position.
The new spatial positions 	Za on the re-rooted tree are obtained by shifting the original
spatial positions Ze

a in such a way that the position of the new root is still zero, and
the path �Wa just gives the (new) spatial positions along the ancestral line of a in the
re-rooted tree. See [26] for more details.

2.5. The Brownian map

To simplify notation we write ∼ instead of ∼ē in the remaining part of this work. Then
∼ is a (random) equivalence relation on [0, 1] whose graph is closed.

We now use the process (	Zt)t∈[0,1] of the previous subsection to define one more
(random) equivalence relation on [0, 1]. For every s, t∈[0, 1], we write

s≈ t if and only if 	Zs = 	Zt = min
s∧t6r6s∨t

	Zr.

Notice the obvious similarity with the definition of ∼ (in fact the equivalence relation ≈
is nothing but ∼	Z). From the fact that local minima of Ze are distinct ([25, Lemma 3.1]),
one easily obtains that equivalence classes of ≈ contain one, two or three points at most:
See the discussion in [25, §2].

We say that t∈]0, 1] is a left-increase time of ē (resp. of 	Z) if there exists ε∈]0, t]
such that ēr>ēt (resp. 	Zr>	Zt) for every r∈[t−ε, t]. We similarly define the notion of
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a right-increase time. For t∈]0, 1[, pē(t)∈Sk(Tē) if and only if t is a left-increase or a
right-increase time of ē.

Lemma 2.1. With probability 1, any point t∈]0, 1[ which is a right-increase or a left-
increase time of ē is neither a right-increase nor a left-increase time of 	Z. Consequently ,
it is almost surely true that , for every s, t, r∈]0, 1[, the properties s∼t and s≈r imply
that s=t or s=r.

In other words, if the equivalence class of s∈]0, 1[ for ∼ is not a singleton, then
its equivalence class for ≈ must be a singleton, and conversely (we need to exclude the
values s=0 and s=1, since clearly the pair {0, 1} is an equivalence class for both ∼ and
≈). Lemma 2.1 is proved in [25] (Lemma 3.2). This lemma plays a very important role
in what follows. We will systematically discard the negligible set on which the conclusion
of Lemma 2.1 does not hold.

Due to Lemma 2.1, we can define a new equivalence relation ' on [0, 1] whose graph
is the union of the graphs of ∼ and ≈ respectively: s't if and only if s∼t or s≈t.

By definition, the Brownian map m∞ is the quotient space [0, 1]/', equipped with
a random distance D which is obtained as a weak limit of the graph distance on ap-
proximating discrete maps. We will explain this in greater detail below, but we already
record certain properties that can be found in [24]. It is more convenient to view D as
a pseudo-distance on [0, 1]. Precisely, the random process (D(s, t))s,t∈[0,1] is continuous,
takes values in [0,∞[, and satisfies the following conditions:

(i) D(s, t)=D(t, s) and D(r, t)6D(r, s)+D(s, t) for every r, s, t∈[0, 1];
(ii) D(s, t)=0 if and only s't, for every s, t∈[0, 1];
(iii) D(0, t)=	Zt for every t∈[0, 1];
(iv) D(s, t)6	Zs+	Zt−2 mins∧t6r6s∨t 	Zr for every s, t∈[0, 1].

Due to (i) and (ii), D induces a distance on the quotient space m∞=[0, 1]/', which is
still denoted by D. The (random) metric space ([0, 1]/', D) appears as a limit of rescaled
planar maps, in the sense of the Gromov–Hausdorff convergence: See §2.7 below. The
canonical projection from [0, 1] onto m∞ will be denoted by p. By definition, the volume
measure λ on m∞ is the image of Lebesgue measure on [0, 1] under p.

In agreement with the presentation that was given in the introduction above, it is
often useful to view the Brownian map as a quotient space of the random real tree Tē.
Note that the equivalence relation ≈ makes sense on Tē: If a, b∈Tē, a≈b if and only if
there exist a representative s of a and a representative t of b in [0, 1] such that s≈t. Then,
D induces a pseudo-distance on Tē: D(a, b)=D(s, t) if s (resp. t) is any representative
of a (resp. b). The quotient space Tē/≈, equipped with D, is a metric space, which is
canonically identified with (m∞, D). This slightly different perspective will be useful as



geodesics in large planar maps and in the brownian map 301

the genealogical structure of Tē plays an important role in our arguments. Note that the
equivalence class of any a∈Sk(Tē) for ≈ is a singleton, by Lemma 2.1.

As in §1, the canonical projection from Tē onto m∞ is denoted by Π. Note that
p=Π�pē (as above pē denotes the canonical projection from [0, 1] onto Tē). Both pro-
jections p and Π are continuous, when [0, 1] is equipped with the usual topology and Tē
with the distance dē: For the first one, this is a consequence of (iv), and the result for
the second one follows because the topology of Tē is the quotient topology. It will be
important to carefully distinguish elements of [0, 1] from their equivalence classes in m∞

or in Tē. We will typically use the letters s, t to denote elements of [0, 1], a, b for elements
of Tē and x, y for elements of m∞. The symbol % will stand both for the root of Tē and
for the corresponding element in m∞, which is just the equivalence class of 0 or of 1.

If x∈m∞, property (iii) above implies that 	Zt=D(%, x) for every t∈[0, 1] such that
p(t)=x. So 	Z can also be viewed as a random function on m∞. We will write indifferently
	Zx=	Za=	Zs and D(x, y)=D(a, b)=D(s, t), when x, y∈m∞, a, b∈Tē and s, t∈[0, 1] are
such that p(s)=Π(a)=x and p(t)=Π(b)=y.

2.6. Discrete maps and the Bouttier–Di Francesco–Guitter bijection

Recall that the integer p>2 is fixed throughout this work, and that Mp
n denotes the set of

all rooted 2p-angulations with n faces. We will first discuss the Bouttier–Di Francesco–
Guitter bijection between Mp

n and the set of all p-mobiles with n black vertices.

We use the standard formalism for plane trees as found in [24, §2.1]. A plane tree τ
is a finite subset of the set

U =
∞⋃
n=0

Nn

of all finite sequences of positive integers (including the empty sequence ∅), which satisfies
three obvious conditions: First ∅∈τ , then, for every v=(u1, ..., uk)∈τ with k>1, the
sequence (u1, ..., uk−1) (the “parent” of v) also belongs to τ , and finally for every v=
(u1, ..., uk)∈τ there exists an integer kv(τ)>0 (the “number of children” of v) such that
the vertex vj :=(u1, ..., uk, j) belongs to τ if and only if 16j6kv(τ). The generation of
v=(u1, ..., uk) is denoted by |v|=k. The notions of an ancestor and a descendant in the
tree τ are defined in an obvious way.

A p-tree is a plane tree τ that satisfies the following additional property: For every
v∈τ such that |v| is odd, kv(τ)=p−1.
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Figure 1. A 3-tree τ and the associated contour function Cτ� of τ �.

If τ is a p-tree, the vertices v of τ such that |v| is even are called white vertices, and
vertices v of τ such that |v| is odd are called black vertices. We denote by τ � the set of
all white vertices of τ and by τ � the set of all black vertices. See the left side of Figure 1
for an example of a 3-tree.

A (rooted) p-mobile is a pair θ=(τ, (`v)v∈τ�) that consists of a p-tree τ and a collec-
tion of integer labels assigned to the white vertices of τ , such that the following properties
hold:

(a) `∅=1 and `v>1 for each v∈τ �;
(b) let v∈τ �, let v(0) be the parent of v and let v(j)=vj, 16j6p−1, be the children

of v; then for every j∈{0, 1, ..., p−1}, `v(j+1) >`v(j)−1, where by convention v(p)=v(0).
The left side of Figure 2 gives an example of a 3-mobile. The numbers appearing

inside the circles representing white vertices are the labels assigned to these vertices.
Condition (b) above means that if one lists the white vertices adjacent to a given black
vertex in clockwise order, the labels of these vertices can decrease by at most 1 at each
step.

We will now describe the Bouttier–Di Francesco–Guitter bijection between Mp
n and

the set of all p-mobiles with n black vertices. This bijection can be found in [7, §2] in the
more general setting of bipartite planar maps. Note that [7] deals with pointed planar
maps rather than with rooted planar maps. However, the results described below easily
follow from [7].

Let τ be a p-tree with n black vertices and let k=#τ−1=pn. The depth-first search
sequence of τ is the sequence w0, w1, ..., w2k of vertices of τ which is obtained by induction
as follows. First w0=∅, and then for every i∈{0, ..., 2k−1}, wi+1 is either the first child
of wi that has not yet appeared in the sequence w0, ..., wi, or the parent of wi if all
children of wi already appear in the sequence w0, ..., wi. It is easy to verify that w2k=∅
and that all vertices of τ appear in the sequence w0, w1, ..., w2k (of course some of them
appear more than once).
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Figure 2. A 3-mobile θ with 5 black vertices and the associated spatial contour function.

The vertices wi are white when i is even and black when i is odd. The contour
sequence of τ � is by definition the sequence v0, ..., vk defined by vi=w2i for i∈{0, 1, ..., k}.

Now let θ=(τ, (`v)v∈τ�) be a p-mobile with n black vertices. As previously, denote
the contour sequence of τ � by v0, v1, ..., vpn. Suppose that the tree τ is drawn in the
plane as pictured on Figure 3 and add an extra vertex ∂. We associate with θ a rooted
2p-angulation M with n faces, whose set of vertices is

V (M) = τ �∪{∂}

and whose edges are obtained by the following device: For every i∈{0, 1, ..., pn−1},
• if `vi

=1, draw an edge between vi and ∂;
• if `vi >2, draw an edge between vi and vj , where j is the first index in the se-

quence i+1, i+2, ..., pn such that `vj =`vi−1 (we then say that j is the successor of i,
or sometimes that vj is a successor of vi—note that a given vertex v can appear several
times in the contour sequence and so may have several different successors).

Notice that vpn=v0=∅ and `∅=1, and that condition (b) in the definition of a p-tree
entails that `vi+1 >`vi−1 for every i∈{0, 1, ..., pn−1}. This ensures that whenever `vi >2
there is at least one vertex among vi+1, vi+2, ..., vpn with label `vi−1. The construction
can be made in such a way that edges do not intersect, except possibly at their endpoints:
For every vertex v, each index i such that vi=v corresponds to a “corner” of v, and the
associated edge starts from this corner. We refer to [7, §2] for a more detailed description
(here we will only need the fact that edges are generated in the way described above).
The resulting planar graph M is a 2p-angulation, which is rooted at the oriented edge
between ∂ and v0=∅, corresponding to i=0 in the previous construction. Each black
vertex of τ is associated with a face of the map M . See Figure 3 for the 6-angulation
associated with the 3-mobile of Figure 2.
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∂

Figure 3. The Bouttier–Di Francesco–Guitter bijection: A rooted 3-mobile with 5 black
vertices and the associated rooted 6-angulation with 5 faces. The root of the map is the edge
between the vertex ∂ and the root of the tree at the right end of the figure.

The following property, which relates labels on the tree τ � to distances in the planar
map M , plays a key role in our applications: For every vertex v∈τ �, the graph distance
in M between v and the root vertex ∂ is equal to `v.

It follows from [7] that the preceding construction yields a bijection between the set
Tpn of all p-mobiles with n black vertices and the set Mp

n.

The contour function of τ � is the discrete sequence Cτ
�

0 , C
τ�

1 , ..., C
τ�

pn defined by

Cτ
�

i = 1
2 |vi| for every 0 6 i6 pn.

See Figure 1 for an example with p=n=3. It is easy to verify that the contour function
determines τ �, which in turn determines the p-tree τ uniquely. We will also use the
spatial contour function of θ=(τ, (`v)v∈τ�), which is the discrete sequence (Λθ0,Λ

θ
1, ...,Λ

θ
pn)

defined by

Λθi = `vi for every 0 6 i6 pn.

From property (b) of the labels and the definition of the contour sequence, it is clear
that Λθi+1>Λθi−1 for every 06i6pn−1 (cf. Figure 2). The pair (Cτ

�

,Λθ) determines θ
uniquely.
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Define an equivalence relation ∼[τ ] on {0, 1, ..., pn} by setting i∼[τ ]j if and only if
vi=vj . The quotient space {0, 1, ..., pn}/∼[τ ] is then obviously identified with τ �. If i6j,
the relation i∼[τ ]j implies that

min
i6k6j

Cτ
�

k =Cτ
�

i =Cτ
�

j .

The converse is not true (except if p=2) but the conditions j>i+1, Cτ
�

i =Cτ
�

j and

Cτ
�

k >C
τ�

i for every k∈]i, j[∩Z

imply that i∼[τ ]j.

2.7. Convergence towards the Brownian map

For every integer n>1, let Mn be a random rooted p-angulation, which is uniformly dis-
tributed over the set Mn

p , and let θn=(τn, (`nv )v∈τ�n) be the random mobile corresponding
to Mn via the Bouttier–Di Francesco–Guitter bijection. Then θn is uniformly distributed
over the set Tpn of all p-mobiles with n black vertices. We denote by Cn={Cni }06i6pn

the contour function of τ �n and by Λn={Λni }06i6pn the spatial contour function of θn.
Recall that the pair (Cn,Λn) determines θn and thus Mn.

Let mn stand for the vertex set of Mn. By the Bouttier–Di Francesco–Guitter
bijection, we have the identification

mn = τ �n∪{∂n},

where ∂n denotes the root vertex of Mn. The graph distance on mn will be denoted
by dn. In particular, if a, b∈τ �n, dn(a, b) denotes the graph distance between a and b

viewed as vertices in the map Mn.
To simplify notation, we write ∼[n] for the equivalence relation ∼[τn] on {0, 1, ..., pn},

so that τ �n is canonically identified with the quotient {0, 1, ..., pn}/∼[n]. We also write
pn for the canonical projection from {0, 1, ..., pn} onto τ �n=mn\{∂n}. To be specific,
pn(i)=vni , if vn0 , v

n
1 , ..., v

n
pn denotes the contour sequence of τ �n. We have Λni =dn(∂n, pn(i))

for every i∈{0, ..., pn}, by the properties recalled in the previous subsection.
If i, j∈{0, 1, ..., pn}, we set dn(i, j)=dn(pn(i), pn(j)). By the triangle inequality, we

have |Λni −Λnj |6dn(i, j).
The following theorem restates the main result of [24] in a form convenient for the

present work. To simplify notation, we set

λp =
1
2

√
p

p−1
and �p =

(
9

4p(p−1)

)1/4

.
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Theorem 2.2. From every sequence of integers converging to ∞, we can extract
a subsequence {nk}k>1 such that the following properties hold. On a suitable probabil-
ity space, for every integer n belonging to the sequence {nk}k>1 we can construct the
uniformly distributed random p-angulation Mn, in such a way that

(λpn−1/2Cnbpntc,�pn
−1/4Λnbpntc,�pn

−1/4dn(bpnsc, bpntc))06s61,06t61

a.s.−−! (ēt, 	Zt, D(s, t))06s61,06t61, as n!∞,
(3)

where the convergence holds uniformly in s, t∈[0, 1] along the sequence {nk}k>1. In (3),
(ēt, 	Zt)06t61 has the distribution described in §2.4, and (D(s, t))06s61,06t61 is a con-
tinuous random process that satisfies properties (i)–(iv) stated in §2.5. Furthermore, the
pointed compact metric spaces

(mn,�pn
−1/4dn, ∂n)

converge almost surely to (m∞, D, %) in the sense of Gromov–Hausdorff convergence.

Remarks. (a) The convergence of the first two components in (3) does not require
the use of a subsequence: See [40, Theorem 3.3]. A subsequence is needed only to get
the convergence of the third component via a compactness argument.

(b) The last assertion of the theorem refers to the Gromov–Hausdorff distance on
the space of isometry classes of pointed compact metric spaces. The definition of this
distance is recalled in §8 below (this definition is not needed in the proof of our main
results, and our main tool will be the convergence (3)). The last assertion is then a rather
simple consequence of the convergence (3), and the fact that the process D satisfies the
above-mentioned properties (i)–(iv): See the proof of Theorem 8.1 below for a sketch of
the argument. The key point in the proof of Theorem 2.2 is to verify property (ii) for
the pseudo-metric D. See [24] for more details.

We will need a simple application of (3) to the convergence of “discrete snakes”
associated with the p-mobiles (τn, (`nv )v∈τ�n) . Recall that the contour sequence of τ �n
is denoted by vn0 , v

n
1 , ..., v

n
pn. Then, for every i∈{0, 1, ..., pn}, define the finite sequence

Wn
i =(Wn

i (j), 06j6Cni ) by requiring thatWn
i (j)=`nun

i (j), where uni (j)∈τ �n is the ancestor
of vni at generation 2j in the tree τn. In particular, Wn

i (Cni )=Λni . Now, if (3) holds, we
also have, along the sequence {nk}k>1,

sup
06s61

sup
r>0

|�pn−1/4Wn
bpnsc(bλ

−1
p n1/2rc∧Cnbpnsc)−�Ws(r∧ēs)|

a.s.−−! 0, as n!∞, (4)

where the process (�Ws)06s61 is defined from the pair (ēs, 	Zs)06s61 as explained at the
end of §2.4. The convergence (4) is a consequence of the convergence of the first two
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components in (3). A simple way to verify this is to use the homeomorphism theorem of
[28]. We leave the details to the reader.

In the remaining part of this work (with the important exception of §9), we choose
a sequence {nk}k>1 as in Theorem 2.2 and we consider only values of n belonging to
this sequence. We fix the random maps Mn as in the theorem, and we argue on the
set of full probability measure where the convergences (3) and (4) hold, and the process
(D(s, t))06s61,06t61 satisfies the properties (i)–(iv).

3. Preliminary results

In this section, we state and prove a few preliminary facts that will be used in the
subsequent proofs.

Recall our notation Tē(c) for the subtree of descendants of a vertex c∈Tē. Before
we state the first proposition, we make a simple remark concerning the boundary of the
set Π(Tē(c)), when c is a vertex of Sk(Tē). We claim that this boundary consists of the
point Π(c) and the points Π(d) for all d∈Tē(c) such that there exists d′∈Tē\Tē(c) with
d′≈d. To see this, first note that Π(c) belongs to the boundary since the set Π([[%, c[[) is
contained in m∞\Π(Tē(c)) by Lemma 2.1. Similarly, for every point d∈Tē(c) such that
there exists d′∈Tē\Tē(c) with d′≈d, the point Π(d) belongs to the boundary. Conversely,
let x be a point on the boundary of Π(Tē(c)), and write x=Π(b) with b∈Tē(c). We may
assume that b 6=c. Then we have Π(b)=limk!∞ Π(ak), where {ak}k>1 is a sequence in
Tē\Tē(c). Note that (Tē\Tē(c))∪{c} is compact as the image under pē of the union
of two closed subintervals of [0, 1], and so we may assume that the sequence {ak}k>1

converges to a∈(Tē\Tē(c))∪{c}. Then Π(b)=Π(a) and a 6=c, since we assumed that b 6=c.
This gives our claim.

Proposition 3.1. Almost surely , for every a, b∈Tē and every continuous curve
(ω(t), 06t6T ) in m∞ such that ω(0)=Π(a) and ω(T )=Π(b), we have

	Zc > min
06t6T

	Zω(t) (5)

for every c∈ [[a, b]]. Furthermore, if equality holds in (5), then there exists t∈[0, T ] such
that ω(t)=Π(c).

Proof. By symmetry, we may restrict our attention to the case when c∈[[a4b, b]].
When c=b there is nothing to prove. Suppose first that c∈]]a4b, b[[. We can also assume
that Π(c) /∈{ω(t):06t6T}. Note that b∈Tē(c) but a /∈Tē(c). Set

t0 = inf{t∈ [0, T ] :ω(t)∈Π(Tē(c))}.
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Notice that Π(Tē(c)) is closed as the image under the projection p of a compact subin-
terval of [0, 1]. It follows that ω(t0)∈Π(Tē(c)).

If t0=0, then Π(a)=ω(0)=Π(a′) for some a′∈Tē(c). Thus a≈a′, which from the
definition of the equivalence relation ≈ entails 	Zc>	Za=	Za′ (note that c∈[[a, a′]] so that,
if a=pē(s) and a′=pē(t), the set {pē(r):s∧t6r6s∨t} contains c). There is even a strict
inequality because otherwise we would have c≈a, which is impossible by Lemma 2.1,
since c belongs to the skeleton of the tree Tē.

If t0>0, then ω(t0) belongs to the boundary of Π(Tē(c)) in m∞. We apply the
remark preceding the statement of the proposition, noting that ω(t0) 6=Π(c) since Π(c) /∈
{ω(t):06t6T}. Thus, there exists a point d∈Tē(c) such that ω(t0)=Π(d)=Π(d′) for
some d′∈Tē\Tē(c). As in the case t0=0, this entails that 	Zc>	Zd, and there is even a
strict inequality.

It remains to consider the case c=a4b. Then the bound (5) is immediate by a
continuity argument. To get the desired conclusion when there is equality in (5), we
can assume that a 6=a4b and b 6=a4b. We then argue in a similar way as in the case
c∈]]a4b, b[[, but we replace Tē(c) by pē([r1, r2]), where [r1, r2] is the unique compact
subinterval of [0, 1] such that pē(r1)=pē(r2)=a4b, b∈pē([r1, r2]) and a /∈pē([r1, r2]). We
leave the details to the reader.

As an immediate consequence of the proposition, we get a useful lower bound for
the distance D, which should be compared to the upper bound (2), or equivalently to
assertion (iv) in §2.5.

Corollary 3.2. Almost surely , for every a, b∈Tē, we have

D(Π(a),Π(b))> 	Za+	Zb−2 min
c∈[[a,b]]

	Zc.

Proof. In agreement with §2.5, we write D(a, b)=D(Π(a),Π(b)). We already noticed
that (m∞, D) is a geodesic space and so we can choose a geodesic ω=(ω(t), 06t6D(a, b))
from Π(a) to Π(b) in m∞. By Proposition 3.1,

min
c∈[[a,b]]

	Zc > min
06t6D(a,b)

	Zω(t).

On the other hand, we may choose t0∈[0, D(a, b)] such that

	Zω(t0) = min
06t6D(a,b)

	Zω(t).

By the definition of geodesics, D(a, b)=D(ω(0), ω(t0))+D(ω(t0), ω(D(a, b))). Further-
more,

D(ω(0), ω(t0))> 	Za−	Zω(t0) and D(ω(t0), ω(D(a, b)))> 	Zb−	Zω(t0),

by the triangle inequality. The desired result follows.
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Recall the notation Skel∞=Π(Sk(Tē)).

Proposition 3.3. The following properties hold almost surely. The restriction of
the projection Π to Sk(Tē) is a homeomorphism from Sk(Tē) onto Skel∞, and the Haus-
dorff dimension of Skel∞ is equal to 2.

Proof. We already know that the projection Π from Tē onto m∞ is continuous, and
so is its restriction to Sk(Tē). This restriction is also one-to-one by Lemma 2.1. We
need to verify that its inverse is continuous in order to get the first assertion. To see
this, let {xk}k>1 be a sequence in Skel∞ that converges to a point x∞∈Skel∞, in the
sense of the metric D. For every k>1, we have xk=Π(ak) with ak∈Sk(Tē) and similarly
x∞=Π(a∞) with a∞∈Sk(Tē). As Tē is compact, we may find a subsequence {akj}j>1

that converges to a point b∈Tē. By the continuity of Π, we have then Π(b)=x=Π(a∞).
Since a∞∈Sk(Tē), Lemma 2.1 shows that this is possible only if b=a∞. We conclude
that the sequence {ak}k>1 must converge to a∞ as required.

As for the second assertion, we first observe that Sk(Tē) is a countable union of
sets that are isometric to line segments, so that its Hausdorff dimension is 1. On the
other hand, the bound (iv) in §2.5 easily implies that the mapping Π from (Tē, dē) onto
(m∞, D) is Hölder continuous with exponent 1

2−ε, for every ε>0 (see [24, Lemma 5.1]
for a closely related statement). This gives the upper bound dim(Skel∞)62.

To get the corresponding lower bound, we can in fact prove that the Hausdorff
dimension of the image under Π of any (non-trivial) line segment in Sk(Tē) is bounded
below by 2. To see this, let I be a non-trivial line segment contained in Sk(Tē), and
denote Lebesgue measure on I by µI . From standard results about Hausdorff measures,
it is enough to verify that, for every δ>0,∫∫

I×I

µI(da)µI(db)
D(a, b)2−δ

<∞. (6)

This follows from the lower bound on D(a, b) provided by Corollary 3.2. Recall that
	Z has been constructed by shifting the process Ze, which behaves like linear Brownian
motion along any segment of Te. Denoting by B a standard linear Brownian motion, we
see that the bound (6) is a consequence of the fact that∫∫

[0,1]2

(
Bs+Bt−2 min

s6r6t
Br

)−(2−δ)
ds dt<∞ a.s.

This property easily follows from a first-moment calculation, using Pitman’s theorem
([35, Theorem VI.3.5]), which asserts that the process Rt :=Bt−2 min06r6tBr is a 3-
dimensional Bessel process.
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Our next lemma shows that for any fixed time U∈]0, 1[, pē(U) does not belong to
the skeleton of Tē. Although this statement is intuitively clear, it is not so easy to give
a precise argument.

Lemma 3.4. Let U∈]0, 1[. Then pē(U) /∈Sk(Tē) and p(U) /∈Skel∞ almost surely.

Proof. To get the first assertion, we need to prove that for every ε∈]0, U∧(1−U)[,
we have almost surely mē(U,U+ε)<ēU and mē(U−ε, U)<ēU . Since the law of the
pair (et, Ze

t )06t61 is invariant under the time-reversal operation t 7!1−t, the same holds
for the pair (ēt, 	Zt)06t61, and so it is enough to prove the first part of the preceding
assertion. Equivalently, we must show that P (A)=0, where

A=
⋃

ε∈]0,1−U [

{mē(U,U+ε) = ēU}.

Now recall the definition of s∗ and ē in §2.4. It follows from the invariance under
re-rooting stated in [26, §2.3] that s∗ is independent of ē and uniformly distributed over
[0, 1]. In particular, if we fix ε0∈]0, 1−U [, we have

(1−U−ε0)P (A) =P ({s∗< 1−U−ε0}∩A).

On the other hand, from the definition of ē in terms of e, we get

{s∗< 1−U−ε0}∩A⊂A1∪A2,

where

A1 = {s∗< 1−U−ε0}∩
( ⋃
ε∈]0,ε0[

{me(s∗+U, s∗+U+ε) = es∗+U}
)

and
A2 = {s∗< 1−U−ε0}∩{me(s∗, s∗+U) = es∗+U}.

Let us verify that P (A1)=0. For every rational q∈]0, 1[, set

s∗(q) = sup{s∈ [0, q] :Ze
s = min

06r6q
Ze
r }.

Clearly the random variable s∗(q) is measurable with respect to the σ -field generated by
(er,Wr)06r6q. As a consequence, the random time

T(q) = q+(U+s∗(q)−q)+

is a stopping time of the filtration generated by (er,Wr)06r61. Notice that the process
(et)06t61 is Markovian with respect to this filtration. By a standard property of linear
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Brownian motion, we get that, almost surely on the event {T(q)<1}, we have for every
ε>0,

me(T(q), (T(q)+ε)∧1)< eT(q) .

Finally, on the event {s∗<1−U−ε0}, we can pick a rational q such that s∗<q<s∗+U ,
and then we have s∗(q)=s∗ and T(q)=s∗+U . From the preceding observations we see
that A1 does not hold almost surely. A similar argument gives P (A2)=0. It follows that
P (A)=0, which completes the proof of the first assertion. The second one follows since
the equivalence class of any a∈Sk(Tē) for ≈ is a singleton, by Lemma 2.1.

Recall from §1 the definition of a geodesic connecting two points of m∞. Also recall
that D(%, x)=	Zx for every x∈m∞.

Lemma 3.5. Almost surely , for every x∈m∞, every geodesic ω=(ω(t))06t6	Zx
from

% to x and every interval [u, v] such that 06u<v6	Zx, the range of ω over [u, v] inter-
sects m∞\Skel∞.

Proof. Let x∈m∞ and let ω be a geodesic from % to x. Also, let u and v be reals such
that 06u<v<	Zx. We argue by contradiction and suppose that the set {ω(t):u6t6v} is
contained in Skel∞. From Proposition 3.3, we may write ω(r)=Π(ψ(r)) for every r∈[u, v],
where ψ is a continuous mapping from [u, v] into Sk(Tē). This mapping ψ is also one-
to-one because ω is a geodesic. Since Sk(Tē) is a (non-compact) real tree, it follows that
the range of ψ is the line segment [[ψ(u), ψ(v)]], and moreover ψ is a homeomorphism
from [u, v] onto [[ψ(u), ψ(v)]]. The fact that 	Zψ(r)=r for every r∈[u, v] then implies that
the mapping a 7!	Za is monotone increasing over [[ψ(u), ψ(v)]]. However, this is absurd
since 	Z has been constructed by shifting the process Ze, and we already observed that
Ze behaves like linear Brownian motion along line segments of the tree Te, so that it
cannot vary monotonically on a line segment of the tree.

4. Two classes of geodesics

In this section, we will discuss several classes of geodesics connecting the root to a point
of m∞. This point will be of the form p(s) for s∈[0, 1]. All the results of this section
are valid outside a set of zero probability (discarding such a set is needed e.g. to apply
Lemma 2.1 or Proposition 3.1). It is important to note that this set of zero probability
does not depend on s. We will omit the words “almost surely” in the statements of this
section.
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4.1. Simple geodesics

For every s∈[0, 1], we define a mapping ϕs: [0, 	Zs]![0, 1] by setting

ϕs(t) = sup{r6 s : 	Zr 6 t}, 0 6 t6 	Zs.

Clearly, p(ϕs(0))=% and p(ϕs(	Zs))=p(s). Also, 	Zϕs(t)=t and if 06t6t′6	Zs,

D(ϕs(t), ϕs(t′))6 	Zϕs(t)+	Zϕs(t′)−2 min
[ϕs(t),ϕs(t′)]

	Zr = t+t′−2t= t′−t.

Since

D(ϕs(t), ϕs(t′))>D(0, ϕs(t′))−D(0, ϕs(t))= t′−t,

we must have D(ϕs(t), ϕs(t′))=t′−t for every 06t6t′6	Zs. Thus (p(ϕs(t)), 06t6	Zs) is
a geodesic from % to the point p(s). We will write

Φs(t) =p(ϕs(t))

for every t∈[0, 	Zs] and call Φs a simple geodesic from % to p(s) (sometimes we abusively
say that ϕs itself is a simple geodesic). We can also give a dual definition of simple
geodesics, by setting, for every s∈[0, 1],

ϕs(t) = inf{r> s : 	Zr 6 t}, 0 6 t6 	Zs.

It is immediate that ϕs(t)≈ �ϕs(t), so that p(�ϕs(t))=p(ϕs(t))=Φs(t) for every t∈[0, 	Zs].
Let s and s′ be two distinct points in ]0, 1[ such that p(s)=p(s′). If s≈s′, we have

	Zs = 	Zs′ = min
[s∧s′,s∨s′]

	Zr

and it readily follows that the geodesics Φs and Φs′ coincide. On the other hand, if s∼s′

(so that s≈s′ does not hold), it is not hard to see that the geodesics Φs and Φs′ differ.
We will come back to this later.

It is important to note that a simple geodesic from % to p(s) does not intersect
Skel∞, except possibly at its endpoint p(s). Indeed, if 06t<	Zs, it is immediate from
the definition that ϕs(t) is a right-increase time of 	Z, and then Lemma 2.1 implies that
p(ϕs(t)) /∈Skel∞. Much of what follows is devoted to proving that a similar property
holds for any geodesic connecting the root to another point of m∞.
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4.2. Minimal geodesics

Let s∈[0, 1], and denote by G(s) the set of all mappings γ: [0, 	Zs]![0, s] such that
(p(γ(t)), 06t6	Zs) is a geodesic from % to p(s). Notice that G(s) is not empty since
ϕs∈G(s). We then define a mapping γs: [0, 	Zs]![0, 1] by setting

γs(t) = inf{γ(t) : γ ∈G(s)}, 0 6 t6 	Zs.

In contrast with ϕs, γs only depends on p(s) and not on the particular choice of a
representative of p(s) in [0, 1].

We have γs(0)=0 and p(γs(	Zs))=p(s). From the continuity of 	Z and of the distance
D, it is also clear that

	Zγs(r) =D(0, γs(r))= r (7)

and
D(γs(r), s) = 	Zs−r (8)

for every r∈[0, 	Zs].
It is easy to verify that the mapping t 7!γs(t) is monotone increasing. Indeed, let

t∈]0, 	Zs] and γ∈G(s). Put

γ̃(r) =
{
γ(r), if r∈ [t, 	Zs],
ϕγ(t)(r), if r∈ [0, t[.

Then, we also have γ̃∈G(s). Furthermore, γ̃(r)<γ(t) for every r∈[0, t[. From the defini-
tion of γs, it now follows that γs(r)<γs(t) for every 06r<t6	Zs (note that γs(r)=γs(t)
is impossible since 	Zγs(r)=r 6=t=	Zγs(t)).

To simplify notation, we set Γs(t)=p(γs(t)) for every t∈[0, 	Zs].

Proposition 4.1. The curve (Γs(t), 06t6	Zs) is a geodesic from % to p(s). It is
called the minimal geodesic from % to p(s). (Sometimes we also say that γs is a minimal
geodesic.)

The proof of Proposition 4.1 is based on the following lemma. We denote by G∗(s)
the set of all γ∈G(s) such that γ(t) is the smallest representative of p(γ(t)) for every
t∈[0, 	Zs]. Obviously we may replace G(s) by G∗(s) in the definition of γs.

Lemma 4.2. If γ and γ′ belong to G∗(s), then γ∧γ′ also belongs to G∗(s).

Proof. We first claim that the set {t∈]0, 	Zs[ :γ(t)<γ′(t)} is open. To see this, let
t1 be an element of this set. We argue by contradiction and assume that there exists
a sequence {rk}k>1 in ]0, 	Zs[ such that rk!t1 and γ(rk)>γ′(rk) for every k>1. Via a
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compactness argument, we may further assume that γ(rk)!u and γ′(rk)!u′ as k!∞,
where 06u′6u61. By the continuity of geodesics, we have

p(u) =p(γ(t1)) and p(u′) =p(γ′(t1)).

In particular,
	Zu = 	Zγ(t1) = t1 = 	Zγ′(t1) = 	Zu′ .

Since γ′(t1) is the smallest representative of p(γ′(t1))=p(u′), we have γ′(t1)6u′, and
we also know that γ(t1)<γ′(t1) by assumption. Thus we have both γ(t1)<γ′(t1)6u′6u
and p(u)=p(γ(t1)). Note that γ(t1)≈u is impossible, because the previous observations
(and the fact that 	Zγ(t1)=	Zγ′(t1)) would imply that we also have γ(t1)≈γ′(t1) and then
γ(t1)=γ′(t1), contradicting our initial assumption. Thus, we have γ(t1)∼u, and the
inequalities γ(t1)<γ′(t1)6u imply that pē(γ′(t1)) is a descendant of pē(γ(t1)) in the tree
Tē. Equivalently, pē(γ(t1))∈]]%, pē(γ′(t1))[[, and in particular pē(γ(t1))∈Sk(Tē).

Consider first the case when pē(γ(t1))∈]]%, pē(γ′(t1))4pē(s)[[. As pē(γ(t1))∈Sk(Tē),
Lemma 2.1 shows that the representatives of p(γ(t1)) in [0, 1] are exactly the represen-
tatives of pē(γ(t1)) in [0, 1]. Let v be the greatest representative of pē(γ(t1)) in [0, s]. As
p(u)=p(γ(t1)) and u∈[0, s] (at this point, we use in a crucial way the fact that γ takes
values in [0, s]), we get that u6v. On the other hand, since

pē(γ(t1))∈ [[%, pē(γ′(t1))4pē(s)[[,

simple considerations about the genealogy of the tree Tē show that v<γ′(t1). It follows
that u6v<γ′(t1)6u′, which is a contradiction.

Let us turn to the case when pē(γ(t1))∈[[pē(γ′(t1))4pē(s), pē(γ′(t1))[[. In this case,
we apply Proposition 3.1 to the continuous curve (p(γ′(	Zs−t)), 06t6	Zs−t1). The as-
sumptions of this proposition are satisfied with a=pē(s), b=pē(γ′(t1)) and c=pē(γ(t1)).
Since

	Zγ(t1) = t1 = inf{	Zγ′(t) : t1 6 t6 	Zs},

we get that p(γ(t1))=p(γ′(t∗)) for some t∗∈[t1, 	Zs]. Necessarily t∗=t1 and γ(t1)=γ′(t1),
which is again a contradiction. This completes the proof of the claim.

We can now complete the proof of Lemma 4.2. Let us fix r∈]0, 	Zs[ and verify that,
for every t∈[r, 	Zs[,

D(γ∧γ′(r), γ∧γ′(t))= t−r. (9)

Notice that this equality holds for t=	Zs since both γ(	Zs) and γ′(	Zs) are equal to the
smallest representative of p(s). If γ(r)=γ′(r), (9) holds because p(γ(t)) and p(γ′(t)) are
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both geodesics. We can thus assume that γ(r) 6=γ′(r), and by symmetry we may restrict
our attention to the case γ(r)<γ′(r).

We again argue by contradiction and assume that (9) fails for some t∈]r, 	Zs[. We
then set

t0 = inf{t∈]r, 	Zs[ :D(γ∧γ′(r), γ∧γ′(t)) 6= t−r}< 	Zs.

We consider the following three cases:
Case 1. If γ(t0)=γ′(t0), then

D(γ∧γ′(r), γ∧γ′(t0))= t0−r

and, for every t∈[t0, 	Zs],
D(γ∧γ′(t0), γ∧γ′(t))= t−t0.

Thus
D(γ∧γ′(r), γ∧γ′(t))6 t−r

for every t∈[t0, 	Zs]. The reverse inequality is also clear by writing

D(γ∧γ′(r), γ∧γ′(t))>D(0, γ∧γ′(t))−D(0, γ∧γ′(r))= t−r

and we get a contradiction to the definition of t0.
Case 2. If γ(t0)<γ′(t0), then the claim gives ε>0 such that γ(t)<γ′(t) for all

t∈[t0, t0+ε[, and thus

D(γ∧γ′(r), γ∧γ′(t))=D(γ(r), γ(t))= t−r.

This again contradicts the definition of t0.
Case 3. If γ(t0)>γ′(t0), then t0>r (because γ(r)<γ′(r)) and the claim gives ε∈

]0, t0−r[ such that γ(t)>γ′(t) for every t∈]t0−ε, t0+ε[. Then, for every t, t′∈]t0−ε, t0+
ε[, with t<t′,

D(γ∧γ′(t), γ∧γ′(t′))=D(γ′(t), γ′(t′))= t′−t.

Fix t∈]t0−ε, t0[. By the definition of t0,

D(γ∧γ′(r), γ∧γ′(t))= t−r

and so
D(γ∧γ′(r), γ∧γ′(t′))6 t′−r

for every t′∈[t0, t0+ε[. As in the first case above, the last inequality must be an equality,
which again contradicts the definition of t0.

This completes the proof of Lemma 4.2.
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Proof of Proposition 4.1. We need to verify that

D(γs(r), γs(t))= t−r (10)

for every 06r<t6	Zs. If r=0, or if t=	Zs, (10) follows from (7) and (8). Let ε>0 and
let us fix r and t with 0<r<t<	Zs. By the definition of γs, we can find γ, γ′∈G∗(s) such
that

γs(r) 6 γ(r) 6 γs(r)+ε and γs(t) 6 γ′(t) 6 γs(t)+ε.

It follows that

γs(r) 6 γ∧γ′(r) 6 γs(r)+ε and γs(t) 6 γ∧γ′(t) 6 γs(t)+ε.

Choosing ε small, we see thatD(γs(r), γs(t)) can be made arbitrarily close to the quantity
D(γ∧γ′(r), γ∧γ′(t))=t−r, by Lemma 4.2. This completes the proof of (10).

In view of our applications, it will also be important to consider a notion that is
dual to the notion of a minimal geodesic. For every s∈[0, 1], we denote by 
G(s) the set of
all mappings γ: [0, 	Zs]![s, 1] such that (p(γ(t)), 06t6	Zs) is a geodesic from % to p(s).
We then set

�γs(t) = sup{γ(t) : γ ∈
G(s)} and �Γs(t) =p(�γs(t))

for every t∈[0, 	Zs]. The very same arguments as in the proof of Proposition 4.1 show
that (�Γs(t), 06t6	Zs) is a geodesic from % to p(s), which is called the maximal geodesic.

The next two sections are devoted to a number of technical results about geodesics.
Although we concentrate on minimal geodesics, it should be noted that symmetric argu-
ments yield corresponding results for maximal geodesics.

5. The main estimate

In this section we fix U∈]0, 1[. Recall that γU is the minimal geodesic that was introduced
in the previous section. We denote by R(γU ) the range of γU :

R(γU ) = {γU (t) : 0 6 t6 	ZU}.

We also fix u0∈
]
0, 1

2U
[
.
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Lemma 5.1. Let δ∈
]
0, 1

2u0

[
and η>0. For every u∈]0, U [, let Bη,u denote the

event

Bη,u =
{
ēu>η, inf

η/26t6ēu

�Wu(t)>η
}
.

Then, there exists a constant C=C(p, U, u0, η, δ) such that , for every u∈[u0, U [, v∈]u, U ]
and α>0,

P
[
{R(γU )∩]u, v] 6= ∅}∩Bη,u∩

{
inf

u−δ6t6u
ēt> ēu−α

}]
6CαP

[
R(γU )∩]u, v] 6= ∅

]
. (11)

The remaining part of this section is devoted to the proof of Lemma 5.1. To simplify
notation, we will write γ=γU and Γ=ΓU in this proof. The underlying idea is to apply
the Markov property in reverse time to the process (ēr,�Wr)06r61 at time u. Notice that
the event Bη,u only depends on (ēu,�Wu). Assuming that the event {R(γ)∩]u, v] 6=∅} is
also measurable with respect to the σ -field generated by (ēr,�Wr)u6r61, we would need
to bound the conditional probability of the event{

inf
u−δ6t6u

ēt> ēu−α
}

given that σ -field. The latter conditional probability is bounded above by Cα as would
be the case if ē were replaced by a linear Brownian path.

The above line of reasoning is not easy to implement, mainly because the required
measurability property of the event {R(γ)∩]u, v] 6=∅} seems difficult to establish. In-
stead, we will use a discrete version of the preceding ideas, and we will rely on the
convergence (3) to derive the bound of Lemma 5.1 from our discrete estimates. This ex-
plains why the constant C in Lemma 5.1 depends on p. Assuming that the distribution
of the Brownian map is unique, or more precisely that the distribution of the limiting
triplet (ē, 	Z,D) in (3) is independent of p, the constant C in Lemma 5.1 should of course
not depend on p.

The proof of Lemma 5.1 requires several intermediate lemmas. Before stating the
first of these lemmas, we start with a few simple remarks.

We already noticed that the minimal geodesic (γ(r), 06r6	ZU ) is monotone increas-
ing. Moreover, for every r∈]0, 	ZU ] we have p(γ(r−))=Γ(r−)=Γ(r)=p(γ(r)) by conti-
nuity, and the definition of the minimal geodesic shows that we must have γ(r−)=γ(r).
The mapping r 7!γ(r) is thus left-continuous on ]0, U ].

Then let r1, r2, ... be a sequence dense in ]0,∞[. We have for every u<v,

{R(γ)∩]u, v] 6= ∅}= lim
k!∞

k⋃
i=1

{u<γ(ri) 6 v}.
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Here and below we make the convention that γ(r)=∞ if r>	ZU .
Thus, if we can prove that a bound analogous to (11) holds when the event

{R(γ)∩]u, v] 6= ∅}

is replaced by an event of the type

k⋃
i=1

{u<γ(ri) 6 v},

with a constant C independent of k, then a monotone passage to the limit will give us
the desired result.

Our first technical lemma will relate events of the form {γ(r)6u} to other events that
are more suitable for the discrete approximations that we will use to derive our estimates.
For every u∈]0, 1[, we denote by Fr([0, u]) the set of all v∈[u, 1] such that p(v)=p(v′) for
some v′∈[0, u]. Note that Fr([0, u]) is a closed subset of [0, 1]. Furthermore, the ancestral
line of pē(u) is contained in pē(Fr([0, u])).

In the following three lemmas, we fix u∈]0, U [ and r>0.

Lemma 5.2. For every ε>0, let Aε(r, u) stand for the event on which there exist an
integer q>1 and points s0, s1, ..., sq∈[u, U ] such that s0=U , sq∈Fr([0, u]) and , for every
i∈{0, 1, ..., q−1},

	Zsi > r, (12)

D(si, si+1) 6 ε, (13)

and , for every i∈{0, 1, ..., q−2},

D(si, si+1) 6 	Zsi
−	Zsi+1 +

ε

q
. (14)

Then,
{γ(r) 6u}⊂

⋂
ε>0

Aε(r, u) a.s.

Remark. The inclusion in the conclusion of the lemma can in fact be replaced by an
equality. See Lemma 5.4 below.

Proof. Let ε>0 and let us verify that {γ(r)6u}⊂Aε(r, u) a.s. We set

r0 =sup{t∈ [0, 	ZU ] : γ(t) 6u}.

If r0=	ZU , then γ(	ZU )6u by left-continuity, and since p(U)=p(γ(	ZU )) we get that
U∈Fr([0, u]). In this case, we simply take q=1 and s0=s1=U , noting that 	ZU>r on the
event {γ(r)6u} (recall that we made the convention that γ(r)=∞ if r>	ZU ).
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So we may assume that r0<	ZU . We observe that γ(r0+)∈Fr([0, u]). Indeed we have
γ(r0)6u, γ(r0+)>u and p(γ(r0))=p(γ(r0+)) by continuity.

We then set

s0 =U, s1 = γ(	ZU−ε), ..., sq−1 = γ(	ZU−(q−1)ε),

where q is the first integer such that 	ZU−qε6r0. We finally set sq=γ(r0+). Then sq>u
and si∈[u, U ] for every i∈{0, 1, ..., q} because γ is non-decreasing. Conditions (13) and
(14) clearly hold: In (14) we have even D(si, si+1)=	Zsi−	Zsi+1 . Moreover the condition
γ(r)6u implies that r6r0 and thus 	Zsi >	Zγ(r0)>	Zγ(r)=r for every i∈{0, 1, ..., q}.

We now want to use the convergence (3) in order to get discrete approximations of
the sets Aε(r, u). For every integer n, and for 06k6k′6pn, we denote by Gn(k, k′) the
σ -field generated by the variables (Cni ,Λ

n
i ), k6i6k′.

Fix k∈{0, 1, ..., pn}. If i, j∈{k, k+1, ..., pn}, then the distance dn(i, j) is in general
not measurable with respect to the σ -field Gn(k, pn). However, we may define a “modified
distance” d̃kn(i, j) for which this will be true: To this end, we restrict our attention to
edges of the map mn that are generated between steps k and pn−1 of the Bouttier–
Di Francesco–Guitter bijection of §2.6. To give a more precise definition, recall from §2.6
the notion of a successor (with respect to the mobile (τn, (`nv )v∈τ�n)), and say by convention
that the successor of any integer i∈{0, 1, ..., pn} such that the corresponding vertex in τ �n
has label 1 is pn+1. Then, for i, j∈{k, k+1, ..., pn}, d̃kn(i, j) is the minimal integer `>0
for which there exists a sequence i0, j0, i1, j1, ..., i`, j` of integers in {k, k+1, ..., pn, pn+1},
such that

• i0=i and j`=j;
• for every 06m6`, either im 6=pn+1 and jm 6=pn+1, or im=jm=pn+1;
• im∼[n]jm for every 06m6` such that im 6=pn+1;
• for all 16m6`, either im is the successor of jm−1 or jm−1 is the successor of im.
By convention, d̃kn(i, j)=∞ if i /∈{k, k+1, ..., pn} or j /∈{k, k+1, ..., pn}. It is then

easy to verify that d̃kn(i, j) is measurable with respect to Gn(k, pn). Furthermore,

d̃kn(i, j) > dn(i, j).

Recall our notation pn for the canonical projection from {0, 1, ..., pn} onto τ �n (if
vn0 , v

n
1 , ..., v

n
pn denotes the contour sequence of the tree τ �n, then pn(i)=vni ). We denote

by Frn([0, k]) the set of all j∈{k, k+1, ..., pn} for which at least one of the following two
conditions holds:

(a) there exists i∈{0, 1, ..., k} such that dn(pn(i), pn(j))∈{0, 1};
(b) Λni >Λnj for every k6i6j.
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One can then verify that, for every j∈{k, k+1, ..., pn}, the event {j∈Frn([0, k])} is
measurable with respect to the σ -field Gn(k, pn). In particular, the properties of the
contour function imply that the event {pn(j)∈{pn(0), ..., pn(k)}} is measurable for the
σ -field generated by (Cni , k6i6pn). The event

{there exists i∈{0, ..., k} such that dn(pn(i), pn(j))= 1}

is not Gn(k, pn)-measurable in general, but its union with the event where (b) holds is
Gn(k, pn)-measurable.

To simplify notation, we write d̃n=d̃bpnucn . Recall that dn6d̃n. We can now define
our discrete approximation of the set Aε(r, u). We let Anε (r, u) denote the event on
which there exists an integer qn>1 and points sn0 , ..., s

n
qn

in {bpnuc, ..., bpnUc} such that
sn0 =bpnUc, snqn

∈Frn([0, bpnuc]) and for every i∈{0, 1, ..., qn−1},

Λnsn
i

>�−1
p (r−ε)n1/4, (15)

d̃n(sni , s
n
i+1) 6 2�−1

p εn1/4, (16)

and, for every i∈{0, 1, ..., qn−2},

d̃n(sni , s
n
i+1) 6Λnsn

i
−Λnsn

i+1
+

2�−1
p ε

qn
n1/4. (17)

It is important to observe that the event Anε (r, u) is measurable with respect to the σ -field
Gn(bpnuc, pn).

Lemma 5.3. For every ε∈
]
0, 1

10r
[
,

Aε(r, u)⊂ lim inf
n!∞

Anε (r, u) a.s.

Proof. On the event Aε(r, u), we can choose s0, s1, ..., sq∈[u, U ] as specified in the
statement of Lemma 5.2, so that in particular properties (12), (13) and (14) hold. Since
sq∈Fr([0, u]), we can find s′q∈]0, u] such that p(sq)=p(s′q). We set s̄ni =bpnsic for every
i∈{0, 1, ..., q−1}, and s̄nq =bpns′qc−1<bpnuc. Then s̄n0 =bpnUc and the convergence (3)
ensures that a.s. for all sufficiently large n, for every i∈{0, 1, ..., q−1},

Λns̄n
i

>�−1
p (r−ε)n1/4, (18)

dn(s̄ni , s̄
n
i+1) 6 2�−1

p εn1/4, (19)

and, for every i∈{0, 1, ..., q−2},

dn(s̄ni , s̄
n
i+1) 6Λns̄n

i
−Λns̄n

i+1
+

2�−1
p ε

q
n1/4. (20)
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Consider the first index i0∈{0, 1, ..., q−1} such that dn(s̄ni0 , s̄
n
i0+1)<d̃n(s̄

n
i0
, s̄ni0+1).

This index exists since d̃n(s̄nq−1, s̄
n
q )=∞, because s̄nq <bpnuc. Then choose a discrete

geodesic ωn from pn(s̄ni0) to pn(s̄ni0+1) in the map mn. By (18), (19) and our assumption
ε< 1

10r, it is clear that this geodesic does not visit the root vertex of mn. Furthermore,
at least one point on the geodesic ωn must belong to {pn(0), ..., pn(bpnuc)} (otherwise
we would have dn(s̄ni0 , s̄

n
i0+1)=d̃n(s̄

n
i0
, s̄ni0+1)).

We let bn be the first point on the geodesic ωn that belongs to {pn(0), ..., pn(bpnuc)}.
We put sni0+1=s̄ni0 if bn=pn(s̄ni0), and otherwise, we choose sni0+1∈{bpnuc, ..., pn} such
that pn(sni0+1) is the point preceding bn on the geodesic ωn. In both cases it is clear that
sni0+1∈Frn([0, bpnuc]).

We also set qn=i0+1 and sni =s̄ni for every i∈{0, 1, ..., i0}. Then we have

d̃n(sni0 , s
n
i0+1) = dn(sni0 , s

n
i0+1).

Indeed, this equality is trivial if bn=pn(s̄ni0), and otherwise there exists a geodesic from
pn(sni0) to pn(sni0+1) such that for every point a of this geodesic all representatives of a
lie in {bpnuc, ..., pn}. It then follows from (18)–(20) that the points sn0 , s

n
1 , ..., s

n
qn

satisfy
(15)–(17), so that Anε (r, u) holds for n large. This completes the proof.

Lemma 5.4. For every ε>0, set

Ãε(r, u) = lim sup
n!∞

Anε (r, u).

Then,
{γ(r) 6u}=

⋂
ε>0

Aε(r, u) =
⋂
ε>0

Ãε(r, u) a.s.

Proof. From Lemma 5.3, we have that Aε(r, u)⊂Ãε(r, u) a.s. if ε< 1
10r. Then it

follows from Lemma 5.2 that

{γ(r) 6u}⊂
⋂
ε>0

Aε(r, u)⊂
⋂
ε>0

Ãε(r, u) a.s.

Thus we only need to prove that⋂
ε>0

Ãε(r, u)⊂{γ(r) 6u} a.s.

From now on we assume that the event Ãε(r, u) holds for every ε belonging to a
(fixed) sequence decreasing to 0. Fix one value of ε in this sequence. By the definition
of the set Ãε(r, u) we can find, for every n belonging to a (random) sequence converging
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to ∞, a discrete path γε(n)=(γε(n)(i), 06i6Lε(n)) taking values in {0, 1, ..., pn}, such that
the following properties hold:

• γε(n) starts from bpnUc and ends at a point zn∈Frn([0, bpnuc]);
• the length Lε(n) is bounded above by ΛnbpnUc−Λnzn

+6�−1
p εn1/4;

• any point on the path γε(n) lies within dn-distance at most 2�−1
p εn1/4 from a point

z of {bpnuc, ..., bpnUc} such that Λnz >�−1
p (r−ε)n1/4;

• dn(γε(n)(i), γ
ε
(n)(j))6|j−i| for every i, j∈{0, 1, ..., Lε(n)};

• if y=γε(n)(i) and y′=γε(n)(j), with 06i<j6Lε(n), then

dn(y, y′) 6Λny−Λny′+10�−1
p εn1/4. (21)

The path γε(n) is constructed by choosing the points sn0 , s
n
1 , ..., s

n
qn

as in the definition of
Anε (r, u) and then concatenating discrete geodesics (relative to dn) between sni−1 and sni
for 16i6qn. The preceding properties of γε(n) follow from the properties stated in the

definition of Anε (r, u), using also the fact that dn6d̃n and the bound |Λny−Λny′ |6dn(y, y′)
for every y, y′∈{0, 1, ..., pn} (see §2.7). In particular, (21) follows from (16) and (17).

Using (3) and extracting a diagonal subsequence, we may assume that along a se-
quence {n′j}j>1 of values of n converging to ∞, �pn−1/4Lε(n) converges to Lε6	ZU+6ε,
(pn)−1zn converges to z∞ and for every rational a∈[0, Lε[,

(pn)−1γε(n)(b�
−1
p n1/4ac)

converges to a number γε(a)∈[0, 1]. Then, for all rationals a, b∈[0, Lε[, the convergence
(3) gives

D(γε(a), γε(b))= lim
j!∞

�p(n′j)
−1/4dn′j (γ

ε
(n′j)

(b�−1
p (n′j)

1/4ac), γε(n′j)(b�
−1
p (n′j)

1/4bc))

6 |a−b|.

Set ωε(a)=p(γε(a)) for every rational a∈[0, Lε[. By the preceding bound, the mapping
a 7!ωε(a), from [0, Lε[∩Q into m∞, is 1-Lipschitz. It can thus be extended to a 1-
Lipschitz path from [0, Lε] into m∞, which we still denote by ωε. Clearly, ωε(0)=p(U)
and ωε(Lε)=p(z∞).

Using the fact that zn∈Frn([0, bpnuc]), it is not hard to verify that z∞∈Fr([0, u]),
and thus ωε(Lε)∈p(Fr([0, u])). From the bound Lε(n)6ΛnbpnUc−Λnzn

+6�−1
p εn1/4, we also

get
Lε 6 	ZU−	Zωε(Lε)+6ε.

Moreover (21) gives
D(ωε(t), ωε(t′))6 	Zωε(t)−	Zωε(t′)+10ε
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for every 06t6t′6Lε. Finally, any point of the path ωε lies within D-distance at most
2ε from a point x of p([u, U ]) such that 	Zx>r−ε. In particular, 	Zωε(t)>r−3ε for every
t∈[0, Lε].

The preceding construction can be made for every ε belonging to a sequence decreas-
ing to 0. Again via a compactness argument, we can extract a subsequence of values of
ε along which Lε converges to L and the 1-Lipschitz paths (ωε(t∧Lε), 06t6L) con-
verge uniformly to a limiting path (ω0(t), 06t6L). The path ω0 satisfies the following
properties:

• ω0 is 1-Lipschitz, starts from p(U) and ends at a point ω0(L)∈p(Fr([0, u]));
• for every 06t6t′6L,

D(ω0(t), ω0(t′))6 	Zω0(t)−	Zω0(t′); (22)

• for every t∈[0, L], ω0(t)∈p([0, U ]) and 	Zω0(t)>r;
• L6	ZU−	Zω0(L).

By the last property and the triangle inequality,

L6D(%,p(U))−D(%, ω0(L))6D(p(U), ω0(L)).

Since ω0 is 1-Lipschitz, we also have the reverse inequality D(p(U), ω0(L))6L, and thus

D(p(U), ω0(L))=L,

which implies that ω0 is a geodesic from p(U) to ω0(L). For similar reasons, the inequality
in (22) must be an equality, and in particular

D(%,p(U))=D(%, ω0(L))+D(ω0(L),p(U)).

Since ω0(L)∈p(Fr([0, u])), we can choose t1∈[0, u] such that p(t1)=ω0(L). Due to
the property in the last display, we can concatenate ω0 with the (time-reversed) simple
geodesic Φt1 , in order to get a geodesic from p(U) to %. Write ω̃ for the time-reversal
of the latter geodesic. Then ω̃ is a geodesic from % to p(U), which takes values in
p([0, U ]). Hence we can find a mapping γ̃: [0, 	ZU ]![0, U ] such that ω̃(t)=p(γ̃(t)) for
every t∈[0, 	ZU ]. We can impose γ̃(	Zω0(L))=t16u. However, by the definition of γ=γU ,
we have γ(t)6γ̃(t) for every t∈[0, 	ZU ], and thus in particular γ(	Zω0(L))6γ̃(	Zω0(L))6u.
On the other hand, we know that 	Zω0(L)>r, and by the monotonicity of γ we conclude
that γ(r)6u. This completes the proof of Lemma 5.4.

Before we proceed to the proof of Lemma 5.1, we need one more estimate. Recall
from §2.7 the notation (Wn

i )06i6pn for the “discrete snake” associated with the p-mobile
(τn, (`nv )v∈τ�n).
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Lemma 5.5. Let δ∈
]
0, 1

2u0

[
and η, η′>0. There exists a constant

K =K(p, U, u0, η, η
′, δ)

such that , for every u∈[u0, U [ and α>0, we have for all sufficiently large n,

P
(

inf
bpn(u−δ)c6i6bpnuc

Cni >Cnbpnuc−αn
1/2

∣∣∣Gn(bpnuc, pn)
)

6Kα

on the event {
Cnbpnuc > ηn1/2, inf

ηn1/2/26j6Cn
bpnuc

Wn
bpnuc(j) > η′n1/4

}
.

The proof of Lemma 5.5 is postponed to the appendix.

Proof of Lemma 5.1. As we already noticed after the statement of Lemma 5.1, it is
enough to establish the bound

P

[( k⋃
i=1

{u<γ(ri) 6 v}
)
∩Bη,u∩

{
inf

u−δ6t6u
ēt> ēu−α

}]

6CαP

[ k⋃
i=1

{u<γ(ri) 6 v}
]
,

(23)

where r1, ..., rk are fixed positive numbers, and the constant C only depends on p, U , u0,
η and δ.

By Lemma 5.4, we have for every i∈{1, ..., k},

1{γ(ri)6u} = lim
ε!0

1Aε(ri,u) = lim
ε!0

1Ãε(ri,u) a.s.

and consequently

1{u<γ(ri)6v} = lim
ε!0

(1Aε(ri,v)−1Ãε(ri,u))
+ a.s.

So we have

1
{ k⋃
i=1

{u<γ(ri) 6 v}
}

= lim
ε!0

sup
16i6k

(1Aε(ri,v)−1Ãε(ri,u))
+ a.s.

and a symmetric argument gives

1
{ k⋃
i=1

{u<γ(ri) 6 v}
}

= lim
ε!0

sup
16i6k

(1Ãε(ri,v)
−1Aε(ri,u))

+ a.s.
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We will verify that, for every ε>0,

E
[

sup
16i6k

(1Aε(ri,v)−1Ãε(ri,u))
+1

{
inf

u−δ6t6u
ēt> ēu−α

}
1Bη,u

]
6CαE

[
sup

16i6k
(1Ãε(ri,v)

−1Aε(ri,u))
+
]
,

(24)

where C=λ−1
p K(p, U, u0, λ

−1
p η,�−1

p η, δ) with the notation of Lemma 5.5. By passing to
the limit ε!0, we see that (23) follows from (24).

By Lemmas 5.3 and 5.4, we have a.s. for i∈{1, ..., k},

(1Aε(ri,v)−1Ãε(ri,u))
+ 6

(
lim inf
n!∞

1An
ε (ri,v)−lim sup

n!∞
1An

ε (ri,u)

)+
6 lim inf

n!∞
(1An

ε (ri,v)−1An
ε (ri,u))

+.

Therefore,

sup
16i6k

(1Aε(ri,v)−1Ãε(ri,u))
+ 6 lim inf

n!∞
sup

16i6k
(1An

ε (ri,v)−1An
ε (ri,u))

+ a.s.

Then, using (3), (4) and Fatou’s lemma, the left-hand side of (24) is bounded above by

lim inf
n!∞

E
[

sup
16i6k

(1An
ε (ri,v)−1An

ε (ri,u))
+

×1
{

inf
bpn(u−δ)c6i6bpnuc

Cni >Cnbpnuc−λ
−1
p αn1/2

}
1Bn

η,u

]
,

where

Bnη,u =
{
Cnbpnuc >λ−1

p ηn1/2, inf
λ−1

p ηn1/2/26j6Cn
bpnuc

Wn
bpnuc(j) >�−1

p ηn1/4
}
.

Now note that both Bnη,u and the variable

sup
16i6k

(1An
ε (ri,v)−1An

ε (ri,u))
+

are measurable with respect to Gn(bpnuc, pn). Hence, we can apply Lemma 5.5 and we
get that the left-hand side of (24) is bounded above by

λ−1
p Kα lim inf

n!∞
E

[
sup

16i6k
(1An

ε (ri,v)−1An
ε (ri,u))

+
]
,

where K=K(p, U, u0, λ
−1
p η,�−1

p η, δ). So, in order to get (24), it only remains to verify
that the latter lim inf is bounded above by

E
[

sup
16i6k

(1Ãε(ri,v)
−1Aε(ri,u))

+
]
.
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To this end, we just have to note that

lim sup
n!∞

sup
16i6k

(1An
ε (ri,v)−1An

ε (ri,u))
+ = sup

16i6k
lim sup
n!∞

(1An
ε (ri,v)−1An

ε (ri,u))
+

6 sup
16i6k

(
lim sup
n!∞

1An
ε (ri,v)−lim inf

n!∞
1An

ε (ri,u)

)+
6 sup

16i6k
(1Ãε(ri,v)

−1Aε(ri,u))
+.

This completes the proof of Lemma 5.1.

6. Uniform estimates for the volume of balls

Our next goal is to get uniform bounds for the volume of small balls in m∞. The main
ingredient of the proof will be a bound on the moments of the quantities 
J ([0, ε]), where
ε>0, and 
J is the occupation measure of 	Z, which is the random measure on [0,∞[
defined by


J (A) =
∫ 1

0

1A(	Zs) ds

for every Borel subset A of [0,∞[.
We will rely on certain estimates under the infinite excursion measure 	N0 of the

conditioned Brownian snake. Let us briefly recall the definition of 	N0. More details can
be found in [26].

Let C([0,∞[,W0) stand for the space of all continuous functions from R+ into W0,
and denote the canonical process on this space by (Ws)s>0. Also let ζs denote the lifetime
of Ws, for every s>0. For ω∈C([0,∞[,W0), set σ(ω)=sup{s>0:ζs(ω)>0}.

Denote by 	N(1)
0 the probability measure on C([0,∞[,W0) which is the law of the

process (�Ws∧1)s>0. Note that σ=1 	N(1)
0 -a.s. We can now use scaling transformations to

define a probability measure 	N(a)
0 , for every a>0, in the following way. For every µ>0,

we set

ζ(µ)
s =µ2ζs/µ4 , for s> 0,

W (µ)
s (t) =µWs/µ4(t/µ2), for s> 0 and 06 t6 ζ(µ)

s .

By definition, 	N(a)
0 is the law of (W (a1/4)

s )s>0 under 	N(1)
0 . Clearly, we have σ=a 	N(a)

0 -a.s.
We may now set

	N0 =
∫ ∞

0

1
2
√

2πa5
	N(a)

0 da. (25)
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Lemma 6.1. For every integer k>2, there exists a constant ck<∞ such that , for
every ε>0,

	N0

((∫ σ

0

1{Ŵs6ε} ds

)k)
= ckε

4k−6.

Consequently , for every integer k>1 and every δ∈]0, 1], there exists a constant ck,δ<∞
such that , for every ε>0,

E[
J ([0, ε])k]6 ck,δε
4k−δ. (26)

Remark. It should be possible to replace ε4k−δ by ε4k in (26): See [24, p. 669] for
the case k=1.

Proof. Recall the notation W (µ) introduced before the lemma. Then the law of
(W (µ)

s )s>0 under 	N0 is µ6	N0. This is easily seen from the decomposition formula (25).
It follows that, for every ε>0,

	N0

((∫ σ

0

1{Ŵs6ε} ds

)k)
= ε−6	N0

((∫ σ(ε)

0

1{Ŵ (ε)
s 6ε} ds

)k)
= ε−6	N0

((∫ ε4σ

0

1{Ŵs/ε461} ds

)k)
= ε4k−6	N0

((∫ σ

0

1{Ŵs61} ds

)k)
.

So, setting

ck =	N0

((∫ σ

0

1{Ŵs61} ds

)k)
,

we need to verify that ck<∞ if k>2.
To this end we will use Theorem 5.1 in [26]. We need to introduce some notation. A

marked tree is a pair θ=(τ, (hv)v∈τ ), where τ is a plane tree (in the formalism of §2.6),
and, for every vertex v∈τ , hv is a non-negative real number, which is interpreted as the
length of the branch associated with v. We then say that τ is the discrete skeleton of θ.
The plane tree τ is called binary if every vertex of τ has either 0 or 2 children, and
vertices without children are called leaves.

The uniform measure on the set of all (binary) marked trees with k leaves is defined
by ∫

F (θ)Λp(dθ) =
∑

τ∈Abin
k

∫
Rτ

+

F (τ, (hv)v∈τ )
∏
v∈τ

dhv,

where Abin
k is the set of all binary plane trees with k leaves. Let r>0 and let

θ=(τ, (hv)v∈τ )
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be a marked tree. We can combine the branching structure of θ with spatial displacements
given by 9-dimensional Bessel processes, to get random variables 
Va, a∈τ , which are
defined under a probability measure Qθr and constructed as follows. First consider a
9-dimensional Bessel process R∅=(R∅

t )t>0 started from r, and set 
V∅=R∅
h∅

. Then,
conditionally given R∅, consider two other independent 9-dimensional Bessel processes
R1 and R2, both started from 
V∅, and set 
V1=R1

h1
and 
V2=R2

h2
. We can easily continue

the construction by induction. See [26, §5] for more details.
As a direct consequence of [26, Theorem 5.1], we have ck=2k−1k!d̃k, where

d̃k =
∫
Qθ0

(( ∏
a∈I(θ)


V 4
a

)( ∏
a∈L(θ)


V −4
a 1{
Va61}

))
Λk(dθ).

Here L(θ) stands for the set of all leaves of the discrete skeleton τ of θ, and I(θ) is the
set of all other vertices of τ . If k>2, we can decompose the binary tree θ at its first node
to obtain that

d̃k =E
(9)
0

[∫ ∞

0

R4
t

( k−1∑
j=1

d̃j(Rt)d̃k−j(Rt)
)
dt

]
,

where R denotes a 9-dimensional Bessel process that starts from r under the probability
measure P (9)

r , and for every j>1 and r>0,

d̃j(r) =
∫
Qθr

(( ∏
a∈I(θ)


V 4
a

)( ∏
a∈L(θ)


V −4
a 1{
Va61}

))
Λj(dθ).

Let us prove by induction that for every integer j>1 there exists a constant Mj such
that, for every r>0,

d̃j(r) 6

{
Mj(r−2∧r−7), if j=1,
Mj(1∧r−7), if j> 2.

(27)

If j=1,

d̃1(r) =E(9)
r

[∫ ∞

0

R−4
t 1{Rt61} dt

]
=

∫
R9
G9(yr, z)|z|−41{|z|61} dz,

where G9(y, z)=α|z−y|−7 is the Green function of 9-dimensional Brownian motion, and
yr denotes an arbitrary point in R9 such that |yr|=r. From the preceding explicit formula,
straightforward estimates give the bound (27) when j=1. Let `>2 and assume that the
bound (27) holds for j=1, ..., `−1. Using again a decomposition at the first node, we get

d̃`(r) =E(9)
r

[∫ ∞

0

R4
t

( `−1∑
j=1

d̃j(Rt)d̃`−j(Rt)
)
dt

]

6
`−1∑
j=1

MjM`−jE
(9)
r

[∫ ∞

0

R4
t (R

−2
t ∧R−7

t )2 dt
]

= M̃ `E
(9)
r

[∫ ∞

0

(1∧R−10
t ) dt

]
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for some constant M̃ `. We have then

E(9)
r

[∫ ∞

0

(1∧R−10
t ) dt

]
=

∫
R9
G9(yr, z)(1∧|z|−10) dz=α

∫
R9
|z−yr|−7(1∧|z|−10) dz.

Simple estimates show that the last integral is bounded above by a constant times 1∧r−7,
which gives (27) for j=`.

If k>2, then d̃k=d̃k(0)<∞, which completes the proof of the first assertion of
Lemma 6.1.

The bound (26) now comes as an easy consequence. Using the decomposition (25)
and a scaling argument, we get

	N(1)
0

((∫ 1

0

1{Ŵs6ε} ds

)k)
6 c′kε

4k−6.

with another constant c′k. Since 
J ([0, ε]) has the distribution of∫ 1

0

1{Ŵs6ε} ds

under 	N(1)
0 , it follows that

E[
J ([0, ε])k]6 c′kε
4k−6.

This holds for every integer k>2, so that a simple application of Hölder’s inequality
yields (26).

If x∈m∞ and ε>0, we denote by BD(x, ε) the closed ball of radius ε centered at
x in the metric space (m∞, D). Recall our notation λ for the volume measure on m∞

(cf. §2.5).

Corollary 6.2. Let δ∈]0, 1] and

S=sup
ε>0

(
sup
x∈m∞

λ(BD(x, ε))
ε4−δ

)
.

Then E[Sk]<∞ for every integer k>1.

Proof. Let k>1 and ε>0. The same argument as in the proof of [24, Lemma 6.2]
gives the bound

E

[∫
m∞

λ(BD(x, ε))kλ(dx)
]

6E[λ(BD(%, ε))k] =E[
J ([0, ε])k]

(the inequality is in fact an equality, see Theorem 8.1 below). Using Lemma 6.1, we thus
get

E

[∫
m∞

λ(BD(x, ε))kλ(dx)
]

6 ck,1ε
4k−1.
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Let r>0. If we suppose that there exists a point x0∈m∞ such that λ(BD(x0, ε))>rε4−δ,
then we have for every x∈BD(x0, ε),

λ(BD(x, 2ε))>λ(BD(x0, ε))> rε4−δ,

and thus ∫
m∞

λ(BD(x, 2ε))kλ(dx) > (rε4−δ)k+1.

It follows that

P (there exists x0 ∈m∞ such that λ(BD(x0, ε))> rε4−δ)

6 (rε4−δ)−k−1E

[∫
m∞

λ(BD(x, 2ε))kλ(dx)
]

6 ck,1(rε4−δ)−k−1(2ε)4k−1

=24k−1ck,1r
−k−1ε(k+1)δ−5.

(28)

We apply this bound with ε=2−j , j∈Z+, and k chosen so large that (k+1)δ>6.
Setting

Sj = sup
x∈m∞

λ(BD(x, 2−j))
(2−j)4−δ

,

we get from (28) that, for every r>0,

P (Sj >r) 6 c̄kr
−k−12−j ,

where c̄k=24k−1ck,1. It follows that, for every r>1,

P (S >r) 6
∞∑
j=0

P (Sj > 2−(4−δ)r) 6 2(4−δ)(k+1)+1c̄kr
−k−1.

Since this holds for every (large enough) integer k, the result of the corollary readily
follows.

We will now state and prove the key proposition that motivated the technical lemmas
of this section and of the previous one. We denote by LI the set of all left-increase times
of ē, and by RI the set of all its right-increase times. Note that

pē(LI) = pē(RI) =Sk(Tē)∪{%}.

If U∈]0, 1[ is fixed, then Lemma 3.4 shows that U /∈LI∪RI a.s. Recall from §4.2 the
notation γU and �γU . Also recall the notation R(γU ) for the range of γU . As usual R(γU )
denotes the closure of R(γU ).
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Proposition 6.3. For every fixed U∈]0, 1[, we have

R(γU )∩LI = ∅ and R(�γU )∩RI = ∅

almost surely.

Proof. Fix k∈N, and denote by Nk the number of those intervals of the form
]i2−k, (i+1)2−k], 06i62k−1, that intersect R(γU ).

We also fix u0∈
]
0, 1

2U
[
, η>0 and δ∈

]
0, 1

2u0

[
. Let β∈

]
0, 1

16

[
, and choose ξ∈

]
0, 1

2

[
such that

ξ > 1−
(

1
4−β

)
(3−β). (29)

We denote by N∗
k the number of those intervals ]i2−k, (i+1)2−k] that intersect R(γU )

and satisfy the following additional properties:
(a) i2−k>u0;
(b) infi2−k−δ6t6i2−k ēt>ēi2−k−(2−k)ξ;
(c) ēi2−k>η and infη/26t6ē

i2−k
�Wi2−k(t)>η.

Applying Lemma 5.1 with u=i2−k and v=(i+1)2−k∧U , for every integer i such that
u06i2−k<U , we get the bound

E[N∗
k ]6C(2−k)ξE[Nk], (30)

with a constant C that depends only on p, U , u0, η and δ.
We now need to bound E[Nk]. For every ε>0, set

Ω(ε) = sup
r,t∈[0,1]

|r−t|6ε

D(r, t).

Recall from §2.5 the bound

D(r, t) 6 	Zr+	Zt−2 inf
r∧t6u6r∨t

	Zu, (31)

and also recall the construction of 	Z by shifting the process Ze, which conditionally
given e has the distribution of the centered Gaussian process with covariance function
me(r, t). Using the bound (31) together with standard chaining arguments, one easily
gets the estimate

P (Ω(ε)>ε1/4−β) = o(ε) (32)

as ε!0 (compare with [24, Lemma 5.1]).
Set εk=2−k(1/4−β) to simplify notation and write

Rεk
(γU ) = {s∈ [0, 1] :D(r, s) 6 εk for some r∈R(γU )}
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for the tubular neighborhood of radius εk of R(γU ), with respect to the pseudo-metric D.
Then, on the event {Ω(2−k)6εk}, any interval of the form ]i2−k, (i+1)2−k] that intersects
R(γU ) is contained in Rεk

(γU ), and so we have on the same event

λ(p(Rεk
(γU )))>Nk2−k.

Thus
E[Nk]6 2kE[λ(p(Rεk

(γU )))]+2kP [Ω(2−k)>εk].

By (32), the second term of the sum is o(1) as k!∞. In order to bound the first term,
we cut the geodesic γU into slices of length εk: Precisely we observe that p(Rεk

(γU ))
is contained in the union of the balls BD(p(γU (iεk)), 2εk) for i∈{0, 1, ..., bε−1

k
	ZUc}. It

follows that

E[λ(p(Rεk
(γU )))]6E

[
(ε−1
k
	ZU+1) sup

x∈m∞

λ(BD(x, 2εk))
]

6 ε−1
k E[(	ZU+1)2]1/2E

[
sup
x∈m∞

λ(BD(x, 2εk))2
]1/2

=O(ε3−βk )

as k!∞, by Corollary 6.2. Finally, we have

E[Nk] =O(2k(1−(1/4−β)(3−β)))

and, using (29) and (30), it follows that

E[N∗
k ]! 0, as k!∞.

Thus P (N∗
k>1)!0 as k!∞.

To complete the proof, suppose that there exists a point t0∈R(γU )∩LI, and suppose
in addition that we have the following properties:

(a′) t0>u0;
(b′) ēt>ēt0 for every t∈]t0−2δ, t0[;
(c′) ēt0>η and infη/26r6ēt0

�Wt0(r)>η.
By Lemma 3.4, we must have t0<U (outside a set of zero probability depending on U).
For every k>1, let i(k) be the unique index such that t0∈]i(k)2−k, (i(k)+1)2−k]. If k
is large enough, both indices i=i(k) and i=i(k)+1 will satisfy the properties (a)–(c)
listed above (for (b), we use (b′) together with the fact that the function t 7!ēt is
Hölder continuous with exponent 1

2−ε, for every ε>0). Moreover, R(γU ) intersects
]i(k)2−k, (i(k)+1)2−k], or possibly ](i(k)+1)2−k, (i(k)+2)2−k] if t0=(i(k)+1)2−k, and
so we conclude that N∗

k>1 for k large enough. Since P (N∗
k>1) tends to 0 as k!∞,

we get that, with probability 1, there exists no point t0∈R(γU )∩LI which satisfies the
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additional properties (a′)–(c′). We apply this result to rationals u0, η and δ that can be
made arbitrarily small and we obtain the first assertion of the proposition.

The case of the maximal geodesic is treated in exactly the same manner. All lemmas
of §5 can be extended to cover this case, with some minor changes due to the lack of
symmetry in the construction of the map Mn from the pair (Cn,Λn). We leave the
details to the reader.

7. The main results

For a fixed U∈]0, 1[, we have defined the simple geodesic ΦU , the minimal geodesic ΓU
and the maximal geodesic �ΓU . The next proposition will imply that these three geodesics
coincide a.s.

Proposition 7.1. Let U∈]0, 1[.
(i) Almost surely , for every mapping ϕ: [0, 	ZU ]![0, U ] such that (p(ϕ(t)), 06t6	ZU )

is a geodesic from % to p(U), we have

p(ϕ(t))= ΓU (t)

for every t∈[0, 	ZU ]. In particular , ΦU=ΓU a.s.
(ii) Almost surely , for every mapping ϕ: [0, 	ZU ]![U, 1] such that (p(ϕ(t)), 06t6	ZU )

is a geodesic from % to p(U), we have

p(ϕ(t))= �ΓU (t)

for every t∈[0, 	ZU ]. In particular , ΦU=�ΓU a.s.

Proof. Let us prove part (i) of the proposition. By the definition of the minimal
geodesic, we have γU (t)6ϕ(t) for every t∈[0, 	ZU ]. We argue by contradiction and assume
that there exists r0∈]0, 	ZU [ such that γU (r0)<ϕ(r0) and p(γU (r0)) 6=p(ϕ(r0)). Then we
can find s∈]γU (r0), ϕ(r0)[ such that

	Zs<r0 = 	ZγU (r0) = 	Zϕ(r0),

because otherwise we would have γU (r0)≈ϕ(r0). Since the mapping t 7!γU (t) is non-
decreasing and left-continuous, there exists r1∈[r0, 	ZU ] such that

γU (t)>s, if t∈]r1, 	ZU ],
γU (t) 6 s, if t∈ [0, r1].
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Note that r1=	ZU does not occur a.s., because this would imply γU (	ZU )6s<U together
with p(U)=p(γU (	ZU )) and 	Zs<	ZU : This is only possible if U∼γU (	ZU ), which contra-
dicts Lemma 3.4.

Thus r1<	ZU , and we have p(γU (r1))=p(γU (r1+)) by continuity. Since

γU (r1) 6 s6 γU (r1+) and 	Zs<r0 6 r1 = 	ZγU (r1) = 	ZγU (r1+),

the property γU (r1)≈γU (r1+) does not hold. Hence, we must have γU (r1)∼γU (r1+),
and it follows that pē(γU (r1))=pē(γU (r1+)) is an ancestor of pē(s) in Tē. This means in
particular that γU (r1+) is a left-increase point of ē, which is impossible by Proposition 6.3.
This contradiction completes the proof of the first statement in (i). By applying this
statement to ϕ=ϕU , we get that ΦU=ΓU a.s.

Part (ii) of the proposition is proved in a similar way. In particular, the identity
ΦU=�ΓU a.s. is obtained by taking ϕ= �ϕU .

Proposition 7.2. Proposition 7.1 (i) holds simultaneously for all U∈]0, 1[\LI out-
side a single set of zero probability. Similarly , Proposition 7.1 (ii) holds simultaneously
for all U∈]0, 1[\RI outside a single set of zero probability.

Proof. The assertions of Proposition 7.1 hold simultaneously for every rational num-
ber U∈]0, 1[ outside a single set of zero probability. From now on, we argue outside this
set, and we deal only with part (i) of Proposition 7.1.

Set
H = {U ∈]0, 1] :p(U) =p(U ′) for some U ′<U},

so that LI⊂H in particular. If U∈H\LI, then there exists U ′<U such that U ′≈U , and
U ′∈]0, 1[\H. Note that 	Zr>	ZU ′=	ZU for every r∈[U ′, U ]. It is then obvious that if ϕ
is as in the first statement of Proposition 7.1, we have ϕ(r)∈[0, U ′] for every r∈[0, 	ZU [.
Putting ϕ′(r)=ϕ(r) if r∈[0, 	ZU [ and ϕ′(	ZU )=U ′, we get a function ϕ′: [0, 	ZU ′ ]![0, U ′]
such that (p(ϕ′(t)), 06t6	ZU ′) is a geodesic from % to p(U ′). So if we can prove that
p(ϕ′(t))=ΓU ′(t) for every t∈[0, 	ZU ′ ], we will get the desired conclusion for ϕ since
p(ϕ(t))=p(ϕ′(t)) and ΓU (t)=ΓU ′(t) for every t∈[0, 	ZU ].

Due to the previous observations, we may restrict our attention to the case U∈
]0, 1[\H, which we consider from now on. Let ε∈]0, 	ZU [. Then we can find s∈]0, U [ such
that the following properties hold:

(a) ēt>ēs for every t∈]s, U ], and thus pē(s)∈]]%, pē(U)[[;
(b) 	Zt>	ZU−ε for every t∈[s, U ];
(c) mina∈[[pē(s),pē(U)]]

	Za<	Zs.

In (a), we use the fact that U /∈LI. We can impose condition (c) because the mapping
a 7!	Za is not monotone on any non-trivial line segment of the tree Tē.
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%

pē(u)

pē(s)

pē(r)

pē(v)

pē(U)

Figure 4. Illustration of the proof of Proposition 7.2. We have u<s<v, u≈v and Φr(	Zu)=
p(u) for every rational r∈]s, v[.

Let ϕ be as in the first statement of Proposition 7.1. Since U /∈H and ϕ takes values
in [0, U ], it is clear that ϕ(	ZU )=U . Set

t∗ = inf{t∈ [0, 	ZU ] :ϕ(t) > s}.

Let u be an accumulation point of ϕ(t) along a sequence of values of t belonging to
[0, t∗[ and converging to t∗. By the definition of t∗, we have u∈[0, s], and we also have
p(u)=p(ϕ(t∗)) by continuity. Similarly, we can construct a sequence {tk}k>1 in [t∗, 	ZU ]
such that ϕ(tk)>s for every k, and tk!t∗ as k!∞. Let v be an accumulation point of
the sequence ϕ(tk), so that v∈[s, U ] and again p(v)=p(ϕ(t∗))=p(u).

We claim that v>s. Indeed, if v=s, the curve (p(ϕ(t)), t∗6t6	ZU ) starts from p(s)
and ends at p(U), and then (c), together with the fact that 	Zp(ϕ(t))>	Zp(ϕ(t∗))=	Zs for
every t∈[t∗, 	ZU ], gives a contradiction with Proposition 3.1.

The preceding observations imply that u≈v. Indeed we saw that p(u)=p(v), and
u∼v is impossible by (a) since u6s<v.

To complete the proof, choose a rational r∈]s, v[. As u<r<v and u≈v, the definition
of the simple geodesic shows that Φr(	Zv)=p(v)=p(ϕ(t∗)). Since ϕ(t)∈[0, s] for every
t∈[0, t∗[ (by the definition of t∗), the mapping �ϕ defined by

�ϕ(t) =
{
ϕr(t), if t∗ 6 t6 	Zr,
ϕ(t), if 0 6 t< t∗,
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takes values in [0, r] and is such that (p(�ϕ(t)), 06t6	Zr) is a geodesic from % to p(r). As
we assumed that the assertions of Proposition 7.1 hold for every rational, we obtain that
p(ϕ(t))=Φr(t) for every t∈[0, t∗]. From (b), we get t∗=	Zv>	ZU−ε and also Φr(t)=ΦU (t)
for t<	ZU−ε. Therefore p(ϕ(t))=ΦU (t) for every t∈[0, 	ZU−ε[. Since ε can be taken
arbitrarily small, we have that p(ϕ(t))=ΦU (t) for every t∈[0, 	ZU ]. By taking ϕ=γU , we
also see that ΓU=ΦU , which completes the proof.

For every U∈]0, 1[, we set

LU = p−1
ē ([[%, pē(U)]])

and
RU =

{
s∈ [0, U ] : 	Zs = min

s6r6U
	Zr

}
∪

{
s∈ [U, 1] : 	Zs = min

U6r6s
	Zr

}
.

Then LU andRU are closed. Furthermore, it is easy to verify that p(RU ) is just the range
of the simple geodesic ΦU . It then follows from the discussion at the end of §4.1 that
p(LU )∩p(RU )={%,p(U)}. This property holds simultaneously for all U∈]0, 1[ outside a
single set of zero probability.

We also set

O1
U = [0, U ]\(RU∪LU ) and O2

U = [U, 1]\(RU∪LU ).

Then O1
U and O2

U are open and disjoint, and it is not hard to verify that p−1(p(O1
U ))=O1

U

and p−1(p(O2
U ))=O2

U . From the definition of the quotient topology, it follows that p(O1
U )

and p(O2
U ) are two disjoint open subsets of m∞.

Lemma 7.3. Almost surely , for every U∈]0, 1[ and every geodesic (ω(t), 06t6	ZU )
from % to p(U), the set {ω(t):0<t<	ZU} does not intersect p(LU ).

Proof. We argue by contradiction and assume that there exists t0∈]0, 	ZU [ such that
ω(t0)∈p(LU ). Then ω(t0)∈p(LU )\p(RU ). Since p(RU ) is closed, a continuity argument
shows that ω(t) /∈p(RU ) if t>t0 is sufficiently close to t0. Also Lemma 3.5 implies that
we can find values of t>t0 arbitrarily close to t0 such that ω(t) /∈p(LU ). It follows that
we can find a connected component ]t1, t2[ of the open set

{t∈]t0, 	ZU [ :ω(t) /∈p(RU∪LU )}

such that ω(t1)∈p(LU ). Since ω(]t1, t2[) is connected, we have either ω(]t1, t2[)⊂p(O1
U )

or ω(]t1, t2[)⊂p(O2
U ). We assume for definiteness that ω(]t1, t2[)⊂p(O1

U ).
Let a1 be the unique element of Tē such that Π(a1)=ω(t1), and let r1<U denote the

smallest element of [0, 1] such that pē(r1)=a1. Recall that Tē(a1) denotes the subtree of
all descendants of a1. As a simple consequence of Proposition 3.1, we have

ω([t1, 	ZU ])⊂Π(Tē(a1)).
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%
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b′
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a∗

a0

pē(O
1
U )

pē(O
2
U )

pē(U)

Figure 5. Illustration of the proof of Lemma 7.3. The geodesic ω visits a1, then stays in the
(image under Π of the) subtree Tē(a1). It hits the smaller subtree Tē(a0) at time T at the
point Π(b)=Π(b′).

Indeed, suppose that there exists t′1∈]t1, 	ZU [ such that ω(t′1) /∈Π(Tē(a1)), and let a′1∈
Tē\Tē(a1) be such that ω(t′1)=Π(a′1). Then a1∈[[a′14pē(U), pē(U)]], and by applying
Proposition 3.1 to the curve (ω(t), t′16t6	ZU ), we get 	Zω(t1)>min{	Zω(t) :t′16t6	ZU},
which is a contradiction.

Fix t∗∈]t1, t2[, and choose a∗∈Tē(a1) such that Π(a∗)=ω(t∗). Set a0=a∗4pē(U).
Again, a simple application of Proposition 3.1 shows that a0 6=a1, and therefore a0∈
]]a1, pē(U)]]. If r0 is the smallest representative of a0 in [0, 1], we have thus r1<r0. Set

T = inf{t> t1 :ω(t)∈Π(Tē(a0))}.

We have T>t1 because Π(Tē(a0)) is closed in m∞, and ω(t1)=Π(a1) /∈Π(Tē(a0)). More-
over T6t∗ because a∗∈Π(Tē(a0)). Thus we have t1<T6t∗<t2. Furthermore, we can
write ω(T )=Π(b) for some b∈Tē(a0). Note that ω(T ) belongs to the boundary of
Π(Tē(a0)), and ω(T ) 6=Π(a0) (because {ω(t):t1<t<t2} does not intersect p(LU )). As
noticed in §3, this implies the existence of b′∈Tē\Tē(a0) such that b≈b′.

Let s be the unique representative of b in [0, 1], so that p(s)=Π(b)=ω(T ). Since
b∈Tē(a0) and b 6=a0, we have r0<s. On the other hand, for every t∈]t1, T [, we know that
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ω(t)∈m∞\Π(Tē(a0)), and ω(t)∈p(O1
U ). It follows that, for every t∈]t1, T [, we can find

ψ(t)∈[0, r0] such that ω(t)=p(ψ(t)).
We also set ψ(T )=s, and for every t∈[0, t1], we put ψ(t)=ϕr1(t). The mapping

(ψ(t), 06t6T ) is such that (p(ψ(t)), 06t6T ) is a geodesic from % to ω(T ), and ψ(t)∈
[0, ψ(T )] for every t∈[0, T ]. Since ψ(T )=s /∈LI (by Lemma 2.1, since the equivalence
class of s for ≈ is not a singleton), the first statement of Proposition 7.2 entails that
(p(ψ(t)), 06t6T ) coincides with the simple geodesic Φs. This is a contradiction, since
p(ψ(t1))=ω(t1)∈Skel∞ and a simple geodesic cannot visit a point of Skel∞, except pos-
sibly at its endpoint.

In the case when ω(]t1, t2[)⊂p(O2
U ), the proof is exactly similar, but we now use

the second statement of Proposition 7.2.

We now come to one of our main results.

Theorem 7.4. Almost surely , for every x∈m∞\Skel∞, there is a unique geodesic
from % to x, which is the simple geodesic Φs for an arbitrary choice of s∈[0, 1] such that
p(s)=x.

Proof. Let x∈m∞\Skel∞ and let U∈]0, 1[ be such that p(U)=x (we exclude the
trivial case x=%). Notice that, for every r∈[0, 	ZU ], there is exactly one point y in p(RU )
such that 	Zy=r, and this point is y=ΦU (r). In order to prove the theorem, we need only
prove that any geodesic from % to x takes values in p(RU ).

So let (ω(t), 06t6	ZU ) be a geodesic from % to x=p(U). From Lemma 7.3, we
already know that (ω(t), 0<t<	ZU ) does not intersect p(LU ). We argue by contradiction
and suppose that the range of ω intersects m∞\p(RU ). Let ]t1, t2[ be a connected
component of the open set

{s∈]0, 	ZU [ :ω(s)∈m∞\(p(RU )∪p(LU ))}.

Then, ω(t1)∈p(RU ), and ω(t2)∈p(RU ). By the remark of the beginning of the proof,
we have that ω(t1)=ΦU (t1) and ω(t2)=ΦU (t2). Also, as in the preceding proof, we
have that ω(]t1, t2[)⊂p(O1

U ) or ω(]t1, t2[)⊂p(O2
U ), and we assume for definiteness that

ω(]t1, t2[)⊂p(O1
U ). For every t∈]t1, t2[, let ψ(t) be the smallest representative of ω(t)

in [0, 1]. Also, let ψ(t2) be the largest representative of ω(t2). Finally set ψ(t)=ϕU (t)
for t∈[0, t1]. Then ψ(t)6U for every t∈[0, t2[, whereas ψ(t2)>U . So we see that ψ
takes values in [0, ψ(t2)] and (p(ψ(t)), 06t6t2) is a geodesic from % to p(ψ(t2)). In
order to apply Proposition 7.2, we still need to verify that ψ(t2) /∈LI. This is clear if
t2<	ZU (because the equivalence class of ψ(t2) for ≈ has at least two representatives)
and if t2=	ZU this follows from our assumption x /∈Skel∞. Proposition 7.2 now shows
that p(ψ(t)) must coincide with Φψ(t2)(t) for every t∈[0, t2]. This is a contradiction,
since the range of the simple geodesic Φψ(t2) is contained in p(RU ).
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Corollary 7.5. Almost surely , for λ-almost every x∈m∞, there is a unique geo-
desic from % to x.

Proof. By Lemma 3.4, λ(Skel∞)=0 a.s., so that the statement follows from Theo-
rem 7.4.

We then consider the case of vertices belonging to Skel∞. Such a vertex x can
be written uniquely as x=Π(a) with a∈Sk(Tē), and we denote the multiplicity of a in
Tē by m(x). By Proposition 3.3, m(x) is also the number of connected components of
Skel∞\{x}.

Theorem 7.6. Almost surely , for every x∈Skel∞, there are exactly m(x) distinct
geodesics from % to x. These geodesics are the simple geodesics Φs for all s∈[0, 1] such
that p(s)=x.

Proof. Let x∈Skel∞, and let (ω(t), 06t6	Zx) be a geodesic from % to x. By Lem-
ma 3.5, we can find a sequence {rk}k>1 in [0, 	Zx] such that rk!	Zx, as k!∞, and
ω(rk)∈m∞\Skel∞ for every k. Choose sk∈[0, 1] such that p(sk)=ω(rk). By extracting
a subsequence if necessary, we may assume that sk!s∈[0, 1] as k!∞, and we have
then p(s)=x. On the other hand, for every k>1, Theorem 7.4 and the fact that ω(rk)∈
m∞\Skel∞ imply that we have ω(t)=Φsk

(t) for every t∈[0, rk]. Passing to the limit
k!∞ we get ω(t)=Φs(t) for every t∈[0, 	Zx[.

Conversely, for every s∈[0, 1] such that p(s)=x, Φs is a geodesic from % to x, and
the geodesics obtained in this way are distinct. Indeed, consider the case when m(x)=2.
Then there exist two reals s1 and s2 such that 0<s1<s2<1, pē(s1)=pē(s2) and x=
p(s1)=p(s2). By Lemma 2.1, we must have

min
s16s6s2

	Zs< 	Zs1 = 	Zs2 .

It follows that, if r>0 is sufficiently small, ϕs2(	Zx−r) is a point of ]s1, s2[ which is not
equivalent to any point of [0, s1]. Thus the geodesics Φs1 and Φs2 are distinct. The same
argument applies when m(x)=3. This completes the proof.

A consequence of the previous results is the fact that if x and x′ are two points of
m∞ distinct from the root, and if ω (resp. ω′) is a geodesic from % to x (resp. from %

to x′), then ω and ω′ must coincide over a small time interval. We state this confluence
property of geodesics in a slightly more precise form.

Corollary 7.7. Almost surely , for every η>0, there exists α∈]0, η[ such that the
following holds. Let x, x′∈m∞ be such that D(%, x)>η and D(%, x′)>η, and let ω

(resp. ω′) be a geodesic from % to x (resp. to x′). Then, ω(t)=ω′(t) for all t∈[0, α].
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Proof. If η>0 is given, we can choose ε>0 such that 	Zs<η for all s∈[0, ε]∪[1−ε, 1].
We then set

α= inf
s∈[ε,1−ε]

	Zs.

Notice that α>0, since 	Zs>0 for every s∈]0, 1[.
Let x, x′, ω and ω′ be as in the corollary. By the previous two theorems, we can

write ω=Φr and ω′=Φr′ , where r, r′∈[0, 1] are such that x=p(r) and x′=p(r′). In
particular, 	Zr=D(%, x)>η and 	Zr′=D(%, x′)>η. Our choice of ε now ensures that both
r and r′ belong to [ε, 1−ε]. But then, from the definition of the functions ϕr and ϕr′ , it
is immediate that ϕr(t)=ϕr′(t) for every t∈[0, α[.

Remark. Our results show that all geodesics starting from the root are simple
geodesics. It follows that a point x of m∞ which is a relative interior point of a geodesic
from the root must be of the form x=p(s), for some s∈[0, 1[ which is a right-increase
time of 	Z. One easily checks that the set of all such points x has Hausdorff dimension 1,
and so is a very small subset of m∞, which has Hausdorff dimension 4. This may be
compared to the work of Zamfirescu [41], who proved, in the sense of Baire’s category,
that on “most” convex surfaces, a typical point is not an interior point of any geodesic
segment.

8. Gromov–Hausdorff distances and the invariance under re-rooting

The previous sections were devoted to the study of geodesics connecting the root of
m∞ to another point. Similar results hold if we replace the root %=p(0) by a random
point chosen according to the volume measure λ. This follows from the invariance of
the distribution of the Brownian map under uniform re-rooting, which will be discussed
below.

Let us first recall some basic definitions concerning pointed metric spaces and the
Gromov–Hausdorff convergence. Let k>0 be an integer. A k-pointed compact met-
ric space is a triplet (E, d, (a1, a2, ..., ak)), where (E, d) is a compact metric space and
(a1, a2, ..., ak) is a k-tuple of (not necessarily distinct) distinguished points of E. A 0-
pointed compact metric space is just a compact metric space, and when k=1 we say
pointed rather than 1-pointed. We denote the space of all isometry classes of k-pointed
compact metric spaces by K(k) (and in agreement with the introduction above, we set
K=K(0). The Gromov–Hausdorff distance on K(k) is then defined by

dGH((E, d, (a1, ..., ak)), (E′, d′, (a′1, ..., a
′
k)))

= inf
(F,δ),φ,φ′

{
δH(φ(E), φ′(E′))∨ max

16i6k
δ(φ(ai), φ′(a′i))

}
,
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where the infimum is over all choices of the metric space (F, δ) and the isometric embed-
dings φ:E!F and φ′:E′!F , and δH stands for the usual Hausdorff distance between
compact subsets of F . Then dGH is a distance on K(k), and the space (K(k), dGH) is
Polish. We equip K(k) with the associated Borel σ -field.

An equivalent definition of the Gromov–Hausdorff distance can be given in terms of
correspondences. Let (E, d, (a1, ..., ak)) and (E′, d′, (a′1, ..., a

′
k)) be two k-pointed compact

metric spaces. A correspondence C between (E, d) and (E′, d′) is a subset of the Cartesian
product E×E′ such that for every x∈E there exists y∈E′ such that (x, y)∈C, and
conversely. The distortion of C is defined by

dist(C) = sup{|d(x, y)−d′(x′, y′)| : (x, x′)∈C and (y, y′)∈C}.

Then dGH((E, d, (a1, ..., ak)), (E′, d′, (a′1, ..., a
′
k))) equals half the infimum of the quantities

dist(C) when C varies over correspondences between E and E′ that contain all the pairs
(ai, a′i) for 16i6k. See [11, Theorem 7.3.25] for a proof in the case k=0, which is easily
extended.

As was already stated in Theorem 2.2, we have the almost sure convergence in
(K(1), dGH),

(mn,�pn
−1/4dn, ∂n)

a.s.−−! (m∞, D, %), as n!∞. (33)

The next theorem gives a precise form of the invariance of the distribution of the
Brownian map under uniform re-rooting.

Theorem 8.1. Let F be a non-negative measurable function on K(1). Then

E

[∫
F (m∞, D, x)λ(dx)

]
=E[F (m∞, D, %)].

More generally , for every integer k>2 and every non-negative measurable function
F on K(k),

E

[∫
F (m∞, D, (x1, ..., xk))λ(dx1) ... λ(dxk)

]
=E

[∫
F (m∞, D, (%, x1, ..., xk−1))λ(dx1) ... λ(dxk−1)

]
.

Proof. We deal only with the first statement of the theorem. The second one can
be proved in a similar manner. Let U be a random variable that is uniformly distributed
over [0, 1] and independent of the sequence of random maps {Mn}n>1 (and in particular
of (m∞, D)). The first assertion of the theorem will follow from the fact that the law of
(m∞, D,p(U)) coincides with the law of (m∞, D, %).
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To establish this fact, we will use a similar invariance property for the discrete
maps Mn and then pass to the limit n!∞ using (33). We start with some simple
combinatorial considerations. We let Mn,∗

p denote the set of all pairs (M, e), where M
is a rooted 2p-angulation with n faces (M∈Mn

p ) and e is a distinguished oriented edge
of M . If (M, e)∈Mn,∗

p , we define Γ(M, e)∈Mn
p by saying that Γ(M, e) is the “same”

map as M but re-rooted at the oriented edge e. Then it is easy to verify that the image
under Γ of the uniform distribution over Mn,∗

p is the uniform distribution over Mn
p .

Now consider the random 2p-angulation Mn. The Bouttier–Di Francesco–Guitter
bijection of §2.6 allows us to associate with each i∈{0, 1, ..., pn−1} a unique non-oriented
edge ei of Mn, and in this way we get a bijection between {0, 1, ..., pn−1} and the set
of all (non-oriented) edges of Mn. Set Un=bpnUc, in such a way that Un is uniformly
distributed over {0, 1, ..., pn−1}. Choose one of the two possible orientations of the edge
eUn with equal probabilities, independently of U and of the sequence of maps {Mn}n>1,
and denote the resulting oriented edge by ẽUn . Also set M̃n=Γ(Mn, ẽUn). Note that the
vertex set and the edges of M̃n are the same as those of Mn, but the root is different.
By the combinatorial considerations of the beginning of the proof, M̃n has the same
distribution as Mn. Writing ∂̃n for the root vertex of M̃n, we thus have

(mn,�pn
−1/4dn, ∂̃n)

(d)
= (mn,�pn

−1/4dn, ∂n). (34)

Note that both sides of (34) are viewed as random variables with values in K(1).
In view of (33) and (34), the proof of the theorem will be complete if we can verify

that
(mn,�pn

−1/4dn, ∂̃n)
a.s.−−! (m∞, D,p(U)), as n!∞. (35)

To this end, let us first recall the proof of (33) in [24]. We define a correspondence Cn
between (mn,�pn

−1/4dn) and (m∞, D) by declaring that a pair (a, b)∈mn×m∞ belongs
to Cn if and only if a=∂n and b=%, or if there exists t∈[0, 1] such that a=pn(bpntc) and
b=p(t). Then it easily follows from the convergence (3) that dist(Cn) converges to 0
a.s. as n!∞ (see [24], but note that the presentation there is slightly different because
[24] does not deal with pointed spaces—the same argument however goes through without
change). We may slightly enlarge the correspondence Cn by including also those pairs
(a, b)∈mn×m∞ for which there exists t∈[0, 1] such that dn(a, pn(bpntc))=1 and b=p(t).
If C′n denotes the enlarged correspondence, the distortion dist(C′n) still converges to 0
a.s. as n!∞. However, from our construction of the root edge of M̃n, it is clear that
we have dn(∂̃n, pn(bpnUc))61. Therefore (∂̃n,p(U))∈C′n, and the fact that dist(C′n)
converges to 0 also yields our claim (35). This completes the proof.

As a by-product of the preceding proof, we get the following variant of (33), which
will be useful in the next section.
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Proposition 8.2. For every n we can construct a random vertex Vn which is uni-
formly distributed over mn, in such a way that

(mn,�pn
−1/4dn, (∂n, Vn))

a.s.−−! (m∞, D, (%,p(U))), as n!∞, (36)

where the random variable U is uniformly distributed over [0, 1] and independent of the
sequence of random maps {Mn}n>1, and the convergence holds in the space (K(2), dGH).

Proof. The argument for (35) also gives the convergence

(mn,�pn
−1/4dn, (∂n, ∂̃n))

a.s.−−! (m∞, D, (%,p(U))), as n!∞, (37)

which holds in the space (K(2), dGH). This does not immediately give the desired result,
because ∂̃n is not uniformly distributed over mn. However, we may set

Nn = b((p−1)n+2)Uc

and let Vn denote theNn-th vertex of τ �n in lexicographical order, with the convention that
Vn=∂n if Nn=0. Then, Vn has the property stated in the proposition, and furthermore

n−1/4dn(Vn, ∂̃n)
a.s.−−! 0, as n!∞.

See the proof of [24, Proposition 3.5] for a justification of this convergence. The result
of the proposition now follows from (37).

As was mentioned above, Theorem 8.1 allows one to get information about geodesics
starting from a point chosen uniformly in m∞ rather than from the root %. We illustrate
this in the following corollary. If x, x′∈m∞, we denote by Geo(x!x′) the set of all
geodesics from x to x′.

Corollary 8.3. The following properties hold almost surely :
(i) λ⊗λ{(x, x′):# Geo(x!x′)>1}=0;
(ii) λ({x∈m∞ :there exists x′∈m∞ such that # Geo(x!x′)>4})=0;
(iii) λ({x∈m∞ :there exists x′∈m∞ such that # Geo(x!x′)=3})=1.

Remark. Property (i) of the corollary should be compared to [31, Theorem 3].

Proof. We start by proving (i). Let U and U ′ be two independent random variables
which are uniformly distributed over [0, 1], and such that the pair (U,U ′) is independent
of the sequence {Mn}n>1. The statement in (i) is equivalent to proving that

# Geo(p(U)!p(U ′))= 1 a.s.



344 j.-f. le gall

However, as a simple consequence of Theorem 8.1, we have

(m∞, D, (%,p(U)))
(d)
= (m∞, D, (p(U),p(U ′))),

where both sides of the equality are random variables with values in K(2). Note that the
set of all 2-pointed spaces (E, d, (x, x′)) such that there exists a unique geodesic from x

to x′ is a measurable subset of K(2). Indeed, if δ>0 is fixed, the set of all (E, d, (x, x′))
such that there exist two geodesics γ and γ′ from x to x′ with max{d(γ(t), γ′(t)}>δ is
closed in K(2). Hence, using the previous identity in distribution, we see that property (i)
reduces to the fact that # Geo(%!p(U))=1 a.s. But this follows from Corollary 7.5.

The arguments for (ii) and (iii) are similar. We use the identity in distribution

(m∞, D, %)
(d)
= (m∞, D,p(U)),

and the fact that, for every integer k>2, the set of all pointed spaces (E, d, x) such that
there exist a point x′∈E and at least k distinct geodesics from x to x′ is a measurable
subset of K(1). The details are left to the reader.

9. Asymptotics for large planar maps

In this section we discuss the applications of our results to large planar maps, and in
particular we prove Propositions 1.1, 1.2 and 1.3 which were stated in §1. Note that, in
contrast with the previous sections, we do not limit ourselves to values of n belonging to
a suitable sequence converging to ∞.

Proof of Proposition 1.1. We prove the stronger form of Proposition 1.1, where
Geon(∂n, a) is replaced by Geon(∂n, a). Let us fix δ>0 and, for every n>1, let Vn
be a vertex that is uniformly distributed over mn. The desired result is equivalent to
saying that

lim
n!∞

P (there exist γ, γ′ ∈Geon(∂n, Vn) such that d(γ, γ′) > δn1/4) = 0.

We argue by contradiction and suppose that there exist η>0 and a subsequence n̄k"∞
such that, for every k,

P (there exist γ, γ′ ∈Geon̄k
(∂n̄k

, Vn̄k
) such that d(γ, γ′) > δn̄

1/4
k ) > η.

From this sequence {n̄k}k>1 we can now extract another subsequence {nk}k>1 such that
the properties stated in Theorem 2.2 hold. By Proposition 8.2, we may assume that the
random vertices Vnk

are constructed in such a way that

(mnk
,�pn

−1/4
k dnk

, (∂nk
, Vnk

)) a.s.−−! (m∞, D, (%,p(U))), as k!∞, (38)
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where U is uniformly distributed over [0, 1] and independent of the sequence {Mn}n>1.
Consider then the event

F = lim sup
k!∞

{there exist γ, γ′ ∈Geonk
(∂nk

, Vnk
) such that d(γ, γ′) > δn

1/4
k }.

By our assumptions, P (F )>η>0.
From now on, we argue on the event F . We can then find a (random) subse-

quence {mk}k>1 of {nk}k>1 such that, for every k, there exist γk, γ′k∈Geomk
(∂mk

, Vmk
)

such that d(γk, γ′k)>δm
1/4
k . On the other hand, by (38), we can find, for every k, a

correspondence Ck between the 2-pointed spaces (mmk
,�pm

−1/4
k dmk

, (∂mk
, Vmk

)) and
(m∞, D, (%,p(U))), in such a way that dist(Ck) tends to 0 as k!∞. This implies in
particular that �pm

−1/4
k dmk

(∂mk
, Vmk

) converges to D(%,p(U))=	ZU . For every ra-
tional r∈[0, 	ZU [, and for k sufficiently large, we can find xk(r), x′k(r)∈m∞ such that
(γk(b�−1

p m
1/4
k rc), xk(r))∈Ck and (γ′k(b�−1

p m
1/4
k rc), x′k(r))∈Ck. Via a compactness argu-

ment and extracting a diagonal subsequence, we may assume that xk(r) (resp. x′k(r))
converges as k!∞, for every rational r∈[0, 	ZU [, and we denote the limit by γ∞(r)
(resp. γ′∞(r)). The fact that each γk is an approximate geodesic, together with the prop-
erty dist(Ck)!0, implies that D(γ∞(r), γ∞(r′))=|r−r′| for all rationals r, r′∈[0, 	ZU [. It
easily follows that γ∞ can be extended to a geodesic from % to p(U) in m∞. Similarly,
we can extend γ′∞ to a geodesic from % to p(U) in m∞. However,

max
06r6	ZU

D(γ∞(r), γ′∞(r))> lim inf
k!∞

�pm
−1/4
k d(γk, γ′k) >�pδ > 0,

and so we find that there are two distinct geodesics from % to p(U) in m∞. This holds
on the event F , which has positive probability, thus contradicting Corollary 7.5.

Proof of Proposition 1.2. This is very similar to the proof of Proposition 1.1. We
argue by contradiction and assume that there is an increasing sequence {n̄k}k>1 such
that, for every k>1,

P (there exists a∈mn̄k
such that Multn̄k,δ(∂n̄k

, a) > 4) > η

for some η>0. We can then extract a subsequence {nk}k>1 and construct the random
maps Mnk

in such a way that we have the almost sure convergence

(mnk
,�pn

−1/4
k dnk

, ∂nk
) a.s.−−! (m∞, D, %), as k!∞, (39)

in K(1). The event

F = lim sup
k!∞

{there exists a∈mnk
such that Multnk,δ(∂nk

, a) > 4}
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has probability bounded below by η. Furthermore, on the event F , we can use the
convergence (39) and compactness arguments to construct a point x of m∞ which is
connected to % by at least four distinct geodesics, thus contradicting Theorem 1.4. We
leave the details to the reader.

Remark. As we already mentioned in the introduction, the statements of Proposi-
tions 1.1 and 1.2 remain valid if ∂n is replaced by a vertex chosen uniformly at random
in mn. Let us outline the argument in the case of Proposition 1.1. We consider two
random vertices Vn and V ′

n that are distributed independently uniformly over the vertex
set of mn. From the argument in the proof of Proposition 8.2, we can construct Vn and
V ′
n, and the random maps Mn, in such a way that along a suitable sequence {nk}k>1 we

have the almost sure convergence

(mn,�pn
−1/4dn, (Vn, V ′

n))
a.s.−−! (m∞, D, (p(U),p(U ′))), as n!∞, (40)

where U and U ′ are independent and uniformly distributed over [0, 1], and (U,U ′) is
independent of the sequence {Mn}n>1. Then a simple adaptation of the proof of Propo-
sition 1.1, using Corollary 8.3 (i), shows that P (Multn,δ(Vn, V ′

n)>2) tends to 0, as n!∞,
along the sequence {nk}k>1. Since from any sequence {n′k}k>1 we can extract a subse-
quence {nk}k>1 such that the previous conclusion holds, the desired result follows.

Proof of Proposition 1.3. Recall our notation vn0 , v
n
1 , ..., v

n
pn for the contour sequence

of τ �n. Let α>0. We denote by Hn(α) the set of all triplets (j1, j2, j3) of integers such
that 06j16j26j36pn and the following properties hold:

• vnj1 =vnj2 =vnj3 ;
• max{minj16j6j2 Λnj ,minj26j6j3 Λnj }6Λnj1−αn

1/4.
Suppose that (j1, j2, j3)∈Hn(α). Then we have Cnj1 =Cnj2 =Cnj3 , Λnj1 =Λnj2 =Λnj3 and

Cnj >Cnj1 if j16j6j3. From the properties of the spatial contour function, it is also clear
that Λn takes all integer values between Λnj1 and Λnj1−αn

1/4 on each of the intervals
[j1, j2], [j2, j3] and [j3, pn].

We denote the event {Hn(α) 6=∅} by ∆n(α).

Lemma 9.1. We have
lim
α!0

lim inf
n!∞

P (∆n(α))= 1.

We postpone the proof of Lemma 9.1 to the appendix.
Let δ>0. For i=1, 2, we say that the event ∆(i)

n (α, δ) holds if, for every triplet
(j1, j2, j3)∈Hn(α) and for every j∈[ji, ji+1] such that

Λnj = min
ji6`6j

Λn` and Λnj1−
2
3αn

1/4 6Λnj 6Λnj1−
1
3αn

1/4
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we have
dn(j, j′) > δn1/4 for every j′ ∈{ji+1, ..., pn}. (41)

We claim that, for every α>0,

sup
n>1

P (∆n(α)\(∆(1)
n (α, δ)∩∆(2)

n (α, δ)))! 0, as δ! 0. (42)

Assuming the claim, it is easy to complete the proof of Proposition 1.3. Let η>0.
Using Lemma 9.1 and (42), we can choose first α>0, and then δ>0 in such a way that

lim inf
n!∞

P (∆n(α)∩(∆(1)
n (α, δ)∩∆(2)

n (α, δ)))> 1−η.

However, on the event ∆n(α)∩(∆(1)
n (α, δ)∩∆(2)

n (α, δ)), there is at least one point a∈mn

such that Multn,δ(∂n, a)>3. Indeed we pick a triplet (j1, j2, j3)∈Hn(α) and set

a= vnj1 = vnj2 = vnj3 .

We consider the “simple geodesics” γ1, γ2 and γ3 defined by

γi(`) = vnmi(`)
, where mi(`) = inf{j> ji : Λnj =Λnj1−`} for 06 `6Λnj1−1,

γi(Λnj1) = ∂n,

for i=1, 2, 3. It is then easy to verify that γ1, γ2 and γ3 are three geodesics from a

to ∂n in the map Mn, and the property (41) guarantees that d(γi, γi′)>δn1/4 for every
i, i′∈{1, 2, 3} with i 6=i′.

We still have to prove our claim (42). We verify that

sup
n>1

P (∆n(α)\∆(1)
n (α, δ))! 0, as δ! 0, (43)

and the same argument applies if ∆(1)
n (α, δ) is replaced by ∆(2)

n (α, δ). We argue by
contradiction and assume that (43) does not hold. Then we can find ε>0 such that, for
every k>1,

sup
n>1

P

(
∆n(α)\∆(1)

n

(
α,

1
k

))
>ε.

Hence, for every k>1, we can find a positive integer n̄k such that

P

(
∆n̄k

(α)\∆(1)
n̄k

(
α,

1
k

))
>ε.

The sequence {n̄k}k>1 must converge to ∞ (for any fixed n, the condition (41) holds
automatically if δ is small enough). So from this sequence, we can extract a monotone
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increasing subsequence {nk}k>1 along which the almost sure convergence (3) holds for a
suitable choice of the random maps Mnk

. Then we have

P

(
lim sup
k!∞

(
∆nk

(α)\∆(1)
nk

(
α,

1
k

)))
> ε.

Furthermore, on the event

lim sup
k!∞

(
∆nk

(α)\∆(1)
nk

(
α,

1
k

))
,

we can find a (random) sequence of values of k along which the following holds: There
exists a triplet (jk1 , j

k
2 , j

k
3 )∈Hnk

(α) and two integers mk∈[jk1 , j
k
2 ] and m′

k∈[jk2 , pnk] such
that

Λnk
mk

= min
jk
1 6`6mk

Λnk

` , Λnk

jk
1
− 2

3αn
1/4
k 6Λnk

mk
6Λnk

jk
1
− 1

3αn
1/4
k

and

dnk
(mk,m

′
k) 6

1
k
n

1/4
k . (44)

By a compactness argument, we may assume that

jk1
pnk
! s,

jk2
pnk
! t,

mk

pnk
! r and

m′
k

pnk
! r′,

as k!∞. We have then s6r6t6r′, s∼t (and so in particular 	Zs=	Zt) and D(r, r′)=0
from (3) and (44). Furthermore, the convergence (3) also implies that

inf
s6u6t

	Zu 6 	Zs−α�p,

and that
	Zr = inf

s6u6r
	Zu and 	Zs− 2

3α�p 6 	Zr 6 	Zs− 1
3α�p.

From these properties, it follows that neither of the conditions r∼r′ or r≈r′ can hold.
This contradicts the equality D(r, r′)=0, and this contradiction completes the proof.

Remark. In the same way as Propositions 1.1 and 1.2, Proposition 1.3 still holds if
the root vertex ∂n is replaced by a vertex chosen uniformly at random in mn. A way
to obtain this result is to use the variant of the Bouttier–Di Francesco–Guitter bijection
that is presented in [27, §2.3]. We omit the details of the argument.

We conclude this section with a discrete version of Corollary 7.7.
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Proposition 9.2. Let χ>0 and ε>0, and let Geoχn denote the set of all discrete
geodesics starting from the root ∂n and with length greater than χn1/4 in the map Mn.
Then we can choose a constant β∈]0, χ[ so that , for every δ>0,

lim inf
n!∞

P
(

sup
γ,γ′∈Geoχ

n

sup
06i6bβn1/4c

dn(γ(i), γ′(i))6 δn1/4
)

> 1−ε.

Proposition 9.2 is derived from Corollary 7.7 and the Gromov–Hausdorff convergence
in Theorem 2.2 in a way very similar to the above proof of Proposition 1.1. To be specific,
if α>0 is the random variable appearing in the statement of Corollary 7.7 when η=�pχ,
we choose the constant β>0 so that

P (�−1
p α>β)> 1−ε.

From the proof of Corollary 7.7, we see that the choice of β is determined from the
values of χ and ε and the distribution of the process 	Z, so that it does not depend on
the particular subsequence used in Theorem 2.2. The remaining part of the argument is
straightforward.

The recent article [9] gives explicit calculations related to the confluence property
of discrete geodesics, in the particular case of quadrangulations.

Appendix

In this appendix, we prove Lemmas 5.5 and 9.1. As previously, the integer p>2 is fixed,
and all constants that will appear depend on p, even though this will not be mentioned
explicitly.

Proof of Lemma 5.5. The proof depends on an intermediate estimate on the distri-
bution of labels in a labeled p-tree. We say that a pair (τ, (`v)v∈τ�) consisting of a p-tree
τ and a collection of integer labels assigned to the white vertices of τ is a labeled p-tree
if it satisfies property (b) in the definition of a p-mobile (cf. §2.6). We say that it is a
standard labeled p-tree if in addition `∅=0. In a labeled p-tree, labels may take negative
values.

Let (τ, (`v)v∈τ�) be a standard labeled p-tree, and let v∈τ �. Let v(0), v(1), ..., v(p−1)

be the neighboring vertices of v listed as in property (b) of the definition of a p-
mobile. Simple combinatorics shows that given `v(0) there are

(
2p−1
p−1

)
possible choices

for `v(1) , ..., `v(p−1) . As an immediate consequence, given a p-tree τ with n black vertices,
there are

(
2p−1
p−1

)n
choices for the labels `v, v∈τ �, that produce a standard labeled p-tree.

We denote by Πp
n the uniform distribution over the set of all standard labeled p-trees

with n black vertices.
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Lemma A.1. For every integer k>1, there exists a constant Ck such that , for every
n>1 and every x>0,

Πp
n

(
max
v∈τ�

|`v|>xn1/4
)

6
Ck
xk
. (45)

Consequently , for every ε>0, there exists a constant C(ε) such that , for every n>1 and
every x>ε,

Πp
n

(
min
v∈τ�

`v 6−xn1/4
)

6 1−exp(−C(ε)x
−4).

Remark. When p=2, the bound (45) follows from the much stronger exponential
estimate in [13, Proposition 4]. It is very plausible that such an exponential estimate
holds for general p, but we content ourselves with the weaker bound (45). This bound is
sufficient to get the second assertion of the lemma, which is what we really need.

Proof. We write (τ̃n, (˜̀nv )v∈τ̃�n) for a random labeled p-tree which is uniformly dis-
tributed over the set of all standard labeled p-trees with n black vertices. From the
remarks preceding the lemma, it is clear that τ̃n is uniformly distributed over the set of
all p-trees with n black vertices. For our purposes, it will be convenient to view τ̃n as a
conditioned multitype Galton–Watson tree. To this end, consider the random p-tree τ∗
whose distribution is informally specified as follows:

(i) for every v∈τ �∗, kv(τ∗)=p−1;
(ii) for every v∈τ �∗, kv(τ∗) is geometrically distributed with parameter p−1, that is

P (kv(τ∗) = k | v ∈ τ∗) = (1−p−1)p−k, k> 0.

Then τ̃n has the same distribution as τ∗ conditioned on the event #τ �∗=n, or equiv-
alently on the event #τ �∗=(p−1)n+1.

Now note that τ �∗ can be viewed as a random plane tree, by declaring that two
vertices v and v′ of τ �∗ are linked by an edge if v is the grandparent of v′ or conversely
(and of course keeping the root and the order structure). With this interpretation, τ �∗ is
a Galton–Watson tree, whose offspring distribution is the law of p−1 times a geometric
random variable with parameter p−1.

Recall that τ̃ �n has the same distribution as τ �∗ conditioned on the event

#τ �∗ =(p−1)n+1.

We denote by ṽn0 , ..., ṽ
n
2(p−1)n the depth-first search sequence of τ̃ �n viewed as a plane tree,

and we set

Cni = 1
2 |ṽ

n
i |
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for every i∈{0, 1, ..., 2(p−1)n}. An estimate of Gittenberger [17] gives two positive con-
stants C0 and C1, which do not depend on n, such that, for every i, j∈{0, 1, ..., 2(p−1)n}
and every x>0,

P
(
Cni +Cnj −2 min

i∧j6q6i∨j
Cnq >x

)
6

C0n

|i−j|
exp

(
− C1x√

|i−j|

)
. (46)

Let N>4 be an integer. As an immediate consequence of the bound (46), we get

E
[(
n−1/2

(
Cni +Cnj −2 min

i∧j6q6i∨j
Cnq

))N]
6C ′

N

(
|i−j|
n

)N/2−1

, (47)

with a constant C ′
N that does not depend on n.

Fix i, j∈{0, 1, ..., 2(p−1)n} such that i<j, and let m∈{i, i+1, ..., j} be such that ṽnm
is the most recent common ancestor to ṽni and ṽnj in the tree τ̃ �n. Then, conditionally
on τ̃n, ˜̀n

ṽn
i
− ˜̀n

ṽn
m

is distributed as the sum of 1
2 (|ṽni |−|ṽnm|) integer-valued independent

random variables, which are centered and bounded by p in absolute value. A similar
property holds for ˜̀n

ṽn
j
− ˜̀n

ṽn
m

. Noting that

1
2 (|ṽni |+|ṽnj |−2|ṽnm|) = Cni +Cnj −2 min

i∧j6q6i∨j
Cnq ,

we can use standard arguments to derive the bound

E[|˜̀nṽn
i
− ˜̀n

ṽn
j
|2N | τ̃n]6C ′′

N

(
Cni +Cnj −2 min

i∧j6q6i∨j
Cnq

)N
, (48)

where the constant C ′′
N only depends on N .

Set Vni =`nṽn
i

for i∈{0, 1, ..., 2(p−1)n} and extend Vn to [0, 2(p−1)n] by interpolating
linearly between integers. From (47) and (48), we have, for s, t∈{0, 1, ..., 2(p−1)n},

E

[∣∣∣∣Vns −Vntn1/4

∣∣∣∣2N]
6 
CN

(
|s−t|
n

)N/2−1

, (49)

where 
CN=C ′
NC

′′
N . This bound remains valid for all reals s, t∈[0, 2(p−1)n], with a

possibly different constant 
CN that still depends only on N .
Set V̂ns =n−1/4Vnns for every s∈[0, 2(p−1)]. From (49), for all s, t∈[0, 2(p−1)] we

have
E[|V̂ns −V̂nt |2N ]6 
CN |s−t|N/2−1.

Since 1
2N−1>1, an application of the Kolmogorov criterion (see e.g. [35, Theorem I.2.1])

gives a constant C̃N , which does not depend on n, such that

E
[

sup
06s62(p−1)

|V̂ns |2N
]
6 C̃N .
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The bound (45) follows.
To get the second assertion, first note that for every ε>0 there exists a constant

C ′
(ε)>0 such that, for every integer n>1,

1−Πp
n

(
min
v∈τ�

`v 6−εn1/4
)

>C ′
(ε). (50)

Indeed, it follows from [27, Theorem 11] that

lim sup
n!∞

Πp
n

(
min
v∈τ�

`v 6−εn1/4
)

6P
(

min
06s61

Ze
s 6−�pε

)
,

and the limit is strictly less than 1, as can be seen for instance from the invariance of
the continuum random tree under uniform re-rooting. Using (50) and the first assertion
of the lemma with k=4, we get for every x>ε,

Πp
n

(
min
v∈τ�

`v 6−xn1/4
)

6 (1−C ′
(ε))∧C4x

−4 6 1−exp(−C(ε)x
−4)

for some other constant C(ε). This completes the proof of the lemma.

We now turn to the proof of Lemma 5.5. We will in fact prove a dual version
of this lemma. Precisely, we will show that, for every choice of U∈]0, 1[, u0∈]U, 1[,
δ∈

]
0, 1

2 (1−u0)[ and η, η′>0, there exists a constant K=K(U, u0, η, η
′, δ) such that the

following holds. Whenever u∈]U, u0[ and α>0, we have, for all sufficiently large n,

P
(

inf
bpnuc6i6bpn(u+δ)c

Cni >Cnbpnuc−αn
1/2

∣∣∣Gn(0, bpnuc)) 6Kα (51)

on the event {
Cnbpnuc > ηn1/2, inf

ηn1/2/26j6Cn
bpnuc

Wn
bpnuc(j) > η′n1/4

}
. (52)

Strictly speaking, this dual version is not equivalent to Lemma 5.5, because of the lack
of symmetry in property (b) of the definition of a p-mobile. However, the reader will
easily check that the same arguments we will use to prove the dual version also apply to
the statement of Lemma 5.5, at the cost of a somewhat heavier notation.

In proving the bound (51), we may and will assume that α6η/4p. Let us fix
u∈]U, u0[, and to simplify notation set N=Cnbpnuc. Recall our notation vn0 , v

n
1 , ..., v

n
pn

for the contour sequence of τ �n, and let

wn0 = ∅, wn1 , wn2 , ..., wnN = vnbpnuc

be the white vertices of τn that are ancestors of vnbpnuc, listed in such a way that |wni |=2i
for 06i6N . Also let w̃n1 , w̃

n
2 , ..., w̃

n
N be the black vertices that are ancestors of vnbpnuc,

listed in such a way that |w̃ni |=2i−1 for 16i6N .
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Consider now all vertices x∈τ �n that are of one of the following two types:
• either x∈{wn0 , wn1 , ..., wnN}, or
• there exists i∈{1, ..., N} such that x is a child of w̃ni that has not yet appeared in

the sequence vn0 , v
n
1 , ..., v

n
bpnuc.

Let xn0 , x
n
1 , ..., x

n
M be the sequence consisting of all such vertices x listed in such a way

that |xni |6|xni′ | if i6i′, and in lexicographical order for vertices of the same generation.
Notice that N6M6(p−1)N .

It is easily verified that the quantities N , M and the random vertices xn0 , x
n
1 , ..., x

n
M

are measurable with respect to the σ -field Gn(0, bpnuc). This measurability property
does not hold for the labels `nxn

i
, 06i6M (unless p=2). So we let Ĝn(0, bpnuc) be the

σ -field generated by Gn(0, bpnuc) and the labels `nxn
i
, 06i6M , and we will prove the

stronger form of (51) where the σ -field Gn(0, bpnuc) is replaced by Ĝn(0, bpnuc).
Let k and m be two positive integers, with k6m6(p−1)k, and let β0, β1, ..., βbpnuc,

ν0, ν1, ..., νbpnuc and l0, l1, ..., lm be non-negative integers such that

P (N = k and M =m;Cnj =βj and Λnj = νj for all j ∈{0, ..., bpnuc};

`nxn
i

= li for all i∈{0, ...,m})> 0.

Recalling the event considered in (52), we also assume that

k> ηn1/2 and li > 1
2η

′n1/4 for i∈
{
m−

⌊
1
2ηn

1/2
⌋
, ...,m

}
.

(To justify this last assumption, note that the label of a child of w̃ni can differ by at most
p from the label of w̃ni , for any i∈{1, ..., N}.) Consider then the conditional probability

P ∗,n =P ( · |N = k and M =m;Cnj =βj and Λnj = νj for all j ∈{0, ..., bpnuc};

`nxn
i

= li for all i∈{0, ...,m}).

In order to get (51), we need to verify the bound

P ∗,n(Bn(u, α, δ))6Kα, (53)

where
Bn(u, α, δ) =

{
inf

bpnuc6i6bpn(u+δ)c
Cni >Cnbpnuc−αn

1/2
}
,

and the constant K depends only on U , u0, η, η′ and δ.
From now on, we argue under the conditional probability P ∗,n. For i∈{0, 1, ...,m},

we define a labeled p-tree (τn,(i), (`
n,(i)
v )v∈τ�n,(i)

) in the following way:
• if xni /∈{wn0 , wn1 , ..., wnk}, then τn,(i) is just the subtree of descendants of xni , i.e.

τn,(i) = {v ∈U :xni v ∈ τn},
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where xni v stands for the concatenation of the words xni and v;
• if xni =wnj for some j∈{0, 1, ..., k}, then τn,(i) consists of ∅ and all v∈U such that

xni v is a vertex of τn which has not yet appeared in {vn0 , vn1 , ..., vnbpnuc};
• `

n,(i)
v =`nxn

i v
for every i∈{0, 1, ...,m} and v∈τ �n,(i).

We need to describe the distribution of the collection (τn,(i), (`
n,(i)
v )v∈τ�n,(i)

), 06i6m,
under P ∗,n. To this end, introduce another collection (Ti, (Liv)v∈T �

i
), 06i6m, of inde-

pendent random labeled p-trees defined under a probability measure P and such that,
for i∈{0, 1, ...,m},

• Ti is distributed as the multitype Galton–Watson tree τ∗ considered in the proof
of the lemma above;

• given Ti, the labels Liv, v∈T �i , are distributed uniformly at random among admis-
sible choices making (Ti, (Liv)v∈T �

i
) a p-labeled tree with Li∅=li.

Consider also the two events

A1 = {Liv > 0 for every i∈{0, 1, ...,m} and v ∈T �i},

A2 =
{
p

m∑
i=0

#T �i+m= pn−bpnuc
}
.

Then the distribution of (τn,(i), (`
n,(i)
v )v∈τ�n,(i)

)06i6m under P ∗,n coincides with the dis-
tribution of (Ti, (Liv)v∈T �

i
)06i6m under P( · |A1∩A2). This follows from the fact that,

given the information provided by the conditioning event in P ∗,n, the distribution of
(τn, (`nv )v∈τn) is uniform over the set of all p-mobiles that are compatible with this infor-
mation.

Let us set m′=m−
⌊

1
2ηn

1/2
⌋

to simplify notation. Consider the event

A′1 = {Liv > 0 for every i∈{0, 1, ...,m′} and v ∈T �i}.

Claim. There exists a constant �K, depending only on η′, such that for all suffi-
ciently large n,

P(A′1∩A2) 6�KP(A1∩A2).

Let us verify the claim. To simplify notation, set

L(Ti) =min{Liv : v ∈Ti}

for every i∈{0, 1, ...,m}. Then it suffices to prove that, for every choice of the integers
σ0, σ1, ..., σm>0 such that p

∑m
i=0 σi+m6pn,

P(L(Ti)> 0 for all i∈{m′+1, ...,m} |#T �i =σi for all i∈{0, 1, ...,m}) >�K−1,
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with a constant �K depending only on η′. By independence, this conditional probability
is equal to

m∏
i=m′+1

P(L(Ti)> 0 |#T �i =σi) =
m∏

i=m′+1

(
1−Πp

σi

(
min
v∈τ�

`v 6−li
))
,

with the notation of the lemma above. Now recall that li> 1
2η

′n1/4 for i∈{m′+1, ...,m}.
Using the second assertion of the lemma, we get, for i∈{m′+1, ...,m},

Πp
σi

(
min
v∈τ�

`v 6−li
)

6 1−exp
(
−K̃ σi

l4i

)
,

where K̃ only depends on η′. Hence,

m∏
i=m′+1

(
1−Πp

σi

(
min
v∈τ�

`v 6−li
))

>
m∏

i=m′+1

exp
(
−K̃ σi

l4i

)

> exp
(
− 16K̃

(η′)4n

m∑
i=m′+1

σi

)
> exp

(
− 16K̃

(η′)4

)
,

since
∑m
i=0 σi6n. The claim now follows.

From the claim and the obvious property A1⊂A′1, we get

P( · |A1∩A2) 6�KP( · |A′1∩A2). (54)

Under the probability measure P ∗,n, if the event Bn(u, α, δ) holds, then we must
have

m∑
i=m−p(bαn1/2c+1)+1

(1+p#τ �n,(i)) > bpn(u+δ)c−bpnuc,

because, from the properties of the contour sequence and our definitions, the ancestor of
vnbpnuc at generation 2(Cnbpnuc−bαn

1/2c−1) is visited by the contour sequence after time
bpnuc and before time

bpnuc+
m∑

i=m−p(bαn1/2c+1)+1

(1+p#τ �n,(i)).

From this observation and (54), we get the bound

P ∗,n(Bn(u, α, δ))

6�KP
( m∑
i=m−p(bαn1/2c+1)+1

(1+p#T �i ) > bpn(u+δ)c−bpnuc
∣∣∣∣A′1∩A2

)
.

(55)



356 j.-f. le gall

Notice that the event A′1 does not involve the labeled trees (Ti, (Liv)v∈T �

i
) for m′<i6m.

Hence the distribution of the collection (#T �i ,m
′<i6m) under P( · |A′1∩A2) is exchange-

able.
On the other hand, put q=bη/2pαc−1>1 (recall that we assumed α6η/4p). Then

qp(bαn1/2c+1)<m−m′ when n is large. On the event A2, we have the trivial estimate

#
{
j ∈{1, ..., q} :

∑
m−jp(bαn1/2c+1)<i6m−(j−1)p(bαn1/2c+1)

(1+p#T �i ) > bpn(u+δ)c−bpnuc
}

6
pn−bpnuc

bpn(u+δ)c−bpnuc
6

2(1−u)
δ

,

when n is large. By exchangeability, the expected value of the left-hand side under the
conditional probability P( · |A′1∩A2) equals

qP
( m∑
i=m−p(bαn1/2c+1)+1

(1+p#T �i ) > bpn(u+δ)c−bpnuc
∣∣∣∣A′1∩A2

)

and, using (55), we finally obtain that

P ∗,n(Bn(u, α, δ))6�K
2(1−u)

δ

(⌊
η

2pα

⌋
−1

)−1

.

The estimate (53) follows, and this completes the proof.

Proof of Lemma 9.1. As we already observed after the statement of Theorem 2.2,
we may choose the uniformly distributed p-mobiles (τn, (`nv )v∈τ�n) in such a way that the
convergence

(λpn−1/2Cnbpntc,�pn
−1/4Λnbpntc)06t61

a.s.−−! (ēt, 	Zt)06t61 (56)

holds as n!∞ and not only along a subsequence {nk}k>1 as in (3).
Let β>0 and let Fn(β) denote the event on which there exist three integers

kn1 6 kn2 6 kn3

in [0, pn] such that vnkn
1
=vnkn

2
=vnkn

3
, kn2−kn1 >βn and kn3−kn2 >βn. Then, it is easy to see

that
lim
α!0

lim sup
n!∞

P (Fn(β)\∆n(α))= 0. (57)

Indeed, on the event
lim sup
n!∞

(Fn(β)\∆n(α))
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we can use (56) and a compactness argument to find three times s16s26s3 in [0, 1] such
that s1∼s2∼s3, s2−s1>β/p, s3−s2>β/p and furthermore

min
r∈[s1,s2]

	Zr > 	Zs1−�pα or min
r∈[s2,s3]

	Zr > 	Zs1−�pα.

Lemma 2.1 now shows that the probability of the existence of such a triplet (s1, s2, s3)
tends to 0 as α!0, which implies (57).

Due to (57), Lemma 9.1 will follow if we can verify that

lim
β!0

lim inf
n!∞

P (Fn(β))= 1. (58)

In the case p=2, the proof of (58) is easy from (56). Indeed (56) implies the existence
of vertices of τn whose removal produces three components each containing a number of
vertices of order n. If p=2, these vertices must be white vertices, but in the general case,
they could possibly be black vertices, and so we need a different argument.

A proof of (58) can be given along the lines of the proof of Lemma 5.5. The
arguments are relatively straightforward but somewhat tedious, and for this reason we
will leave certain details to the reader. We use the notation introduced in the proof
of Lemma 5.5, with the particular choice u= 1

2 . In particular, we let N=Cnbpn/2c and
M∈{N, ..., (p−1)N}, and the random vertices xn0 , ..., x

n
M and the labeled trees

(τn,(i), (`n,(i)v )v∈τ�n,(i)
)

for 06i6M be defined as in the previous proof, with u= 1
2 . Given η, η′>0, we also set

M ′=(M−2bηn1/2c)+ and M ′′=(M−bηn1/2c)+, and we denote by Anη,η′ the event

Anη,η′ =
{
N > 4ηn1/2;Wn

bpn/2c(j)>η
′n1/4+p for all j ∈{N−2bηn1/2c, ..., N};

sup
v∈τ�n,(i)

|`n,(i)v −`n,(i)∅ |6 η′n1/4 for all i∈{M ′, ...,M ′′}
}
.

Let ε>0. We can fix η and η′ so that P (Anη,η′)>1−ε for every large enough n. Further-
more, due to the convergence (56), we can choose a constant β1=β1(η)>0 small enough
so that the probability that the contour sequence of τ �n visits the vertex xnM ′′ between
times

⌊
1
2pn

⌋
and

⌊
1
2pn

⌋
+β1n is bounded above by ε when n is large.

By making the distribution of the collection (τn,(i), (`
n,(i)
v )v∈τ�n,(i)

)06i6M explicit as
in the preceding proof, one verifies that the distribution of the vector

(#τ �n,(M ′+i))06i6bηn1/2c
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under the conditioned measure P ( · |Anη,η′) is exchangeable. Notice that the proportion
of indices i∈{M ′, ...,M ′′} such that xni is an ancestor of vnbpn/2c is at least 1/p when n

is large.
Furthermore, from the convergence (56) and properties of the limiting random func-

tion ē (recall from §2.4 that ē is defined by a simple transformation of the Brownian
excursion e), one gets that, for every integer K>1, we can choose β>0 sufficiently small
so that

lim inf
n!∞

P (Anη,η′∩{#{i∈{0, 1, ..., bηn1/2c} :#τ �n,(M ′+i)>βn}>K}) > 1−2ε.

Using an exchangeability argument, we can then find a constant β0∈]0, β1(η)] such that
the following holds: With probability greater than 1−3ε when n is large, the event Anη,η′
holds and there exists i0∈{M ′, ...,M ′′} such that xni0 is an ancestor of vnbpn/2c and

#τ �n,(i0)>β0n.

On the event where i0 is defined, let kn1 stand for the time of the first occurence
of xni0 in the contour sequence of τ �n, let kn2 be the time of the first occurence of xni0
after time

⌊
1
2pn

⌋
and let kn3 be the time of the last occurence of xni0 . Then the triplet

(kn1 , k
n
2 , k

n
3 ) will be defined and will satisfy the property of the definition of Fn(β0), with

a probability greater than 1−4ε when n is large. Our claim (58) now follows.
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