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1. Introduction

A classical theorem due to M. Berger [2] and W. Klingenberg [11] states that a simply
connected Riemannian manifold whose sectional curvatures all lie in the interval [1, 4]
is either isometric to a symmetric space or homeomorphic to Sn (see also [12, Theo-
rems 2.8.7 and 2.8.10]). In this paper, we provide a classification, up to diffeomorphism,
of all Riemannian manifolds whose sectional curvatures are weakly 1

4 -pinched in a point-
wise sense. Our main result is the following theorem.

Theorem 1. Let M be a compact Riemannian manifold of dimension n>4. Suppose
that M has weakly 1

4 -pinched sectional curvatures in the sense that 06K(π1)64K(π2)
for all two-planes π1, π2⊂TpM . Moreover , we assume that M is not locally symmetric.
Then M is diffeomorphic to a spherical space form.

In a previous paper [5], we proved that a compact Riemannian manifold with strictly
1
4 -pinched sectional curvatures is diffeomorphic to a space form. Theorem 1 is a corollary
of the following more general theorem.

Theorem 2. Let M be a compact , locally irreducible Riemannian manifold of di-
mension n>4. If M×R2 has non-negative isotropic curvature, then one of the following
statements holds:

(i) M is diffeomorphic to a spherical space form;
(ii) n=2m and the universal cover of M is a Kähler manifold biholomorphic to

CPm;
(iii) the universal cover of M is isometric to a compact symmetric space.
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By a theorem of R. Hamilton [9], every compact, locally irreducible three-manifold
with non-negative Ricci curvature is diffeomorphic to a space form. Hence, Theorem 2
also holds in dimensions two and three.

Theorem 2 implies a structure theorem for compact Riemannian manifolds with the
property that M×R2 has non-negative isotropic curvature. To explain this, suppose
that M is a compact Riemannian manifold such that M×R2 has non-negative isotropic
curvature. By a theorem of Cheeger and Gromoll, the universal cover of M is isometric
to a product of the form N×Rk, where N is a compact, simply-connected Riemannian
manifold (cf. [6] or [16, p. 288]). Moreover, N is isometric to a product of the form
N1×...×Nj , where N1, ..., Nj are compact, simply connected, and irreducible (see [14,
Chapter IV, Theorem 6.2]). By Theorem 2, each of the factors N1, ..., Nj is either diffeo-
morphic to a sphere, or a Kähler manifold biholomorphic to a complex projective space,
or isometric to a compact symmetric space.

We now describe our strategy for handling the borderline case. Let (M, g0) be a
compact Riemannian manifold of dimension n>4, and let g(t), t∈[0, T ), be the solu-
tion to the unnormalized Ricci flow with initial metric g0. If (M, g0)×R2 has non-
negative isotropic curvature, then, by the results in [5], the product (M, g(t))×R2 has
non-negative isotropic curvature for all t∈[0, T ). If the manifold (M, g(τ)) has general
holonomy for some τ∈(0, T ), we are able to use a strong maximum principle argument to
show that the manifold (M, g(τ)) satisfies the assumptions of Theorem 3 in our previous
paper [5]. This implies that g0 will be deformed to a constant curvature metric by the
normalized Ricci flow. In particular, (M, g0) is diffeomorphic to a spherical space form.

We remark that there is a version of the strong maximum principle due to R. Hamil-
ton [9] for the curvature operator, but it does not seem to be sufficient for the present
application. We believe the technique of this paper will have other applications to bor-
derline situations which may be studied by Ricci flow methods.

In §2, we state a variant of the strong maximum principle for degenerate elliptic
equations. This is a minor modification of a theorem of J. M. Bony [4].

In §3, we consider a family of metrics g(t), t∈[0, T ), that have non-negative isotropic
curvature and evolve by the Ricci flow. For each time t∈(0, T ), we consider the set of all
orthonormal four-frames with zero isotropic curvature. We show that this set is invariant
under parallel transport. To that end, we view the isotropic curvature as a real-valued
function on the frame bundle over M . Using results from [5], we show that this function
satisfies a degenerate elliptic equation. This allows us to apply Bony’s version of the
strong maximum principle.

In §4, we complete the proof of Theorem 2. From this, Theorem 1 follows easily.
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2. A general maximum principle for degenerate elliptic equations

Let Ω be an open subset of Rn, and let F⊂Ω be relatively closed. As in [4], we say
that a vector ξ∈Rn is tangential to F at a point x1∈F if 〈x1−x0, ξ〉=0 for all points
x0∈Rn satisfying d(x0, F )=|x1−x0|. The following lemma is a slight modification of
[4, Theorem 2.1].

Lemma 3. Let Ω be an open subset of Rn, and let F⊂Ω be relatively closed. Assume
that X1, ..., Xm are smooth vector fields on Ω that are tangential to F . Moreover , suppose
that γ: [0, 1]!Ω is a smooth path such that γ(0)∈F and γ′(s)=

∑m
j=1 fj(s)Xj(γ(s)),

where f1, ..., fm: [0, 1]!R are smooth functions. Then γ(s)∈F for all s∈[0, 1].

Proof. Choose a positive real number ε such that d(γ(s), ∂Ω)>2ε for all s∈[0, 1].
We define a Lipschitz function %: [0, 1]!R by %(s)=d(γ(s), F )2. We claim that there
exists a positive constant L such that

lim sup
h&0

%(s+h)−%(s)
h

6L%(s)

for all s∈[0, 1) satisfying %(s)6ε2. To see this, we fix a real number s∈[0, 1) such
that %(s)6ε2. There exists a point x1∈F such that d(γ(s), F )=|x1−γ(s)|6ε. Since
X1, ..., Xm are tangential to F at x1, we have 〈x1−γ(s), Xj(x1)〉=0 for j=1, ...,m. This
implies that

lim sup
h&0

%(s+h)−%(s)
h

6 lim sup
h&0

|x1−γ(s+h)|2−|x1−γ(s)|2

h

=−2
m∑

j=1

fj(s)〈x1−γ(s), Xj(γ(s))〉

=2
m∑

j=1

fj(s)〈x1−γ(s), Xj(x1)−Xj(γ(s))〉

6L|x1−γ(s)|2 =L%(s)

for some constant L>0. Since %(0)=0, we conclude that %(s)=0 for all s∈[0, 1]. This
completes the proof.

Proposition 4. Let Ω be an open subset of Rn, and let X1, ..., Xm be smooth
vector fields on Ω. Assume that u: Ω!R is a non-negative smooth function satisfying

m∑
j=1

(D2u)(Xj , Xj) 6−K inf
|ξ|61

(D2u)(ξ, ξ)+K|Du|+Ku,

where K is a positive constant. Let F ={x∈Ω:u(x)=0}. Finally , let γ: [0, 1]!Ω be a
smooth path such that γ(0)∈F and γ′(s)=

∑m
j=1 fj(s)Xj(γ(s)), where f1, ..., fm: [0, 1]!R

are smooth functions. Then γ(s)∈F for all s∈[0, 1].
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Proof. In view of Lemma 3, it suffices to show that the vector fields X1, ..., Xm are
tangential to F . In order to prove this, we adapt an argument due to J. M. Bony (cf.
[4, Proposition 3.1]). Suppose that we are given two points x1∈F and x0∈Rn such that
d(x0, F )=|x1−x0|. We claim that 〈x1−x0, Xj(x1)〉=0 for j=1, ...,m.

Without loss of generality, we may assume that |x−x0|>|x1−x0| for all x∈F \{x1}.
(Otherwise, we replace x0 by 1

2 (x0+x1).) Suppose that

m∑
j=1

〈x1−x0, Xj(x1)〉2 > 0.

Then there exists a real number α>0 such that

4α2
m∑

j=1

〈x1−x0, Xj(x1)〉2−2α

m∑
j=1

|Xj(x1)|2 > 2Kα+2Kα|x1−x0|+K.

By continuity, there exists a bounded open set U such that x1∈U , 
U⊂Ω and

4α2
m∑

j=1

〈x−x0, Xj(x)〉2−2α

m∑
j=1

|Xj(x)|2 > 2Kα+2Kα|x−x0|+K

for all x∈U . As in [4], we define a function v by

v(x) = exp(−α|x−x0|2)−exp(−α|x1−x0|2).

Moreover, we denote by B the closed ball of radius |x1−x0| centered at x0. By assump-
tion, we have u(x)>0 for all x∈B\{x1}. Since ∂U∩B is a compact subset of B\{x1},
there exists a real number λ>0 such that λu(x)>v(x) for all x∈∂U∩B. Moreover, we
have λu(x)>0>v(x) for all x∈∂U \B. Putting these facts together, we conclude that
λu(x)>v(x) for all x∈∂U . Pick a point x∗∈
U such that λu(x∗)−v(x∗)6λu(x)−v(x)
for all x∈U . In particular, we have λu(x∗)−v(x∗)6λu(x1)−v(x1)=0. Consequently, we
have x∗∈U . This implies that

m∑
j=1

(D2v)(Xj , Xj) 6λ

m∑
j=1

(D2u)(Xj , Xj)

6−Kλ inf
|ξ|61

(D2u)(ξ, ξ)+Kλ|Du|+Kλu

6−K inf
|ξ|61

(D2v)(ξ, ξ)+K|Dv|+Kv

at x∗. At the point x∗, we have
m∑

j=1

(D2v)(Xj , Xj) =
(

4α2
m∑

j=1

〈x∗−x0, Xj(x∗)〉2−2α

m∑
j=1

|Xj(x∗)|2
)

exp(−α|x∗−x0|2)
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and
inf
|ξ|61

(D2v)(ξ, ξ) =−2α exp(−α|x∗−x0|2).

Moreover, we have v(x∗)6exp(−α|x∗−x0|2). Putting these facts together, we obtain

4α2
m∑

j=1

〈x∗−x0, Xj(x∗)〉2−2α

m∑
j=1

|Xj(x∗)|2 6 2Kα+2Kα|x∗−x0|+K.

This contradicts our choice of U .

We point out that Proposition 4 remains valid if Ω is a Riemannian manifold: to
prove this, we subdivide the curve γ into small segments, each of which is contained in
a single coordinate chart. We then apply Proposition 4 to each of these segments.

3. Application to the Ricci flow

In this section, we apply Bony’s maximum principle to functions defined on the or-
thonormal frame bundle. Let M be a compact manifold, and let g(t), t∈[0, T ], be a
family of metrics on M evolving under Ricci flow. We consider the (n+1)-dimensional
manifold M×(0, T ). We denote by E the vector bundle over M×(0, T ) whose fiber
over (p, t)∈M×(0, T ) is given by E(p,t)=TpM . (In other words, E is the pull-back of
the tangent bundle TM under the map (p, t) 7!p.) We define a bundle metric h on E

by 〈V,W 〉h=〈V,W 〉g(t) for V,W∈E(p,t). We can extend the Riemannian connection to
M×(0, T ) by specifying the covariant time derivative. Given two sections V and W of E,
we define

〈D∂/∂tV,W 〉g(t) =
〈

∂

∂t
V,W

〉
g(t)

−Ricg(t)(V,W ) (1)

(cf. [7]). Of course we take DXV to be the Riemannian covariant derivative with respect
to g(t) for X∈TpM⊂T(p,t)(M×(0, T )). This defines a connection on the vector bundle
E which is compatible with the bundle metric h.

We now define P to be the orthonormal frame bundle of E equipped with the
natural right action of O(n). Note that P is a principal O(n)-bundle over M×(0, T ).
By definition, the fiber of P over a point (p, t)∈M×(0, T ) consists of all n-frames
{e1, ..., en}⊂E(p,t) that are orthonormal with respect to the bundle metric h. For each
t∈(0, T ), we denote by Pt the time-t slice of P . Clearly, Pt is the orthonormal frame
bundle of the Riemannian manifold (M, g(t)).

For each A∈O(n), we denote by RA the diffeomorphism on P given by right trans-
lation by A. Given any a∈so(n), we denote by σ(a) the fundamental vertical vector field
on P whose value at e∈P is given by the tangent vector to the curve s 7!Rexp(sa)(e) at
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s=0. The map σ then defines a linear isomorphism from the Lie algebra so(n) to the
vertical subspace at e. By transplanting the standard inner product on so(n), we obtain
a natural inner product on the vertical subspace at e.

The connection D defines a right invariant horizontal distribution on P . Hence,
for each point e={e1, ..., en}∈P , the tangent space TeP can be written as a direct sum
He⊕Ve, where He and Ve denote the horizontal and vertical subspaces at e, respectively.
We next define a collection of smooth horizontal vector fields X̃1, ..., X̃n and Ỹ on P . For
each j=1, ..., n, the value of X̃j at a point e={e1, ..., en}∈P is given by the horizontal lift
of the vector ej . Moreover, the vector field Ỹ is defined as the horizontal lift of the vector
field ∂/∂t on M×(0, T ). Note that the vector fields X̃1, ..., X̃n are tangential to Pt.

Proposition 5. Suppose that u:P!R is a non-negative smooth function which
satisfies

Ỹ (u)−
n∑

j=1

X̃j(X̃j(u))>K inf
ξ∈Ve

|ξ|61

(D2u)(ξ, ξ)−K sup
ξ∈Ve

|ξ|61

Du(ξ)−Ku

for some positive constant K. Let F ={x:u(x)=0} be the zero set of u. Fix a real
number t∈(0, T ) and let γ̃: [0, 1]!Pt be a smooth horizontal curve satisfying γ̃(0)∈F .
Then γ̃(s)∈F for all s∈[0, 1].

Proof. Suppose that γ̃: [0, 1]!Pt is a smooth horizontal curve satisfying γ̃(0)∈F .
Then we can find smooth functions f1, ..., fn: [0, 1]!R such that

γ̃′(s) =
n∑

j=1

fj(s)(X̃j)γ̃(s)

for all s∈[0, 1]. Hence, Proposition 4 implies that γ̃(s)∈F for all s∈[0, 1].

We now impose the additional condition that (M, g(t)) has non-negative isotropic
curvature for all t∈[0, T ]. We define a non-negative function u:P!R by

u: e= {e1, ..., en} 7−!R(e1, e3, e1, e3)+R(e1, e4, e1, e4)

+R(e2, e3, e2, e3)+R(e2, e4, e2, e4)−2R(e1, e2, e3, e4),

where R denotes the curvature tensor of the evolving metric g(t). The curvature tensor R

can be viewed as a section of the vector bundle E∗⊗E∗⊗E∗⊗E∗. It follows from work
of R. Hamilton [9] that

D∂/∂tR =∆R+Q(R), (2)

where D denotes the induced connection on the vector bundle E∗⊗E∗⊗E∗⊗E∗, ∆ is
the Laplace operator with respect to the metric g(t), and Q(R) is a quadratic expression
in the curvature tensor.
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Lemma 6. At each point e={e1, ..., en}∈P , we have

Ỹ (u)−
n∑

j=1

X̃j(X̃j(u))= Q(R)(e1, e3, e1, e3)+Q(R)(e1, e4, e1, e4)

+Q(R)(e2, e3, e2, e3)+Q(R)(e2, e4, e2, e4)−2Q(R)(e1, e2, e3, e4).

Proof. For each j=1, ..., n, we have

X̃j(X̃j(u))= (D2
ej ,ej

R)(e1, e3, e1, e3)+(D2
ej ,ej

R)(e1, e4, e1, e4)

+(D2
ej ,ej

R)(e2, e3, e2, e3)+(D2
ej ,ej

R)(e2, e4, e2, e4)−2(D2
ej ,ej

R)(e1, e2, e3, e4).

Summation over j yields

n∑
j=1

X̃j(X̃j(u))= (∆R)(e1, e3, e1, e3)+(∆R)(e1, e4, e1, e4)

+(∆R)(e2, e3, e2, e3)+(∆R)(e2, e4, e2, e4)−2(∆R)(e1, e2, e3, e4).

Moreover, we have

Ỹ (u) = (D∂/∂tR)(e1, e3, e1, e3)+(D∂/∂tR)(e1, e4, e1, e4)

+(D∂/∂tR)(e2, e3, e2, e3)+(D∂/∂tR)(e2, e4, e2, e4)−2(D∂/∂tR)(e1, e2, e3, e4).

Hence, the assertion follows from (2).

Lemma 7. At each point e={e1, ..., en}∈P , we have

Q(R)(e1, e3, e1, e3)+Q(R)(e1, e4, e1, e4)

+Q(R)(e2, e3, e2, e3)+Q(R)(e2, e4, e2, e4)−2Q(R)(e1, e2, e3, e4)

>K inf
ξ∈Ve

|ξ|61

(D2u)(ξ, ξ)−K sup
ξ∈Ve

|ξ|61

Du(ξ)−Ku,

where Ve denotes the vertical subspace at e and K is a positive constant.

Proof. We have

Q(R)(e1, e3, e1, e3)+Q(R)(e1, e4, e1, e4)

+Q(R)(e2, e3, e2, e3)+Q(R)(e2, e4, e2, e4)−2Q(R)(e1, e2, e3, e4)

=
n∑

p,q=1

(R13pq−R24pq)(R13pq−R24pq)+
n∑

p,q=1

(R14pq+R23pq)(R14pq+R23pq)

+2I(1)+4I(2)+2I(3),
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where

I(1) =
4∑

p,q=1

(R1p1q+R2p2q)(R3p3q+R4p4q)−
4∑

p,q=1

R12pqR34pq

−
4∑

p,q=1

(R1p3q+R2p4q)(R3p1q+R4p2q)−
4∑

p,q=1

(R1p4q−R2p3q)(R4p1q−R3p2q),

I(2) =
4∑

p=1

n∑
q=5

(R1p1q+R2p2q)(R3p3q+R4p4q)−
4∑

p=1

n∑
q=5

R12pqR34pq

−
4∑

p=1

n∑
q=5

(R1p3q+R2p4q)(R3p1q+R4p2q)−
4∑

p=1

n∑
q=5

(R1p4q−R2p3q)(R4p1q−R3p2q),

and

I(3) =
n∑

p,q=5

(R1p1q+R2p2q)(R3p3q+R4p4q)−
n∑

p,q=5

R12pqR34pq

−
n∑

p,q=5

(R1p3q+R2p4q)(R3p1q+R4p2q)−
n∑

p,q=5

(R1p4q−R2p3q)(R4p1q−R3p2q).

By the results in [5, §2], we can find positive constants L1, L2 and L3 such that

I(1) >−L1 sup
ξ∈Ve

|ξ|61

Du(ξ)−L1u,

I(2) >−L2 sup
ξ∈Ve

|ξ|61

Du(ξ),

I(3) >L3 inf
ξ∈Ve

|ξ|61

(D2u)(ξ, ξ)−L3u

for all t∈(0, T ). Putting these facts together, the assertion follows.

Proposition 8. Assume that (M, g(t)) has non-negative isotropic curvature for all
t∈[0, T ]. Fix a real number t∈(0, T ). Then the set of all four-frames {e1, e2, e3, e4} that
are orthonormal with respect to g(t) and satisfy

Rg(t)(e1, e3, e1, e3)+Rg(t)(e1, e4, e1, e4)

+Rg(t)(e2, e3, e2, e3)+Rg(t)(e2, e4, e2, e4)−2Rg(t)(e1, e2, e3, e4) = 0

is invariant under parallel transport.
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Proof. Using Lemmas 6 and 7, we obtain that

Ỹ (u)−
n∑

j=1

X̃j(X̃j(u))>K inf
ξ∈Ve

|ξ|61

(D2u)(ξ, ξ)−K sup
ξ∈Ve

|ξ|61

Du(ξ)−Ku.

Hence, the assertion follows from Proposition 5.

We can draw a stronger conclusion if we assume that (M, g(t))×R2 has non-negative
isotropic curvature for all t∈[0, T ].

Proposition 9. Assume that (M, g(t))×R2 has non-negative isotropic curvature
for all t∈[0, T ]. Fix real numbers t∈(0, T ) and λ, µ∈[−1, 1]. Then the set of all four-
frames {e1, e2, e3, e4} that are orthonormal with respect to g(t) and satisfy

Rg(t)(e1, e3, e1, e3)+λ2Rg(t)(e1, e4, e1, e4)

+µ2Rg(t)(e2, e3, e2, e3)+λ2µ2Rg(t)(e2, e4, e2, e4)−2λµRg(t)(e1, e2, e3, e4) = 0

is invariant under parallel transport.

Proof. We will apply Proposition 8 to the manifolds (M, g(t))×S1×S1, t∈[0, T ].
Fix λ, µ∈[−1, 1] and t∈(0, T ). Suppose that {e1, e2, e3, e4}⊂TpM is an orthonormal
four-frame satisfying

R(e1, e3, e1, e3)+λ2R(e1, e4, e1, e4)

+µ2Rg(t)(e2, e3, e2, e3)+λ2µ2R(e2, e4, e2, e4)−2λµR(e1, e2, e3, e4) = 0,

where R denotes the curvature tensor of (M, g(t)). We define an orthonormal four-frame
{ê1, ê2, ê3, ê4}⊂TpM×R2 by

ê1 =(e1, 0, 0), ê2 =(µe2, 0,
√

1−µ2 ), ê3 =(e3, 0, 0), ê4 =(λe4,
√

1−λ2, 0).

The four-frame {ê1, ê2, ê3, ê4} satisfies the relation

R̂(ê1, ê3, ê1, ê3)+R̂(ê1, ê4, ê1, ê4)

+R̂(ê2, ê3, ê2, ê3)+R̂(ê2, ê4, ê2, ê4)−2R̂(ê1, ê2, ê3, ê4) = 0,
(3)

where R̂ denotes the curvature tensor of (M, g(t))×R2. It follows from Proposition 8
that the set of all orthonormal four-frames {ê1, ê2, ê3, ê4} satisfying (3) is invariant under
parallel transport. This completes the proof.
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4. Proof of the main theorem

Let (M, g0) be a compact Riemannian manifold of dimension n>4 such that (M, g0)×R2

has non-negative isotropic curvature. We denote by g(t), t∈[0, T ), the solution to the
Ricci flow with initial metric g0. It follows from the results in [5] that (M, g(t))×R2 has
non-negative isotropic curvature for all t∈[0, T ). In particular, (M, g(t)) has non-negative
sectional curvature for all t∈[0, T ).

Proposition 10. Suppose that there exists a real number τ∈(0, T ) such that

Hol0(M, g(τ))= SO(n).

Then the normalized Ricci flow with initial metric g0 exists for all time and converges to
a constant curvature metric as t!∞.

Proof. The assertion follows from [5, Theorem 3] if we can show that

Rg(τ)(e1, e3, e1, e3)+λ2Rg(τ)(e1, e4, e1, e4)

+µ2Rg(τ)(e2, e3, e2, e3)+λ2µ2Rg(τ)(e2, e4, e2, e4)−2λµRg(τ)(e1, e2, e3, e4) > 0

for all orthonormal four-frames {e1, e2, e3, e4} and all λ, µ∈[−1, 1]. In order to prove
this, we fix a point p∈M and real numbers λ, µ∈[−1, 1]. Suppose that {e1, e2, e3, e4} is
a four-frame in TpM which is orthonormal with respect to g(τ) and satisfies

Rg(τ)(e1, e3, e1, e3)+λ2Rg(τ)(e1, e4, e1, e4)

+µ2Rg(τ)(e2, e3, e2, e3)+λ2µ2Rg(τ)(e2, e4, e2, e4)−2λµRg(τ)(e1, e2, e3, e4) = 0.

Since Hol0(M, g(τ))=SO(n), the manifold (M, g(τ)) is not flat. Hence, we can find a
point q∈M and an orthonormal two-frame {v1, v2}⊂TqM such that

Rg(τ)(v1, v2, v1, v2) > 0.

Since Hol0(M, g(τ))=SO(n), there exists a piecewise smooth path γ: [0, 1]!M such that
γ(0)=p, γ(1)=q, v1=Pγe1 and v2=Pγe2. (Here, Pγ denotes parallel transport along γ

with respect to the metric g(τ).) Using Proposition 9, we obtain that

Rg(τ)(v1, v3, v1, v3)+λ2Rg(τ)(v1, v4, v1, v4)

+µ2Rg(τ)(v2, v3, v2, v3)+λ2µ2Rg(τ)(v2, v4, v2, v4)−2λµRg(τ)(v1, v2, v3, v4) = 0,
(4)

where v3, v4∈TqM are defined by v3=Pγe3 and v4=Pγe4. An analogous argument shows
that

Rg(τ)(v1, v2, v1, v2)+λ2Rg(τ)(v2, v4, v2, v4)

+µ2Rg(τ)(v1, v3, v1, v3)+λ2µ2Rg(τ)(v3, v4, v3, v4)−2λµRg(τ)(v2, v3, v1, v4) = 0
(5)
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and

Rg(τ)(v2, v3, v2, v3)+λ2Rg(τ)(v3, v4, v3, v4)

+µ2Rg(τ)(v1, v2, v1, v2)+λ2µ2Rg(τ)(v1, v4, v1, v4)−2λµRg(τ)(v3, v1, v2, v4) = 0.
(6)

In the next step, we add equations (4)–(6) and divide the result by 1+µ2. This yields

[Rg(τ)(v1, v2, v1, v2)+Rg(τ)(v1, v3, v1, v3)+Rg(τ)(v2, v3, v2, v3)]

+λ2[Rg(τ)(v1, v4, v1, v4)+Rg(τ)(v2, v4, v2, v4)+Rg(τ)(v3, v4, v3, v4)]= 0.

Since (M, g(τ)) has non-negative sectional curvature, it follows that

Rg(τ)(v1, v2, v1, v2) = 0.

This is a contradiction.

Proposition 11. Assume that (M, g0) is locally irreducible. Then one of the fol-
lowing statements holds:

(i) The normalized Ricci flow with initial metric g0 exists for all time, and converges
to a constant curvature metric as t!∞.

(ii) n=2m and the universal cover of (M, g0) is a Kähler manifold biholomorphic
to CPm.

(iii) The universal cover of (M, g0) is isometric to a compact symmetric space.

Proof. By assumption, (M, g0) is compact, locally irreducible, and has non-negative
sectional curvature. Hence, a theorem of Cheeger and Gromoll (see [6] or [16, p. 288])
implies that the universal cover of M is compact. Suppose that (M, g0) is not locally
symmetric. By continuity, there exists a real number δ∈(0, T ) such that (M, g(t)) is
locally irreducible and non-symmetric for all t∈(0, δ). According to Berger’s holonomy
theorem (see [10, Theorem 3.4.1]; see also [1] and [17]), there are three possibilities.

Case 1. There exists a real number t∈(0, δ) such that Hol0(M, g(t))=SO(n). In
this case, Proposition 10 implies that the normalized Ricci flow with initial metric g0

exists for all time and converges to a constant curvature metric as t!∞.

Case 2. n=2m and Hol0(M, g(t))=U(m) for all t∈(0, δ). In this case, the universal
cover of (M, g(t)) is a Kähler manifold for all t∈(0, δ). Since g(t)!g0 in C∞, it follows
that the universal cover of (M, g0) is a Kähler manifold. Moreover, the universal cover
of (M, g0) is compact, irreducible, and has non-negative sectional curvature. Hence, a
theorem of N. Mok [15] implies that the universal cover of (M, g0) is either biholomorphic
to CPm or isometric to a Hermitian symmetric space. Since (M, g0) is not locally
symmetric, the universal cover of (M, g0) must be biholomorphic to CPm.
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Case 3. n=4m>8 and there exists a real number t∈(0, δ) such that

Hol0(M, g(t))= Sp(m)·Sp(1).

In this case, the universal cover of (M, g(t)) is a compact quaternionic-Kähler manifold
with non-negative sectional curvature. By a theorem of B. Chow and D. Yang, the
universal cover of (M, g(t)) is isometric to a symmetric space (cf. [3] and [8]). This
contradicts the fact that (M, g(t)) is non-symmetric.

Corollary 12. Assume that (M, g0) has weakly 1
4 -pinched sectional curvatures in

the sense that 06K(π1)64K(π2) for all two-planes π1, π2⊂TpM . Moreover , we assume
that (M, g0) is not locally symmetric. Then the normalized Ricci flow with initial metric
g0 exists for all time, and converges to a constant curvature metric as t!∞.

Proof. By assumption, (M, g0) is not locally symmetric. In particular, (M, g0) is
not flat. Since (M, g0) has weakly 1

4 -pinched sectional curvatures, it follows that (M, g0)
is locally irreducible. By Theorem 11, there are two possibilities.

Case 1. The normalized Ricci flow with initial metric g0 exists for all time, and
converges to a constant curvature metric as t!∞. In this case, we are done.

Case 2. n=2m and the universal cover of (M, g0) is a Kähler manifold. Since
(M, g0) has weakly 1

4 -pinched sectional curvatures, the universal cover of (M, g0) is a
Kähler manifold of constant holomorphic sectional curvature (cf. [13]). Consequently,
the universal cover of (M, g0) is isometric to complex projective space up to scaling.
This contradicts the assumption that (M, g0) is not locally symmetric.
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Paris Sér. A-B, 263 (1966), 76–78.
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