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1. Introduction

In his paper [10], Gromov introduced the notion of simplicial volume of a connected,
closed and orientable manifold M . This invariant is denoted by ‖M‖∈[0,∞), and mea-
sures how efficiently the fundamental class of M may be represented using real cycles.

In the same paper, the question was raised as to whether the simplical volume of
a closed locally symmetric space of non-compact type is positive [10, p. 11]. Gromov
cites the work of Thurston [18], Inoue–Yano [13] and Savage [16], in which positivity is
verified for compact manifolds that are real hyperbolic, negatively curved and locally
symmetric quotients of SL(n,R)/SO(n,R), respectively. Moreover, Gromov [10] shows
that characteristic classes may be represented using bounded cohomology classes implying
positivity for several additional classes of locally symmetric spaces. Since then, this
question has been mentioned in a variety of different sources [8], [11], [15], [16], and
has become a well-known “folk conjecture”. Recently, Bucher-Karlsson found a mistake
in Savage’s paper (as explained in [5]). In the case of closed locally symmetric spaces
covered by SL(3,R)/SO(3,R), she also provided (in [6]) the analytic estimates required
in order to salvage Savage’s argument. The purpose of this paper is to answer Gromov’s
conjecture for all remaining closed locally symmetric spaces of non-compact type in the
affirmative. Namely, we obtain the following result.

Theorem 1.1. (Main theorem) If Mn is a closed locally symmetric space of non-
compact type, then ‖Mn‖>0.

The approach that we use is due to Thurston [18], and bounds the simplicial volume
‖M‖ from below by the proportion between the volume of M and the maximal volume of
suitably defined straightened top-dimensional simplices in M . Technically, however, we
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are indebted to Besson, Courtois and Gallot for their pioneering work around the use of
the barycenter method in proving the rank-one minimal entropy rigidity conjecture for
locally symmetric spaces [3], and to Connell and Farb for their subsequent development
of the technique in higher-rank spaces (see [8] for an extensive survey).

The main contribution of this paper lies in the idea of using the barycenter method
in order to define the straightened simplices that are central to Thurston’s argument.
Roughly speaking, the barycenter method homotopes a map with negatively curved
target to a C1 map (often called the “natural” map), by first mapping the source space
to the space of measures on the boundary at infinity of the target, and then to the target
by taking the center of mass of the measures. The technique, as developed by Besson,
Courtois and Gallot, then proceeds with a rather intricate argument to give a pointwise
upper bound for the Jacobian of the natural map.

When studying rigidity questions, one typically wants to replace this pointwise upper
estimate by the best uniform estimate and determine what happens in the equality case.
In this way, Besson, Courtois and Gallot solved the minimal entropy rigidity conjecture
for rank-one spaces.

As a major first step towards solving the minimal entropy rigidity conjecture in
higher rank, Connell and Farb extended the barycenter method to higher-rank spaces [7].
Furthermore, they established a new geometric result about locally symmetric spaces of
non-compact type with no local factors locally isometric to H2 or SL(3,R)/SO(3,R), in
order to obtain an “a priori” uniform bound for the Jacobian of the natural map. Here,
we use Connell’s and Farb’s extension of the technique to higher-rank spaces in order to
define “barycentrically” straightened simplices. The uniform upper bound for the volume
of top-dimensional straightened simplices required in Thurston’s argument will follow di-
rectly from the detailed analysis used to obtain the uniform Jacobian bound in [7]. As this
approach excludes those locally symmetric spaces with local H2 or SL(3,R)/SO(3,R)
factors, we appeal to Thurston [18] and Bucher-Karlsson [6] to cover the remaining cases.

We note that a similar “barycentric” straightening was used by Kleiner in [14] in
order to compare various notions of dimension for length spaces with curvature bounded
above. We would like to thank Dick Canary, Tom Farrell and Ralf Spatzier for their
interest in our work and many helpful discussions.

2. Thurston’s lower bound for simplicial volume

In this section, we first collect together some definitions and results about simplicial
volume. We then describe how Thurston reduces the problem of establishing positivity
of simplicial volume to the more geometric problem of uniformly bounding the volumes
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of suitably defined straightened simplices.

2.1. Simplicial volume

We begin with the definition of the simplicial volume and the important proportionality
principle.

Definition. Let M be a topological space, C0(∆k,M) be the set of singular k-
simplices, and let c=

∑j
i=1 rifi with each ri∈R and fi∈C0(∆k,M) be a singular real

chain. The l1-norm of c is defined by ‖c‖1=
∑

i |ri|. The l1-(pseudo)norm of a real
singular homology class [α]∈Hsing

k (M,R) is defined by

‖[α]‖1 = inf{‖c‖1 : ∂(c) = 0 and [c] = [α]}.

Definition. Let Mn be an oriented closed connected n-manifold. The simplicial
volume of Mn is defined as ‖Mn‖=‖i([Mn])‖1, where i:Hn(M,Z)!Hn(M,R) is the
change of coefficients homomorphism, and [Mn] is the fundamental class arising from
the orientation of Mn.

The proportionality principle ([10], [17], [18]) for simplicial volume is expressed in
the following result.

Theorem 2.1. Let M and M ′ be two closed Riemannian manifolds with isometric
universal covers. Then

‖M‖
Vol(M)

=
‖M ′‖

Vol(M ′)
.

In addition, the simplicial volume is particularly well behaved with respect to prod-
ucts and connected sums. Namely, the following results hold.

Theorem 2.2. For a pair of closed manifolds M1 and M2, we have

C‖M1‖·‖M2‖> ‖M1×M2‖> ‖M1‖·‖M2‖,

where C>1 is a constant that depends only on the dimension of M1×M2.

Theorem 2.3. For n>3, the connected sum M1#M2 of a pair of n-dimensional
manifolds M1 and M2 satisfies

‖M1#M2‖= ‖M1‖+‖M2‖.

The proofs of Theorem 2.2 and Theorem 2.3 may be found in [2] and [10].
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2.2. Thurston’s approach

Our proof of the main theorem relies on Thurston’s observation that the ratio between
the Riemannian volume of a manifold Mn and the maximal volume of a straightened
top-dimensional singular simplex in Mn gives a lower bound for the simplicial volume
(see [18]). We summarize his approach in the following definition.

Definition. Let us denote by M̃n the universal cover of Mn, by Γ the fundamental
group of Mn, and by Csing

∗ (M̃n,R) the real singular chain complex of M̃n. By definition,
Csing

k (M̃n,R) is the free R-module generated by C0(∆k, M̃n), the set of singular k-
simplices in M̃n. The simplex ∆k is assumed to be equipped with a fixed Riemmanian
metric. Assume that there is a collection of maps stk:C0(∆k, M̃n)!C0(∆k, M̃n). We
will say that this collection of maps is a straightening provided it satisfies the following
four formal properties:

(a) the maps stk are Γ-equivariant;
(b) the maps stk induce a chain map st∗:C

sing
∗ (M̃n,R)!Csing

∗ (M̃n,R) which is
Γ-equivariantly chain homotopic to the identity;

(c) the image of stn lies in C1(∆n, M̃n), i.e. straightened top-dimensional simplices
are C1;

(d) there exists a constant C>0, depending solely on M̃n and the chosen Riemann-
ian metric on ∆n, such that for any f∈C0(∆n, M̃n), with corresponding straightened
simplex stn(f):∆n!M̃n, there is a uniform upper bound on the Jacobian of stn(f):

|Jac(stn(f))(δ)|6C,

where δ∈∆n is arbitrary, and the Jacobian is computed relative to the fixed Riemannian
metric on ∆n.

Thurston established the following result.

Theorem 2.4. If M̃n supports a straightening, then ‖Mn‖>0.

We now recall how Theorem 2.4 is proven. Assume that M̃n supports a straightening
and note that property (a) implies that the straightening maps descend to straightening
maps on the compact quotient Mn. Property (b) ensures that the homology of Mn

obtained via the complex of straightened chains coincides with the ordinary singular
homology of Mn. Furthermore, since the straightening procedure is a projection operator
on the level of chains, it is contracting in the l1-norm. In particular, if

∑j
i=1 rifi is a

real n-chain representing the fundamental class of Mn, then so is
∑j

i=1 ri st(fi), and we
have the inequality ‖

∑j
i=1 rifi‖1>‖

∑j
i=1 ri st(fi)‖1.

As a consequence, in order to show that the simplicial volume of Mn is positive, it
is sufficient to give a lower bound for the l1-norm of a straightened chain representing
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the fundamental class. But now observe that, by property (c), the straightened chain is
C1, and hence we can compute the volume of Mn by

Vol(Mn) =
∫

∑j
i=1 ri st(fi)

dVMn =
j∑

i=1

ri

∫
st(fi)

dVMn ,

where dVMn is the volume form on Mn. On the other hand, we have the bound

j∑
i=1

ri

∫
st(fi)

dVMn 6
j∑

i=1

|ri|
∫

∆n

|Jac(st(fi))| dV∆n ,

where dV∆n is the volume form for the fixed Riemannian metric on ∆n. Now, by prop-
erty (d), the Jacobian of straightened simplices is bounded uniformly from above, and
hence we have a uniform upper bound∫

∆n

|Jac(st(fi))| dV∆n 6K,

where K>0 depends only on Mn and the chosen metric on ∆n. This yields the inequality

Vol(Mn) 6K

j∑
i=1

|ri|,

which, upon dividing, and passing to the infimum over all straightened chains, provides
the positive lower bound ‖Mn‖>Vol(Mn)/K>0.

We note that, to prove Theorem 2.4, one could replace properties (c) and (d) of a
straightening by the more general condition that the volume of the images of straight-
ened top-dimensional simplices are uniformly bounded above. In fact, this more general
approach was taken in the aforementioned works [13], [16] and [18]. Our proof of the
main theorem involves a new straightening procedure for locally symmetric spaces of
non-compact type which do not have any local H2 or SL3(R)/SO3(R) direct factors.
Our formulation of Theorem 2.3 isolates properties (c) and (d) because the barycenter
method that we will use is particularly well adapted to establishing these properties.

3. Straightening simplices

In this section we introduce a new straightening procedure (as defined in §2.2) that works
for locally symmetric spaces of non-compact type with no local direct factors locally iso-
metric to H2 or SL(3,R)/SO(3,R). The straightening will be defined using the barycen-
ter method of Besson, Courtois and Gallot, as developed in the higher-rank setting by
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Connell and Farb. As such, we will begin with a review of Connell’s and Farb’s work
that we use. We conclude the section by defining the straightening and verifying the four
formal requirements.

For more details on locally symmetric spaces of non-compact type, we refer the
reader to the text [9]. Throughout, (Mn, g0) denotes a closed locally symmetric space of
non-compact type. We let (X, g) be the symmetric universal covering space of M and
fix a basepoint p∈X.

3.1. The barycenter method in higher rank

We start with the following conventions:
� Let Γ=π1(Mn), G=Isom(X)0 and K=Stabp(G). The basepoint p determines a

Cartan decomposition g=k+p of the Lie algebra of G. Here, k is the Lie algebra of K

and p is identified with the tangent space TpX. Let a⊂p be a fixed maximal abelian
subalgebra of g. Fix a regular vector A∈a and let b denote the barycenter of the Weyl
chamber W (A) determined by A (see [7, p. 9] for more details).

� The visual boundary and Furstenberg boundaries are denoted by ∂X and by
∂F X∼=G/P , where P is a minimal parabolic subgroup of G. We will view the Fursten-
berg boundary as a subset of the visual boundary by identifying it with the G orbit of
the boundary point determined by the barycenter vector b.

� The ‖b‖-conformal density associated with the group Γ given by the family of
Patterson–Sullivan measures is denoted by ν:X!M(∂X), where M(∂X) denotes the
space of atomless probability measures on the visual boundary of X. We use Al-
buquerque’s theory [1] of these measures in higher rank and recall that they are Γ-
equivariant and fully supported on ∂F X⊂∂X.

� B:X×X×∂X!R denotes the Busemann function on X. Specifically,

B(x, y, θ) = lim
t!∞

(dX(y, lθ(t))−t),

where lθ is the unique geodesic ray starting at x with endpoint θ. It follows that the
Busemann function is invariant under the diagonal action of Γ on X×X×∂X.

� We will denote by

dB(x,θ)( · ):TxX −!R and DdB(x,θ)( · , · ):TxX⊗TxX −!R

the 1-form and the 2-form, respectively, obtained by differentiating the function B(p, · , θ)
at the point x∈X.

� For a measure µ∈M(∂X), let

gµ( · ) =
∫

∂X

B(p, · , θ) d(µ)(θ).
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When gµ:X!R has a unique minimum, the barycenter of µ, denoted by bar(µ), is
defined to be the unique point of X where gµ is minimized. Though the chosen base-
point p∈X is used to define the function gµ, it follows easily from the properties of the
Busemann function that bar(µ) (when defined) is actually independent of this choice.

Next, we recall the results from [7] that play a central role in our straightening.
As X is non-positively curved, the functions B(p, · , θ) appearing in the above defi-

nition of gµ are known to be convex functions on X. When the measure µ∈M(∂X) is
fully supported on ∂F X, Connell’s and Farb’s proof of [7, Proposition 3.1] shows that gµ

is strictly convex. Furthermore, they note that when µ is a Patterson–Sullivan measure,
the function gµ is proper. We summarize this in the following result.

Lemma 3.1. Let µ∈M(∂X) be a finite weighted sum of Patterson–Sullivan measures
on X. Then bar(µ) is well defined.

The following result of Connell and Farb from [7, §4] will be used to verify properties
(c) and (d) for our barycentric straightening.

Theorem 3.2. Let M be a closed locally symmetric space of non-compact type with
no local direct factors locally isometric to H2 or SL3(R)/SO3(R), and let X be its
universal cover. Let µ∈M(∂X) be a probability measure fully supported on ∂F X and let
x∈X. Consider the endomorphisms Kx(µ) and Hx(µ), defined on TxX by

〈Kx(µ)u, u〉=
∫

∂F X

DdB(x,θ)(u, u) d(µ)(θ)

and

〈Hx(µ)u, u〉=
∫

∂F X

dB2
(x,θ)(u) d(µ)(θ).

Then det(Kx(µ))>0 and there is a positive constant C :=C(X)>0 depending only on X

such that

Jx(µ) :=
det(Hx(µ))1/2

det(Kx(µ))
6C.

Furthermore, the constant C is explicitly computable.

We remark that the proof of Theorem 3.2 necessarily excludes locally symmetric
spaces with local direct factors locally isometric to H2 or SL(3,R)/SO(3,R), because
for these spaces the rank is too large relative to the dimension of the space. A caution-
ary example showing why this approach fails for spaces covered by SL(3,R)/SO(3,R)
appears in [8]. Our proof of the main theorem appeals to [18] and [6] to cover these cases.
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3.2. Barycentric straightening

In this section we always assume that Mn has no local direct factors locally isometric to
H2 or SL(3,R)/SO(3,R).

We first fix some notation. Recall that a singular k-simplex in X is a continuous
map f :∆k!X, where ∆k is the standard Euclidean k-simplex realized as the convex
hull of the standard unit basis vectors in Rk+1. For our purpose it is more convenient to
work with the spherical k-simplex ∆k

s ={(a1, ..., ak+1) : ai>0 and
∑k+1

i=1 a2
i =1}⊂Rk+1,

equipped with the Riemannian metric induced from Rk+1. We will denote by ei, for
16i6k+1, the standard basis vectors for Rk+1. We associate with each singular simplex
f :∆k

s!X its ordered vertex set V :={f(e1), ..., f(ek+1)}. Our principal contribution to
solving Gromov’s conjecture lies in defining the following straightening.

Given an ordered set V ={x1, ..., xk+1}⊂X, define the map V̂ :∆k
s!M(∂X) by

V̂

(k+1∑
i=1

aiei

)
=

k+1∑
i=1

a2
i ν(xi).

Definition. Given a singular k-simplex f∈C0(∆k
s , X), with corresponding vertex set

V ={x1, ..., xk+1}, define stk(f)∈C0(∆k
s , X) by stk(f)(δ)=bar(V̂ (δ)) for δ∈∆k

s .

The fact that this definition is well posed is the content of Lemma 3.1. Moreover,
observe that stk(f) depends only on the vertex set V of the original simplex f . We will
therefore use the notation stV (δ):=stk(f)(δ) when convenient. We now proceed to verify
that this straightening procedure satisfies the four formal properties needed. For the
convenience of the reader, we restate each property prior to proving it.

Property (a). The maps stk are Γ-equivariant.

Proof. Fix a point δ=
∑k+1

i=1 aiei∈∆k
s . Then, for any γ∈Γ, stγV (δ) is defined as the

unique minimizer of the function g( · )=
∫

∂F X
B(p, · , θ) d

(∑k+1
i=1 a2

i ν(γxi)
)
(θ). Since

∫
∂F X

B(p, · , θ) d

(k+1∑
i=1

a2
i ν(γxi)

)
(θ) =

∫
∂F X

B(p, · , θ) d

(k+1∑
i=1

a2
i γ∗ν(xi)

)
(θ)

=
∫

∂F X

B(p, · , γθ) d

(k+1∑
i=1

a2
i ν(xi)

)
(θ)

=
∫

∂F X

B(γγ−1p, γγ−1 · , γθ) d

(k+1∑
i=1

a2
i ν(xi)

)
(θ)

=
∫

∂F X

B(γ−1p, γ−1 · , θ) d

(k+1∑
i=1

a2
i ν(xi)

)
(θ),
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and since B(γ−1p, · , · ) and B(p, · , · ) differ by a function k(θ) of θ, it follows that the
unique minimizer of g( · ) is also the unique minimizer of the function

h( · ) =
∫

∂F X

B(p, γ−1 · , θ) d

(k+1∑
i=1

a2
i ν(xi)

)
(θ).

Indeed, we have that the difference of the two functions is

g( · )−h( · ) =
∫

∂F X

k(θ) d

(k+1∑
i=1

a2
i ν(xi)

)
(θ),

which is a constant function on X. But now g is minimized at stγV (δ), while h is
minimized at γ ·stV (δ). This gives us that stγV (δ)=γ ·stV (δ).

Property (b). The maps stk induce a chain map st∗:C
sing
∗ (X,R)!Csing

∗ (X,R)
which is Γ-equivariantly chain homotopic to the identity.

Proof. The fact that stk commutes with the boundary operator follows from the fact
that stk(f) depends solely on the vertices of the singular k-simplex f , along with the
fact that stk(f) restricted to a face of ∆k

s coincides with the straightening of that face.
To see that st∗ is chain homotopic to the identity, first note that the uniqueness of

geodesics in X gives rise to a well-defined Γ-equivariant straight-line homotopy between
any k-simplex f and its straightening stk(f). Hence, there are canonically defined ho-
motopies between simplices and their straightenings in X. Moreover, these homotopies
when restricted to lower-dimensional faces agree with the homotopies canonically defined
on those faces. Appropriately (Γ-equivariantly) subdividing these homotopies defines the
required chain homotopy.

Property (c). The image of stn lies in C1(∆n
s , X), i.e. straightened top-dimensional

simplices are C1.

Proof. Notice that for any simplex f∈C0(∆n
s , X) and any δ=

∑k+1
i=1 aiei∈∆n

s , we
have an implicit characterisation of the point stn(f)(δ)=stV (δ) via the 1-form equation

0≡ d(gV̂ (δ))stV (δ)( · ) =
∫

∂F X

dB(stV (δ),θ)( · ) d

(k+1∑
i=1

a2
i ν(xi)

)
(θ). (1)

Indeed, stV (δ)=bar
(∑k+1

i=1 a2
i ν(xi)

)
is defined as the unique minimum of the function

gV̂ (δ)( · ) =
∫

∂F X

B(p, · , θ) d

(k+1∑
i=1

a2
i ν(xi)

)
(θ),
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yielding equation (1) upon differentiation.
Following [3], we choose a frame (ei(x))n

i=1 of TxX with smooth dependence on
x∈X. Define the map G=(G1, ..., Gn):∆n

s ×X!Rn by

Gi(δ, x) =
∫

∂F X

dB(x,θ)(ei(x)) d(V̂ (δ))(θ).

Equation (1) implies that G(δ, stV (δ))=0. As the Busemann functions B(p, · , θ) are
smooth and since ∂F X is compact, it follows that G is a smooth map. To now apply the
inverse function theorem, the non-degeneracy of the partial derivative of G with respect
to the variable x must be checked. This requires that for the endomorphism K defined
by

〈K(u), u〉 :=
∫

∂F X

DdB(x,θ)(u, u) d(V̂ (δ))(θ),

the determinant be non-zero. Note however that in the notation of Theorem 3.2, the
determinant of this matrix is precisely det(Kx(V̂ (δ))), and hence must be non-zero as
the measure V̂ (δ)=

∑k+1
i=1 a2

i ν(xi) has full support on the Furstenberg boundary.

Property (d). There exists a constant C>0, depending on X, such that for any f∈
C0(∆n

s , X), with corresponding straightened simplex stn(f):∆n
s!X, there is a uniform

upper bound on the Jacobian of stn(f):

|Jac(stn(f))(δ)|6C,

where δ=
∑k+1

i=1 aiei∈∆n
s is arbitrary, and the Jacobian is computed relative to the Rie-

mannian metric on the spherical simplex ∆n
s induced from Rn+1.

Proof. Differentiating equation (1) with respect to directions in Tδ(∆n
s ), one obtains

the equation

0≡Dδd(gV̂ (δ))stV (δ)( · , · ) =
k+1∑
i=1

2ai〈 · , ei〉δ
∫

∂F X

dB(stV (δ),θ)( · ) d(ν(xi))(θ)

+
∫

∂F X

DdB(stV (δ),θ)(D(stV )δ( · ), · ) d

(k+1∑
i=1

a2
i ν(xi)

)
(θ)

(2)

defined on Tδ(∆n
s )⊗TstV (δ)(X). Now define symmetric endomorphisms Hδ and Kδ of

TstV (δ)(X) by

〈Hδ(u), u〉stV (δ) =
∫

∂F X

dB2
(stV (δ),θ)(u) d

(k+1∑
i=1

a2
i ν(xi)

)
(θ),

〈Kδ(u), u〉stV (δ) =
∫

∂F X

DdB(stV (δ),θ)(u, u) d

(k+1∑
i=1

a2
i ν(xi)

)
(θ).



simplicial volume of closed locally symmetric spaces 139

Let {vj}n
j=1 be an orthonormal eigenbasis of TstV (δ)(X) for Hδ. At points δ∈∆n

s

where the Jacobian of stV is non-zero, let {ũj}n
j=1 be the basis of Tδ(∆n

s ) obtained by
pulling back the {vj}n

j=1 basis by Kδ �D(stV )δ, and {uj}n
j=1 be the orthonormal basis of

Tδ(∆n
s ) obtained from the {ũj}n

j=1 basis by applying the Gram–Schmidt algorithm. We
now have (each step will be justified in the next paragraph)

det(Kδ)|Jac(stV )(δ)|

= |det(Kδ �D(stV )δ)| (3)

=
n∏

j=1

|〈Kδ �D(stV )δ(uj), vj〉stV (δ)| (4)

=
n∏

j=1

∣∣∣∣n+1∑
i=1

〈uj , ei〉δ ·2ai

∫
∂F X

dB(stV (δ),θ)(vj) d(ν(xi))(θ)
∣∣∣∣ (5)

6
n∏

j=1

[n+1∑
i=1

〈uj , ei〉2δ
]1/2[n+1∑

i=1

4a2
i

(∫
∂F X

dB(stV (δ),θ)(vj) d(ν(xi))(θ)
)2]1/2

(6)

6 2n
n∏

j=1

[n+1∑
i=1

a2
i

∫
∂F X

dB2
(stV (δ),θ)(vj) d(ν(xi))(θ)

]1/2

(7)

= 2n
n∏

j=1

〈Hδ(vj), vj〉1/2
stV (δ) (8)

= 2n det(Hδ)1/2. (9)

Equality (3) follows from the definition of the Jacobian, along with the fact that
det(AB)=det(A)·det(B). Equality (4) follows from the fact that, with respect to the
{uj}n

j=1 and {vj}n
j=1 bases, Kδ �D(stV )δ is upper triangular, and hence the determinant

is the product of the diagonal entries. Equality (5) follows from equalities (4) and (2).
Inequalities (6) and (7) follow from the Cauchy–Schwartz inequality applied in Rn+1 and
the spaces L2(∂F X, ν(xi)), respectively, along with the fact that the uj ’s are unit vectors
in Tδ(∆n

s )⊂Tδ(Rn+1). The two equalities in (8) and (9) follow from the definition of Hδ

and from the fact that {vj}n
j=1 is an orthonormal eigenbasis for Hδ.

Upon dividing, we now obtain the inequality

|Jac(stV )(δ)|6 2n det(Hδ)1/2

det(Kδ)
.

But now note that, in the notation of Theorem 3.2, the expression det(Hδ)1/2/det(Kδ) is
exactly JstV (δ)

(∑k+1
i=1 a2

i ν(xi)
)
. Since the measure

∑k+1
i=1 a2

i ν(xi) has full support in the
Furstenberg boundary, Theorem 3.2 now yields a uniform constant C ′, depending solely
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on X, with the property that

|Jac(stV )(δ)|6 2nJstV (δ)

(k+1∑
i=1

a2
i ν(xi)

)
6 2nC ′ =:C.

This completes the proof of property (d).

4. Proof of the main theorem

In view of the barycentric straightening construction in §3.2 and Thurston’s Theorem 2.4,
we have established the following result.

Theorem 4.1. Let Mn be a closed locally symmetric space of non-compact type with
no local direct factors locally isometric to H2 or SL(3,R)/SO(3,R). Then ‖Mn‖>0.

We can now prove the main theorem.

Proof of Theorem 1.1. Observe that by the proportionality principle in Theorem 2.1,
in order to show that ‖M‖>0, it is sufficient to show that ‖M ′‖>0 for some locally
symmetric space M ′ of non-compact type whose universal cover is X. Let G denote the
identity component of Isom(X) and G=G1×...×Gk be the product decomposition of G

into simple Lie groups corresponding to the product decomposition of X into irreducible
symmetric spaces. By a result of Borel [4], there are cocompact lattices Γi⊂Gi for each
i∈{1, ..., k}. Take M ′ to be the product locally symmetric space M1×...×Mk obtained
from the product lattice Γ1×...×Γk. From Theorem 2.2, the inequality ‖M1×...×Mk‖>∏k

i=1 ‖Mi‖ holds. Hence, if the main theorem holds for irreducible locally symmetric
spaces of non-compact type, then it holds for all locally symmetric spaces of non-compact
type.

Next we observe that for closed real hyperbolic surfaces, positivity of the simplicial
volume follows from [18]. Furthermore, for closed irreducible locally symmetric spaces
with symmetric covering SL3(R)/SO3(R), positivity of the simplicial volume follows
from [6]. Therefore, in view of Theorem 4.1, positivity holds for all irreducible locally
symmetric spaces of non-compact type, concluding the proof.

5. Concluding remarks

Let M be the smallest class of manifolds that (i) contains all closed locally symmetric
spaces of non-compact type, (ii) is closed under connected sums with arbitrary closed
manifolds of dimension >3, (iii) is closed under products, and (iv) is closed under fiber
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extensions by surfaces of genus >2 (i.e. if M∈M, and M ′ fibers over M with a surface
Sg of genus >2 as fiber, then M ′∈M).

In view of Theorems 1.1, 2.2 and 2.3, along with a result of Hoster and Kotschick
[12], we obtain the following corollary.

Corollary 5.1. For every manifold M∈M, ‖M‖>0.

The minimal entropy h(M) of a smooth manifold M , is defined to be the infimum
of the topological entropies of the geodesic flow over all complete Riemannian metrics of
unit volume on M . The minimal volume MinVol(M) of a smooth manifold M is defined
to be the infimum of the volume over all complete Riemannian metrics with sectional
curvatures bounded between −1 and 1. The following inequalities were established in
[10, p. 37]:

C ·‖M‖6h(M)n,

C ′ ·‖M‖6MinVol(M),

where C and C ′ are uniform constants, depending only on the dimension n of M . We
therefore obtain the following result.

Corollary 5.2. Every manifold M∈M has positive minimal entropy and positive
minimal volume.

We say that M collapses provided that there exists a sequence of Riemannian metrics
gi on M , satisfying |K(gi)|61, and having the property that at every point p∈M , the
injectivity radius with respect to the metric gi is less than 1/i. Gromov showed that
manifolds with positive simplicial volume do not collapse [10, pp. 67–68], giving the
following result.

Corollary 5.3. Manifolds M∈M do not collapse.

The simplicial volume also provides control on the possible degree of a map into the
given space (see [16, §8]). This yields the following result.

Corollary 5.4. Let M∈M, and assume that f :N!M is a continuous map from
a manifold N . Then we have

deg(f) 6
‖N‖
‖M‖

.

Bounded cohomology Ĥ∗(Mn) was defined by Gromov in [10], where it is shown
that Mn has positive simplicial volume if and only if the map induced by inclusion of
chains in: Ĥn(Mn)!Hn

sing(M
n,R) is non-zero [10, pp. 16–17]. This has the following

consequence.
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Corollary 5.5. Each manifold Mn∈M has non-vanishing n-dimensional bounded
cohomology.

We conclude by pointing out some questions.

Conjecture. Let Mn be a closed Riemannian manifold, whose sectional curvatures
are 60, and whose Ricci curvatures are negative. Then ‖Mn‖>0.

This conjecture was attributed to Gromov in [16]. It seems plausible that a similar
approach could be used to verify this conjecture. The main difficulty lies in obtaining
the formal property (d) for the analogous straightening procedure when the space Mn

is locally irreducible and is not a locally symmetric space. Namely, the estimates from
[7] rely heavily on the fact that locally symmetric spaces come from algebraic groups. In
particular, the various inequalities and minimization problems that arise in the general
case may no longer be rephrased as problems about Lie groups. We can also ask the
following question.

Question. For a given closed locally symmetric space Mn of non-compact type, can
one compute the value of the proportionality constant ‖Mn‖/Vol(Mn) in terms of the
symmetric covering of Mn?

One application of positivity of simplicial volume is the non-vanishing of the top-
dimensional bounded cohomology. We have the following natural question.

Question. What is the dimension of Ĥn(Mn) for a closed locally symmetric quotient
of an irreducible higher-rank locally symmetric space of non-compact type? In particular,
is it finite-dimensional or infinite-dimensional?
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matics, 152. Birkhäuser, Boston, MA, 1999.

[12] Hoster, M. & Kotschick, D., On the simplicial volumes of fiber bundles. Proc. Amer.
Math. Soc., 129 (2001), 1229–1232.

[13] Inoue, H. & Yano, K., The Gromov invariant of negatively curved manifolds. Topology,
21 (1982), 83–89.

[14] Kleiner, B., The local structure of length spaces with curvature bounded above. Math.
Z., 231 (1999), 409–456.

[15] Lück, W., L2-Invariants: Theory and Applications to Geometry and K-Theory. Ergebnisse
der Mathematik und ihrer Grenzgebiete, 44. Springer, Berlin, 2002.

[16] Savage, R. P. Jr., The space of positive definite matrices and Gromov’s invariant. Trans.
Amer. Math. Soc., 274 (1982), 239–263.
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