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Polar sets and removable singularities of partial

differential equations

By WaALTER LitTMAN

0. Introduction

The question of removable singularities for partial differential equations is essen-
tially the following: If « is a solution of such an equation in a domain ¥V < R" with
a closet set S (of measure zero) removed; and if » is assumed to belong to a class
limiting its size near S (for example »€L,), what conditions can be put on the size
of S to insure that u (after being redefined in S) is a solution in all of V'? For example,
every bounded harmonic function in a punctured disk has a removable singularity
at the “puncture”. Here the class limiting the size of  may be taken to be the class
of bounded functions; and S may be taken to be a single point.

L. Carleson [4] has shown that if % is harmonic in V-8 (V a bounded n-dimen-
sional domain, S a compact set < V) and S has finite n —2p’ dimensional Hausdorft
measure (1/p+1/p’=1) then the singularities of 4 on S are removable provided
w€L,. Serrin [10] has extended this result to second order linear elliptic equations
with Holder continuous coefficients, and has given a different sufficient condition
for second order (linear or quasilinear) elliptic equations [11].

Our aim is to treat linear equations of arbitrary order. (Some results of this nature
are contained in [3]). We begin by observing (in section 1) that the question of
removable singularities of solutions in L, is closely tied to the notion of “m—p
polar” sets in R™ (A compact set S is m —p polar if every element in H_,, ,(B")
with support in S vanishes), a notion apparently first introduced by Hérmander
and Lions [6]. The relationships between the two concepts is expressed in theorems
1 and 2. These theorems are proved in sections 1 and 2 where they are applied to
second order equations.

In section 3 generalizations of the H,, , spaces called “A4 spaces” are introduced,
and, using these, sharper results are obtained for equations which are assumed to
be of a more special form. Section 4 deals with geometric sufficient conditions for
m —p polarity of sets, which seems to be of interest independently of the question
of removable singularities (see for example [5]); while in section 5 similar results
are obtained for the A-spaces introduced earlier. Finally, as an illustration, the
latter results are applied to give geometric conditions for removability of singularities
of the heat equation.

The author would like to take this opportunity to thank Professors Hans Wein-
berger and Richard Juberg for a number of helpful discussions.
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1. Basic notions

Throughout this paper, R" will denote Euclidean n-space, S a compact subset
of B", U an open subset of R" containing S, and V a bounded domain in E" with
C® boundary, containing S.

If B is a Banach space, its dual space will be denoted by B'.

By a solution to a partial differential equation we shall always mean a weak
solution.

. We use the standard definitions of the spaces C3*(U)=D(U), H  ,(U)=Hn,1,(U),
H,, (U), as contained for example in [1].

Let B be a Banach space such that C3°(U) is contained densely in B. We assume
that the topology of C5°(U) is stronger than that of B.

Definition. S is said to be polar with respect to B if the only element in B’ having
support in S is the zero element. A set polar with respect to H, ,(E") is called m —p
polar.

Let L be a linear partial differential operator which we write in the form

Lu= 3 D¥a.z)u),

la]<m

atz
where, szw, |OC|: 20(;’

and where the a, are bounded measurable functions defined on V.

Suppose the following holds: If u is a (weak) solution to Lu=0in V —8 and u€L,(V)
then Lu=0 in V. Then we say that S is removable with respect to (L, V, Ly).

By a weak solution to Lu =T in an open set (2, where 7’ is a distribution, we mean
a distribution w such that (L*¢, u> =<, T for all  in CF(Q). As stated earlier by
“solution” we shall always mean “weak solution”.

We shall assume 1<p<co, except in the remainder of this section, (where p
may equal 1) or as specified. Also throughout 1/p+1/p' =1 :

The following close relationship between the two concepts introduced is an almost
immediate consequence of the definitions:

Theorem 1. A sufficient condition for S to be removable with respect to [L, V, L,]
ts that S be m —p’ polar.

We shall need a few lemmas. The following lemma is essentially stated by Grusin [5].

Lemma 1. If multiplication by an arbitrary but fized ¢ €03 (U) is continuous in B,
then S is polar with respect to B if and only if there exists a sequence ¢, € C5°(U) such
that each ¢,=1 in some neighborhood of S (possibly depending on v) and |¢,,| —>0.

Proof. Suppose there exists such a sequence ¢, and 7' € B’ has support in §. We

wish to show T =0. It suffices to show (i, 7> =0 for all 1/)600 (U) since C°(U) is
dense in B. Now

| v, |5 <constant(y)|¢,|z—~0
and since ¢ —v - ¢, vanishes near 8 and 7' has support on S,

p—ypo, T> =0 ally,
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But 9 —yé, >y in B, hence
&, ) = lim Cp—y,, T) = 0.

Conversely, suppose S is polar. Let B, denote the set of elements vanishing near
8. We claim that B, is dense in B. If this were not the case, there would exist a
non zero T € B’ such that (B, T> =0 (bar =closure) and 7' would have to vanish.
Now let p€C5(U) such that p=1 near S. Then there exists a sequence y, €C5°(U)
and vanishing near § such that y,—yp in B. The sequence yp —y,=¢, (=1 near S)
has compact support and |¢,|5—0.

Lemma 2. 8 is polar with respect to H m.p(R")EI?I m.o(B™) if and only if it is polar
with respect to H,, (U).

Proof The “if”” part is immediate from lemma 1. Suppose 8 is m —p polar. Then
if ¢, is the sequence guaranteed by lemma 1, CqS,, is the sequence needed to conclude
that 8 is polar with respect to H m.o(U), where CE€CY and equals 1 near S.

2. m—rp polarity and removable singularities

We first prove theorem 1: Suppose w€LP(V) then Lu€H_, (V) and has support
in 8. Now the dual of H_,, (V) is H »(V) and since, by lemma 2, § is polar with
respect to bi4 m o (V), Lu must be the zero element in H_, (V). Thus % is a weak
solution to Lu=0.

Next we wish to give a partlal converse to Theorem 1. Let L* denote the formal
adjoint of L. We say that the weak unique continuation property holds for L*u =0
in the open set W if every solution to L*u =0 having compact support in W vanishes
identically in W.

Theorem 2. Let W be o bounded domain with C° boundary containing V, but having
no common boundary points with it. Suppose that L* is strongly elliptic and its coeffi-
cients are Holder continuous in W, that L* =0 has the weak unique continuation pro-
pertyl in W. Then the condition of theorem 1 is also necessary.

Proof. First, suppose that the Dirichlet problem for the equation L*z=0 in V
has a unique solution. Then L* can be extended (see, for example [1]) as an isomor-
phism

L0 Hp o (V) 0 Himyzy,p (V)= Ly (V) (onto).

The Banach space adjoint L, of £, then is an isomorphism
Lo (V)= (H o (V) N Homzs ) (0080).

In particular the equation L,u =T can be solved for  in L,(V) provided T eH_ _m.o{ V)
For in that case 7 is a bounded linear functional on H,, ,(V), hence it is also (by
restriction) a bounded linear functional on H,, (V) N yif (nizpp, and thus Lou =T can
be solved with u€L,(V). It is easily checked that this solution is a weak solution of
Lu=T. Now suppose S is not polar. Then there exists a non zero T in H_, (V)
with support in 8. But this, in turn, implies that TGH _m.p(V) and hence we can
solve Lu =T with u in L,(V). Thus we have a % in L,(V) which satisfies Lu=0 in

! This last assumption is not essential.
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V~8 but not in V. In the above argument, V could have been replaced by W
equally well.

Next suppose that the Dirichlet problem for L* in W has a non-trivial null space.
This must be finite dimensional. Suppose it is generated by eigenfunctions vy, v,, ... vy,
which are assumed linearly independent in W. By the weak unique continuation
property it follows that they must also be linearly independent in W — V. Let v; =v;
in WV, 0 otherwise. We may assume that the v; are orthonormal with respect to
L, Now the equation Cou=T —>a;v; can be solved for » in L, (W) provided
0=(T~J;-v;,w) for i=1, ..k, ie., if a;=(T, ;). With this choice of the a; solve
for u. Then in ¥V Lu=1T and we argue as before.

Remark 1. Applications to second order linear equations.
For second order elliptic equations of the forms

a)  D(@yu)y 5+ 2 (@) +au =0,
b) (bij uzi)l‘j—l—bi uz‘i+bu = O,

C) D CijUsiz;+ Citlgy+ct =0

let us assume that the a’s are bounded measurable; the b, and b; have bounded
measurable derivatives (for example if they are Lipschitz continuous) and b is
bounded; or that the ¢; have bounded measurable second derivatives, the ¢; bounded
measurable first derivatives and the ¢; are bounded. In that case it follows from
what has been said that sets are removable for a, b, ¢ provided they are for the
Laplacian. Now L. Carleson [4] has shown that a sufficient condition for S to be
removable with w€L, is that S has finite n—2p’ Hausdorff measure. Thus the
same conclusion holds for the above equations. Let us note that for case b) our
results do not imply Serrin’s, nor do his imply ours. For the case ¢), however, Serrin’s
results are stronger than ours.

Remark 2. Suppose that in theorem 1 instead of being told that the function »
is in L,(V) we are told that «€H, (V). Let us assume for simplicity that the coeffi-
cients are sufficiently smooth. Then Lu € H,_,, , with support in §. Thus § is remov-
able provided it is polar with respect to H,,_y. ,. Here k may be positive or negative.
The converse holds under the same additional assumptions as occur in theorem 2.

3. A-polarity

We would like to improve the results so far obtained for equations which are not
elliptic. To that end we first consider the following general situation. Suppose 4
is the closure of C3°(V) in a certain norm | .- Suppose furthermore that for u € C§° (V)
the following a priori inequalities are valid:

Oy|w|a <|L*uly <Cplula (3-1)
Then L* has a bounded extension ;
Ly: A->Ly(V)

with closed range. Hence the Banach Space adjoint operator £,

4
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Ly LyV)—4’

is also bounded and has a closed range. Since L, is one to one, L, is onto. This implies
that there exists a weak solution in L,(V) to Lu="T where T€A"."
From now on we are going to specialize the space 4. Suppose

L*= 3 ay(x)D", : (3:2)
xelJ
where J is some finite collection of n-tuples of non- negatlve integers a=(ay, ..., &,).
We suppose that the order of the differential operator (3.2) is m. We may then choose
for | |4 the norm

;|D“u|Lp,E|u|A. (3.3)

Theorem 3. Let A be the closure of C§ (V) with respect to the norm (3.3). Then 8 is
removable with respect to [L, V, L,] if S is polar with respect to A. If in addition, the
inequality o - e

|L*ulpy =Cluly o 34

holds for all u€CP(V) then the converse holds.

Proof. Usmg the notation already introduced, £, is a bounded map from 4 L, (V)
Hence C, is bounded from L,(V)->A4’'. Now suppose w€L,(V) and Lu=0 in V —58;
then L,u=T€A’ and has support in S. But if § is polar with respect to A this
implies that 7' must vanish and hence Lo,u=0 i.e. Lu=0 in V (weakly).

To prove the converse, we note that under the additional assumptions made,
(3.1) holds and hence the map Lo: L(V)—~A’ is onto. Thus if § is not polar we can
find & T€A4’ with support in § and solve the equatlon Lou="T with w€Ly(V).

Example. The heat equation. Au—u,.

Here we take

8 U
89&1

ou

|’“|A P

Ly’ Ly’

From what has been said we see that a sufficient condition for S to be removable
with respect to [heat operator, V, L,] is that there exist a sequence ¢;: of functions in
Cg°(R™) which equal 1 in a neighborhood of S such that |¢;|s—0. A different criterion
has been given Aronson [2] and Pini [9]. The necessity of our condition follows from
the L, estimate for the heat equation of Jones [7] and the second part of theorem 3.

4. Sufficient conditions for m—p polarity

In this section we wish to derive a geometric criterion for a compact set S to be
m —p polar. Let us here note that from now on we 1nterchange the roles of p and p’
(for the purpose of simplicity).

Given a compact set S consider a covering of S by open spheres of radius 7 and
let N(r) denote the smallest number of such spheres (or radius r) required for such
a covering. We then define

M*=M*(S)=1im inf N(r)r".

-0
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Theorem 4. If M*(S)<co then S is m—p polar for n—mp> o (1 <p<oo). (For
p=1 we have to assume M*(8)=0.)

Remark. Let us note here that, for integral «, if S is a compact set contained in
a smooth o dimensional manifold then certainly M*(S) <oco. (For this case, if p=2,
theorem 4 was proved in [6].) However, fractional « is not devoid of meaning. For
example the usual one dimensional Cantorset has M*<co where « —log 2/log 3. By
changing the lengths of the intervals used in the definition of the Cantor set one
can arrive at arbitrary «. Let us also note that M* is not quite the same as « dimen-
sional Hausdorff measure, which is a somewhat more refined measure of dimension.

Lemma 3. A sufficient condition for S to be m —p polar is that there exist a sequence
#; of functions in OF(R") which equal 1 mear S, are uniformly bounded in R", such
that the measure of their supports -0 and |¢;|m,p <comst.

Proof. We know ¢;—~0 in L,(R"). Now there exists a subsequence converging
weakly in H,, , to a limit ¢. By the Banach Saks theorem there exists a (further)
subsequence whose arithmetic means y,—~>¢ strongly in H,, ,. But then this con-
vergence must also take place strongly in L, y;—>¢, which implies ¢ =0. The sequence
y; satisfies all requirements of lemma 1. Note: the above lemma is not valid for
p=1. We now proceed with the proof of theorem 4 (we treat only the case 1 <p < co).

We consider the grid @, which divides R, into cubes of side length r, with sides
parallel to the coordiante axes and with one cube centered at the origin. Denoting
by N(r) the minimal number of cubes of this grid needed to cover S, we similarly
define ‘

lim inf N(r)r*=M*=M(S).
>0
It is easily seen that the following inequalities hold with positive constants C
depending only on n.

0, M*(S) < M*(S) < Cy M*(S).

Let «(t) be a C= function of ¢ having the following properties

1. «ft) is symmetric about ¢ =0.
2. aft)=1for |t]| <}
3. 0<at)<1fori<i<i
4. aft)=0 for |¢| >3
5. aft)+oat—1)=1 for }<t<i

(This will then automatically hold for all ¢ in

—1<t<3)

Define B(x) = a(x,) - a(x,) ... - a(x,). Now pick an r>0. Consider the collection C of

all cubes in G, covering § and add all cubes in G, having at least one common
boundary point with the cubes in C' to obtain the (larger) collection C" of cubes.
Similarly let ¢ denote the (even larger) collection obtained by adding to ¢’ all
cubes with common boundary points. Let H denote the set of all centers of cubes
in ¢'. Then define

$+(a) Eheﬁﬂ(f - h) :



ARKIV FOR MATEMATIK. Bd T nr 1

The function ¢, is C®, equals 1 in a neighborhood of S, never exceeds 1, and vanishes
in the complement of the union of the cubes in 0", hence at points whose distance
from 8§ is greater than 3r)/n.

Next let us estimate |¢,I,’;,p. From dimensional considerations it follows that for

a fixed heH
x
(1)

Now in each cube ¢ in C” all but at most a finite number (which depends only on z)
of the terms in the sum defining ¢, vanish. Hence

r
< const. r"""P,

m, p

|br |, p.c < const. " ~™2,

Now, since M*(S) is finite, we can find a sequence 7; such that
N(r;) < const 7; %,
hence | ;|5 » < const 7} ™P %,

If, as has been assumed, n —mp > a, it follows that the norms on the left hand side
are bounded and hence the sequence ¢, satisfies all the requirements of the lemma.

Remark. The above theorem remains true if m is fractional, where the | |,
norm is defined by complex interpolation, for example [8]. To see this, let m, and
m, be two consecutive integers such that m =mg+6(m, —m,). Then we have as before

|¢r1 I'"om < const. ,.j((n/p)~mo—(az/p))’

the same inequality for m,, hence
| r;lm, o < const. | e, |hals | br; |5, » < const. rPX="P7® < const.

and the proof proceeds as before.

5. Sufficient conditions for A-polarity

We would like to apply the methods in the preceding section to derive sufficient
conditions for sets to be polar with respect to spaces of the type 4 discussed earlier.
Here we take A to be the completion of C§°(R™) with respect to the norm defined by

uli= 3 |Dil,
®E

where K is some finite subset of all n-tuples of non-negative integers. We proceed
as in the last section, except that instead of coverings by spheres or cubes we now
consider coverings by rectangular solids having side lengths

ritLrte,
where the s’s are fixed non-negative numbers >s;=n. We define N(r) as before
and let

M3=lim inf N (r)r*.

T3>0
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We proceed as before and estimate

r
| x _
D*B(=—r)| <constr".r ¢HP,
r Ly
@ x, x, .
where ;—k= (; —hy, 7~h2...) and (s k)=s by, +...5nkn.
T »
Thus Bl=—r|| <const. max r" ¢ 0%,
r A keK
< const. 1"~ sk
where we let ms, y=max (s- k).
keK

Proceeding as before, it follows that
|+ |4 <const. r" =P sk Ny(r).
And we culminate with the
Theorem 5. Suppose S is a compact set such that for some choice of $=(; ... $,)
(with >s=n)
M P Mk (8) < oo,

Then S s polar with respect to A.

Note. In proving theorem 5 lemma (3) used in the proof of theorem 4 must be
modified. This causes no trouble.

Example. The heat equation.

The one dimensional heat equation leads us to choose

|ulf=uel?, + ||, =2 t=2,

Now suppose § is a compact set situated on the z axis, and M*(S) <oo. How small
does o have to be to insure that S is A-polar? The problem is to choose s in such a
way that theorem 5 will give optimal results. To that end, consider a covering of
8 by N*(7) equal rectangles of length #=r" and height r* (s, +s,=2). Now suppose
first that

N(7) < const. 7% ™
Then N (r) < const. r™*.
It thus would suffice to have
os; <2 —pmax{2s,, 2 —s,],

where the maximum on the right is not taken with respect to s;. We wish to choose
s to maximize the allowable «, ie., we wish to maximize the expression

1
. (2—pmax[2s,,2—s])
1
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over the interval (0 <s; <2). This maximum is attained at s; =% s, =4 and the best
o is 3—2p. Thus if 1<p<§ and M3-27(S)<oo then § is polar with respect to 4,
provided § lies on the z axis. (If (*) does not hold for all 0 <r<1, we simply pick a
sequence of 7 for which it holds and argue as before.)

For the corresponding situation in higher dimensions we conclude by similar
calculations that if S lies in the hyperplane £ =0 then § is 4 polar if M"+1-27(8) <oo.
This shows that if u satisfies the » dimensional (n —1 space dimensions) heat equa-
tion in B"—8, S lies on {=0, and % €L,.(R"), then u is a solution in all B" provided
Mn+1-27(8) < oco. This is certainly true if, for example S lies in an [n-+1—2p]
dimensional surface.
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