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On stochastic stationarity of renewal processes

By TorBIORN THEDEEN

ABSTRACT

We shall consider point systems in R, which are stationary renewal distributed. We let the
points undergo random translations which are assumed to be independent identically distributed
random variables with a non-degenerate distribution function. The translations are also inde-
pendent of the starting positions. It is shown in theorem 3.1 that the only distribution of the
points which is conserved after the random translations is the Poisson one. Finally in section 4
we give a characterization of renewal processes on the positive semiaxis in terms of conditional
mean values.

1. Introduction

In a paper on point systems in R, under independent random motion (see T.
Thedéen [8]) we proved that the only time-invariant spatial distributions for the
point system are the weighted Poisson ones. We, however, had to impose certain
independence conditions to hold for all time ¢>0. We shall in this paper assume
that the point system initially is stationary renewal distributed and that the points
are subject to independent identically distributed random translations (see theorem
3.1). This result has some implications for the theory of road traffic flow. In the
stochastic model for low density traffic the cars are usually considered as points
which move independently of each other. Then it follows from theorem 3.1 that
the only renewal distribution for the points which is conserved in time is the Pois-
son one (cf. F. Haight [5] Ch. 4).

In our treatment in the following section we shall however not use the notion of
point systems under random motion, which was the origin to our interest in this
field. Lastly we shall in section 4 consider a characterization of renewal processes
on (0, 00).

2. Preliminaries

Let {X,,n=+1, +2,..} be an ordered sequence of random variables (r.v.’s)
such that almost surely (a.s.)

WX <X <0<X,<X,<..
Put X,=0 and Y,=X,—X, ;. We shall assume that {X,} is stationary renewal
distributed with the dlstrlbutlon function (d.f.) F(y), i.e.

(i) {(Yy, Y;), Y, n0, 1} is a set of independent positive r.v.’s and
(ii) {Y,, n=+0, 1} is a set of independent identically distributed (i.i.d.) r.v.’s with
P(Y,<y)=F(y), F(0)=0and EY,=1/m<co and
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oo

(iii)* P(Yo>ye ¥Y1>41)= f m(l —F(y))dy. (2.1)

Yot ¥r

Let for any finite interval I
N(I)=mno.of X, €I, n=+0.
Then it is well-known that EN(I)=m|I|. (2.2)

It follows from the theory of renewal processes on (0, cc) that the distribution of
{X,} is determined by the so-called renewal function

H(z)= ki::le* ()

where % stands for convolution. We shall define H(x) for negative x as
H@x)=—-H(—x—-0), <0 (2.3)

and this equation (2.3) should be used to define any renewal function for a negative
argument. Then any renewal function H(x) is a right-continuous non-decreasing
function on (—oo, +o0). Let us note that if H(x)=mx then {X,} has the same
distribution as the set of discontinuity points of a Poisson process with intensity
m, shortly {X,} is Poisson distributed with the parameter m. In the case when
there exists a d >0 such that

EIP(Y” —kd)=1, n+0,1 2.4)

we will say that {X,} is discrete. The largest d for which (2.4) is fulfilled is called
the span. If P(Y,=d)=1 we shall say that {X,} is deterministic. If {X,} is not
discrete it will be called continuous.

Let Z,, n=+1, +2, ... be i.id. r.v.’s with P(Z,<z2)=0G(z). Let us further assume
that {X,} and {Z,} are independent. Define {X,,, n=+1, +2,...} by

X1p=X,+2,.

We shall say that {X,,} is stationary renewal distributed with the d.f. F(y) if the
sequence obtained by ordering {X,} is stationary renewal distributed with the d.f.
F(y). (It can be shown that with N,(I)=no. of X,,€I, I finite interval, we always
have EN,(I)=m|I|. Thus {X,,} can, 1rrespect1ve of its distribution, almost surely
(a.s.) be ordered.) It is seen at once that if Q(z) is degenerated then {X,,} is statlonary
renewal distributed with the d.f. F(y). Further for any d.f. G(z) if {X,} is Poisson
distributed with the parameter m, then {X,,} has the same distribution (see Doob
[2] pp. 404-407). The Poisson distribution is a stationary renewal distribution which
is, what we shall call, stochastic stationary. Using the notation introduced above
we have

Definition 2.1. Let G(2) be a non-degenerated d.f. The stationary renewal distribution
of {X,} is stochastic stationary with respect to G(z) if {X,,} is stationary renewal
distributed with the same d.f. as {X}.

1 Cf. Feller [3] p. 371, problem 3.
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In the following section we shall prove that the only stationary renewal distribu-
tion which is stochastic stationary with respect to a non-degenerated d.f. G(z) is
the Poisson one.

3. Stochastic stationarity

We shall need the following lemma in the proof of theorem 3.1.
Lemma 3.1. Let K (), i =1, 2 and F(x) be d.{.’s on (0, ) and let

S o -
Hpg,(x) = Ki(x)+ch=1Ki(x)*F (), O<z<

—Hg,(—x—0), —co<2<0, 1=1,2.

Then if K (x)<K,x), 0<a<oco we have
Hg () <Hg[x), 0<zr<oco
Hy (x)=Hg,(x), --oc0<z<0.

The proof follows at once from the given definition of Hg(x), ¢ =1, 2.

Theorem 3.1. Let {X,} be stationary renewal distributed. Then the distribution of
{X,} is stochastic stationary with respect to a non-degenerated d.f. G(z) if and only if
{X,} is Poisson distributed.

Proof. The sufficiency is well-known (see Doob [2] pp. 404-407).
Necessity. The idea of the proof is the following. We shall in point 1-7 of the
proof deduce the integral equation

H(x)= Jl - f_ B (H(x — 2, +24) — H(zy— 21)) dG(2,) dG(2,). (3.1)

Using known results we shall in point 8 show that the only possible solutions of
(8.1) are H(x)=a,z and in the case when G(z) is d-lattice H(x)=[a,2] where a; and
a, are constants. Lastly we shall rule out H(x)=[a,2]. Thus
H(x)=a,x
which corresponds to {X,} being Poisson distributed.
1. We shall use the following notation:

M(B) =no. of (X,,Z,)€EB, B Borel set in R,,
M,(B) =no. of (X;,,Z,)€B, B Borel set in R,

Let B; be the o-algebra of Borel sets in the z;-axis L; and let u,; be the probability
measure on B; corresponding to the d.f. G(z,), 1=1, 2.

Let further y=p, xu, be the product measure on (L, B) =(L; x Ly, B; X B,). Let
I,=(—h,0] and I,=(0, x].
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Then v,(B))=M,(I, x B,) and vy(B,)=M,(I,x B,) are a.s. finite measures on
(Ly, B,) and (L, B,) respectively. They generate an a.s. finite product measure
¥=v, X%, on (L, B). Since Ey(L)<oo (cf. point 4 of the proof) the set function x
defined by

#(B) = Ev(B), BEB
is a finite measure on (L, B).
Let now for BER

X,(B) :{ 1, Xy;€1, X1, €15, (Z;,Zy)EB

0 otherwise.

Then »B)= > klﬂc (B).

allj,

But u(B)=0 implies that Ey,(B)=0. Since »(B)=Ev(B) we conclude that s is
absolutely continuous with respect to .
By the Radon-Nikodym theorem there is a function f(z,, z,) such that

AB)= [ e 20060 a6, 32)
B
The results of the following points 2-4 will make it possible to estimate f(z,, 25).

We shall return to equation (3.2) in point 5.

2. Put Y =1Y,+ Y,. Using the definition of a stationary renewal distribution we
get the conditional d.f. of ¥ given Y,

0, y<yo
Flylyo) =1 Fly) — Flys,)

, Y=
1—F(y,) y=t

for yo<sup {y; F(y)<1} (which we assume to hold in the following).
For 0<h<h, we have

F(y)=F(y|h)=F(y|h,), 0<y<oo. (3.3)

Further it is seen that

lim Fly | )= Fy);lim Py | ) = Fly | ). (3.4)

R0

Using the notation of lemma 3.1 we define
Hieqim (@) =Fx|h)+ 3 Fx|h)*x F* (), x>0
k=1

and Hrgny(®) in the same way. Let us put Hp,(x) for Hrgn(x) and Hy(z) for
Hpgim(x). Then we get from lemma 3.1

Hy(x) <Hy(x)<H(x), 0<z<oo, 0<h<h,. (3.5)
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By the definitions of H(z), Hu,(x) and Hp(x) also for negative x (see p. 2) and (3.4)
it is easily shown that

lim Hp, (x) = Hy(x); lim Hy(x)=H(x), — oo <x< oco. (3.6)
nyo

o | B
Let N(I)=no. of X, €1, where I is a finite interval. Then
N((0, #]) = N((X_,, =])
and hence EN((0,2])| X_, = EN((X_,, z])| X_, a.s. (3.7)

Consider the case when X_;> — & or since ¥Y,= — X_; equivalently ¥, <h. Using
(3.5) and (3.7) we get for x>0

EN((0, 2)) | X_, = EN((— Yo, 2])| Yo = Hroyvo(@+ Yo) SHpgvo( +h) <H(@+h) a.s.
In the same way it is seen that

EN((0, x])IX_1>Hh(x) a.s. x2=0.
Thus for =0
H,(z)<EN((0, 90])|)L1 <H(zx+h), X_ > —h, as. (3.8)

In the same way it can be proved that for z< —h
—Hu(x+h)<EN((z, —h])|X_ ;< —-H(x), X_;> —h, as. (3.9)

3. Let J, and J, be two finite semi-closed intervals closed to the right and let
B, and B, be Borel sets in R, with G(B;)>0,i=1, 2 (Here G(B,) stands for |5dG(z).)

We shall in this point give upper and lower bounds for EM(J; x By) M(J; x By)
in the cases (i) J; NJ,=@D and (ii) J;=J,, B, N B,=@. From the stationarity of the
renewal distribution of {X,} we conclude that for any finite number ¢

EM((J,+¢) x B)) M((Jy+c¢) x By) = EM(J, x B,) M(J, x B,).

Then we can always choose the right endpoint of JJ; as our origin without changing
the value of EM(J; x B;)M(J,x B,). Put J,=(—a, 0] and J,=(b, d]
i) JiNJ,=0

For any disjoint finite intervals I and J

EM(I x By) M(J x By) = (B,)(By) EN(I)N(J). (3.10)
Now  ENWJ)N((O,2]) = Bix_. o EN(J,)| X_, EN((0, «])| X _s. (3.11)
Further Bix_» o EN(J)|X_, = EN(J,) = ma. (3.12)

Using (3.8) and (3.12) in (3.11) we get for x>0
H (x)ma < EN(J,)N((0, x]) <H(xz+a)ma. (3.13)
In the same way we get, using (3.9), that for x< —a
—H (x+a)ma<EN(J,)N((x, —al])< —H(zx)ma. (3.14)
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T. THEDEEN, On stochastic stationarity of renewal processes
Now if 5>0 EN(J,)N(J,) = EN(J,)N((0, d]) — EN(J,) N((0, b]). (3.15)
From (3.10), (3.13) and (3.15) we get

EM(J, x By) M(J, x By)

Ho(@) = HG +a) <= e B G(B,)

<H@+a)—H,(b), b>0. (3.16)

For b=0 we get from (3.10) and (3.13)

i, <X (ilangl;)%gz )X B) cga+a), b=o0. (3.17)
1 2
For d < —a we have
EN(J,)N(J,) = EN(J)N((b, —a])— EN(J)N((d, —a)). (3.18)

By (3.10), (3.14) and (3.18) we have

EM(J, x B)) M(J, x By)
maG(B,) G(B,)

H(d) - H,(b+a) < <H,(d+a)—Hp), d<—a. (3.19)

For d= —a we get from (3.10) and (3.14)

—H,p+a) <Y %‘azgz)ﬂégz )X B) . _pp)y, d=-—a. (3.20)
(ii) J, = Jy, By N By=D
We have
EM(J, x By)M(J, x B,)

=EM(J,x B))M((b, —a] x B,) + EM(J, x B;) M(J, x By)
+EM(J, x B))M((0,d] x By). (3.21)
The first and last terms in the right member of (3.21) can be estimated by means
of (3.20) and (3.17). We get by considering the generating function of (M(J; x B,),
M(J, x By,)) that for BN By,=0
BM(J, % By) M(J, x By) = G(By)G(By) EN(J,) (N(J;) —1).
But (see e.g. Cox [1] p. 56)

EN(J) (V) — 1) =2m f “Hiy) dy.
0

Now O<£J H(y)dy < H{a)
0
EM(J, x B;) M(J, x B,)
h < 1oL 1 <2H(a). 3.22
and thus 0 maG(B,) C(By) (a) ( )
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Using (3.17), (3.20) and (3.22) on (3.21) we get

EM(J, x B,) M(J; x B,)

Ho@) = Hobt o) <= B G(B.)

<H(d+a)—~Hb)+2H(). (3.23)

4, Let I and J be finite intervals. We shall here show that

EN(I) N(J)

1] <c H(|I|)+co H(|JT]) +¢s, (3.24)

where ¢, ¢, and ¢, are finite constants. It is easily seen that it is no restriction to
choose I and J semi-closed, closed to the right. We shall deal with two cases (i)
and (ii) separately.

(i) INJ=4. Suppose that J is situated to the right of I. It is no restriction to
choose the left endpoint of J as our origin. Then it is easily seen that

BN Xy, Xy, ) S EN(Xy, Xy + | T|1) X g Xy ) <H(|J|)+1 2. (3.25)
Since EN(I)=m|I| we get from (3.25)

EN(I)N(J)

7] <m(H(|J|)+1). (3.26)

The same result holds when J lies to the left of I, which can be proved in the same
way.

(ii) INJ D By the stationarity of the distribution of {X,} it is no restriction
to choose the origin such that I=(—|I|,0]. Then J<J' =(—|I|—|J|, |J|] and
IcJ. \

EN()NW)<EN()N(—|T| =|I|, — |I|])+E®N D)2+ ENIN(O, |J]). (3.27)

Using (3.26), (3.22) and (3.25) we get from (3.27) that also in this case (ii) the in-
equality (3.24) holds.

5. Let us consider the left member of (3.2), s(B) for B=L, x L,.
Now by (3.10) with B, =L,, B,=L, and the stochastic stationarity

%(Ly x Ly) = EN(I,) N(L,).

By (3.13) we get Hy(@)< ’L(L;n—;@ <H(@+h) (3.28)
and from (3.6) tim L L) _ oy (3.29)

rlo mh

6. Let now D;={u,, u,, ...} be the discontinuity set of G(z) with the correspond-
ing jumps p,, P, ... and put D= D, x D,. Then (3.2) can be written
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T. THEDEEN, On stochastic stationarity of renewal processes

= S oot [ [t 6 a6 (3.30)

where f; = f(u;, u;) and > gnp denotes the sum over all j, k such that (u;, u) € BN D.
In this point we shall consider f;. From (3.30) follows that

EM, (I, x {u;}) My (I, x {uk})

fa= P3P
Now Ml(le{uj})=M((Il—uj)x{u,-})
M, (I, x {uk}) =M((I,— wu) X {”k})
and thus fe _EM({L —w) X {“;)}p (7 — i) X {w}) (3.31)

We shall deal with three cases (i), (ii) and (iii) separately.

(i) v;Zwu,. From (3.16) we get

Hy (2 +u;— wy) — H(u;— wie + h) <;fnﬂ;—b<H(x+uj~uk+h)~Hh(uj—uk). (3.32)

(ii) u;,—wu,< —x. For sufficiently small » we have u;—w,<—z—h and hence
(Iy—u;) N (I —u)=9. From (3.19) we get

H(x +w;— up) — Hp (w;— w + h) <%<Hh(x+ui—uk+h)—H(uj—uk). (3.33)

(iii) —x <wu,;—u,<0. For sufficiently small » we have u;—wu, < —h and (I, —u;)<
(L, —u). Using (3.23) we get

Hy(o+w;— )~ Hp(u;—up+ k) < f < H{x +u;— wy + h) — H(u;— i) + 2H(R).
(3.34)

Using (3.6) and the definition of renewal functions for a negative argument we get
from (3.32), (3.33) and (3.34) that

lim f ik

= H(x +u; — wg) — H(u; — u). (3.35)
rlo M

7. Let
M, ={AP; AP =[-27"G+1)2 ") x[k-2", (k+1)27"), 4,k=0, =1, £2,...}.

In the sense of Saks [7] p. 153, M, is a net in L; x L, with the meshes AP and
{M,, n=1,2, ...} is a regular sequence of nets. The support set of a d.f. F(z) is

Sp = {x; F(x+h)—F(x—k)>0, all h>0}.
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Let now 2, 2,68, For any « there is a mesh J,, xJ,, €M, with 2,€J,,,2,€J,,.
From a theorem by Saks [7] p. 1565 and the definition of x(5) we have

. EM, (I, x J1) My (Iy % Jop)
= 3.36
Jim G(T 1) G am) e, 2) 339

for a.s. all (2, z,). Let now
L = (1,22 U (I,—%+27")
L, =(I,—z+2™n(I;—2—-2" n=1,2,..;i=1,2. (3.37)

For sufficiently large n (we shall in the following just consider such ») both I,,*
and I;,” are non-degenerated intervals such that

I,*>1,—2>1,", i=1,2
M1, xJp)<SM(I;xJ,) <M, xdJ;), t=1,2. (8.38)
By (3.38) we get
EM (1, xd ) MLy, xJy) SEM (I % J 1) My (1, % J )
SEM(1,," xJ ) M(1y," xJs,). {3.39)

Now |I,,*|=|1;| +2-"+.. Using this fact, (3.10), (3.24) and (3.36) on (3.39) we see
that for fixed x there is & s, <co and a finite constant O, such that for sufficiently
large n

/F(Zlh—’z” <Cas., h<h, (3.40)

Let Dy be the (countable) discontinuity set of H(z). Let us now consider the case
when (z;, 2,) €D N (Sgx 8g) and 2z, +2,, 2, +2, —x and further z; —z,€ Dy. We shall
deal with three cases separately.

(i} 2, <2, —a. Choose h <z, —z —x. Then for sufficiently large n we have
1,0 I, =@ so that we can use (3.19) in the estimation of the first and last
member of (3.39). We get

h—2"""  EMy (I % J1,) My (T2 % J2n)

(Hzy =2y ta)—H, , ,:1(z— 22t D) 3 < mhG(T1n) Cen)
h+2-n1
\——h—(H“z;nﬂ(zl—zz%—x%—h+2‘"“)—H(zl—z2~2‘"“)). (3.41)

Then if first n—co and then & | 0 in (3.41) we get using (3.6)

. . EM (1) X J1,) M1(I2 % Jg,)
lim 1 =
o mhGU 1) CJzn)

H(x +2, —29) — H(z; — 2,). (3.42)
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(ii) z, >z,. For sufficiently large n we have I, N I,," =@. Using (3.16) we get

h—2-n+1 EMI(leJln)M]_(I2XJ2n)
— — — <
(Hh.-2‘"+1 (zl 29 + .’ZJ) H(Z1 2 + h)) h th(Jln) G(J2n)

k+2~n+1 -n+1 -n+1
<—h—(H(zl—zz+x+h+2 )= H,  poni1(21— 22— 2 ). (3.43)

Letting n—co and then A { 0 in (3.43) we get again (3.42).
(iii) 2, —x<z;<z,. Choose h<z,—z,. For sufficiently large » we have

I,*<I,," 1, <l,, and J;,NJ,,=92.
Then from (3.23)
h—2 71 < EM (I, x Jy1,) M (I3 x J3y)
ho T mhGJy) 6(Ja)

(H, y-nr1(zy— 29+ 7)— H, , ni1(21—2,TR))

h+2 "t
S (H =z tath+ 27" ) — Hiz —2,—27") + 2H(R+27"7). (344)

Letting first n—~oo and then k| 0 we obtain again (3.42). For fixed A>0 we see
from (3.36), (3.32), (3.33), (3.34), and the inequalities (3.41), (3.43) and (3.44) that
there exist functions f,%(2y, 2,) and 7, {(z,, z,) such that

e 2 <P < e (3.49)

for (z,, 2,) €4, where u(4,)=0. Put

f(z1, 23)

mh

=3 o2 T h (2 2))

for (2, 2,)€A4,. This will not change the value of the integral in (3.2). Then from
(3.35) and (3.42) we have

lim (21, 25) _
R0 mh

H(x+2z,—2) — H(z,—25) (3.46)
in the set A =4, U (4,0 4,) where

A, =Dgx D,

Ay =Dn(8;x8)

Ay = {(2y, 25); 2 £29, 2, 25—, 2, —2,€ Dy}

Since Dy is countable we have u(4)=1 and thus (3.46) holds a.s. By (3.40) we
have f(zy, 2,)/(mh)<C,, except for a fixed (independent of %) u-null set. Putting
B=L, xL, in (3.2) and using (3.29) and (3.46) we get from the Lebesgue bounded
convergence theorem that
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H(x)= f+w JUMO (H(x+ 2, — 25) — H(z, — 25)) dG(2,) dG(2,) (3.47)

for 2>0.

8. Define the d.f. K(2) as
+o0
K(z)= f G(z+y)dG(y).

—o0

Using that H(z)= — H(—x—0) we can write (3.47)

H(z)= f . (H(x—2)+ H(z—0)) dK(z), 2>0. (3.47")

-0

Further for x<0 we get from (3.47')
+00
H(x)=f (Hx—2z)+ H(z))dK(z), =<0. (3.48)

Let y>0 be a fixed number. Then by (3.25)
@y(@) = H(x +y) —H(x) <H(y) +1.

In the cases when x>0 or «+y<0 we get from (3.47') and (3.48)

@y () =f+w<py (x—z)dK(z). (3.49)

For <0, z-+y>0 we get

9 (@) = f " (@@~ 2)— (H(:) — Hz—0) dK(2).

Now f - (H(z) — H(z—0)) dK(z) =2 5 AH(z,) AK(2,)

where the sum is over all z,>0 with z,€ D, and AH(z,) and AK(z,) are the jumps
of H(z) and K(z) in z,. In order that this sum should be larger than zero we must
have Dyn D =+@. Suppose that e.g. 2, € Dy N Dy, From z,€ Dy we see that there
is a n such that F™*(x) also has a discontinuity point at z;. Then

P(X, 1 —X,=2)>0
and since z, € D also P(Z,—Z, =2)>0.

Thus we see that P(X;, =X, ,1)>0

which contradicts the assumption of F(0)==0 (i.e. no X,’s or X;,’s can coincide).
Thus (3.49) holds for all z.
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It is well-known (see e.g. Feller [4]) that the only bounded solutions of (3.49) are
(i) ,(x) =constant, when K(z) is nonlattice,
(ii) @,(nd) = constant, n=0, +1, +2, ... when K(z) is d-lattice.

We shall deal with the cases (i) and (ii) separately.
(i) We have H(x+y)—H(x) = H(y), K(z) non-lattice.
But H(z) is bounded in e.g. [0, 1] and then (see e.g. Parzen [6] p. 123, problem 10)
H(x) = constant -z
It follows from the so-called renewal theorem that

H(|=|) _

Iginw B (3.50)

and thus H(z) = mx (3.51)
which corresponds to {X,} being Poisson distributed with the parameter m.

(i) We have H(nd +y) — H(nd) = H(y) (3.52)

Consider first the case when {X,} is continuous (see p. 2). Then we get by Blackwell’s
theorem (see e.g. Feller [3] p. 347) that

H(nd + z) — H(nd)

x

—m, n—> oo

where the left member by (3.52) is independent of n. This implies that
H(z) =mx

and {X,} must be Poisson distributed.
Consider lastly the case when {X,} is discrete with the span d,. From Blackwell’s
theorem

tim 2@t y) — Hz)

m, y = nd,, n positive integer. (3.53)
2—>00 )
Let now x, =nd. Then by (3.53)

H(nd + kd,) — H(nd)
kd,

—-m, n—> oo,

But by (3.52) the left member is independent of n. Thus

H(nd + kd,) — H(nd) = mkd,. (3.54)
Putting n=0 in (3.54) we get

H(kdy) =mkd,, k=0,1,2, ... (3.55)
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If {X,} is discrete with the span dy, H(x) is a non-decreasing step-function with
the jumps in kd,. (3.55) implies that all the jumps have the size md, and this in
turn gives that {X} is deterministic.

Further by (3.50) and (3.52) we have

H(nd) = mnd
and thus d must be a multiple of d,. Then it is easily shown that with positive prob-

ability some of the X,,’s coincide, which contradicts the assumption that F(0)=0,
ie, {X,} can have no multiple points. The theorem is proved.

4. A characterization of renewal processes on (0, )

Let {X,,n=1,2,..} be an ordered sequence of r.v.’s such that a.s.

0<X, <X,<..
Put formally X,=0 and let ¥,=X, X, ,,n=1,2, ... If {X,, n=1,2, ...} is (ordi-

nary) renewal distributed, i.e. ¥,, n=1, 2, ... are i.1.d. positive r.v.’s with the d.f.
F(y), then the distribution of {X,} is given by the renewal function

H(a) = EN(X,,, X, +4]) = 3 F*(o),

where N(I)=no. of X, €1, I finite interval.
Further we have in this case

EN(X,, X, +2])| Xy, ..., X, =H(x) a8, n=0,1,2, .. (4.1)
Note that for n =0, (4.1) can be written
EN((0, x]) = H(x).

We shall here show that if (4.1) holds then {X,} must be ordinary renewal distrib-
uted with the renewal function H(x).

Theorem 4.1. Let {X,,n=0,1,2, ...} be an ordered sequence of r.v.’s with X,=
0<X,<X,<... a.s. and such that EN(I)<oo for I finite interval and

EN(X,, X,+2])| Xg, oo, X, = H(x) @5, =0, 1,2, ... (4.1)
Then {X,} is ordinary renewal distributed with the renewal function H(x).

Proof. From (4.1) we see that

H(z) = B(N((Xpy, Xy +2])| Ty ooy Vo) s, (4.2)
1,Y,<y
Put =3
=) {O otherwise.
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Then EN(X, , X, 1 +a])| Yy, ., X))

= B((gn(®) + N(Xpy + Y, Xy +2))| ¥y, o 1)

= 1u(@) + E(N(X,, X, — Y, +2])| Yy, ..., ¥y) as. (4.3)
since X, +Y,=X X +z=X,-Y, 4z

From (4.2) and (4.3) we get
H(.’I}) :E(E((Xn(x)+N((Xn: Xn‘ Yn+x]))| Yl! ey Yn)l Yl’ teey Yn-l)
=E(xa(@)| Yy, oo, Yoo ) + E(H(@x—-Y,)| Yy, ..., Y, y) a8 (4.4)

where H(z)=0, <0.

Let now FB"—l(x) be the conditional d.f. of Y, given the sub-o-algebra of Borel
sets generated by Y, ..., Y,_; in the sample space of {Y,}. Then the first and last
member of (4.4) can be written.

H(x)=F"1(z)+ f H(z—y) dF™1(y)- (4.5)
0
Denote for a moment F°*? by F. Outside a set of probability zero we then get
H=F+(F+HxF)xF—..= > F*+ HxF"*
k=1

Put F,, (x) = F™*(x). Now H(0)=0 and hence
Hx%F"* = f:H(x* y)dF,,(y)= f:H(x— Y) dF . (y)-
Since F(0) =0<1 it is easily seen that F,, (x)—>0, ny— oo and thus
f:H(x—y) dF, (y)—0, ny—> oo,
Returning to the original notation we have

H@)= 3 (F* (). (4.6)

k=1
But (4.6) holds for any »>1 and thus we can put
Fri(z) = F(z), n—=1,2,...as. (4.7)

where F(x) is a d.f. on (0, o).
From (4.7) we get by induction

P(Ykgyky k:l’ ""n)=,;[_IF(yk)
for any n>1 which proves the theorem,
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Corollary 4.1. Let {X,,n=0,1,2, ...} be an ordered sequence of r.v.’s with X,=
0<X,<X,<... a.s. with EN(I)<oo, I finite interval and such that

EN(X,, X, +2))| Xy, ..., X, =4z a.s., n=0,1,2,.. (4.8)

Then {X,} is Poisson distributed (on (0,o0)) with the parameter A.

It should be remarked that from (4.8) it is possible by elementary methods to
deduce a differential equation for the conditional frequency function of Y, given
Y,, .., Y,_, and hence directly prove the corollary without using theorem 4.1.
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