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A bilateral Tauberian theorem

By Ake PLELJEL

This note contains the proof of a bilateral Tauberian theorem which in in-
complete form was used in my paper [2].

By the elementary proof the Tauberian theorem is reduced to two well-known
theorems by Hardy and Littlewood, see [1].

1. The Hardy and Littlewood theorems

Let ¢ be a real function of bounded variation on every finite subinterval of
0<A< + oo,
The following Abelian theorems are easily proved.

Theorem A4 {q}. If 0<gq<1 and o(1)=0(A%) when A—>- oo, then

fm A+t do(A) =o(t? 1), t— + oo.

0

Theorem A4 {0}. If o()=0c(+ co)+o0(l) when A— + oo, then

fw (A+8t) " do(A) = (o( + o)~ 0(0))t P +o(t 1), t—> + co.
0

The conclusions are still valid if ¢ tends to infinity along half rays from the
origin in the complex ¢-plane which are different from the real negative axis.
To see this one has only to use the inequality | A +¢|> (1 +|t]) sin 3 6, |argt| <z -4,
when the necessary estimations are performed.

To formulate the corresponding Tauberian theorems we need

Definition 1. The function ¢ belongs to T° if there is a real constant C such
that do(AY+ CA°~Yd) is definite, =0 or <O, for sufficiently large values of A.

The theorems are
Theorem 7 {q}. If 0<qg<1, ¢ €T%and
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f A+ da(A) =07}, t— + oo,
0

then o(A) =o0(A% when A— + oo,

Theorem T'{0}. If c €T® and

f A+t Ydo(A)= Ht 1+ o(t™), t— + oo,
0
then o(i)=o(+ o) +o(l) when 1— + oo. The constant H is related to ¢ by H=
o(+ o0) — (0).

2. Certain lemmas

An addition of a constant to the function ¢ of the previous section is evidently
irrelevant. The same holds for the functions of this section since we are essen-
tially only interested in their differentials. Thus the definition

A
IF(d)= f pde(y)

determines [¢ up to an additive constant. It is always possible to avoid di-
vergence difficulties by taking the lower limit of integration positive. Obviously

I’(Ik(p) — Ij +k(P-

Definition 2. We write (1) €w® if p(l)=0(1°) when A—+ o and §>0 or if
@A) =@(+ o0) +0(A°) when A—> + o and $<0.

Consider I*@ when p€w’. It is no restriction to assume ¢ =o0(4°) also when
§<0. From the relation

7]
qui(l) _qu?(A):(p_;.i'_)lk+s_%‘2Ak+s_kJA%@Mk+s—1d'u (1)

it follows when k+s>0 that
Ip(2) = o(A¥*®), A—> 4+ oo.
If k+s<0 relation (1) shows the convergence of I*p(l) when A—+ oo, The

transition to the limit 4— + co then leads to a formula from which one con-
cludes that

Ip(d) — I'p(+ o0) = 0(A**"), A~ + oo.
Thus we have proved
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Lemma 1. If p€w® then I*p€w®*** provided k+ —s.

That the lemma is not valid without the condition k== —s is seen by the ex-
ample @(1)=1I° log log A. This function belongs to o° when s=0 but I °p(1)=
log log A is not in w®.

Definition 3. We write p €I° if IFp€w*** for all k+ —s.

Observe that it follows from lemma 1 that if I*p € w**° holds for an arbitrary
value of k it holds for all values k< —s. This leads to

Lemma 2. o*=1I° if s+0 and o’<1°

The function log log A belongs to I° but is not in °.

Lemma 3. @€I° implies I"p€I**’.

Lemma 3 is an immediate consequence of the definition of I°. The lemma
is closely related to lemma 1 but is free from supplementary condition.

Lemma 4. The class I° is linear.

Lemma 5. If @(A)€I° then @(A¥)€I*.

Lemma 4 and 5 follow from the definition of w® and I°.

Lemma 6. If @€T° then I*peT**,

For if dp+ CA’~'dA is definite, the same is true for the differential obtained
when dgp + CA°~'dA is multiplied by #*.

Lemma 7. If @, g, €T° then either @, + @, €T or @, — @, €T".

If do, +C, A" 'dA>0, do,+C,2°"*dA>0 it follows by addition that ¢, + ¢, € T*.
If dp, +C A7 'dA>0, dp,+ C,2°"'dA<0 subtraction yields @, — g, €7°.

Lemma 8. If ¢(A)€T" then @(A¥)eT™.

Lemma 9. If s<rthen T°cT', T°+1T". Also o’ <o o'+ and IFcI’, I°+1".

Lemma 8 is obtained by a change of the independent variable and Lemma 9
is easily deduced from the definitions of 7%, w*® and I°

3. Unilateral theorems

Let o be a function of the type in section 1 and assume that the integral
of A7"dg(A) converges absolutely when taken over a right side neighbourhood of
the origin. Under this condition consider
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f AMA+ 8 da(A). (2)
0

If this integral converges at infinity for one value t=¢, for instance for {=0,
it is seen by introducing in (2)

1
BA) =f w M+t tdo(w), a>0,
and by partial integration that (2) converges at infinity for every ¢. If
f MA+ ) I (h)
0

is integrated by parts it follows that (2) is o(1) when ¢ tends to infinity along
half rays different from the negative real axis. Thus we have

Theorem 1. Necessary and sufficient for the convergence of (2) is I™" g€’
The integral is them o(1) when t— oo along half rays from the origin which are
different from the negative real axis.

In the Abelian theorem for (2) which will be considered presently, it is as-
sumed that ¢€I° when s—h + integer or I °0 €’ when s—h=integer. These
relations appear as conclusions in the corresponding Tauberian theorem. It fol-
lows that it is natural to suppose s<h+1. If s=h+1 the condition I °¢c€w®
is equivalent to the existence of the integral (2) and also implies that this in-
tegral is o(1) when {—>oco. The Abelian and Tauberian theorems given below can
therefore be extended in a trivial way to include also the case s=%+1 in which
the Tauberian theorem holds without the Tauberian condition g€7%. We re-
strict ourselves to the non-trivial case s<h+ 1.

The following Abelian and Tauberian theorems are proved in section 4 and 5.

Theorem A (0,c0). If s<h+1 and c€I° or in case s—h is an integer, if
I °6 €’ then

Jw AMA+ G o) =t pt ) + ot ), b+ oo, (3)
0

where p i3 a polynomial.

Recall that if s==0 the condition ¢ € I° coincides with ¢ €w® i.e. o(A) = 0(A°) when
§>0 and o(A) =o(-+ o)+ 0(A°) when s<0. The condition I oc€w’ is equivalent
to the convergence at infinity of

fw A7%da{A).

According to lemma 1 and definition 3 the relation I %0 € ® implies that ¢ € I°
but the converse is not true.
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The conclusion of A(0, o) also holds when ¢ tends to infinity along arbitrary
half rays from the origin different from the negative real axis.

Theorem 7'(0, o0). If s<h+1, if 6€T° and if, with a polynomial p,
f AMAED o) =t pt ) + oY), t—>+ oo, (4)
0

then g €I°. If s—h is an integer the result can be sharpened to I *c€w’.

Remark. The assumption ¢€7° can be replaced by the slightly more general
condition that oc+¢@€T° for a ¢ satisfying @€I° or, in case s—h=integer,
I*pew’.

4. Proof of the unilateral Abelian theorem

Theorem A(0, co) is easily reduced to A{q} and A4 {0}. If 0<s—h <1 the
polynomial ¢ 'p(t!) is irrelevant in (3) and can be included in the remainder.
When s—h=0 only the first term a,¢* of ¢ 'p(¢™') is relevant. The left hand
side of (3) can be written

fc (A+6)72dI "a(A).

0

According to lemma 3 it follows from the condition o€I° of A (0, o) that
I"ge*™" and if s—h+0 we know from lemma 2 that I*"=* " Thus
I'"6€w* " when s—h=0 which shows that if 0<s—h <1 theorem A(0, o)
reduces to 4{q} with g=s—% and with ¢ replaced by I "o. When s—h=0it
is required in A(0, oo) that I *0c€w® which is the condition of theorem A4 {0}
if ¢ in this theorem is replaced by I""6=1I"°¢c. Thus A(0, o) is proved when
0<s—h<l.
To prove the theorem when s—%A <0 we use the identity

k-1
A+ =3 (mA T (=02
i=0

with h—~s<k<h—s+1. Thus the left hand side of (3) equals a polynomial in
t~! without constant term plus

(—t)"‘f: AErA+ 1) da(A). (5)

Since ¢ €I° it follows that I " geI* " o [*-"¥ -1 = (y*~2+¥-1 = )® which shows
the convergence of the occurring integrals. In (5) 0<s—(h—k)<1 and the in-
tegral can be treated in the same way as the left hand side of (3) when
0<s—h<1. This completes the proof.
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5. Proof of the unilateral Tauberian theorem

When 0<s—h<1 the Tauberian theorem 7T(0, o) is reduced to 7'{gq} and
T{0}. The assumption o €7 gives I "¢ €T° " according to lemma 6. Hence if
0<s—h<l it follows from T{q}, g=s—h, that I "6€w’ *=I1°"". Lemma 3
shows that ¢ €I°. When s—h=0 the theorem 7T {0} gives I "g€w® or I °c €’.

If s~h <0, the basic relation (4) implies that

f (A+t) 'l "o=a,t 1+o(t!), t—>+ co.
0

Since I""6€T°" and s—h<O0 it follows from lemma 9 that I "¢ €7T°. Thus
T{0} shows that "0 €w®. Because of this and theorem 1 formula (4) can be
written

f Atdo— J A PA+ty ddo=ay+agt i+ .. ot
0 (1]

Letting ¢ tend to infinity one finds because of the second part of theorem 1 that

f Atdo=a,
0

and the formula reduces to
f AT A+) Mo(d) = —a,t T — ...+ o).
~Jo

Thus, provided s—h <0, formula (4) can be replaced by a similar one with A —1
instead of . If s—(k—1)<O0 the procedure is repeated. Finally a formula is
obtained in which & is replaced by h—r with 0<s—(h—r)<1. We are then
in the case already considered and the proof is accomplished.

6. Inhomogeneous theorems

Let x=KA° when s+0 and A>a¢>0 and let x=K logA when s=0 and
Aza>0. Here K and a are constants. For 0<l<a the function X is arbi-
trarily defined so as to cause no trouble about the convergence at the origin
of the integral

fmz—"(u ty~rdx(A). (6)
0

It is easy to see that when s<h-+1 the condition I " 'Y €w® is fulfilled which
guarantees the convergence at infinity of the integral. Also ¥ €7". '

If o is replaced by @— X in A(0, o), T(0, o) these theorems are transferred
into “inhomogeneous” theorems connecting the conditions ¢ — X €1° or I~ °(p — X) €’
(when s—h= integer) on one side and
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f O t)'ldqv=f AN e o ([
0 0

on the other. In the inhomogeneous Tauberian theorem the condition ¢ €T*
takes the place of o €7".

Simple calculations show that in these inhomogeneous theorems the integral
(6) can be replaced by

T8

—_— s-h-1 _ s
sin n(s—h)t when s+0, s—h+integer,

Ks(—1)" """ logt when s=+0, s—h=integer,

7
—  wh = — T
sin (—72h) when s=10, s — h=integer,

K(—1)""¢t"""! Jog t when s=0, s— h=integer.

7. A bilateral Abelian theorem

In the bilateral case functions o(A) are considered which are defined on
— oo <A<+ oo and of bounded variation over every finite subinterval. It is
assumed that

fl/ll"‘lda(z)l

converges over a two-sided neighbourhood of the origin.
We are concerned with the study of the integral

f_ml ATMA+ ) do(R) (7

which is supposed to converge. This means that I-""'g(1) and I~" '¢(—A) are
in @® when considered for positive values of A. As in the unilateral case it is
natural to assume s<h+1 and the case when s=h+1 is trivial. We therefore
suppose s<<h-+1.

The part of (7) which comes from - co <1< 0 is transformed into an integral
from 0 to + oo by the substitution A= — u. Afterwards y is replaced by 4. With

S(y=o(A)+a(—4),
AR)=0(d)~a(—4),

the result reads

f TR - ) S — tfw AT -6 dA(R).
0

0
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From this it follows that a relation

f+w | M‘h(l + t)ﬂldo'(ﬂ.) = t—lp(t_l) +0( lt]s_h_l):

— o

holding when t—oco along two opposite non real half rays, can be split into
formulas

f TA (A + T) dAWYR) = TP 4 o (| TR (8)
0

o k-1 ‘E-__”‘l-l
f A 2 (A+T)‘1dS(VA)=T‘1P2(T‘1)+O(IT|2 2 ) 9)
0

valid when 7' oo along a half ray different from the negative real axis. Here
T=—t, A=2* and the polynomials P,, P, are determined by p(x)+p(—z)=
2P,(—2%, px)—p(—x)= —2xP,(—2%) when the polynomial p is known. Evi-
dently $s<3h+1, Is<3(h—1)+1 since s<h+1.

The bilateral Abelian theorem is now an immediate consequence of A(0, oo)
applied to (8), (9).

Theorem A(-— oo, + wo). If s<h+1 and s—h is not an integer it follows from
o(A)eI*, o(—A)EI® that

J‘*‘” A" A+t tda(A) =t pt™ ) +o(Jt7" )

when t—>oco along non real half rays from the origin. Here p is a polynomial. If
s—h is an integer the same result is valid under the supplementary conditions
I S(6(A) + o(~A) €Ew® when s—h is odd, I *(c{A)— o{~—2)) €Ew® when s—h is even.

8. The bilateral Tauhberian theorem

Theorem 7'(— oo, -+ co). Let s<h-+1 and assume that o(A) €T, o(—A)€T* for
positive values of A. If with a polynomial p

fm (A MA+ 0 el =t p ™Y +o([EP ") (10}

as t—>oo along mon real half rays from the origin, then o(1)€I° and o(—A) €L
for A—+ oo,

Observe that the couple A(— oo, + o0), T(— oo, + oo) does not show the
same symmetric reciprocity as A(0, o), T(0, oo).

If we wanted to include also the case when s=FA+ 1 we would conclude from
the mere existence of the integral in (10) that I *o(4) €w®, I *o(— 1) €»" which
implies o(A) €I°, o(—A) €I’
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But for certain exceptional cases occurring only when s—»A is an integer the
proof of T(— oo, + o) is obtained by replacing ¢ in (10) by it, the new ¢ being
real. If the resulting relation is split as in section 7 we obtain (8), (9) with T
real positive.

According to lemma 7 and 8 either S(VX) or A( VK) belongs to 7. Let us
first assume S(VA)€T*2, Then 7T(0, o) can be applied to (9) with the result
S(VA)eI’®. If s—h is an odd integer T'(0, oo) gives in addition the convergence of

fwz*dwuy+d—w»

0

which, however, is of no use in the rest of the proof. Provided s—# is not an
even integer theorem A(0, o) yields

00 h s h
f Affu\+zwﬂd&VK)=T*1§MFU+OQTF‘?*L (11)
0

where P; is a new polynomial. Addition and subtraction of (11), (8) lead to
separate formulas for o(/'A) and o(—VA). Application of 7(0, o) to these for-
mulas finally shows that o(V'A), o(— VA)€I*® and the conclusion of T'(— oo,
+ o) follows from lemma 5.

If instead A(VA)€ET*? the same method is applied but with starting point in
(8). The same result is obtained provided s—% is not an odd integer. If s—A%
is an even integer we find the additional result that

fﬁ*adm—d~m)

0
exists.

The exceptional cases s—h= even integer, S(A) €T* and s—A= odd integer,
A(A) €T remain to be considered.

9. Proof of the bilateral Tauberian theorem in the exceptional cases
To take care also of these cases we must use (10) not only along one couple
of opposite half rays but along two. Since it is not more complicated to con-
sider n couples we do this.
The point of departure is the partition in partial fractions

2n-1

2nt2"—°‘_1)ﬁz(ﬂ.2"+t2n)_l= _ z 8%“ (ﬂ.—ekt)fl, (12)
k=0
where «=0,1,2, ... (2n—1) and

£ = exp (721;1-}- k%)
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In (10) ¢t is now replaced by —e&t, £k=0,1,2, ... (2n—1), after which the re-

sulting formulas ‘are multiplied by e&'' and added. The result is condensed by

help of (12) and occurring integrals from — oo to 0 are transformed into inte-

grals from 0 to + co. At last the new variables A =2, T=¢" are introduced.
The formulas deduced in this way are

h-a 1

1 s
f AT (A T) (6 (AP~ (— 1 6 (— AT = 17 P, () 4 o(|T R 35 Y,
(13)

«=0,1,2, ... (2n—1). They are certainly valid when T-—>oco along the positive
real axis.
According to lemma 8 and 7 we know that

1 1

o (A2 — (1o (- _")ET“ (14)

holds either for o« odd or even. Assume first that it holds for « odd. Theorem
T(0, ) can then be applied to any of the formulas (13) with « odd. The
result is

.1 1 s
o(A2™)+o(— A2 el2n, (15)
Next chose « even and ‘such that
$ _h-«a
2n  2n

is not an integer. This is possible if only »>1 ie. if there is more than one
even a, 0<a<2n. With the chosen even o« theorem A4 (0, c0) shows because
of (15) that

h—ea 1 S _hoa
TATE (AT (0 (AP) o (— AP =T Py o (| TFE TR Y,

0

where P, is a polynomial. This relation and formula (13) with the same even

a lead to relations for
h-x 1

A 2n (A+T) 'da (A2

0

from which it follows by help of 7'(0, o) that

1

o(L A" eIPm,
According to lemma 5 this is equivalent to
o(A)EI®, o(—A)EI.

The case when (14) is valid with « even is similarly treated with the same
result.
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10. Inhomegeneous form of the bilateral Tauberian theorem
With
K, 2 for0<a<i
X(A)=
K,(—A4)y for A< —a
when s+0 and

K, log A for 0<a<i
K,log (—A) for A< —a

when §=0 the theorem 7T'(— oo, + oo) takes the inhomogeneous form

Theorem 7T'(— oo,+ co). If s<h+1 and @A) €T®, o(—A) €T° and if with a
polynomial p

too +00
f Ill"‘<z+t>“d¢(z)=f [A7" @+t dx @)+ ple ) +o (77
as t—>oo along non real half rays from the origin, then p(d)—X(A)EL, ¢p(—1)—
Z(—A)EL for A— + oo,

In this theorem the integral on the right hand side
f /1‘”(/1+t)‘1dx(l)+f AMA=HT A= A) (16)
0 0

can be replaced by expressions directly obtained from section 6. The expres-
sion for the first integral in (16) shall be real when ¢ is real positive (we as-
sume K, and K, real) and the one replacing the second integral shall be real
when ¢ is real negative.
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