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Nestinvertible matrices

By EpGARrR AspLunD

Introduction

In the present paper we will define and characterize a class of unimodular
matrices which we call nestinvertible matrices. The defining property is that if
A is a nestinvertible matrix and B is its inverse, then each lower right square
submatrix of adjacent elements of B is the inverse of the corresponding upper
left submatrix of A. The nestinvertible matrices are then characterized directly
by the properties of their elements. This characterization is proved using formal
power series. The hint to use such series in this connexion was given by Prof.
O. Hanner.

Except in the final section the matrices are over an arbitrary ring with a unit.
This is no vain generality since it will make the formulae valid for block ma-
trices. However, in our example in the last section we will use only real matrices.
The intended use of our results and concepts is for constructing test examples
of matrix inversion and L R-decomposition.

1. Definitions and notations

For a given nxn matrix 4, let ¥4 denote the kx% submatrix of adjacent
elements that contains the upper left corner of 4 and let A, denote the corre-
sponding lower right submatrix.

Definition 1. An n X% matrix 4 over a ring R with unit (denoted by 1) is called
nestinvertible if it is invertible and if furthermore (4)™'=(47"), for 1<k<n.

Definition 2. The nest class N (n, R) is the set of all nxn nestinvertible ma-
trices 4 over M which satisfy 14 =(1).

It is easy to see that those matrices that are of the form (exemplified here
on 535 matrices)

1 0 0 0 O 0 0 0 0 O
aa 1 0 0 O 1 0 0 0 0
A=y ay a, 1 0 O |=fT), withT=}j 0 1 0 O O
a; a, a, 1 O 0 01 0 0
ay a, a, a 1 0 0 0 1 0
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constitute a subset of the nest class. They may, in fact, be regarded as power
geries in the nilpotent variable 7" with coefficients in ! and with 1 as leading
coefficient. Hence this set forms a group, and it is trivial to verify that the
conditions of Definition 1 and 2 are satisfied.

Definition 3. The group of all nxn matrices A =f(T'), where f denotes a formal
power series with coefficients in i and with leading coefficients 1 and where 7'
is the nxn matrix whose elements are 1 in the first subdiagonal and O elsewhere,
is called the power series group PS(n, R).

Definition 4. We denote by P S’ (n, R) the group of matrices which are trans-
poses of matrices in PS8 (n, R).
Finally, we need the notion of unimodularity of a matrix. We make the follow-

ing definition which generalizes the one given for general fields by Dieudonné
[1], p 36.

Definition 5. The wunimodular group SL(n, R) is the group generated by those
nXxn matrices By (1) which are obtained from the unit matrix by replacing one
of its zeros (the one in position (s, j)) with an arbitrary element 2€R.

2. Results
The results of this paper are summarized in the following theorem.

Theorem. N (n, R)=P 8 (n, R)PS (n, R)< S L(n, N).

The theorem states that all products of one element in the power series group
and the transpose of another element in this group, taken in that order, belong
to the nest class and that all elements of the nest class may be so obtained
and are unimodular.

To prove that N (n,R)>PS(n, R)PS (n, R) we suppose that LEPS(n, R)
and RE€PS (n, R). Then the relation *(LR)=FL*R holds because of the lower
trlangularlty of L and the upper triangularity of R. But (*L*R)™'=(*R™)(*L)™*
= (B ) (L Y= ((LR) "), so that the matrix LR is indeed nestmvertlble Hence
LReN (n, R) since (LR)=(1L)(*R)=(1).

For the proof of the opposite inclusion we need a pair of lemmas on LR-
decomposition.

Lemma 1. If ¥4 is invertible for 1 <k<n then there exists a unique decom-
position A=LR, where L is a lower triangular matrix, R is upper triangular

and all main diagonal elements of L are 1. Also A = (*L)(*R) and all *L, R are
invertible.

Lemma 2. If A4, is invertible for 1 <k<n then there exists a unique decom-
position 4 =RL where L and R are as in Lemma 1. Also 4,= (R;) (L) and all
L., R, are invertible.

To prove Lemma 1 we suppose inductively that its results have been found
true for matrices of order up to n—1. This is trival for n=2. From the block
matrix formula
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n—1 n-1 n—1 n-1 -1
A:( A b):( L 0)( R (*'L)™ )=LR,
c d c("IR) 1 0 d—c(®*4)™ %

where b is a column, ¢ is a row and d is an element of M follows both the exist-
ence and the uniqueness of the L R-decomposition for 4. The inverse of L is

~ (n—lL)—l 0
1
L <__c(n—1A)~1 1)

and R=L"'4 is also invertible as the product of two invertible matrices. Hence
Lemma 1 is proved. The proof of Lemma 2 is analogous.

Now take 4 € N (n, R) and construct its L R-decomposition 4 = L RB. By Lemma
1 we have ¥A=(*L)(*R). But, as A '=(R7Y) (L") we get from Lemma 2 that
(A7Y, = (R 1) (L™Y),. Furthermore, the relations (R™Y), = (Ry) ™", (L™ 1) = (L) are
evident from the block decompositions of R and L respectively,

(50 ) ()
“\o B/ \0o &Y, o E,)’

where E,_; and E, denote unit matrices of order » —% and k. Now, as
FA=(CL) (R = (4 ™ = (L) (R ) = L) (B

we can again appeal to Lemma 1 and deduce that *L=I, *R=R,. This, how-
ever, means that the elements of L and R do not vary along diagonals parallel
to the main diagonal. For L this immediately implies that L€ P S (n, i) but also
RePS (n, N) follows, since by hypothesis 14 = (1) and this has for consequence
that the first element in the main diagonal of R is 1.

Now we have proved that N (n, ) =P 8 (n, R) P.S’ (n, N). The assertion N (n, R)
<SL(n, N) is proved if we can show that PS(n, R)<SL(n, R). But it is easy
to prove that all lower triangular matrices whose main diagonals consist of ones
are unimodular, and hence also those of the special kind that constitute P8 (n, ).
In fact, let 4= (a;) be such a matrix, then

A = By (ag1) Bg1 (@31) ... Bn1(n1) Bsa (32) ... Bna (an2) ... B, n-1(@n, n-1),
whence 4 €SL(n, R) by Definition 5.

3. Applications

The nest class N, (n, N) is a class of matrices with easily determined inverses.

Suppose we have a matrix 4 €(n, R) and write it with the power series notation
infroduced earlier,

A=fT)[g(MY =fT)g(T)
then A = (g () ()

Since there are a certain number of simple functions f(z) for which the power
series of both f(x) and 1/f(x) are known explicitly, this gives us a method of
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constructing pairs of reciprocal matrices whose elements may be given explicitly
and by “the same formula” for any order ». As an example we may take
f(@)=g(x)=(1—=z)>. With this choice, A= (ay) is given by the formulae

a11=1, aw=25, a; =6 for i >3,

Gz =09 = —2, @y 11 =0iy1,1= —4 for i=2,

Q2 =qisg1=1, 1<i<n—2,

and a;=0 for |i—j|>2.
The elements of the inverse A~'=(b;) are given by

}p(p+1)(Bg—p+1) for g=p-1,
}q@+1)Bp—g+1) forg<p+1.

bn+1-n.n+1—a={

Our theorem holds for any ring R with a unit and we may utilize this by
choosing, e.g. R to be a ring of real matrices, thus extending the scope of the
applications in a potentially useful way.
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