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Introduction 

I n  the  present  paper  we will define and  character ize  a class of un imodular  
mat r ices  which we call nes t inver t ib le  matr ices .  The defining p rope r ty  is t h a t  if 
A is a nes t inver t ib le  m a t r i x  and  B is i t s  inverse, then  each lower r ight  square 
submat r ix  of ad j acen t  d e m e n t s  of B is the  inverse of the  corresponding upper  
lef t  subma t r ix  of A.  The nes t inver t ib le  matr ices  are then  character ized di rec t ly  
b y  the proper t ies  of thei r  elements.  This charac ter iza t ion  is p roved  using formal  
power  series. The hint  to  use such series in this  connexion was given b y  Prof.  
O. Harmer .  

Excep t  in the  final section the matr ices  are over  an  a r b i t r a r y  r ing wi th  a unit .  
This  is no va in  genera l i ty  since i t  will make  the formulae val id  for block ma-  
trices.  However ,  in our example  in the  las t  section we will use only  real  matr ices.  
The in tended  use of our resul ts  and  concepts is for construct ing tes t  examples  
of ma t r ix  inversion and  L R-deeomposi t ion.  

1. Definitions and notations 

F o r  a given n• mat r ix  A,  le t  kA denote  the  k• submat r ix  of ad jacen t  
e lements  t h a t  contains  the  upper  lef t  corner of A and  le t  Ak denote  the  corre- 
sponding lower r ight  submatr ix .  

Definition 1. A n  n •  ma t r i x  A over  a r ing ~ wi th  uni t  (denoted b y  1) is cal led 
nestinvertible if i t  is inver t ib le  and  if fur thermore  (~A) - 1 =  (A-1)~ for 1 <.k<n. 

Definition 2. The nest class N(n, ~) is the  set of all  n x n nes t inver t ib le  ma-  
t r ices  A over  ~ which sa t is fy  XA =(1) .  

I t  is easy  to  see t h a t  those matr ices  t h a t  are of the  form (exemplified here 
on 5 • 5 matr ices)  (10000) (o oooo) 

al  1 0 0 0 1 0 0 0 0 
A =  a 2 a 1 1 0 0 = ] ( T ) , w i t h  T =  0 1 0 0 0 

a 3 a 2 a 1 1 0 0 0 1 0 0 
a 4 a 3 a s a 1 1 0 0 0 1 0 
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const i tu te  a subset  of the  nes t  class. They  may,  in .fact, be regarded  as power  
series in the  n i lpo ten t  var iable  T with  coefficients in ~ and  wi th  1 as leading 
coefficient. Hence this  set forms a group, and  i t  is t r iv ia l  to ver i fy  t h a t  the  
condit ions of Defini t ion 1 and  2 are satisfied. 

Definition 3. The group of all n • n matr ices  A = / ( T ) ,  where / denotes  a formal  
power series wi th  coefficients in ~ and  wi th  leading coefficients 1 and  where T 
is the  n • n ma t r i x  whose e lements  are 1 in the  first  subdiagonal  and  0 elsewhere, 
is called the  power series group P S (n, ~). 

Definition 4. We denote  by  P S' (n, ~) the  group of matr ices  which are t rans-  
poses of matr ices  in P S(n, ~). 

Final ly ,  we need the  not ion of un imodu la r i ty  of a mat r ix .  We make  the follow- 
ing definit ion which generalizes the  one given for general  fields b y  Dieudonn~ 
[1], p 36. 

Definition 5. The unimodular group S L(n, ~) is the  group genera ted  b y  those 
n• matr ices  B~j (2) which are ob ta ined  from the uni t  ma t r i x  b y  replacing one 
of i ts  zeros (the one in pos i t ion  (i, j)) wi th  an  a r b i t r a r y  e lement  ~ E ~ .  

2. Resul ts  

The results  of th is  paper  are  summar ized  in the  following theorem.  

Theorem. N (n, ~ )  = P S (n, ~}~) P S' (n, ~ )  c S L (n, ~) .  
The theorem s ta tes  t ha t  all  products  of one e lement  in the  power series group 

and  the t ranspose of another  e lement  in this  group, t aken  in t h a t  order,  belong 
to the  nest  class and  t h a t  all e lements  of the  nest  class m a y  be so ob ta ined  
and  are unimodular .  

To prove t ha t  N ( n , ~ ) ~ P S ( n ,  ~)PS'(n,  ~) we suppose t h a t  LEPS(n,  ~R) 
and  REPS'(n,  ~). Then the  re la t ion k(LR)=kLkR holds because of the  lower 

k k 1 k 1 k 1 t r i angu la r i ty  of L and  the  upper  t r i angu la r i ty  of R. Bu t  ( /5 /~)- = ( R -  ) ( L ) -  
= (R-1)k (L-1)k = ((LR)-I)k,  so t h a t  the  ma t r i x  LR is indeed nest inver t ib le .  Hence 
LR eN(n, ~) since ~(LR) = (1L) (1R) = (1). 

F o r  the  proof of the  opposi te  inclusion we need a pa i r  of l emmas  on L R- 
decomposit ion.  

Lemma 1. I f  kA is inver t ib le  for 1 ~< b ~<n then  there  exists  a unique decom- 
posi t ion A = L R ,  where L is a lower t r iangular  mat r ix ,  R is upper  t r iangular  
and  all  main  diagonal  e lements  of L are 1. Also kA = (kL) (kR) and  all  kL, kR are 
invert ible .  

Lemma 2. I f  A k is inver t ib le  for 1 ~< k~<n then  there  exists  a unique decom- 
posi t ion A = R L where L and  R are as  in L e m m a  1. Also A~ = (Rk)(Lk) and al l  
L k, R k are inver t ible .  

To prove Lemma 1 we suppose induc t ive ly  t h a t  i ts  resul ts  have  been found  
t rue  for matr ices  of order  up  to  n -  1 . .This  is t r iva l  for n = 2. F r o m  the block 
ma t r i x  formula 
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d -  c (~-IA) -lb~ = 

where b is a column, c is a row and d is an element of ~ follows both the exist- 
ence and the uniqueness of the LR-decomposi t ion for A. The inverse of L is 

L - 1  = ( ( ~ - I L )  -1 
\-c(n-lA) -1 ~) 

and R = L-1A is also invertible as the product  of two invertible matrices. Hence 
Lemma 1 is proved. The proof of Lemma 2 is analogous. 

Now take A E N (n, ~)  and construct its LR-decomposi t ion A = LR.  By Lemma 
1 we have kA= (kL)(/cR). But,  as A - 1 =  (R-1)(L -1) we get from Lemma 2 tha t  
(A-1)/c = (R-1)k (L-1)k. Furthermore,  the relations (R-1)k = (Rk) -1, (L-1)/c = (Lk) -1 are 
evident from the block decompositions of R and L respectively, 

b d -R/~-I = (;  R/c) (;  (R-1)/c)=R-1R= ( En-k Ok), 

where En-/c and E/c denote unit  matrices of order n - k  and k. Now, as 

kA = (kL) (kR) = ((A-1)k) -1 = ((5-1)k)-1 ((R-1)k) -1 : (i/c) (Rk) 

we can again appeal to Lemma 1 and deduce tha t  /ci=L~,/cR=R/c. This, how- 
ever, means tha t  the elements of L and R do not  vary  along diagonals parallel 
to the main diagonal. For  L this immediately implies tha t  L E P S (n, ~)  but  also 
R EPS'(n ,  ~) follows, since by hypothesis 1A=(1)  and this has for consequence 
tha t  the first element in the main diagonal of R is 1. 

Now we have proved tha t  N (n, ~) = P S (n, f]~) P S' (n, ~). The assertion N (n, 9~) 
c S L ( n ,  ~) is proved if we can show tha t  PS(n ,  ~ ) c S L ( n ,  ~). But  it is easy 
to prove tha t  all lower triangular matrices whose main diagonals consist of ones 
are unimodular, and hence also those of the special kind tha t  constitute P S (n, ~).  
I n  fact, let A = (a~j) be such a matrix, then 

A = B21 (a21) B31 (a31) ... Bnl (anl) B32 (a32) ... Bn2 (an2) ... B . . . .  1 (a . . . .  1), 

whence A ESL(n,  ~) by  Definition 5. 

3. Appl icat ions  

The nest class N, (n, ~)  is a class of matrices with easily determined inverses. 
Suppose we have a matr ix A C (n, ~)  and write it with the power series notat ion 
introduced earlier, 

A = / (T) [g (T)]' = / (T) g (T') 

then A -1 = (g (T')) -1 (/(T)) -1. 

Since there are a certain number  of simple functions /(x) for which the power 
series of both /(x) and 1//(x) are known explicitly, this gives us a method of 
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constructing pairs of reciprocal matrices whose elements may  be given explicitly 
and by "the same formula" for any order n. As an example we may take 
/(x) = g  (x)= ( 1 - x )  2. With this choice, A = (a~j) is given by the formulae 

all = 1, a 2 2  = 5 ,  a~t = 6 for i ~>3, 

a l ~ = a 2 1  = - 2 ,  at.~+l = a ~ §  ~ - 4  for i>~2, 

a t . ~ + 2 = a i + 2 . t = l ,  1 ~ i ~ n - 2 ,  

and ats = 0 for [ i - 7l > 2. 

The elements of the inverse A-l=(b~j) are given by  

/ }v(v+ 1)(3q-p+ 1) for q> p- 1, 
bn+l -v . ,~+l -q  = ( ~ q ( q  + 1) ( 3 p -  q+  1) for q <  p +  1. 

Our theorem holds for any ring ~ with a unit and we may  utilize this by  
choosing, e.g. ~ to be a ring of real matrices, thus extending the scope of the 
applications in a potentially useful way. 
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