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l .  Introduction and notation 

We are interested in studying the real functional equation/n(x) = g(x) o n a n  interval 
[a, b] of the real line. In  particular we wish to obtain conditions on g which will 
assure one tha t  solutions / of the given equation possess certain properties. I f  one 
insists only tha t  / be a pointwise solution, then the problem for n = 2 has been solved 
[3]. If  one insists tha t  / be continuous, only very limited results are known [1], [2], 
[5]. In  Theorem 2.1 we obtain results which suggest studying the problem in a 
certain subclass M[a, b] of the class of continuous functions. In  example 1 we show 
tha t  there exists a continuous function g defined on a closed interval [a, b] for which 
the equation/~(x) =g(x) does not possess any  continuous solutions / but  does have 
a solution / which possesses the Darboux property.  Theorem 2.4 gives sufficient 
conditions to insure tha t  if g is continuous then any  solution / of the equation/n(x) = 
g(x), which possesses the Darboux property,  will also be continuous. In  Theorem 2.5 
we consider the special equation/n(x) =/n+P(x). 

To facilitate mat ters  we introduce the following notation. Let  [a,b] denote any 
closed interval of the real line where the endpoints § ~ and - ~ are allowed. The 
set of all functions defined on [a, b] with values in [a, b] will be denoted by  R[a, b]. 
A function is said to possess the Darboux  property if it takes connected sets into 
connected sets. D[a, b] will denote those functions of R[a, b] which possess the Dar- 
boux property.  C[a,b] will denote those functions of R[a,b] which are continuous 
on [a, b]. We denote by  M[a, b] those functions of C[a, b] which are piecewise monotone 
(written p.m.) on [a,b]. Here, / is said to be piecewise monotone on [a,b] if there 
exists a finite parti t ion P = [P0 .... p~] of [a, b] such tha t  on each subinterval [Pi,Pi+l] 
the function / is strictly monotone (written s.m.). I f  every parti t ion P*  which pos- 
sesses this proper ty  with respect to / is a refinement of P,  then P is said to be the 
parti t ion asssociated with / and will be denoted by  P(/). We define /~ and 
/n+l(x) =](/~(x)) for n ~>0. Finally, we define the set S(n,g)= {/eR[a,b] I/~(x)=g(x) 
for all x e [a, b] }. 

2. The general equation fn(x)= g(x) 

I t  is clear tha t  if /E M[a, b] then/~E M[a, b] for any i. We now establish the con- 
verse. I f  / E D[a, b] and f E M[a, b] then / E M[a, b]. 

Theorem 2.1. I / g  E M[a, b] then S(n, g) N D[a, b] c M[a, b] and P(g) is a refinement 
o/P(/)/or every/eS(n,g) N D[a,b]. 
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Proo/. We first note  tha t  i f / E D [ a , b ]  is s.m. on each subinterval  [Pi,Pi+l] of P(g) 
t h e n / E C [ a , b ]  and  s o / E M [ a , b ] .  Thus,  it suffices to show tha t  any  [ES(n,g) N D[a,b] 
is s.m. on every  subinterval  [P*,P~+I] of P(g). Assume f is no t  s.m. on [Pi,P~+I], then  
s i n c e / E  D[a,b] i t  follows easily t h a t  there are a t  least two points  x, yE[pi,pi+l] for 
which /(x)=/(y).  But  then g(x)=In(x)=/~(y)=g(y) which contradicts  the fact  t ha t  
g is s.m. on [P,,Pi+I]- This completes the proof of Theorem 2.1. 

We shall see later t ha t  there are g E M[a, b] such tha t  D[a, b] N S(2, g) is e m p t y  while 
R[a,b] N S(2,g) is not  empty .  We shall also see, by  means of an  example, t ha t  there 
are gEC[a,b] for which S(2,q) N C[a,b] is e m p t y  bu t  S(2,g) N D[a,b] is not  empty .  
To facilitate the construct ion of this example we now obtain  several results which 
are needed here and later in the development .  The first result  is closely related [2] 
to the case g(x)=[(x)=/~(x). 

Theorem 2.2. I f  /E D[a,b], /(p) =p and S is a nondegenerate maximal connected set 
containing p, such that/ '(x) = x /or  x E S, then S = [c, d] and (a) / I S is a homeomorphism 
o/ S onto S, (b) /(x) =x on S or/(c) =d, /(d) =c and/]  [c,d] is a reflection o/[c,d] about 
pe(c,d).  

�9 Proo/. S i n c e / ~ = g  is s.m. on S and  ]ED[a,b], it follows, as in Theorem 2.1, t h a t  
f is s.m. on S, i = 1,2 .... , n - 1 .  I t  then  follows tha t  f is continuous and s.m. on the 
closure ~q = [c,d] of S, i ~ 1 ..... n - 1 .  Consider first the case where / is increasing on 
[c,d]. I f  p~=d then there exists qE(p,d) such tha t  f (q)E(p,d)  for i = 0  ..... n. Ei ther  
f+l(q) >f (q ) , / (q )  =q or f+l(q) < f ( q )  for i =0 ,  ...,n since / is s.m. in [p,d]. But  [~(q) =q 
and  so/(q) = q. I t  now follows tha t / (x )  -- x on [p, d]. I f  p :~c a similar t r ea tmen t  shows 
tha t / (x)=--x  on [c,p]. Thus,  if / is increasing on [c,d] t h e n / ( x ) = - x  on [c,d]. Let  ] be 
decreasing on [c,d] and assume t h a t  p =~c. Then  / is s.m. on [p,/(c)]. I f  / is increasing 
on [p,/(c)] there is a point  we(p,l(c)) such t ha t  f(w)e(p,/(e)) for i = 1 , 2  ..... n. Let  
qE(c,p) be such t h a t / ( q )  =w, then ]~(q)~=q. Thus, / is decreasing in [p,](c)] U [c,p]. 
If /2(c) 4c  then either p(c)e (c,/(c)) or there is a t t  E (c,p) such tha t /n-J ( t t  ) E [p,/(c)] U 
[p ,c ) j=l  ..... n - 1  and  p(t t )=c.  I n  the first case, f(c)E(c,/(c)) for all i~>2 and so 
/n(c) =~c. I n  the second case, we have t tES  for which /~(/z)=~# which is impossible. 
Thus,/2(c) =c, n is even, and /2  is an  increasing function on [c,p]. Thus, / is a reflec- 
t ion of [c,/(c)] about  p.  I n  the same wa y  one m a y  show tha t  / is a reflection of [/(d),d] 
about  p.  Since S is max ima l / (d )  =c and / ( c )  =d. This completes the proof of Theo- 
rem 2.2. 

Corollary 2.1. I / / sa t i s f i e s  the hypothesis o/Theorem 2.2,/EC[a,b] and S=[c,d] :# 
[a, b] is a ray, then / - - x  on S. 

Proo/. Either  cE(a,b) and d = b =  + oo or dE(a,b) and c = a =  -oo .  Since /EC[a ,b ]  
it is clear t ha t  in bo th  cases we m a y  not  have / ( e )  = d  a n d / ( d )  =c and the result 
follows. 

I f  gER[a,b] we define ~(g)=(xlxE[a,b ] and  g(x)=x},  y(g) is called the set of 
fixed points  of g. I f / E S ( n , g )  then  one m a y  say a great  deal about /17(g)"  One of 
these results is contained in the following theorem. 

Theorem 2.3. I] gER[a,b] and ]ES(n,g) then /lY(g) defines a one to one map o/ 
7(g) onto 7(g). 

Proo]. Assume x e~(g), but  t ha t  y =/(x) r Then g(y) :#y and/n+l(x) =/(/n(x))= 
/(x) =y=/(/n(x))-g(y)=~y. Thus, f (~ (g ) ) c? (g )  for any  i. Let  x ET(g ), then x=g(x )=  
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/(/n--l(x)) C/(~(g)) and so ?(g)c/(7(g))" Thus, / defines a map of ?(g) onto itself. 
Since for any x, y ET(g)x ~:y implies/n(x) #/n(y),  it follows tha t  the map is one to one. 

Corollary 2.2. I /  g E R [ - o o ,  oo], 7(9) is a ray, and /ES(n ,g)  N C [ - o o ,  oo], then 
/(x) - x / o r  x ET(g ). 

Proo/. Since g E C[ - o% oo], ~(g) is a closed interval and / defines a homeomorphism 
of 7(g) onto itself. Because ] E C [ -  oo, oo] the finite endpoint of 7(g) must  be mapped 
onto a finite point so it must  be mapped onto itself since/]y(g) is a homeomorphism. 
Our result now follows from Corollary 2.1. 

I t  is possible to obtain information concerning the existence of solutions /E R[a, b] 
for/n(x) =g(x) by  studying the sets 7(g~). Thus, for example, the fact  tha t  the func- 
tion g(x) = - x, x E [0, - 1], and g(x) = - x 2, x E [0,1], possesses only one cycle of order 
2, namely [1, - 1 ] ,  implies tha t  S(2,g) is empty.  In  fact, Isaacs [5] has  stated neces- 
sary and sufficient conditions for S(2,g) to be non empty  in terms of the cycles of g. 
Unfortunately,  these results give no information about  S(2,g)N D[a,b] except, of 
course, in the case where S(2,g) is empty.  

We now display a function g E C [ -  oo, oo] for which S(2,g) rl C [ -  o% oo] is empty  
but  S(2,g) N D [ -  oo, ~ ]  is not empty.  

Example  1. We first define the functions h , / ,  g. 
We define h on [0, 1]: h(1 /n)= ( - 1 ) n n  = 1, 2, ...; 

h'(x) = ( -  1)n 2n(n + 1)xE(1 /n  + 1, 1/n), n =  1, 2 .... 

We define / on [ -  oo, oo ] : / (x)  = x, x ~ 0;/(x) = 0, x >/2 and 0 ~< x ~ 1; 

/(x) = x - 1, 1 < x < ~; /(x) = (x - �88 h(4x - 5)/2 + ~, ~ < x < 3; 

l ( x )  = - ~ + 1  _ 3 ~(x ~),-~<x~<2. 

We define g(x)=/2(x) for x E [ -  o% oo]. C l e a r l y / E D [ -  ~ ,  ~],  g ~ C [ -  ~ ,  ~ ] ,  and 
it remains only to prove tha t  S(2,g)N C [ - ~ ,  ~ ]  is empty.  Assume /ES (2 ,g )N  
C [ -  ~ ,  ~ ] .  Then by  Corollary 2 . 2 / ( x ) -  x for - ~  ~<x ~<0. Then for ~11 x, such tha t  
/ (x)<O, we have g(x)=/ ( / (x ) )=/ (x ) .  Thus, /(x)>~O in [0,1]. We assert t ha t  there 
exists ~ > 0  such t h a t / ( x )  ~ 0 for x E[0,~]. Assume / ( x ) ~  0 on [0,1] and define a = 
maxt0.1J /(x). Since g(x)=/2(x)=O for xe[0,1]  it  is clear tha t  / (x)=O for xE[0,a]. 
Thus, if g(x)=/( f (x ) )>O then /(x)>~.  Since /((~)=0 and g ( x ) < x  for a~l x>O,  it is 
clear tha t / (x )  < x for all x > 0. 

We define a(n )=l+ �88188  Then if n is odd we have g(x)>g(a(n)) for all 
0 ~<x <a(n). Thus, for n odd/(a(n))  =g((~(n)), and it follows tha t / (x)  =- g(x) whenever 
/(x) or g(x) is negative. Thus,/(a(n) < 0  for n odd. But  for n even ](/(a(n))) =9~a(n)) >0  
and so/(a(n)) >~. Since limn_~a(n) = 1 + �88 it follows tha t  / is discontinuous at  �9 = 1 + ~. 
This completes Example  1. 

Consideration of the above example suggests the restrictions on g E C[a, b] -which 
will insure tha t  the solutions of/~(x) =g(x) also belong to C[a,b]. This result is con- 
tained in the following theorem. 

Theorem 2.4. I~ g e C[a, b] and i /e i ther  (a) or (b) below are satisfied then S[n, ff] N 
D[a, b] = S[n, g] N C[a, b]. 

(a) Range o/g=[a,b] .  
(b) g is not constant on any non degenerate interval. 
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Proo/. Assume (a) is satisfied a n d / E S ( n , g )  ~ D[a,b]. Then the range o f / = [ a , b ] .  
Let  h(x) denote/~- l (x) .  Then  range h=[a,b] and  hED[a,b].  Let  / be discont inuous 
at  z. Thus, there exists a sequence {Xl} tending to z such tha t  no subsequence of 
{/(x~)} converges to / (z ) .  One m a y  also assume t h a t  I x~ - z l  > IX~+l-Zl for all i and  
tha t  the sign of (x~-z)  is independent  of i, say  negative.  We now define a sequence 
{yj} converging to a point  y such tha t  h(yj )=z for ?" odd, and  for ] even (h(yj)} is a 
subsequence of {xi}. Since [a,b] = r a n g e  of h there exist Yl and  Y2 such tha t  h ( y l ) = z  
and h(y2)=x 1. I f  Yl and  Y2 are bo th  finite define (~=(yl+Y2)/2. I f  either Yl or Y2 is 
infinite, let ~ be any  point  in (Yl,Y2) for which l y l - a  I ~>1 and  l y 2 - a  I >~1. I f  h ( a ) = z  
set y3=(~ and  let Y4 be any  point  in [Ya, Y2] for which h(y4)=x  2. I f  h(~)>z~let  Ya be 
any  point  in [0, Y2] for which h(y3) = z, and  Y4 be a ny  point  in [Y3, Y~] for which h(y4) = x 2. 
I f  h ( a ) < z  let Y3 =Yl. Since h(a )<x  k for some k ~>2 let y4E [y3,a] be any  point  for 
which h(ya)=x k. Using Y3, Y4 in place of Yl,Y2 and  x2 or xk in place of x 1 we repeat  
the procedure.  I n  this wa y  we obtain  a sequence (yj} with the s ta ted  properties. 
Bu t  then / ( z )  =limk._)~/(h(y~+l) ) =g(y) =limk_,:r g(Y2k) ~/(z). Thus / (x )  e C[a, b]. 

Assume now tha t  (b) is satisfied. Since g is no t  constant  on any  interval  and 
/n(x)=g(x) we have tha t  f (x) ,  i = 1  ..... n is no t  constant  on any  interval .  Let  / be 
discontinuous at  z and set r =/(z). Thus,  there exists a ~ > 0  such tha t  either for any  
wE[r ,r+a]  or for a ny  w E [ r , r - a ]  there is a sequence (xi}-->z such tha t  /(x~)=w. 
Since h is not  constant  in a ny  interval  we m a y  choose in [ r , r + a ]  or in [ r , r - a ] ,  
whichever is necessary, a w such tha t  h(w) :~h(r). But  then h(w) =limg(xi)  =g(z) =h(r )  
which is no t  possible. Thus, / is continuous.  

Corollary 2.3. Let g(x) be a real analyt ic/unct ion in ( - c~, c~) which is not the con- 
s tant /unct ion.  Let  / be defined on ( - ~ ,  ~ )  into ( - c o ,  ~ ) ,  possess the Darboux  
proper ty  there, and satisfy/n(x) =g(x). Then / is continuous in ( - ~ ,  oo). 

Proo/. Clearly g satisfies condit ion (b). However ,  g need no t  belong to C[ - ~ ,  ~ ]  
nor  / to  D [ -  ~ ,  ~ ] .  I t  is, however, easily verified tha t  Theorem 2.4 is valid for the 
open interval  ( - ~ ,  ~ ) .  

We now consider the equat ion/n(x)  =/m(x), m =n  + p ,  for /E D[a,b]. Let  R ~ denote  
the range of f and R ~ = [a,b]. R i is connected and  so is an  interval. Also R i+ 1= R ~ 
for all i, and since/n(x) =/m(x), it is clear t ha t  R n = R  ~+1 = R  ~+~ for i = 1 , 2  ..... I f  R n 
is a point  c then/~(x)  =/n+l(x) = C and  we have one of the exceptional cases of Theo- 
rem 2.4. I f  n =  1, we have the case studied by  Ewing and  Utz  [2]. The following 
theorem extends their results. 

Theorem 2.5. A necessary and su//icient condition that /E D[a, b/satis/y In(x) =/n+P(x) 
/or all x E [a, b], where p and n are minimal,  is that either (a) or (b) is saris/led: 

(a) p = 1, there exists a sequence of intervals R ~,i = 1 ..... n such tha t  / I R~ = R~ + 1, 
] I Rn = Rn , / (x )  = x for x e R ~, R ~ #= R i + 1 for i = 0 ..... n - 1 and R ~ = [a, b]. 

(b) p =2 ,  the sequence R ~ is as above except  t h a t / I R  ~ is a reflection. 
Proo/. A s s u m e / e D [ a , b ]  and satisfies the equat ion/n(x)=/n+P(x)  for all xE[a,b]. 

Set R ~  [a, b /and  R t = r a n g e  of f .  Then  if in Theorem 2.2 we set S = R ~, and  assume 
S non-degenerate our result  follows. Conversely, if / satisfies either (a) or (b) it is 
clear t h a t / n  + ~(x) =/n(x) for all x e [a, b]. 
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