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The functional equation f*(x)=g(x)

By James C. LiLio

1. Introduction and notation

We are interested in studying the real functional equation f*(x) =g(z) on an interval
[a, b] of the real line. In particular we wish to obtain conditions on g which will
assure one that solutions f of the given equation possess certain properties. If one
insists only that f be a pointwise solution, then the problem for » =2 has been solved
[3]. If one insists that f be continuous, only very limited results are known [1], [2],
[56]. In Theorem 2.1 we obtain results which suggest studying the problem in a
certain subclass M{a,b] of the class of continuous functions. In example 1 we show
that there exists a continuous function g defined on a closed interval [a,b] for which
the equation f2(x)=g(z) does not possess any continuous solutions f but does have
a solution f which possesses the Darboux property. Theorem 2.4 gives sufficient
conditions to insure that if g is continuous then any solution f of the equation f*(x) =
g(x), which possesses the Darboux property, will also be continuous. In Theorem 2.5
we consider the special equation f*(zx) =f""?(x).

To facilitate matters we introduce the following notation. Let [a,b] denote any
closed interval of the real line where the endpoints + oo and — co are allowed. The
set of all functions defined on [a,b] with values in [a,b] will be denoted by R[a,b).
A function is said to possess the Darboux property if it takes connected sets into
connected sets. D[a,b] will denote those functions of R[a,b] which possess the Dar-
boux property. Cla,b] will denote those functions of R[a,b] which are continuous
on [a,b]. We denote by M[a,b] those functions of C{a,b] which are piecewise monotone
(written p.m.) on [a,b]. Here, f is said to be piecewise monotone on [a,b] if there
exists a finite partition P=[p,,...p,] of [a,b] such that on each subinterval [p;,p;,,]
the function f is strictly monotone (written s.m.). If every partition P* which pos-
sesses this property with respect to f is a refinement of P, then P is said to be the
partition asssociated with f and will be denoted by P(f). We define f°(x)=x and
Y x) =f(f*(x)) for n>0. Finally, we define the set S(n,g) = {f € R[a,b]| f*(x) =g(x)
for all z€[a,b]}.

2. The general equation f"(x) =g(x)

It is clear that if f€ M[a,b] then f € M[a,b] for any i. We now establish the con-
verse. If {€ D[a,b] and /' € M[a,b] then f€ M[a,b].

Theorem 2.1. If g€ M[a,b] then S(n,g) N D[a,b]< M[a,b] and P(g) is a refinement
of P(f) for every f€S(n,g) N D[a,b].
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Proof. We first note that if f€ D[a,b] is s.m. on each subinterval {p;,p,,,] of P(g)
then f€Cla,b] and so € M[a,b]. Thus, it suffices to show that any f€8(n,¢) N Dla,b]
is s.m. on every subinterval [p;,p, ;] of P(g). Assume f is not s.m. on [p;,p;,,), then
since f€ Dfa,b] it follows easily that there are at least two points z,y €[,,9,,,] for
which f(x)=f(y). But then g(x)=7*(x)=f"(y)=g¢(y) which contradicts the fact that
g is s.m. on [p;,p;;,]. This completes the proof of Theorem 2.1.

We shall see later that there are g € M[a,b] such that D{a,b] N 8(2,g) is empty while
R[a,b] N 8(2,9) is not empty. We shall also see, by means of an example, that there
are g€C[a,b] for which §(2,9) N C[a,b] is empty but S(2,9) N Dfa,b] is not empty.
To facilitate the construction of this example we now obtain several resnlts which
are needed here and later in the development. The first result is closely related [2]
to the case g(x) =f(x) =f"(x).

Theorem 2.v2. If f€Dla,b], f(p)=p and S 1is a nondegenerate maximal connected set
contarning p, such that f*(x)=x for x€8, then S =[c,d] and (a) f| 8 is a homeomorphism
of 8 onto 8, (b) f(x)=x on 8 or f(c)=d, f(d)=c and f|[c,d] is a reflection of [c,d] about
pE(c,d).

_ Proof. Since f*=g is s.m. on 8 and f€ D[a,b], it follows, as in Theorem 2.1, that
f issm.on 8, i=1,2,...,n—1. It then follows that fi is continuous and s.m. on the
closure §=[¢,d] of 8, ¢=1,...,n—1. Consider first the case where f is increasing on
[¢,d]. If p+d then there exists g€ (p,d) such that f(q)€(p,d) for i=0,...,n. Either
(@) >1(9), Hg) =q or f*'(q) <f(q) for 1=0,...,n since f is s.m. in [p,d]. But f*(q) =¢
and so f(g) =¢. It now follows that f(z) =z on [p,d]. If p & a similar treatment shows
that f{(x)==x on [¢,p]. Thus, if { is increasing on [c,d] then f{z)==z on [¢,d]. Let f be
deereasing on [c,d] and assume that p =c. Then f is s.m. on [p,f(c)]. If f is increasing
on [p,f(c)] there is a point w€(p,f(c)) such that f(w)€(p,f(c)) for :=1,2,...,n. Let
g€(c,p) be such that f(g)=w, then f*(q) +q. Thus, f is decreasing in [p,f(c)] VU [¢,p].
If f3(c) ¢ then either f2(c)€(c,f(c)) or there is a u€(c,p) such that f*~/(u) €[p,f(c)] U
[p,¢})j=1,..,n—1 and f*(u)=c. In the first case, f'(c)€(c,f(c)) for all :>2 and so
f"(¢)#c. In the second case, we have u€S for which f*(u)=+u which is impossible.
Thus, f(c) =c, » is even, and f2 is an increasing function on [¢,p]. Thus, f is a reflec-
tion of [¢,f(c)] about p. In the same way one may show that f is a reflection of [f(d),d]
about p. Since § is maximal f(d)=c and f(c) =d. This completes the proof of Theo-
rem 2.2,

Corollary 2.1. If f satisfies the hypothesis of Theorem 2.2, {€C[a,b] and S=[c,d]+
[a,b] is a ray, then f=z on 8.

Proof. Either ¢€(a,b) and d=b= 4 o or d €(a,b) and ¢ =a = — . Since f€([a,b]
it is clear that in both cases we may not have f(c)=d and f(d)=c¢ and the result
follows.

It g€ Rla,b] we define y(g)={x|z€[a,b] and g(x)=x}. p(g) is called the set of
fixed points of g. If f€S8(n,g) then one may say a great deal about f|y(g). One of
these results is contained in the following theorem.

Theorem 2.3. If g€ R[a,b} and f€S(n,g) then f|y(g) defines a one to one map of
v{g) onto y(g).

Proof. Assume z€y(g), but that y=f(x) ¢y(g). Then g(y) +y and f*+(z)={(f"(x))
fl@)=y =f(f*(x)) =g(y) +y. Thus, f(y(9)) <y(g) for any . Let 2Ey(g), then z=g(z) =

I
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Hf*Y=x)) <= f(y(g)) and so y(g)< f(¥(g)). Thus, { defines a map of y(g) onto itself.
Since for any x, y €y(g)x +y implies f*(x) +{"(y), it follows that the map is one to one.

Corollary 2.2, If g€R[— oo, 0], y{(g) 8 a ray, and fE€S(n,g) N C[— oo, o), then
flx)=x for x€y(9).

Proof. Since g €C[ — oo, oo, ¥(9) is a closed interval and f defines a homeomorphism
of y(g) onto itself. Because f €[ — oo, oo] the finite endpoint of y(g) must be mapped
onto a finite point so it must be mapped onto itself since f|y(g) is a homeomorphism.
Our result now follows from Corollary 2.1.

It is possible to obtain information concerning the existence of solutions € R[a,b]
for f*(x) =g(z) by studying the sets y(g"). Thus, for example, the fact that the func-
tion g(x) = —=z, €[0, —1], and g(z) = —a?2, x€[0,1], possesses only one cycle of order
2, namely [1, —1], implies that 8(2,g) is empty. In fact, Isaacs [5] has stated neces-
sary and sufficient conditions for S(2,g) to be non empty in terms of the cycles of g.
Unfortunately, these results give no information about S(2,¢) N D[a,b] except, of
course, in the case where 8(2,9) is empty.

We now display a function ¢ €[ — co, o] for which 8(2,9) N C[— oo, o] is empty
but 8(2,9) N D[ — oo, oo} is not empty.

Example 1. We first define the funections 4, f, g.

We define & on [0, 1]: (1/n)=(—1)"n=1, 2, ...;

Kx)=(—1)"2nn+x€(l/n+1,1/n),n=1,2 ...
We define f on [— o0, oo ]: f(&)=2,2<0; f(x)=0,2>2 and 0<2<1;
flry=2—1,1<a<y; f@)=(x—Dh(dx—5)/2+1, <<}
o)~ ~i+a-D 3<a<2.

We define g(x) =f*x) for £€[ — o0, co]. Clearly f€ D[ — oo, o0], §€C[ — o0, 0], and
it remains only to prove that S(2,9) N O — oo, o] is empty. Assume f€8(2,9) N
C[— o0, oo]. Then by Corollary 2.2 f(x) == for — co <z <0. Then for all z, such that
f(x) <0, we have g(x)=f(f(x))=f(x). Thus, f(x)=0 in [0,1]. We assert that there
exists §>0 such that f(x)=0 for x€[0,6]. Assume f(x)*0 on [0,1] and define o=
maxp,; f(¥). Since g(x)=72(x)=0 for x€[0,1] it is clear that f(z)=0 for x€[0,0].
Thus, if g(x)=f(f(z)) >0 then f(z)>4. Since f(§)=0 and g(x)<z for al x>0, it is
clear that f(x) <« for all z>0.

We define g(n)=1-+%+1(1/n). Then if n is odd we have g(x)>g(cor)) for all
0 <z <g(n). Thus, for » odd f(o(n)) =g(a(n)), and it follows that f(x) = g(x) whenever
f() or g(x) is negative. Thus, f(o(n) <0 for n odd. But for n even f(f(a(n))) =9'c(n)) >0
and so f(g(n)) > 4. Since lim,_,.0(n) =1 + 1 it follows that f is discontinuous at x =1 + 1.
This completes Example 1.

Consideration of the above example suggests the restrictions on g€([a,b] which
will insure that the solutions of f*(x)=g(z) also belong to C[a,b]. This result is con-
tained in the following theorem.

Theorem 2.4. If g€C[a,b] and if either (a) or (b) below are satisfied then S[n,g]N
Dia,b]=8[n,g] N Cla,b].

(a) Range of g=[a,b].
(b) g is not constant on any non degenerate interval.
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Proof. Assume (a) is satisfied and f€S(n,g) N D[a,b]. Then the range of f=[a,b].
Let k(z) denote f"~!(x). Then range k=[a,b] and k€ D[a,b]. Let f be discontinuous
at z. Thus, there exists a sequence {z,} tending to z such that no subsequence of
{f(x;)} converges to f(z). One may also assume that |x;—z| > |, —2| for all 7 and
that the sign of (z;—2z) is independent of %, say negative. We now define a sequence
{y;} converging to a point y such that k(y;) =z for j odd, and for j even {A(y,)} is a
subsequence of {z;}. Since [a,b] =range of A there exist y, and y, such that A(y,) =2
and h(y,)=z;. If y, and y, are both finite define o= (y, +¥,)/2. If either y, or y, is
infinite, let ¢ be any point in (y,,y,) for which |y; —o| >1 and |y, —c| >1. If h(c) =2
set ¥, =c and let y, be any point in [y, y,] for which k(y,) ==,. If k(o) >zdet y; be
any point in [0, y,] for which h(y,) =z, and y, be any point in [y, y,] for which A(y,) =x,.
If h(c)<z let y;=y,. Since h(g) <z, for some k>2 let y,€[y;,0] be any point for
which A(y,) ==z,. Using y,, ¥, in place of y,,y, and x, or x, in place of x; we repeat
the procedure. In this way we obtain a sequence {y;} with the stated properties.
But then () = 1Moo f(R(Yair1)) =9(y) =limirong () +1(2). Thus f(z) €Cla,b].

Assume now that (b) is satisfied. Since g is not constant on any interval and
fi(x) =g(x) we have that f(x), i=1,...,n is not constant on any interval. Let f be
discontinuous at z and set r =f(z). Thus, there exists a ¢ >0 such that either for any
w€[r,r +o] or for any wE€[r,r —c] there is a sequence {x;}—>z such that f(z,)=w.
Since k is not constant in any interval we may choose in [r,r 40} or in [7,7 —0],
whichever is necessary, a w such that h(w) +k(r). But then h{w) =limg(x,) =g(z) = h(r)
which is not possible. Thus, f is continuous.

Corollary 2.3. Let g(z) be a real analytic function in (— oo, co) which is not the con-
stant function. Let f be defined on (— oo, o0) into (— oo, co), possess the Darboux
property there, and satisfy f*(x) =g(z). Then f is continuous in ( — oo, co).

Proof. Clearly g satisfies condition (b). However, g need not belong to C[ — co, oo]
nor f to D[ — oo, oo]. It is, however, easily verified that Theorem 2.4 is valid for the
open interval (— oo, o0). ‘

We now consider the equation f*(x) =f™(x), m =n + p, for f € D[a,b]. Let R’ denote
the range of f and R®=[a,b]. R’ is connected and so is an interval. Also R'*'c R'
for all 4, and since f*(x)=f"(x), it is clear that R*=R""1=R"* fori=1,2,.... If R
is a point ¢ then f(x) = f"+(x) =C and we have one of the exceptional cases of Theo-
rem 2.4. If n=1, we have the case studied by Ewing and Utz [2]. The following
theorem extends their results.

Theorem 2.5. A necessary and sufficient condition that f € D[a,b] sattsfy f*(x)=f"""(x)
for all 2€[a,b], where p and n are minimal, is that either (a) or (b) is satisfied:

(a) p=1, there exists a sequence of intervals R',i=1,...,n such that f| R'=R"*1,
f|R*=R", f(x)=x for x€ R", B' +R'*" for i =0,...,n—1 and R°=[a,b].

(b) p=2, the sequence R' is as above except that f| R™ is a reflection.

Proof. Assume f€ D[a,b] and satisfies the equation f"(z)=f"""(z) for all z€[a,b].
Set R°=[a,b] and R’ =range of f'. Then if in Theorem 2.2 we set S = R", and assume
8 non-degenerate our result follows. Conversely, if f satisfies either (a) or (b) it is
clear that /" *?(z) = f*(x) for all x€[a,b).
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