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A generalization of a Tauberian theorem by Pleijel

By SVEN SPANNE

1. Introduction

In [4], [5] Pleijel proved the following Tauberian theorem. (The factor |A|™"
in [4] is here included in the measure dg.)

If s<1, o(A)ET?, o(—A)ET® and

+ o0
f A+ Mdo(A) =t pt ") + o5, (1)
when t— oo along all non-real halfrays from the origin, then o(A) €I° and o(—A) €I’
If s is an integer, I *(a(A)— (—1)°c(— 1)) E®.

In (1) p is a real polynomial, and the relation ¢ €w* means that ¢(1)=
constant +o0(4°) when A->+ oo. I* is defined by dI*¢ = A dp. If I*¢p€*** for
one value of k, then the same reiation is valid for all £+ —s and we write
@€I°. When s+0, I'=w’, but »® is a proper subset of I°. The integral in (1)
is convergent if and only if I '0c€w® Finally, ¢ € T%(T°) means that there is
a constant C such that dp+ CA° 'di is >0(<0) for sufficiently large positive 4,
and T°=T%UT°.

In the proof in [4] of the Tauberian theorem, the asymptotic relation (1) is
used only along the imaginary halfrays except in two exceptional cases, which
occur when s is an integer. In these cases (1) is used for the four halfrays
argt=}m+n-4n, n=0,1,2,3. Thus the conditions in the theorem are unne-
cessarily strong.

A closer study of the question has shown that it is sufficient to have the
asymptotic relation along an arbitrary pair of non-real halfrays which are sepa-
rated by the imaginary axis. This includes the case when one or both halfrays
are purely imaginary. Moreover, the use of a larger Tauberian class than 7 led
to a more natural proof of the Tauberian theorem.

We can suppose that the halfrays are the imaginary halfrays. For if (1) is
valid along another pair of rays, the relation holds also along the complex con-
jugate rays as the polynomial p is real. The integral and the polynomial in (1)
increase so slowly when {—co that the Phragmén-Lindelsf principle can be used
in the angles formed in the upper and in the lower halfplane by the four
halfrays. These angles contain the imaginary halfrays.
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2. Tauberian classes

We use Tauberian classes which are closely connected with the slowly de-
creasing functions.

Definition. A function ¢ belongs to the class UY if

lim lim inf 27%(p(y) —e(x))=0.

1—>140 >0 T<Y<PT
We put U =—-U%, UP=U% U U and Uj=U% 0 UL.

The class U% consists of the slowly decreasing functions and the class U3 of
the slowly oscillating functions (on the interval (0, oo)).

The classes U and U’ are convex cones, Uj is linear and if ¢, and ¢,
belong to U®, then either ¢, +¢, or ¢, — @, belongs to U®. If ¢ € U* and y € U,
then @ +y belongs to U°.

The classes T% (T°) are included in the classes U% (U2), for take, for instance,
@€T%. Then dep+CA°*'di=0 for A>1, and we may evidently assume that
C>0. Then

I3

™ (p(4) — p(x)) = —Cx_sf A2 1di> _Cf o Vdu,

1

when A, <x<y<pux. The last integral tends to 0 when u—1-0.
We shall need the following properties of the classes U.

Proposition.

(a) If €U, then IP9e U™ for p=0.

() If p(A)eUL, then @(A*)E UL for a>0.

(e) ULc U if p<yq..

(d) I"<Uj.

(a), (b) and (c) are valid also for the classes U.-.

Proof.
(a) Suppose p €U?. A simple calculation shows that

¥

e U P oly) — IPe@) = (ply) — p()) +277 ¢ J‘ (@(y) — @(4)) d(2%).

x
Thus if 279(p(y) —p(x))= —c¢ for Ay<ax<y<uxz, where ¢=0, then
Yy

2PN Poly) - Pe)= —c+a P f —cA?d(A7)

xz

yix I
=—c(1+pj u”*"’ldu)>~c(1+pf u”“"ldu),
1 1

when A, <x<y<puz. This proves (a).
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(b) Suppose ¢ € U%. Evidently

U p(y") — @) = X" (p(Y) —p(X)) > —e¢,

when A, <X<Y<uX, where X=2% Y=y that is, when A*<a<y<

and (b) follows because y—1+0 when u'*—1+0.
(e) Obvious.

(d) If g=0, then I°=@? and if p€I? then

2~ (@ly) — el = (y/2) py) /y* ~ pla)/2*| < ((y/x)* + 1) o(1) >0

1/e

w,

when  — 4 oo and # < y < yx. Suppose secondly that ¢ €I°. Then z7* {5 Adp(1) =o(1)

when x— + co. Evidently

! fr Adp(l)=x"1 (x(p(x) - fzw(l) dﬁ)
0 0
and thus plx)y=z"" frqy(l) dA+o(l), when x— + oo,
0

We get oly) —plz)=o(1) +y* fo pA)dd—=z? fo (1) dA

=o(l) +y™* fyw(l) A+ (@/y—1) x‘lf @(4) dA

0

=o(1) +y‘1f P(AydA+(z/y 1) p(x)

Y
=o(l)+y~! f (p(A) — p(x)) dA,
when x— 4+ oo, x<y< ux. This gives

inf (p(y) —@@)Zo(l)+(1—p™") inf (¢(1) - @(z).

I<yYsur <Ay pT

Thus inf (g(y) - p(a)) > po(l).

r<y<u
The same reasoning gives an upper bound. The result is

lim sup o) o) =0,

T>+te0 TKYSp

which means that @ is slowly oscillating.
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3. The unilateral Tauberian theorem
We shall use the following unilateral Tauberian theorem.

Theorem. If s<1 and o€ U*, then
f (A+8) 7 do(d) =27 p(t™") + o), 1>+ oo,
0

implies that o €I°. If s is an integer, the result can be improved to I °cew’.

For s=0 and for 0<s<1, the theorem is announced by Hardy and Little-
wood [1] and by Karamata [2], but no explicit proof is given. We sketch the
proof. Let 0<<s<1. A partial integration (justified by the fact that I '¢€w°)
gives

! fw A/ A+ 2/t 2 (0(A)/A°)dA=0(1) + K, (2)
(1]

where the constant K=0 if s>0.
The kernel g(x)=z°(1 +z) % is a Wiencr kernel since

J‘oog(t) ) t“‘dt _ n(S + ’IM,)

=" 7 %0 for u real.
0 sin zu(s + uz)

If s=0, the theorem follows from a theorem by Karamata [3]. If s>0, c€U%
gives that o(1)/1° is bounded below (Karamata [2] p. 36). From this combined
with (2) we get that f;a(A)dA=0("") as t—+ oo. Hence

(n—1) - tofty= ((;,at—t) a(t) — f” a(}) d).) + 0@
=— fﬂ (o(d) — o)) dA+ O ) < C- V tdl+ o) =o't
t Jit

as 0 €U%. We conclude that o(t)=0(t*). If c€U*® and o(1)/A° is bounded, it is
easy to see that ¢(1)/A°€U°. The theorem by Karamata then gives the wanted
result.

The case s<0 is reduced to the case 0<s< 1 in the same way as in Pleijel [4]
p- 565. This reduction uses the properties (a) and (e¢) of the Tauberian classes.

4. The bilateral Tauberian theorem

Suppose that (1) holds along the imaginary halfrays. In the same way as
in [4] it follows that

J N (A+6) " dAVA) =t p (7Y +o(t27Y), (3)

0
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[ L AF)TVAASVD =t py (7 + ot TR, @

when ¢—oco along the positive real axis. In these formulas p, and p, are real
polynomials and :

S(A)=0(2) +o(—2), (5)
ARQ)=0o(A)—a(—A). (6)

We replace the Tauberian condition in the theorem in section 1 by the con-
dition ¢(A)€U®, o(~A)€U°. From this follows that either S(1) or A(1)€U’.
Suppose that S, say, belongs to U®. Then IS(1)€U**' by the proposition (a),

and IS(V2)eUe*D by (b). The unilateral theorem now can be applied to (4).

This gives IS(/2)€I*** which is the same as S(2) €L, and by (d) it follows
that S(4) € U3,

From (5) and (6) follows that 4(1) = 20(4) — S(4), where 24(4) € U* and — S(A) €U".
This implies that A(1)€U* and A(V4)€U*2. From (3) we obtain, using the uni-
lateral theorem, that A(1)€I°, and when s is an even integer, I °A4 € ".

The case in which A(1)€U* follows from the original Tauberian conditions
is treated in a completely analogous way, starting from (2) instead of from (3).

We have the following bilateral Tauberian and Abelian theorem.

Theorem. Let s<1 and o(A), o(—A)€U’. Then the following conditions are
equivalent

1. The relation (1) is valid along one pair of non-real halfrays from the origin
separated by the imaginary axis.

2. The relation (1) is valid along all non-real halfrays from the origin.

3. o(A) and o(—A)EL, and I *(c(A)—(—1)*c(A) Ew® if s is an integer.

We have proved the Tauberian part, 2.=1.=3. The Abelian part, 3.=2., is
the Abelian theorem in Pleijel [4] p. 568.
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