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On the propagat ion o f  analyticity o f  solutions o f  differential 
equations with constant coefficients 

By JAN BoraA~r 

1. Introduction 

Let P(D) be a partial  differential operator with constant complex coefficients, let 
be an open set in R n, and write 

~ - -  {x; xe~, xn>d}. 

I f  E and F are sets, we let E \ F  denote the set E N C F. By Cr162 we denote the 
set of infinitely differentiable complex valued functions in ~ .  The following theorem 
is due to John  [5] and Malgrange [6] (see also HSrmander  [4], Ch. I I I ,  VI I I ) .  

Theorem 1. Let the distribution u in ~ satis/y the equation P ( D ) u = / ,  where/E 
Cr162 and assume that uEC~(~a\F),  where F is a compact subset o / ~ ,  and d is a 
real number. Then u E C:r 

The main purpose of this paper is to prove the analogous result with analytici ty 
instead of infinite differentiability, i.e. 

Theorem 2. Assume in addition to the hypotheses o/Theorem I that u is real analytic 
in ~d \F  and that / is real analytic in ~d. Then u is real analytic in ~ .  

We also prove a more general result involving classes of C ~ functions. Such classes 
are defined as follows. If  L = {Lk}~'-i is an increasing sequence of positive numbers 
and ~ an open subset of R n, we denote by  CL(~)=C L the set of func t ions /EC~(~)  
such that  to every compact set F c ~ there exists a constant C such tha t  

I D~/(x) I <. C ~ L ~ . . . .  k, if [a~]=k, xEF,  b = l , 2 ,  

Here 1)~ denotes (~/~Xl)~t'... (~/~xn) ~n where 0~=(g 1 . . . . .  ~n), I~[ =Z~j-  Note tha t  
/E CL(~), if /E C t" in some neighbourhood of every point in ~ .  In  fact this follows 
by  applying the Borel-Lebesgue lemma. I f  L k =b for every b, the class CL(~) is 
equal to the class A(~) of all real analytic functions on ~ .  Here we shall only consider 
classes which contain A(~).  Every  such class can be defined by  a sequence satisfying 

Lk>~b (/r 2, ...). (1.1) 

Definition. We say that the increasing sequence L is a/fine invariant, i / /or any positive 
integers a and b there exists a constant C such that C-1Lk <~Lak+b <CLk /or every k. 
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I t  is obvious that  an increasing sequence L is affine invariant if and only if there 
exists a constant C such that  

L2k<~CLk ( k = l ,  2 . . . .  ). (1.2) 

The property of translation invariance is defined similarly. Clearly an increasing 
sequence L is translation invariant if and only if there exists a constant C such that  

Lk+~<~CLk ( k = l ,  2, ...). (1.3) 

We shall prove the following theorem, which contains Theorem 2 as a special ease. 

Theorem 3. Assume in addition to the hypotheses o/ Theorem 1 that u ECL(~\F)  
and that /EcL(~d), where L is a/fine invariant and satisfies (1.1). Then uECL(~d). 

The situation is much simpler, if the set F is contained in the interior of ~d. 
The corresponding analogue of Theorem 1 is well known. Using our terminology we 
can formulate that  result as follows. 

Theorem 4. Let L be a translation invariant sequence satis/ying (1.1). Let u be a 
distribution in ~ ~ R ~, such that P( D) u E cL(~) and u E CL(~\F), where F is a compact 
subset o /~ .  Then u E CL(~). 

Some results related to Theorem 4 have been given by Xgranovi5 [1]. 
The basic tool in our proof of Theorem 3 is an inequality (3.1) between the partial 

Fourier transforms of v and P(D) v with weight functions which depend on one space 
variable. The inequality is valid for functions with compact support. The usual 
technique is to apply the inequality to the function v = Z u, where u is the solution of 
the equation P(D)u=/ ,  and Z is a function in C~(~) which is equal to 1 in a cer- 
tain set. (C~(~) denotes the set of functions in C~176 whose supports are compact 
subsets of ~.) Then one obtains an estimate for the derivatives of u in the set F N ~d in 
terms of bounds for derivatives of u in the set ~d \F  and of / in the set ~d together 
with bounds for derivatives of Z. However, by  this method one cannot prove that  u 
is analytic, since the derivatives of Z grow too fast when the order of differentiation 
tends to infinity. Therefore, following an idea of Ehrenpreis [3], we use a sequence 
Z~ of functions in C~(~), whose derivatives of order k have the same order of magni- 
tude as the derivatives of an analytic function (see Lemma 1). 

In  the special case when C L is non-quasianalytic, i.e., contains functions with 
compact support, we could simplify the proof by applying the above-mentioned 
inequality to the function Zu where Z is a fixed function in C L with compact support. 
The general case would then follow from the special case by means of a theorem on 
the intersection of non-quasianalytic classes, which is given in Boman [2]. However, 
we have preferred to give here the more direct proof outlined above. 

I wish to thank professor Lars H5rmander for introducing me to the problem 
considered here and for suggesting several improvements of the manuscript. 

2. Preliminary lemmas 

We first construct the sequence Zk of functions mentioned in the introduction. 
Take a non-negative function qJEC~(R n) such that  ~qJ(x)dx = 1, and define for any 
positive a the function q(a) by q~(a)(X)=anqJ(ax). If  K is a compact subset of ~ c  R n 
take ~FEC~(~) such that  0~<~<1  and ~F=I  in a neigbourhood of K, and put 
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Zk = ~(k) . . . . .  ~(~),W, (2.1) 

where the convolution contains the function ~(~)k times. 

Lemma 1. Let K be a compact subset o / ~ ) c R  ~. I /  supp q0c {x;Ix I <t}  and e is 
small enough, then the/unction Z~ defined by (2.1) is in C~(~) and is equal to I in K/or  
every k. Moreover, i/ S[~cf/~x~ [dx < C/or  each i and C >~ 1, then there exist constants 
C O = 1, C1, C 2 . . . .  such that 

[D~Zk[ <Cl~l_j(Ck) j, O < j <  min ([al, k). (2.2) 

We shall later use the two special cases of (2.2) which are obtained by taking 
J = [ ~ t < k and j = 0 respectively: 

[D~Zk[ <(Ck) I'1 ([a] ~k),  (2.2') 

I D~X~I < Oj~. (2.2") 

Proo/ o/ Lemma 1. Denote the convolution of k functions equal to q0(~) by (I)k. 
I t  follows from the hypotheses that  supp ~(k)c {x; ]x I <e/k} and hence that  supp (I)~ 

{x;Ix ] <e}. Als0, S(I)~dx=l, since ~q~dx=~%k)dx=l. This proves thatZkeC8~ 
and t h a t  Z~ = 1 in K, if e is small enough. I t  remains to prove the estimate (2.2). 
Set a = ~' + ~", where l a'! =~ and ] :r = l~ 1 -J" Then 9 %  = D~'(I)k * D~"~. Putting 
Cm =SUpl~l<m ] Dc~F] we obtain 

19%1 <c~.j_j SID~'r (2.3) 

Since l a'l  = j < k  we can compute D~'(Pk by letting at most one derivative act on 
each factor in the convolution. By the assumption vde have ~q~dx= 1, and also 

f l (a/~x,)~(~) l dx = k f l e~/ax, l dx <<. Ck (2.4) 

for any i. Since L 1 is a normed ring under convolution, we thus obtain (2.2) from 
(2.3) and (2.4). 

The use of the inequality (2.2') is illustrated by the following lemma. 

Lemma 2. Let L be an increasing sequence such that Lk ~ k /or  every k. Assume that 
u E CL(g2) and that the/u~wtions Zk E C~(~) satis/y (2.2') in ~2. Then/or any compact set 
K ~ ~ there exists a constant C such that 

[D~(Z~u)] <C~L~, i~ x~K,  k = l ,  2 . . . . .  

Proo/. Applying Leibniz' formula and (2.2') we obtain 

ID'(Z~u)[<2 ~ sup C]kr162 i (x~K, lael<k). 

Since L is increasing and Lk >~ k, this gives with a sufficiently large C 

I D~ (Zk u) I < 2k sup ~lr~s ~2~-J+x ~krJ ~kr k -j ~ C~L~. 
O<~j<~k 
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Next we give two lemmas on the well-known relation between the bounds of the 
derivatives of a function and the rate of growth of its Fourier transform at infinity. 
(See e.g. Paley and Wiener [8].) We define the Fourier transform ~ of a function 
w E C ~ ( R  ~) by ~(2) =Sw(x)e-~<~'C>dx, where <x, 2>  =x12 t + . . .  +x~2~. 

Lemma 3. Let k be a/ ixed positive integer and assume that wE C~(R s) satis/ies 

fiwldx<C and flD~wldx<C~LL i/ [~[=k. 

Then there exist positive constants a and B which depend on C but are independent o / k  
and w, such that 

]r +(a[21/Lk)k)<--B (2eR~). 

Proof. Since [~ ]2 ~< s. supj [2j ]~, we have 

I elk ~< sk'2 supj [r k (k~> 1). (2.5) 

Combining (2.5) with the formula 

(i~j)k~ = fD~ w(x) e- ~< ~' ~>dx 

and with Che assumption gives 

[~I~<C and [2[~[~I..<s~/2C~L~. 

With a = (~ss. C) -1 this gives 

[~ [(1 + (a [~ I/L~) ~) < C + 1. 

Lemma 4. Assume that W E L~ ~) and that 

[ W(2) [ (1 q- (a [2[ [ig) ~) <~ B (2 e R~), (2.6) 

where ]r is an integer >1 s § 1. Then there exists a constant C depending on a and B but 
independent o / W  and Ic, such that 

<CL~, i/ [ ~ [ < k - s - 1 .  

Proo/. Since D ~ if(x) = ~ ( - i$) ~ W(2) e -i<x' ~>d2, 

we have by (2.6) 

[D~W(x)I<B f [2[I~I(1 + (a[r162 <~B(Lk/a)l~l+"f[r + [~[~)-~dr 

When 2 ~< 1 the integrand is bounded by 1, and when ]2[~> 1 it is bounded by 
[r [I~ - k ~< [2 i-1-8. This proves the statement. 
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Lemma 5. Assume that the sequence L is a//inc invariant. Then there exists a constant 
b > 0 such that 

(l+(br/Lk)k)2~2(l+(r/L2k)2k), i[ r > 0 ,  b = l ,  2 . . . . .  (2.7) 

Proo/. By Cauchy's inequality 

(1 + (br/Lk)k) ~ <~ 2(1 § (br/Lk)2~). 

Now (2.7) follows, if b is chosen so that  bL~ <<.L k for every It, which is possible by (1.2). 

Lemma 6. I / L  is translation invariant, then/or any/ixed s we have with a constant C, 

L ~ + "  C ~rk (k= 1,2 . . . .  ). k + s "~  s . ~  k 

Proo/. Using (1.3) we obtain 

L k+~-L  k L '  k + s  - -  k + s  k + ,  ~ ( C S i k ) k ( c k + S - i L 1 )  s ~ -  ckik, k (k = 1,2, ...). 

I t  is obvious that  the class C L is closed with respect to differentiation, if L is 
translation invariant. 

3. The  basic inequali ty  

We shall make use of the partial Fourier transform of functions v E C~(R n) with 
respect to the variables x '=  (x 1 . . . . .  xn_l) 

v(~', xn) = ~v(x) e-i<x" ~.> dx'. 
d 

Lemma 7. Assume that the plane xn=0 is non-characteristic with respect to P(D), 
that ~ is a bounded subset o / R  n and that ~ is a positive continuous/unction de/ined /or 
~ 'ER ~-1. Then there exists a constant C, which is independent o/ v and ~, such that 

sup I ~ ( ~ ' , ~ .  _~ ,: x~)l(7(~')) x~ <~ C s~p~ P( i~ ' , d  D.)v(~', dx~, (3.1) 

Proo/. Let  Q denote an arbitrary polynomial in one variable with leading coefficient 
1. I t  is known (see e.g. Nirenberg [7]) that  the following inequality holds for all 
w E C~ r (R 1) which vanish outside a fixed inverval - T  < t ~ T 

sup I w(t) I "~ C.f  l Q(D) w(t) I dr. (3.2) 

Here C depends on the number T and the degree of Q, but  is independent of the 
coefficients for the lower order terms of Q and the function w. In  fact it  is easy to 
prove (3.2) if one first reduces the general case to the special case when Q(D)= 
= D +a,  where a is a complex number. Applying (3.2) to the function wi(t ) =w(t)e bt 
and the polynomial QI(~)=Q(~-b),  where b is a constant, one obtains with the 
same constant C the inequality 

sup I ebt w I <~ c f l ebtQ(D) w I dr, w e C~ ( - T, T). (3.3) 
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Now we can apply (3.3) to the function w(xn)=~(~', x~) and the polynomial Q(~n)= 
P(i~', ~), since the leading coefficient of Q(~) is different from zero and indepen- 
dent of ~', if the plane x~=0 is non-characteristic with respect to P(D). Choosing 
b =log ~(~') and taking supremum with respect to ~' gives (3.1). 

In  order to illustrate the technique used in the proof of Theorem 3 we now give a 
proof of Theorem 4. 

4. Estimates for the derivatives of the solution 

Proo/ o/ Theorem 4. Take bounded open sets ~o and ~ '  such that  F ~ eo ~ e5 c eo ~ o5' 
~ .  :By Lemma 1 we can take functions Zk of the form (2.1) such that Z~C~(o)'), 
Z~ = 1 in o), and Z~ satisfies (2.2). Then P(D)(Z~u) ~ C~ (oY), if the distribution u satisfies 
the assumptions of the theorem. Moreover, with a constant C independent of k we 
have 

ID~P(D)(Z~u)I<~C~L~, if l a l + m ~ / c ,  (4.1) 

where m is the order of P(D). In  fact, Xk = 1 in co, so that  P(D)(Xku) is there equal to 
the function P(D)uEC L. Moreover, in an arbitrary compact set K c ~ \ F ,  (4.1) must 
hold by virtue of Lemma 2 and the fact that  u E CL(~\F) by assumption. This shows 
that  (4.1) holds for every x, since we can take K such that  K U eo ~co'. Now, let E b e a  
fundamental solution of P(D), which is a distribution of order p. Since D~()~ku)= 
E* D~P(D)(Zku) for any ~, we then obtain 

ID~(Z~u)I<~C �9 sup D~P(D)(Zku)I~< ~krk 
~ < k  m 

Since Zk=l  in w and L is translation invariant (Lemma 6), this gives with I:r = j  

ID~u] < C'+v+~(L,+v+~) '+p+~ < C~L~ (xew; i =  1,2 . . . .  ), 

which proves that  u e CL(m) and hence that  u E CL(~). 

Proo] o/Theorem 3. Let d be the infimum of all ($ > d such that  u E CL(~o). Then it is 
clear that  uECL(~2h), so that  what we have to prove is that  J = d .  To do so we shall 
assume that  ~ > d and prove that  u E CL(~2~) when ($ = (d + 3c7)/4 in contradiction with 
the definition of 4. In  the first step we shall prove this using the additional as- 
sumption that  the plane x~=O is non-characteristic with respect to P(D). 
Let co and ~o' be two bounded open sets such that  

{x;xEF, (3d + d)/4 < xn <~ cT} c w c  ~ c  eo' c (~' c {x; x E ~ , d  < xn < (5c7- d)/4} 

(see Fig. 1). Applying Lemma 1 we construct functions zkEC~(~o'), such that  Zk= 1 
in ~o and the derivatives of Zk satisfy the estimate (2.2). The main step of the proof 
will be applying the inequality (3.1) with suitable weight functions ~ to the functions 
vk =Xk+mu, where u is the solution of the equation P(D)u = / w h i c h  we are studying, 
and m is the order of P(D). Note that  Theorem 1 shows that  uEC:C(~d), so that  
vkEC~(~o' ) for every k. Using the assumptions that  u ECL(~d\F) and that  u EcL(~-d) 
we shall first prove that  vk satisfies the estimates 

ID~P(D)vk[ <ClkL~, if xn>(3d+~)/4 , ]~1 =k, k = l ,  2 . . . . .  (4.2) 
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Fig. 1. 

5 J -  d 
X n ~ - - - -  4 
X n ~ 4  

3 d +  d 
X n - -  

4 
x n ~ d  

IP(D)vkl < C2, if xER n, k=l ,  2 . . . . .  (4.3) 

T h a t  (4.3) holds follows immedia te ly  f rom (2.2") and  Leibniz '  formula .  We now 
prove  (4.2). Take: a compac t  set  K c ~ U (~d\F)  such t h a t  K U eo ~ ~0'(3d+~)/4. Since 
vk vanishes outside w' ,  i t  is clearly enough to  p rove  (4.2) for xEK U w. However ,  for 
xEK, (4.2) follows f rom L e m m a  2, L e m m a  6 and  the  assumpt ions  t h a t  uECL(~d\F) 
and  t h a t  uECL(~-~). On the other  hand,  (4.2) is t r ivial  for xEeo, sinceP(D)% is there 
equal  to  a f ixed funct ion /E CL(s 

F r o m  (4.3), (4.2) appl ied to der iva t ives  wi th  respect  to  xl . . . . .  xn_l, and  f rom 
L e m m a  3 we can now infer t ha t  there  exist  posi t ive constants  a and  B which are 
independen t  of k such t h a t  

[P(i~', Dn)~k(~', x~)I(1 + (a]~'l/Lk) ~) < B, 

if x~>(ad+4)/4, ~'ER ~-~, / c = l ,  2,. .... 

Since L is affine invar ian t  we can app ly  L e m m a  5 and  obta in  wi th  a new cons tant  
a > 0  

IF(if', D~) ~ek(}', x~) ] (1 + (a ]}' [/Lk)k) 2 ~< 2B, 

if Xn>(3d+d)/4 , } 'ER n-~, ] c= l ,  2 . . . . .  (4.4) 
F r o m  (4.3) we obta in  

IP(i} ', Dn)~(} ' ,  x~) I <Ca, if x~eR', } ' eR  n-l, k = l ,  2 . . . . .  (4.5) 

P u t  h(x~)=2(x~-(3d+4)/4)/(4-d). Then  h(x~)<2 when xEoY. Apply ing  (4.5) when 
x n < (3d + 4)/4 and  (4.4) when  x~ > (3d + 4)/4 we obta in  

fIP(i~ ', xn) ](1 + (a] ~' I/n~)~)a(Xn)dxn < d)(C a 2B) B1, D,)v2k(~',  (4 + 

if ~' fiR n-l ,  /c = 1,2 . . . . .  
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Using our provisional assumpt ion tha t  the plane x~ = 0  is non-characterist ic we can 
apply  Lemma 7 (after a t ranslat ion in the x= coordinate) and infer t h a t  

]~2k(~', X~)l(l+(a]~']/Lk)k)h(xn)<~CB~, if (~', x=)ER ~, k = l ,  2 . . . . .  

Since h(x=)> 1 when x n > (d + 3~)/4 this implies t h a t  

1~2k(~',Xn)](l§ if xn>(d+3d)/4, ~'ER n-l, k = l ,  2 . . . . .  

By L e m m a  4 and  Fourier 's  inversion formula we obtain with a new C 

ID'%2kl <~CkL~, if xn>(d+3d)/4, ]al <~k-n. 

Here D '* denotes an  arb i t rary  derivative with respect to x' =(x  1 . . . . .  x~ 1)- Since 
•k = 1 in eo and L is t ranslat ion invariant ,  we now obtain with still another  C 

]D'~ul<~CkL~, if xew, x~>(d+3J)/4,1~l<.k, k= l ,  2 . . . . .  (4.6) 

I n  order to  estimate a rb i t ra ry  derivatives of u including derivatives with respect to  
x~ we shall again make use of the assumption tha t  x~ = 0  is a non-characterist ic plane. 

Lemma 8. Assume that the plane x~=O is non.characteristic with respect to P(D) 
and that P(D)uECL(~). Assume/urther that uEC:r and that/or every compact set 
F c ~  there exists a constant C, such that, i / m  denotes the order o/ P( D), 

In ul wheu x e F ,  k = l ,  2 . . . . .  (4.7) 

Then u E CL(~), 

Proo/. Since the plane x==0  is non-characteristic,  the equat ion P(D)u=/can  be 
wri t ten 

D~u = Za~ D~u § (4.8) 

where :r < m  and I~r ~ m in every  term in the r ight -hand side. Take an  a rb i t ra ry  
k k compact  set F c ~ ,  choose C 1 such tha t  I n ]1 <~ ClI-,k when x E F and  I ~ I ~< It, and  

take  B = I  +Zla~l. Differentiating (4.8) with respect to the  x' variables and ap- 
plying (4.7) then gives 

ID~ul ~(BCk+C~)L~, if lal  ~<k, ~ < m .  (4.9) 

Again differentiating (4.8) and  applying (4.9) gives 

Continuing this procedure we arrive at  the est imate 

ID~ul <~(BkCk+Ckl(Bk-1)/(B-1))L~<~C2~L~, if xEF,  Io~1 <<.k, k = l ,  2 . . . . .  

where C 2 is a new constant .  This proves the lemma. 

End o/proo/o/ Theorem 3. We first prove the assertion of the theorem using the  
addit ional  assumption tha t  the plane x~ = 0 is non-characteristic.  Since the sequence 
L is t ransIat ion invariant ,  the class C L is closed with respect to differentiation. Then 
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it is clear tha t  the functions D~u satisfy the assumptions of Theorem 3 for arbi trary j. 
Hence formula (4.6) must  be valid with DJnu instead of u and possibly a new C. 
Thus the assumptions of Lemma 8 are fulfilled, and we conclude tha t  u E CL(~(d+Sd)14). 
In  view of the definition of J this contradicts the assumption tha t  J > d. This proves 
Theorem 3 in the special case when the plane xn=O is non-characteristic. 

Finally, if the plane x,~=O is characteristic, there are non-characteristic planes 
forming arbitrarily small angles with the plane x~ =0.  Applying the result just  proved 
to regions bounded by  such planes instead of the plane x~ = 0 we obtain the same re- 
sult even if x n = 0 is characteristic. Thus the proof of Theorem 3 is complete. 
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