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On iterated functions with asymptotic conditions at a fixpoint 

By ANDERS LUNDBERG 

l.  Introduction 

I t  is a known fact  tha t  the problem of embedding a real function f in a 
family (f~} of iterates, where a denotes an arbi t rary  real number,  has no unique 
solution. A chief problem in iteration theory is tha t  of finding and describing 
suitable uniqueness conditions for the iterates. I t  appears tha t  a natural  way 
to obtain uniqueness is to require something about  the behaviour of the func- 
tions f~ in a neighbourhood of a fixpoint. Many authors have dealt  with such 
conditions, but  in this connection we mention only For t  [3] and Michel [4]. 
Michel has given uniqueness conditions for three cases concerning the behaviour 
of f at  a fixpoint. For these cases some existence theorems are given by  
Szekeres [5]. In  this paper  we give some extensions of these theorems 

In  Sections 2 and 3 below, we state the basic concepts used here and some 
simple results concerning iteration in general. In  Sections 4 and 5 we give the 
main theorems for extending the results by  Michel and  Szekeres. Finally, in 
Section 6, we quote Michel's uniqueness theorems and show a way to extend them. 

2. Some definitions 

For convenience we shall consider a ra ther  special class of functions, but  this 
fact  makes no essential restriction of the results obtained (see [4], Section 5). 

Some of the concepts and notations introduced below are in accordance with 
those given b y  Michel [4]. In  the following we shall consider functions which 
are continuous and strictly increasing, and this proper ty  is called c.s.i. 

Definition 2.1. A /unction f belongs to the class S i/, and only if, 

(a) f(x) is defined and c.s.i. /or x >~0, 
(b) f(O)l= O, f ( ~ )  = ~ .  

Definition 2.2. By S O we mean the subclass of S consisting o f  e, where e ( x ) = x  
/or every x, and the functions f such that f ( x )~ :x  /or every x >0.  

Definition 2.3. A set G = (/~} c So, - ~ < ar < c~, is called a continuous iteration 
group i/, and only i/, 
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and l im/t(x)=/~(x) .  (2) 

/~/~ means the function obtained by  composition, i.e. for every x>~0 we 
have /~/~(x)=/~(/~(x)). From (1) it follows tha t  /0=e.  I f  a given f u n c t i o n / E S  0 
is embedded in G and if /1 = / ,  we shall call G= G(/) an iteration group of /. 
In  this case /1,/2 . . . .  are the natural  i terates of /, and /-1 is the inverse of /. 

In  the following we shall always let / and g denote functions in S O different 
from e, and v be a function in S. F-1 shall always denote the inverse of F.  
The iteration groups below are always assumed to be continuous. 

3. Existence and general properties of iteration groups 

The existence of i teration groups is trivial. For instance, {/~]/~(x) = k~x} is 
an iteration group if k > 0. 

Lemma 3.1. L e t / l < e  and x > 0 .  Then limn_,oo/n(x)=O, and limn__,oo /-n(X) = oo. 

Proo/. Both sequences are monotonic, and they must  tend to a fixpoint of/1. 

Lemma 3.2. Let / +e  and let (/~} be a continuous iteration group o/ /. For 
any /ixed x >0,/~(x), regarded as a /unction o/ o:, de/ines a mapping o/ ( - o o ,  
+ cr onto (0, + ~ )  which is continuous and strictly monotone, increasing i / [  > e 

and decreasing i/  / <  e. 

Proo/. The strict monotonici ty is proved in [2]. The other propositions follow 
f rom Lemma 3.1. 

Lemma 3.3. Let ~ 0  be a given number, and let g=/~  E G(/). Then the set 
{g~lg~ = / ~ }  equals the set G(/) and is an iteration group o/ g. 

The proof is obvious. 

Lemma 3.4. I /  {/~} is a given continuous iteration group and i/  F E S, then 
{F/~F_I) i8 also a continuous iteration group. I /  (g~} is an arbitrary continuous 
iteration group, anal i/  /1 and gl are both either > e or < e, then there is an F E S 
such that g~= F/~F_l .  

Proo/. The first s ta tement  is obvious. To prove the other s tatement ,  we let 
a > 0  be a fixed number. By  Lemma 3.2, for every x > 0  there is one and 
olfly one number  / /=  fl(x) such tha t  x =/z(a); in particular, f l(a)= O. I f  we define 
F(0) = 0 and F(x)  = g~(c), where c = F(a) > 0 m a y  be arbitrari ly chosen, we obtain 
from Lemma 3.2 tha t  F E S .  We have F/~(x)=F/~+~(a)=g~+~(c)=g~F(x), which 
proves the statement.  

I f  / is a given function and (g~} = G(g) an iteration group, w h e r e / a n d  g are 
both  either > e  or < e, then from Lemma 3.4 we obtain tha t  the problem of 
embedding / in an iteration group is equivalent to tha t  of solving the equation 
~V/(x) = gF(x). In  particular, if g~(x) =/c ~ x, 0 < k ~e 1, we get the Schr6der equation 

F/(x)=k.F(x) (3) 
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with multiplier k. I t  is a ra ther  trivial fact tha t  we cancons t ruc t  solutions of 
(3) if we do not require more than  F 6 S .  For  this construction, see e.g. 
Walker [7]. 

A solution F 6 S  of (3) shall be called a SchrSder function of /. I f  for an 
iteration group {/~}, F/~(x)= k ~. F(x) for every ~, then we shall call F a Schr6- 
der function of {i~}- 

Lemma 3.5. I f  F is a Schr6der /unction o/ {/~}, then any other Schr6der /unc- 
tion o/ {/~} has the ]orm c. F b, where b and c are constants > O. 

Proo/. Let  F 1 and F 2 be two Schr6der functions of {/~} with multipliers kl 
and k2 respectively, and suppose k~ = k 2. Then for every x > 0 and ~ we have 

(i~1/r162 (X)) b (i~l (X)) b 

F2/~(x) F2(x) 

Keeping x fixed, let ~ range over the real numbers. 
follows from Lemma 3.2. 

Sometimes it is convenient to use the Abel equation, 

The proposition then 

A/(x)  = 1 + A(x),  

obtained from (3) by  putt ing A(x)=klog F(x). As with SchrSder functions, we 
also speak of Abel functions of / and of {/~}. By means of a given Abel func- 
tion of /, we can obtain every i teration group of / as follows: 

L e m m a  3.6. Let A be an Abel /unction o/ / and put  B(x) = A(x) +pA(x) ,  where 
p is periodic with period 1, and p + e is c.s.i. Then B also is an Abel /unction 
o/ /, {/~[/~(0)=0, /~(x)=B_l(O~+B(x)) /or x > 0 }  is an iteration group o/ /, and 
every G(f) can be obtained in this way by suitable choice o/ p. A and B generate 
the same iteration group i/, and only i/, p = const. 

The proof is obvious and is therefore omitted. We may  note tha t  the main 
content of this lemma is already known; see e.g. Szekeres [5] or TSpfer [6]. 

4.  D i f f e r e n t i a b i l i t y  at  a f i x p o i n t  

A function /, which has a right derivative /'(0) a t  zero, does n o t  necessarily 
have an iteration group such t h a t  /~(0) exists for every a. We now consider 
a class of functions having iteration groups with this property.  

Definition 4.1. A /unction / 6  S o belongs to the class K i/  and only i / /  has a 
continuous iteration group G(/) such that /~(0) exists /or every h 6 G(/), and /or 
a + 0 ,  

0 < g ( 0 ) .  1. (4) 

From Lemma 3.3 we immediately  obtain tha t  if every function of G(/)satis- 
fies (4), then G ( / ) c K .  
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We shall give some conditions for belonging to K, and for this we introduce 
the following notations, used throughout  this section: 

I f  a number  k is associated with a function f, we let this fact imply tha t  
f'(0) exists, tha t  k=['(O), and tha t  /'(0) satisfies (4). 

By Q we mean the first quadrant,  i.e. the set {(x, y ) l x > 0 ,  y > 0 } .  For  
(x, y) E Q, we put  

fn(x) 
cfn(x, y) - (n = 1, 2, 3 , . . . ) .  /~(y) 

I f  f <  e, we put  9(x, y ) = l i m  qJ~(x, y) (5) 

for (x, y )ED, ,  where D ,  is the subset of Q consisting of all points (x, y) such 
tha t  the limit (5) exists. Sometimes, when y is kept  fixed and we regard 9 as 
a function of x only, we write 9(x) instead of ~o(x, y), if nothing can be mis- 
understood. In  this case, we let ~-1 denote the inverse of ~. 

The following theorem gives a necessary and sufficient condition tha t  f EK,  
and it  also shows the known fact  (see [4]) tha t  the differentiability a t  a fixpoint 
makes the i teration group unique. 

Theorem 4.2. Let / be a function with k< 1, and let a > 0 be an arbitrary/ixed 
number. I /  / E K ,  then q~(x,a) exists /or every x > 0  and is a c.s.i, function of x. 
There is only one continuous iteration group G(/ )c  K;  and qp, together with /~, 
where /~ E G(/), satis/ies 

~(s a) = k=- ~(x, a). (6) 

Conversely, i/ q)(x,a) exists /or every x > 0  and is c.s.i., then f E K. 

A weaker var iant  of this theorem is proved by  Szekeres [5]. 

Remarks: In  the theorem we have assumed tha t  k <  1, which, of course, im- 
plies tha t  / <  e. This restriction is made in order to ensure that /n(x)-->0,  when 
n - ~  ~ .  But  the theorem can be applied to functions / >  e, if we use /-1 in- 
stead of f. In  fact, f E K  if, and only if, / - l e K .  

By definition, the condition tha t  ]'(0) exists and satisfies (4) is necessary for 
/ E K, but  it  is not sufficient. I f  0 < f(0)  < 1, it may  still happen tha t  ~(x) does 
not exist for every x >0 .  I t  m a y  also happen tha t  ~ exists but  has jumps or 
constancy intervals. The la t ter  is exemplified in Szekeres [5]. 

The condition of the above theorem is not  easily applicable, because it  does 
not clearly express the behaviour of f in a neighbourhood of 0. Therefore, we 
give some sufficient conditions involving simple properties of f: 

Theorem 4.3. Suppose that k<  1. Let d be a /ixed number >0.  Then each o/ 
the ]ollowing three conditions implies that / belongs to K: 

(a) f (x)  exists /or 0 < x< d, and there is a number ~ > 0  such that 

/'(x) = k + 0(x ~) (x -+  0); 1 (7) 

1 This condition is due to Szekeres [5]. 
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(b) / (x) /x  is an increasing /unction o/ x /or O< x <  d: 

(c) / is concave in (0, d). 1 

Remark: Every  convex function satisfies (b). The corresponding condition, 
satisfied by  concave functions, would be t h a t / ( x ) / x  is a decreasing function of x. 
I t  is a surprising fact, however, t ha t  this condition is not sufficient for /E  K. 
I t  implies the existence and continuity of r but  not  tha t  is is strictly increasing. 

In  order to prove the above theorems, we make use of the following five 
lemmata:  

Lemma 4.4. Let G ( / ) c K  be an iteration group o/ /. Then / ~ ( 0 ) =  ]c ~' /or every 
/x e aft). 

Proo/. By definition, /~'(0) satisfies (4), and therefore h(~)= log/~(0) is defined 
for every a, and because i t  is monotone it  is bounded in every finite interval. 
From (1) it follows tha t  

1" +~(o) = / ' ( o ) .  5 (o)  

i.e. tha t  h(a + fl) = h(~) + h(~). 

I t  is a well-known fact  (see e.g. [1]) tha t  every solution of this equation, 
bounded in a finite interval, is of the form h(~)= ca, where c is constant. This 
g ives  the lemma. 

Lemma 4.5. For any / with k <  1, q) has the following properties. 

(a) Let x > O. Then /or every integer m, (/m(x), x) belongs to Dr and we have 

q~(/m(X), X) = k". (8) 

(b) For y fixed, q~(x, y) is an increasing /unction o/ x; (x, y)E Dv. 
For x fixed, q)(x, y) is a decreasing /unction o/ y; (x, y)E D~. 

(c) ~(x, y) >0; (x, y) E D~. 

(d) I /  any two o/ (x, z), (x, y) and) (y, z) belong to D~, then the third also be- 
longs to D~, and 

~(x, z) = ~(x, y) .  ~(y, z). (9) 

(e) ~( + 0, y) = 0, ~(~o, y) = ~?, 
~(x, + O) = oo, ~(x, ~ )  = o:' 

Proo/. 

qJ(/,~(x), x ) = t i m  ~n(/m(x), x) = l i ra  ~him(x) _ lira /,,In(x) -1"~(0) = k m, 
n~.oo  n ~ o  I n ( Z )  n ~ o o  I n ( Z )  

which proves (a). b) follows immediately from the fact tha t  ~n, for every n, is 

i Convexity and concavity conditions in connection with iteration are also treated in Fort 
[3] and in M. Kuczma, On the Schr6der equation, to appear in Rozprawy Matematyczne. 
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(strictly) increasing with respect tO x and decreasing with respect to y. To 
prove (c), we choose an arbi t rary  point (x, y) in De and an integer m such tha t  
/,n(y) < x (the lat ter  is possible because of Lemma 3.1). Then ~(x, y ) =  ~0(/m(x),/re(Y)) 
i> ~(/m(x), x) = k ~ > 0. (d) follows from the fact  tha t  the equality (9) holds 

if we replace ~ by  an arbi t rary  ~ .  As for (e), we prove only tha t  ~( + 0, y ) =  0, 
the other equalities being quite analogous. Keeping y fixed, for every e > 0  
there is an m such tha t  kin< z. Then for all x</,~(y) with (x, y)E Dr, we have 
cf(x, y) = q~(/m(x), /,n(y)) <~ q~(/m(x), x) = Ic m < e. 

Lemma 4.6. Let a be a given number >0 .  I /  qJ(x, a) exists /or all x >0,  then 
D v =  Q. I /  ~(x, a) is continuous /or x >0,  then ~(x, y) is continuous in Q. 

Proo/. The lemma follows immediately from 4.5 (d) if we observe tha t  
(x, a) E D~ implies (a, x) E D~. 

Lemma 4.7. 1/ qJ is continuous in Q, then q~n converges uni /ormly on every 
compact subset o/ Q. 

Proo/. The s ta tement  is an easy consequence of the known fact tha t  if a 
sequence of functions of one real variable, which are continuous and monotonic 
in an interval, converges to a continuous limit function, then the convergence 
is uniform on every compact  subset. 

Finally, we have to use the following well-known properties of convex func- 
tions: 

Lemma 4.8. (a) Let p and q be increasing, convex [concave] /unctions. Then 
the composition pq is convex [concave] whenever it is de/ined. 

(b) L e t  (Pn} be a sequence o/ /unctions, convex [concave] on an interval I ,  and 
assume that the sequence has a l imit  /unction p. Then p also is convex [concave] 
on I .  

(c) A /unction convex [concave] on an interval I is continuous in the interior 
o/ I. 

Proo/ o/ Theorem d.2. Suppose {/~} = G ( / ) c  K ,  and let a > 0  be fixed. From 
Lemma 3.2 it follows tha t  for each x > 0 there is one and only one ~ such tha t  
/~(a) = x. We then have 

~ ( x ,  a )  = ~ ( /~ (a ) ,  a)  = l i m / n / ~  (a) _ lim /~/n (a) _ / ~ ( 0 )  = k ~, 
~-~r162 /n (a) ~ - ~  /n (a)  

the last equality by  Lemma 4.4. Because both /a(a) and /c ~ are strictly de- 
creasing, continuous functions of ~, it follows tha t  ~(x, a) is a c.s.i, function 
of x. 

To prove (6), we first keep in mind tha t  in the proof above, a could be 
chosen quite arbitrarily. Replacing a by  x we get q~(/~(x), x ) = k  ~. On the other 
hand, by  Lemma 4.5, (c) and (d), we obtain 

q)(/~(x), x) -- ~(/~(x),a).  
~(x, a) 

These two facts together give (6). 
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For fixed ~,/= is uniquely determined by (6) because ~(x) is invertible, ~ is 
uniquely determined by  / and a, and changing a is the same as multiplying (6) 
by  a positive constant. Therefore G([) is unique. 

Now suppose that  for some number a '>0,  ~(x, a )=~(x )  is defined and e.s.i. 
for x > 0 .  Define ~(0)=0.  Thus ~ E S  because of Lemma 4.5 (e). We then 
define G(/)= (/~} by  means of (6), i.e. /=(x)=~_l(k ~r "(~(X)). This makes G(/) a 
continuous iteration group because of Lemma 3.4, and it is an iteration group 
of [ because of (13) below. 

I t  remains to prove that  /= is differentiable at 0 with derivative k=. Let  
(xj} be an arbitrary sequence with xs>0  and l imj_ ,~xj=0.  The thing to show 
is tha t  for any a 

lim [=(xj) = lc~. (10) 
i-}oo ~t 

Let  c be a fixed number > 0. Then for each ] there exists an integer nj and 
a number tj E [[ (c), c] such that  x s = [n~(tj). We observe that  nj -> oo when i --> oo. 

~c(x, a) is defined and continuous for x >0,  hence ~0(x, y) is defined and con- 
tinuous in Q because of Lemma 4.6, Therefore by Lemma 4.7, ~cn(x, y) con- 
verges uniformly to ~c(x, y) on the closed rectangle 

R={(x,y)[/I§ /(c)<y<c), 

i.e. for a given e > 0  there exists ~V(e) such that  I~(x, y)-~c,(x,  y)] < e for every 
n >N(e)  and (x, y)E R. Now by definition of ~,, we have 

/~(xj) /=/.,(tj) /n,/=(tj) 
xj /.j(ts) /nj(tj) =q~n~(/=(tj).tj). (11) 

Because (/=(tj), t j )ER,  there is an integer J such that  for ~ > J  

I v(l= (tj), t j )  - ~.,(l=(tj), tj) l< ~. (12) 

We have ollly to choose J such that  ~ > J  implies n j>N(e) .  (11) and (12) to- 
gether with the fact tha t  cF([=(tj) , t j)= const. = k =. imply (10), which completes 
the proof. 

Proo/ o/ Theorem 4.3. We shall prove that  the assumptions imply that  for 
some number a >0,  ~(x, a) exists and is e.s.i, for x >0.  But  it is enough to 
prove it for 0 < x < d .  Suppose tha t  it  is true for 0 < x < d ,  then from (9)~it 
follows (cf. Lemma 4.6) tha t  ~0(x,y) exists for all 0 < : x < d ,  0 < y  <d .  But  
~(/m(X),/m(y))--cf(x,y) for every integer m, and m can be chosen such that  
O < / m ( x ) < d  and O < / m ( y ) < d  because of Lemma 3.1. Hence we obtain that  
~(x, y) exists in the whole of Q. By means of (8) and (9) we obtain that  

~(/~(x),  a) = kin" ~(X, a) (13) 

for every integer m. This gives tha t  ~ is c.s.i, with respect to x, for all x >0.  
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4.3. (a): I t  has already been proved by Szekeres [5] tha t  q~(x, a) (by Szekeres 
called Z) is strictly increasing and continuous for 0 < x < d. Hence /E  K. 

We may point out tha t  from (7) it follows that  r  differentiable at~zero, 
and that  0 <  ~ ' (0 )<  ~ (proved by Szekeres). Therefore, in this case Theorem 
4.2 is superfluous for proving that  /'~(0)exists. 

4.3 (b): Assume /(x)/x is increasing for 0 < x < d .  Suppose first x<~a. For 
sufficiently large n, /n (x) < d and /~ (a) < d, which gives 

i.e, 

// ,  (x! <~ //n ) 
/n(x) In(a)' 

~+1  (x, a) ~< ~0n (x, a). 

If x>~a, we see in the same way that  q),~(x,a), for sufficiently large n, i s i n -  
creasing with respect to n. Further,  ~n(x, a) is bounded; ~n(x ~, a ) > 0  and, if we 
choose an integer m such that  /m (a) > x, we obtain cn (x, a) < ~ (/m (a), a) --> k m 
because of Lemma 4.5 (a). Therefore ~(x, a) exists for all x >0.  

Now we show that  for x 1 < x 2 < d we have ~(xl, a ) <  ~(x 2, a). Becau se  of (9), 
it is enough to suppose that  x I < a <'x 2. Since efn(x, a) is strictly increasing with 
respect to x, we have 

~fn(Xi, a) < ~ ( a ,  a) < ~n(Z$, a). 

The proposition follows from the fact tha t  ~n(xl, a) is decreasing and ~f,~(x2, a) 
is increasing with respect to n. 

I t  remains to show that  ~(x) is continuous in (0, d). We prove tha t  ~(x) is 
continuous in every interval (b, c), 0 < b < c < d. In this interval we have: ~(x, b) 
[~(x, c)] is the limit of an increasing [a decreasing] sequence of continuous func- 
tions, hence lower [upper] semi-continuous. 

But  because of (9), 
(x, b) _ ~0 (x, c) 

~(x, a) = 
(a, b) (p(a,c)' 

i.e. q(x, a) is both upper and lower semi-continuous, hence continuous. 

4.3 (c): The existence of ~ is proved as in 4.3 (b), the only difference being 
tha t  q~n(x, a) is, with respect to n, increasing for x~< a and decreasing for x>~a. 
B y ' L e m m a  4.8 (a) and (b), ~ is concave in (0, d) and therefore, by Lemma 
4.8 (c), continuous in (0, d). We know tha t  ~(x) is increasing, and we have only 
to s h o w  that  it is strictly increasing. Let  /(X2) < X 1 < X 2 < d, and suppose ~(xl) = 
r Then (13) gives tha t  ~/(Xl)  = ]r ~9(Xl) = k"  ~O(X2) = ~O/(X2) < ~P(Xl), which con-  
t r a d i c t s  the fact tha t  ~ is concave. This completes the proof of Theorem 4.3. 

5. Transformation of the class K 

The theorems of Section 4 can be applied to many functions not belonging 
to K, because every iteration group can be transformed into an iteration group 
included in K. 
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Definition 5.1. Suppose F E S; the /unction /E  S O is said to beloni] to the class 
K(F) i/, and only i/, F/E-1 e K. 

If  g=F/.F_I E K,  there is a unique iteration group {g~} ~ K  and, by Lemma 
' 0  3.4, the set G(/) = {/~ [/~ = F-1 g~F} is an iteration group o f / .  Supposing g~( ) = k ~, 

0 < k # l ,  we have 

lira F/:,(x) _ k~" (14) 
x~0 E(x) 

Conversely, if G(/) is an iteration group of / satisfying (14), the set {g~ [g ,=  
F/~F_I} is an iteration group in K with g:(0)= k ~. Thus K(F)  is the union of 
all the continuous iteration groups the elements of which satisfy (14) for some 
positive constant k # 1. 

A class K(F)  may  be determined in different ways. For instance, two different 
functions F x and F ,  may  determine the same class: 

L e m m a  5.2~ Assume that there are two positive constants b and c such that 
lim~_,0 Fl(x) " (F2(x)) -~ = c. Then K(F1) = K(F~). 

Proo/. I t  is enough to prove tha t  /E  K(F1) implies / e  K(F2). Suppose 

l i m  F1/~ (z) _ k~" 

This gives immediately 

i.e. / fi K(F2). 

lim .FJ~(x) k~/b ~ 
�9 -~o .F~(x) 

L e m m a  5.3. The class K(F) is the same /or all SchrSder /unctions F o/ a given 
iteration group. 

The proof follows immediately from Lemmata 3.5 and 5.2. 
A class K(F) is also determined by a given iteration group, which is shown 

below. For this and for later purposes, we introduce the following ~notations. 
Let  G(g) = {g~} be a given iteration group and let h e S O be a given function. Then 
by Lemma 3.2, for every x > 0  there is one and only one number 2=,~(h,x) 
such tha t  

g~(x) = h(x).  (15) 

If  h =/~ e G(/), where G(/) is a given iteration group, then for brevity we write 
2(a, x) instead of 2(/~, x). The function 7t(a, x) satisfies the relation 

2(a +/~, x) = ~(a,/~(x)) + ~(~, x); (16) 

for if ~t 1 =2(~,/~(x))  and 22=2(fl, x), then g~,+~,(x) = g~lga,(x) =g~,/~(x)=/~/~(x) = 
=/~+~ (x). 

For fixed x, the mapping ~-->2(~, x) is obviously strictly monotone. 
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Lemma 5.4. Assume G(g)~ K(F).  Then G([)c K(F) i/, and only i/, /or every o: 
2(~, 0)=limn-~o ~(:r x) exists and 2(o~, 0 ) 4 0  /or ~ 0 .  In  this case, there is a 
number c+O such that 

2(~, 0) = ca. (17) 

Proo[. I t  is no restriction to suppose tha t  g > e. Then by  assumption there 
is a number  /~ > 1 such tha t  lim~_~0 (Fg~(x)/F(x)) = k ~. Now first suppose tha t  
2(g, 0) exists and is non-zero for ~ 0 .  Since ~(~, 0) is non-decreasing, (17) 
follows immediately from (16) (cf. Lemma 4.4). Obviously c:i=0. I f  e > 0  we 
then have 

lira F/~(x) ~ Fg~(x) Fg~+~(x) icr ' 
x-~o F(x) x-~o ~ ~ x-~olim F(x) 

and in the same way lim~_.o (F/~(x)/F(x))>~k ~-~, which gives lim~_~o (F/~(x)/ 
F(x))--lc ~, since e > 0  is arbitrary.  

Conversely, suppose for some c + 0  tha t  limx_.o (F/~(x) /F(x) )= k c~. I f  ~u = 
limx_~o ~(~, x) and u=limx_~o ~(~,x), for e > 0  we easily obtain 

kl '-~ < k ~'~ ~< k ~+~, 

which gives # = u  = co~, and the lemma is proved. 

Theorem 5.5. K(F1) = K(F2) i/, and only i/, they have a common iteration group, 
i.e. an iteration group belonging to a class K(F) determines the class uniquely. 

Proo[. Because of symmet ry  it is sufficient to prove tha t  /EK(F1)  implies 
[ E K(F~). Let  G(g) be the common iteration group, and let {[~} c K(F1) be the 
uniquely determined iteration group of [. Because of Lemma 5.4, there is a 
number  c + 0  such tha t  limx_,0 ~(~, x)=c~. From 

lira F2g~(x) k~ 
�9 -~0 F 2 ( x )  

we obtain 

i.e. {[a} c K(F2). 

lim F2/~(x)- k c~, 
x-~o F2(x) 

6. Asymptotic comparison of iteration groups 

With somewhat different notations, we quote the following three theorems 
from Michel's work [4]. The theorems have the same numbers here as in 
Michel's paper. 

Theorem 6.1. Assume that q> 1 and limx_.o ([(x)/x)=q. Then there exists at 
most one iteration group G(/) such that /or every [~ E G(/), 
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lim/~,(x) = q~. 
x--~0 X 

Theorem 6.2. Assume that q4=O avwl 

l im/(x)  - x 
z--,- 0 ~gl+~ q ,  

where ~ > O. Then there exists at most one iteration group G(/) such tha t /or  every 

l im/~ (x) - x 
x--->O X 1+~ ~ q "  

Theorem 6.3. Assume that q > 0  and limx_~0 ( / (x) /x~)=q,  where 0 < u <  1. Then 
there exists at most one iteration group G(/) such that /or every ]~ E G(/), 

l im/~ ( x )  = q ( U ~  1)/(u- 1) 
z ~ . 0  X u~ 

Theorem 6.1 follows from Theorem 4.2. We show below that  6.2 and 6.3 also 
follow from 4.2, if we apply the results of Section 5. 

The theorems quoted exemplify uniqueness conditions for G(/) for some types 
of asymptotic behaviour of / at zero. Michel brings up the question of whether 
for any given / we may find asymptotic conditions for /~ at  zero which make 
the group G(f)= (/~} unique. The purpose of the following investigation is to 
elucidate this question. We t ry  to frame the question more precisely, even if 
at the same time we lose some aspects of the question. 

In  the following, we shall always let G be a .given iteration group of a func- 
tion g. Let  ~ be a .  relation defined for the group G and arbitrary functions 
h E S  O . By ~(G,h) we mean that  the relation Q holds for G and h. If  ~(G,h) 
for every function h in a set M, we write Q(G, M). 

If ~(G,/) for a given function /, the following questions arise: 

(1) Is there any iteration group G(/) such that  Q(G, G(/))? 
(2) If the answer is yes, is G(/) unique ? 

We now define some relations Q to be investigated. Let  ~t be the function 
defined by (15), where (g~} = G. 

Definition 6.4. Qj(G, h), ] = 1, 2, 3, 4, is de/ined to be true /or h = e. For h 4 = e 
we de/ine: 

QI(G, h) to mean that 2(h, 0 )=  ]imx-.0 2(h, x) exists and is di]/erent ]rom zero; 
Q2(G. h) to mean that there exists ~4=0 such that /or  every fl 4=0, 

lira h(x)-g~(x) =0; 
�9 ~o g~+.(x) - g~(x) 

2 0 3  
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~)3(G, h) to mean tha~ there exists ~ # 0  such that lim~..o (h(x)/g=(x))=1 ; 
~(G,  h) to mean that there exists ~ # 0  such that log (h(x)/g=(x)) i s  bounded /or 

O < x < d <  c~. 

For ~ we have the following. 

Theorem 0.5. Let F be a SchrSder /unction o/ G. Then G(/) ~ K(F)  i / a n d  only 
if e~(G, G(/)). 

Proo/. Obviously G c K(F).  Therefore the theorem follows immediately f~om 
Lemma 5.4. 

This theorem, together with Theorems 4.2 and 5.5, gives a complete answer 
to Questions 1 and 2 for the case ~=~1. In  fact, let / be a function in S o 
with QI(G,/). By means of Theorem 4.2 we may determine whether or not ] E K(F)  
(i.e. _F[$'_1 e K). This gives the answer to Question 1, because of Theorem 6.5. 
If  fEK(F) ,  the uniqueness o f  G(/)={/=} satisfying 01(G, G(/)), follows from 
Theorem 5.5. 

For ~ = Oj, j =  2, 3, 4, we have the following 

Theorem 6.6. 

(a) Q~(G, h) implies ~I(G, h). 
(b) I /  limz_~o I g=(x)/x - 11 > 0 ]or ar # O, then Qa(G, h) implies ~z(G, h). 
(c) I /  g=(x)/x --> 0 or co when x --> O, /or every a # O, then ~4(G, h) implies ~z(G, h). 

Proo[. I t  is enough to prove the theorem for g > e. In  the proofs of (a), (b) 
a n d  (c) below, we let a denote the numbers in the definitions of ~2, Oa and ~4 
respectively. 

(a) Suppose ~(G, h). We first show tha t  lim~_,o )t(h, x) < ~. If  this were false, 
there would exist an e > 0  and a sequence {xj}, where xj-->0 when j-->oo, such 
that  ~t(h, x j ) > ~ +  ~ for every j. Then, because of Lemma 3.2, we would get 

h(xj) - g=(xj) > g=+~ (xj) - g=(xs) 1, 
g=+~(xA- g=(zj) g=+~(zj)- g=(zj) 

in contradiction to ~ (G,  h). In the same way, we prove limx~o 2(h, x) ~> ~, which 
gives ~z(G, h). 

(b) We easily obtain that  if limx_.01 g,(x) /x  - 1 ] > 0, then ~s(G, h) ~ eg.(G, h), i.e. 
the proposition follows immediately from (a). 

(c) I f  g > e, then the assumption is tha t  g=(x)/x tends to oo for ~ > 0 and to 0 
for a < 0 ,  when x tends to 0. Now suppose limx_~0 ~t(h, x )>~ ,  i.e. suppose there 
is a number s > 0 and a sequence {xj} with limj_, o= x~ = 0, such that  2(h, xj) > g + e. 
Then 

h(x,) > g=+~(x,)_ g.g=(x,) 
g.,(xj) g=(xs) g=(xj) 

when i -~oo .  This contradicts 94(G, h), i.e. Q4(G, h) implies l i m ~ 0  2(h, x) <~ ~. In 
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the same way we show tha t  q4(G, h) implies l i m ~ 0  ]t(h, x )>~ .  This gives tha t  
~4(G, h) implies ol(G , h), which was to be proved. 

The Theorems 6.2 and 6.3 can be obtained as applications of Theorem 6.6. 
Applying 6.6 (a) with 

X g~(x) (1 -~- a ~ )  1/~ 

for sufficiently small x, and 6.6 (c) with g~(x)=x u~ for sufficiently small x we 
obtain Theorems 6.2 and 6.3 respectively. The existence of groups with the 
mentioned properties follows from the investigation in Section 5 of Michel's 
work [4]. 

Of course, it  is desirable to make a uniqueness condition of the type o(G, G(/)) 
as weak as possible. In  (a), (b) and (c) of Theorem 6.7, the conditions 
os(G, G(/)), j = 2, 3, 4, are stronger than QI(G, G(/)). Therefore, the only interest 
of Theorem 6.7 lies in the fact tha t  ~j(G, h), j =  2, 3, 4, expresses the behaviour 
of h more concretely than QI(G, h). Whether  there is any G with the property 
tha t  there exists an / with unique G(/), fulfilling Qj(G, G (/)), j = 3 or 4 but  not  
1, will not  be determined here. 

We conclude this paper by touching upon the problem of weakening QI(G, G(/)). 
Maybe there are different natural  ways of weakening this condition, but  we 
consider only the following: from Lemma 5.4 we know t h a t  ~(G, G(/)) is equi- 
valent to the existence of a c ~= 0 such that  lim~_~0 [ ~t(~, x ) -  c~[= 0. By Lemma 
3.3 it  is no restriction to assume c= 1. Let  0 be a non-negative function, and 
define 

oo(G, G(/)) ~ lim [)~ (~, x) - ~[ < 0(~). (18) 
x - - ~ 0  

If  0 ( a ) >0  for some a, then ~o(G, G(/)) is formally weaker than QI(G, G(/)), but  
the following example shows tha t  there are 0(g), not  identically 0, such that  
Co(G, G(/)) ,~ Qi(G, G(/)): 

Example  6.7.  0(O) = 0'(0) = 0. (19) 

To show tha t  if 0 has this property, ~o(G, G( / ) )~  ol(G, G(/)), we put  

l(~) = lira [ ~(~, x) - ~ I" 
X ---~ 0 

From (16) we easily obtain 

l(~ +/~) < z(~) + l(fl). (20) 

Now we f ix  a number ~ and put  ~= nil, where n is a positive integer. From 
(18) and (20) we get 

~(~) = ~(n~) < n l (~)  < nO(B) = 0:" ( n / ~ )  . O ( ~ / n ) ,  

which tends to 0 when n-->c~, because of (19). This implies ~I(G,G(/)). 
The next  example shows that  0(~) must take arbitrarily small values to give 

uniquenefis: 
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Example 6.8. 0(o:) >1 ~ > 0 /or every ~. 

In this case, we may construct an iteration group G*(g) ~ G such tha t  ~o(G, G*(g)). 
Let  A be an Abel function of G, and let p be a non-constant function with 
period 1 such t h a t  p + e  is e.s.i, and, for every x 

]p(x) ] < e/2. (21) 

G* * By L e m m a  3.6, (g)=(g~lg*(O) =0,  g * ( x ) = B _ i ( ~ §  for x > 0 }  is an itera- 
tion group of g different from G if we define B ( x ) = A ( x ) + p A ( x ) .  By definition 
of Abel functions, we have 

Ag~(,,. ~) (x) = ~(a, x) + A (x); (22) 

and "by definition of G*(g), 

where g~(~.x) = g*(x). 

pAg~(~. ~) (x) + Ag~(~. ~) (x) = ~ + A(x) + p A  (x), 

Combining (21), (22) and (23), we get 

I ~(~, x) - a I < IpA(x) ] + ]pAg~(~.~) (x) [ < e. 

(23) 

This shows that  there is at  least one function / (namely ] = g) with more than 
one iteration group G([) satisfying oe(G, G(/)). 

These two examples can be considerab]y improved, and the following question 
arises: Is there any function 0(~) such tha t  Qo(G, G(/)) is a uniqueness condition 
for G(/), strictly weaker than  ol(G, G(/))? This question, however, will not be 
answered here. 
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