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A generalization of two-norm spaces
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Introduction

In some concrete Banach spaces Fichtenholz [8] introduced a kind of convergence
weaker than that generated by the given norm. These considerations were generalized
by Alexiewicz [1, 2], who introduced the concept of two-norm convergence or y-
convergence. Roughly speaking, a two norm space is a linear space provided with
twonorms || || and || ||*, the second dominated by the first. A sequence (x,){° in a
two-norm space is said to be y-convergent to z, if sup, |2, || < o and ||z, — =z, ]| *—
0, n—>oco, The two-norm spaces, and in particular their linear functionals continuous
with respect to the y-convergence, were examined in great detail in a series of papers
[3, 4, 5] of Alexiewicz and Semadeni. The Saks spaces, which have many properties
in common with the two-norm spaces, have been studied by Orlicz [11, 12] and
Orlicz and Ptak [13]. It is natural to ask whether on a given two-norm space E there
exists a topology, which generates the two-norm convergence, and thus makes it
possible to apply the theory of linear topological spaces. The first to construct such
a topology was Wiweger [15, 16], and he also proved its uniqueness under certain
additional requirements. In this paper we intend to give an extension of the theory
of two norm spaces to the more general situation of a linear space E provided with
two locally convex topologies x4 and 7, such that every r-bounded set is u-bounded.
Thus we construct in a natural way a third topology u* on E, called the mixed topo-
logy, which is uniquely determined and coincides with Wiweger’s topology in the
special case of a two-norm space. In this way the theory takes a form which very
clearly shows its connection with well-known results in the theory of locally convex
linear spaces, in particular with Grothendieck’s construction [9] of the completion
of the conjugate space E’ of a locally convex linear space E. Although Wiweger’s
topology is well defined in the general case too, it does not seem to give an adequate
generalization of the two-norm convergence. Using the theory of locally convex
linear spaces we then give a detailed study of the space B endowed with the topology
" and of its conjugate space, thus generalizing and sharpening known results for
two-norm spaces. As an application of the theory we obtain in section 2 a characteriza-
tion of (semi-) reflexive bornological spaces. For Banach spaces a similar criterion
was given by Alexiewicz and Semadeni [5].

1. The mixed topology

Throughout the paper E shall denote a real or complex linear space, and whenever
we speak of a topology T on E we shall suppose that 7 is locally convex and separated.
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A. PERSSON, Generalization of two-norm spaces

A subset M of E considered as a topological space in the topology induced by 7 shall
be denoted by M[z]. If 7, and t, are two given topologies on E, we write t, <t, when
T, is weaker (coarser) than , or, equivalently, 7, is stronger (finer) than 7.

Definition 1.1. A4 triplet {E, u, v} of a linear space E and two topologies y and v on E
such that every t-bounded subset of E is u-bounded is called a bitopological space. The
finest locally convex topology on E which is identical with u on the t-bounded subsets of E
ts called the mixed topology on E and is denoted by u*.

Hence, by definition, u* is the finest locally convex topology on E which has the
property that the canonical injections

¢s: Blul—~E

are continuous for each r-bounded subset B. It is obvious that one may here restrict
oneself to all sets B in a fundamental system for the bounded subsets of E[z], hence
in particular to all absolutely convex z-bounded subsets. Therefore a fundamental
system of neighborhoods of 0 in E[u"] consists of all absolutely convex subsets W of E
such that gz~(W)=W N B is a neighborhood of 0 in B{u] for each absolutely convex
t-bounded subset B of E.

It follows immediately from the definition of the mixed topology that

AR (1.1)

and that g™ =u™ for any two topologies 7, and 7, on E which have the same bounded
subsets. In particular, if # denotes the bornological structure on E associated with
the topology 7 (see [6, Ch. III, § 2, ex. 13]) we have

,u’=uﬁ. (1.2)

u<B; (13)

for the identical mapping I: E[f]—E[u] of the bornological space E[§] onto E[u]
maps bounded subsets onto bounded subsets, and thus is continuous. Another conse-
quence of Definition 1.1 is that, if 4, and y, induce the same topology on z-boun-
ded subsets, then uj=p$. In particular

ut=(ur). (1.4)

Proposition 1.1. If {E, u, t} is a bitopological space, then every t-bounded subset B of
E s y*-bounded.

We also notice that

Proof. Let (x,);° be a sequence of elements in the t-bounded set B and (4,)i° a se-
quence of positive numbers such that 1,—0 for n—>oco. Because B is also bounded in
the associated bornological space E[f], it follows that A,x,—0 in E[f] and hence, on
account of (1.3), in E[u]. But the sequence (1,z,)i° is clearly z-bounded, and since
u is identical with 4 on 7-bounded subsets, we deduce that 1,2,—0 in E[u"]. This
shows that B is bounded in Efu*], and thus the proposition is proved.

Corollary 1.1. If {E, u, 7} is a bitopological space and f the bornological structure on E
associated with T, then u<p*<g.

Proof. The first inequality is (1.1), and the second is proved exactly as (1.3).
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Proposition 1.2. Let {E, u, 1} be a bitopological space. Then a linear mapping u of
E{p*] into a locally convex linear space ¥ is continuous if and only if, for each T-bounded
subset B, its restriction to B[u] (or, which is the same, to B[u*]) is continuous. Moreover,
among the topologies on E which are identical with u on t-bounded subsets, u* is the
only one that has this property.

Proof. The first part of the proposition is an immediate consequence of the defini-
tion of u*. On the other hand, let o be a topology on E which satisfies the first state-
ment of the proposition and which is identical with 4 on 7-bounded subsets. Then it is
obvious that the restriction to every r-bounded subset B of the identical mapping I:
Elo]—>E[y®] is continuous. Hence I is continuous, that is u*<¢. Since the inverse
inequality is valid by definition, we conclude that u* =0. The proof is complete.

Among other things this result shows that the mixed topology is uniquely deter-
mined by the two conditions: (1) g~ is identical with g on 7-bounded subsets; (2) a
linear mapping » of E[x"] into a locally convex space F is continuous if and only if its
restriction to B[u] is continuous for every r-bounded subset B of K. It follows in
particular that, in the case of two-norm spaces, u* coincides with the topology intro-
duced by Wiveger ([16] Theorem 2.6.1).

Another immediate conclusion is the following:

Corollary 1.2. Let {E,u,v} be a bitopological space and F a complete locally con-
vex linear space. Then the space C(E[u*], F) of all linear continuous mappings of E[u]
tnto F is complete in the topology of uniform convergence on t-bounded subsets of H
and in the topology of uniform convergence on u*-bounded subseis of E.

Proof. We give the proof of the first case only. The second case follows from the
proof of the first and Proposition 1.1. If ¢ is a Cauchy filter on C(E[u"],F), the projec-
ted Cauchy filter ¢(zx) on F converges for each fixed 2 € E, since F is complete. The
limit w(x) is a linear mapping of E[u*] into F, whose restriction to every r-bounded
subset B is continuous, for by assumption ¢ converges uniformly to u(z) on B.
Hence the desired result follows from Proposition 1.2.

In the theory of two-norm spaces the normal spaces play a fundamental role (see
[3, 4, 16]). This notion has several possible generalizations to the general case. We
shall adopt the following

Definition 1.2. A bitopological space {E,u,t} is called a-, b- and c-normal, respecti-
vely, if it satisfies the following requirements: (a) E[t] has a fundamental system B for
its bounded subsets such that every BEB is absolutely convex and p-closed; (b) E[r]
satisfies (a) and B is in addition countable; (c) E[z] has a fundamental system N for
tts neighborhoods of 0 such that every VE N is absolutely convex and p-closed.

Clearly every b- or c-normal bitopological space is ¢-normal. In the special case of
a two-norm space all three kinds of normality coincide. It is also immediate that, if
{E,u,7} is a- or b-normal, the space {E,u,B} is a- or b-normal, respectively.

Theorem 1.1. If {E,u,t} is b- or c-normal, then E[t] and E{u"] have the same bounded
subsets.

Proof. Suppose first that { E,u,7} is c-normal. In view of Proposition 1.1, it suffices
to show that every u*-bounded subset B is 7-bounded. This will in turn follow if we
can prove that every sequence {z,){" such that z,—0 in E[y’] is bounded in E{z]. In
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fact, let B be u*-bounded and assume that this condition is already proved. Then, if
(,)?° is a sequence in B and (4,)1° a sequence of positive numbers with lim,_, ., 1,=0,
it follows that /2 n—>0 in E[y7], that is, (ﬂn x,){° is bounded in E[t]. Hence 4, z,—>0
in Efr], which proves the desired fact that B is v-bounded.

To conclude the proof, let (z,);° be a sequence such that z,— 0 in E[x"] and suppose
that (x,)i° is not v-bounded. Since {E,u,t} is c-normal, there exists an absolutely
convex u-closed neighborhood V of 0 in E[r] and a subsequence (xx,)i° of (x,)° such
that

Ze,dnV (n=1,2,..).

But all nV are closed in E[u], so that we can find a sequence (U, )" of neighborhoods
of 0 in E[u] with the property that

T §(nV +U,) (n=1,2,..).

Consequently the absolutely convex set
W=n(nV+U,)
n=1

does not contain any of the elements zx,, »=1,2,.... Hence we are through, if we
can prove that W is a neighborhood of 0 in E[x"]; for we have then obtained a contra-
diction to the fact that x,—0 in E[y*]. But if B is any 7-bounded absolutely convex
subset, then B< nV for all sufficiently large n, say n >n,. Therefore

WnB=Fil(nV+ U,)nB>n (U, NB),
n= n=1

which proves that W N B is a neighborhood of 0 in B[u] for each 7-bounded absolutely
convex subset B, that is, W is a neighborhood of 0 in E[u"). Hence the proof is com-
plete in the case {E,u,t} is c-normal. The other case is proved analogously.

In order to clarify the connection between the mixed topology and the y-converg-
ence introduced by Alexiewicz [2], we state the following consequence of Theorem 1.1.

Corollary 1.3. Let {E,u,t} be a b- or c-normal bitopological space.' Then x,—> x4 in
E[u*] if and only if (x,)i° is bounded in E[1] and z,—> x4 in Elu).
Proof. If x,—>x, in E[u7], then (z,)7° is bounded in E[u’], hence in E[7], and z,—>x,

in E[u] on account of (1.1). The converse is a direct consequence of the definition of
T

We shall now prove a result which shows, roughly speaking, that in the most
interesting cases the mixed topology is in certain respects no “good” topology.

Proposition 1.3. Let {E,u,t} be a c-normal bitopological space such that v=p is
bornological and T is not identical with y on t-bounded subsets. Then E[u*] is not quasi-
tonnelé.1

Proof. Let V be an absolutely convex and u-closed neighborhood of 0 in E[7]. Since
us<u®, Vis closed in E[u*], and since by Theorem 1.1 E[u*] and Efz] have the same

1 T borrow the French term.
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bounded subsets, ¥ absorbs every u*-bounded subset of E. Therefore, if E[u’] is
quasi-tonnelé, V is a neighborhood of 0 in E[y*], which proves that v<u". Hence,
according to Corollary 1.1, v=y". This, however, contradicts the assumptions of the
proposition, so that the proof is complete.

In particular, under the conditions of Proposition 1.3, the mixed topology is
neither tonnelé, nor bornological. If in addition E[z] has a countable fundamental
system for its bounded subsets, which consists of sets that are metrizable in the
topology u, then E[u"] is not a (DF)-space. For a (DF)-space with this property is
quagsi-tonnelé (see [10, p. 71]). We conclude this section by noticing the following
result, which is an immediate consequence of Definition 1.1. and a theorem of Raikov
[14].

Preposition 1.4. If {E,u,v} has a countable fundamental system for its bounded sets
consisting of subsets which are complete (and hence closed) in the topology induced by u,
then E[u7] is complete,

2. Duality in bitopelogical spaces

The dual space of a locally convex linear space E[u] will be denoted by Efu]’.
Provided that nothing else is indicated, E[u]’ will be considered in the strong topo-
logy, that is, uniform convergence on u-bounded subsets of E. For brevity we shall
often use the notation gu for the weak topology o(E, E[u]’) on E belonging to the
duality between F and E[u}.

An important property of a two-norm space {E,u,t} is that E[u*]) is a closed
subspace of E[z]". This was shown by Orlicz and Ptk [13]. In our general case one
obtains:

Theorem 2.1. Let {E,u,t} be a bitopological space and, as before, B the bornological
structure on E associated with v. Then E[u*]’ is complete and we have the (topological)

inclusions
E[uY = E[yY < E[B]. 2.1)

Moreover, E[u*] is a complete and hence closed subspace of E[f].

Proof. The inclusions (2.1) follow at once from Corollary 1.1, and the rest of the
theorem is a consequence of Corollary 1.2.

The theorem which we are now going to prove was stated for two-norm spaces by
Alexiewicz and Semadeni in [3]. In view of Proposition 1.2 and Theorem 2.1 it is in
fact a simple consequence of a more general result of Grothendieck [9]. However, for
the convenience of the reader we give here a short proof extending the arguments in

[31.

Theorem 2.2. If {E,u,7} is an a-normal bitopological space, the closure of E{u],
considered as a subspace of E[BY], is identical with E[u*] .

Proof. In virtue of Theorem 2.1 it is sufficient to show that E[u]) is dense in E[u)
in the topology induced by E[f], i.e. in the topology of uniform convergence on 7-
bounded subsets. Therefore, let 7, be a given element in E[u*]’ and B an arbitrary
absolutely convex z-bounded subset of E. Let
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V(B,n,) ={17: | <z,| N> | <1,z€B8B, 17€E'[‘u.’]’}

be the corresponding neighborhood of 7,. We shall prove that V(B,7,) contains some
element &€ E[u]'. It is no restriction to assume that 7, 0. Let , be a point in ¥ for
which <zg,7,> =1, and denote by H the closed hyperplane in E[u*] on which 7,
equals zero. Then every x€ E can be written uniquely in the form

x =h(x) +i(x) -z,

where h(x) € H and #(z) is a complex number. Since H is also closed in E[f], the linear
form z —t(x) on E[f]is continuous, so that

sup [¢(x)| < oo.
TeB

Hence h(z) runs through a 7-bounded subset A(B) of H when z runs through B, for
K(B)< H N (B+4(B)-x,). Let B’ be an absolutely convex u-closed 7-bounded subset
of E which contains h(B). Then the closed absolutely convex hull B, of k(B) in E[u]
is identical with the closed absolutely convex hull of A(B) in B[], and hence B,< H.
But x,¢ B, for 2, ¢ H, so that according to the Hahn-Banach theorem there exists an
element & € E[u] such that <z,&> =1 and |<z,£>|<1 for z€B,.

Hence we obtain

|<z,&—ne> | = | <h(®) +t(x) 2o, 1> | =| <h(2),E>]| <1

for each =€ B, that is, £€ V(B,7,). The proof is complete.

Corollary 2.1. If {E,u,t} is an a-normal bitopological space, the weak topologies op
and ou® induce the same topology on t-bounded subsets of E.

Corollary 2.2. Let {E,u;,7} and {E,u, 1} be two a-normal bitopological spaces.
If Elu) = Elp,]', then E{ui]’ = E[u3)' .

Corollary 2.3. If {E,u,t} is a-normal, then the bitopological spaces {E,ou,7} and
{E,ou*,t} are a-normal, and we have the following identities:
i

(ou)* =(ou"), (2.2
ou® =o(ou)* =o(ou’)". (2.3)

Proof. As the closure of any absolutely convex subset of E is the same in both of
the toplogies u and ou, we conclude that {E,ou,7} is a-normal. Since oy <ou®, this
implies the a-normality of { ,ou",t}, too. The equality (2.2) is an immediate conse-
quence of Corollary 2.1 and the definition of the mixed topology. The second
equality in (2.3) follows from (2.2), and the first is a consequence of Corollary 2.2,
since E[u]) = E[ou] .

Let us shortly examine the two extreme cases that might occur in Theorem 2.1,
that is, the cases E[y"])' = E[f]’ and E[u] = E[u’]'.

Proposition 2.1. For an a-normal bitopological space {E,u,t} we have E[u’] =
E[BY if and only if ou and af are identical on t-bounded subsets of H.
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Proof. The necessity of the condition follows at once from Corollary 2.1. Suppose
conversely that the condition of the proposition is satisfied and let B be a 7-bounded
set. The restriction to B of every n€ E[B]’ is continous in the topology of and thus
in ou. Since ou <u, we deduce that 7 is continuous on B[u] for every 7-bounded set B
and therefore, by Proposition 1.2, 7€ E[u*]’. Hence E[f]) < E[y*], which proves the
proposition, since the inverse inclusion is always valid.

For two-norm spaces the equality E[u] = E[u"]’ can only occur in the trivial case
u=t (see [3]). Since by (1.4) we have E[u’] = E[(u*)’]’, this proposition does not
hold true in the general situation without certain restrictions on {£,u,7}. We have
the following result. k

Proposition 2.2. Let {E,u,7} be a b-normal bitopological space such that E[u] is
bornological and E(t] and E[u] have a countable fundamental system for its bounded sets.
Then E[u]' = E[u*) if and only if u=p. In particular =7 if E[7] is bornological.

Proof. Since the dual space of a bornological space is complete, E[u]’ is a Fréchet
space. The same conclusion can be drawn for E[u*]’. In fact, E[u*]’ is complete by
Theorem 2.1 and the b-normality implies that E[u®] has a countable fundamen-
tal system for its bounded sets, i.e., E[u*] is metrizable. In virtue of (2.1) the iden-
tical mapping I: E[u]—E[u*]’ is continuous and hence, by a well-known theorem
of Banach, E[u]’ and E[u®]’ are isomorphical. This implies, however, that E[u] and
E[y™), and hence E[u] and E[S] (Theorem 1.1.), have the same bounded subsets.
Since u and § are bornological, we infer from this that u =f. The proof is finished.

A locally convex linear space E[u] is said to be reflexive if the dual space E[u]”
of E[u]’ is identical with B (semi-reflexive in the sense of Bourbaki [6]), and it is said
to be completely reflexive if it is reflexive and the strong topology on E[u]” =E is
identical with the initial topology u (reflexive in the sense of Bourbaki). We recall
that E[u] is completely reflexive if and only if it is reflexive and tonnelé. Hence it
follows from Proposition 1.3 that we cannot expect E[u] to be completely reflexive.
We shall say that the bitopological space {E,u,t} is u-, u*- and f-reflexive, when
Elu}, E[] and E[B], respectively, are reflexive.

Theorem 2.3. Let {E,u,v} be b- or c-normal. Then E[u’] is reflexive if and only if
every t-bounded subset B of E is relatively compact in the topology ou.

Proof. It follows from Theorem 1.1 that E[u"] and E[z] have the same bounded
sets. Moreover, the normality condition of the theorem implies that ou and ou®
induce the same topology on each 7-bounded subset B of E (Corollary 2.1), and that
B has the same closure in E[u"] as in E[u). Therefore the result is a consequence of
the general criterion on reflexivity 6, Ch. IV, § 3].

Corollary 2.4. If {E,u,t} is b- or c-normal and p-reflexive, then E[y"] is reflexive.

Corollary 2.5. If {E,u,t} is b- or c-normal, u<t and E[] reflexive, then E[u’] is
reflexive.

Proof. Let B be a 7-bounded subset of E and B its closure in E[ou]. Then Bis 7-
bounded, and hence, in view of the reflexivity of E[r], compact in o7. But ou <o,
since u <7, and therefore B is compact in ou, too. This proves the corollary.

As an application of the theory we shall now give a criterion on reflexivity of
bornological spaces. This criterion is the extension to bornological spaces of a some-
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what sharper result for Banach spaces, which was proved by Alexiewicz and Semadeni
[5]. We also wish to point out that, according to the remark before Theorem 2.2, the
proof of the necessity of the theorem is essentially a corollary to the theorem of
Grothendieck [9].

Theorem 2.4. Necessary and sufficient for a bornological space E[ff] to be reflexive is
that E[u]’ is dense in E[f] for every locally convex topology u on E weaker than §.

Proof. Suppose that E[f]is reflexive and let u be a given topology on E weaker than
B Then every f-bounded subset B of E is compact in the topology ¢ff, and since
ou <of}, we conclude that oy induces the same topology as ¢f on B. This implies in
particular the a-normality of {E,u,8}, but also, in virtue of Proposition 2.1, that
E[uf) = E[8Y. Hence, by Theorem 2.2, E[u]' is dense in E[f]".

Let conversely the condition of the theorem be fulfilled and suppose that E[f] is
not reflexive. Then there exists an element 2’’ % 0 of E[S]"’ such that 2"’ ¢ E, i.e. there
is a closed hyperplane H of E[f]', which is dense in the topology 6(E[f]', E). The linear
spaces E and H are therefore in duality with respect to the bilinear from <z, z'>.
The associated weak topology o(E, H) on E is weaker than of, and hence also weaker
than 8. But the dual space of E in the topology o(Z,H) is identical with H. Hence
we have reached a contradiction, for by construction H is not dense in E[8]’. This
completes the proof of the theorem.

3. Relativization of the mixed topology

If F is a subspace of the locally convex linear spaces E[u], we write up for the rela-
tivization of the topology u to F. Every linear subspace F of a bitopological space
{E,u,t} determines in a natural way a bitopological space, namely {F,uz,7s}. It is
easily seen that, if {&, H,T} i a-, b- or c-normal, then {F,pz, 75} is a-, b- or c-normal,
respectively. One always has

(W)e <ps'. (3.1)

For (u*)r induces the same topology as ur on bounded subsets of F[r], and thus (3.1)
is a consequence of the definition of uzF. The inverse inequality is in general false.
Hence the problem arises of determining sufficient conditions on {£,u,7} and F for
the equality sign to be valid in (3.1). As will be seen below, this problem is also con-
nected with the question, whether u* is the finest and not only the finest locally convex
topology on E which is identical with u on 7-bounded subsets, in which case a subset
H of E[y"} is closed if and only if H N B is closed in B{u] for every 7-bounded subset
Bof E.

Theorem 3.1. Let {E,u,} be a bitopological space such that u” is the finest topology on
E which induces the same topology as p on tv-bounded subsets. Then (u*)r=pr'* for
every u’-closed subspace F of E.

Proof. On account of (3.1), it is enough to prove that every u;"*-closed subset H
of F is closed in the topology (u%)r. Let By be a tp-bounded subset of F, that is, By=
BN F, where B is bounded in E[t]. Then H N Br=H N B is closed in By[u]. Since F
is u’-closed, By is closed in Bfu]. Hence H N B is closed in B[u] for each r-bounded
subset B of E,i.e., H is closed in E[u"] and therefore in F{u"]. This proves the theorem.
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We shall now define an important type of bitopological spaces that satisfy the
hypothesis of Theorem 3.1.

Definition 3.1. A bitopological space {E,u,v} is said to be u*-compact if every t-
bounded subset of E 1is relatively compact in the topology induced by .

In particular, if {E,u,7} is b- or c-normal and u*-compact, oy and p induce the same
topology on 7-bounded subsets, and E{y*] is reflexive (Theorem 2.3).

Proposition 3.1. If {E,u,1} is b-normal and u’-compact, then u* is the finest topo-
logy on E which induces the same topology as u on t-bounded subsets.

Proof. The hypotheses imply that E[u"]’ is a Fréchet space. Moreover, from the
above remark it follows that E can be identified with the dual space of E[u"})’ and
that u* is the finest locally convex topology which coincides with ou on 7-bounded
subsets. However, a subset B of F is 7-bounded if and only if it is equi-continuous,
regarded as a subset of the dual space of E[u*]’. Hence the proposition is a conse-
quence of a result of Dieudonné and Schwartz 7, p. 84].

Corollary 3.1. If {E,u,t} is b-normal and u*-compact, then (u*)p=ps"* for every
W*-closed subspace F of E.

It is an immediate consequence of the general criterion on reflexivity that, if
E{u] is reflexive, then F[u’] is reflexive for any u-closed subspace F of E. A little
less trivial is the following:

Proposition 3.2. Let {E,u,t} be a b- or c-normal bztopologwal space and F a subspace
of E. Then Flu*) is reﬂexwe if and only if F[,uF’F] 18 reﬂexwe In particular, if {E,u,t}
i8 u*-reflexive and F is y*-closed then {F,up, v} is up F-reflexive.

Proof. Since in view of (3.1) we have
Fc F[IuF'lF]H — F[‘u‘r]n’

Flus"F] is reflexive if F[u"] is reflexive. The normality condition on {E,u,t} 1mphes
that F[4*] and F[uz#] have the same bounded sets as F[r]. Therefore, if F[us"7] is
reflexive and B is a bounded subset of F[u*], B is relatively compact in o(u,"F) and
hence, by Corollary 2.1, in gur. But for any locally convex topology u and any sub-
space F' of £ we have our=(ou)r, so that, using Corollary 2.1 again, B is relatively
compact in (ou®)r. Hence F[u*] is reflexive, and the proof is complete.

In Corollary 3.1 we gave a sufficient condition for the equality (u*)r=pz"* to hold.
However, it is also interesting to know when

O'(Iut)p = O"llptF. (3.2)

For it is easily seen that (3.2) is a necessary and sufficient condition for each linear
functional on F, continuous with respect to the topology uy'*, to have an extension
to the whole of E, which is continuous on E[u*]. We shall say that a subspace F
satisfying (3.2) has the extension property. Corollary 3.1, or more general Theorem 3.1,
gives, of course, a sufficient condition for F to have the extension property. However
the following result, which is a generalization of a theorem of Wiweger [17], is more
general.
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Theorem 3.2. If {E,u,v} is b- or c-normal and u*-reflexive, then every u’-closed
subspace F of E has the extension property.

Proof. 1t is easily verified that {E,ou,7} satisfies the same normality conditions
as {E,u,7}. Since ou <oy, the same proposition holds for { E,ou’,7}. The reflexivity
of E[u] implies that { E,ou,7} is (ou)’-compact. Since ou and ou® induce the same
topology on 7-bounded subsets of E (Corollary 2.1), it follows that {E,ou",7} is
(ou*)-compact. Hence, by Corollary 3.1,

((op™))r = (op™)s™F (33)

for each subspace F, which is closed in u*, or, which in virtue of (2.3) is the same, in
(a”‘r)r.

By repeated use of (2.3) and the fact that, for any locally convex topology v on B
and any subspace F,aty=(01)r, we deduce from (3.3) that

our'F = o{opr)'F = a(op)r'F = o(ou®)r F = o((ou®)")r = (0(ou™)")r = (opu")r = o(U")r-
Hence (3.2) is valid and the theorem is proved.

Corollary 3.2. If {E,u,t} i3 b- or c-normal and E[B] reflexive, then F has the extension
property for every f-closed subset F of E.

Proof. In virtue of Corollary 2.5, {E,u,B} is u’-reflexive, or, which is the same,
{E,u,t} is p*-reflexive. Moreover, it follows from Theorem 2.4 that ou®=ou’ =op.
Hence every f-closed subspace is u’-closed, so that the result is a consequence of
Theorem 3.2.
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