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Introduction 

In  some concrete Banach spaces Fichtenholz [8] introduced a kind of convergence 
weaker than  tha t  generated by  the given norm. These considerations were generalized 
by  Alexiewicz [1, 2], who introduced the concept of two-norm convergence or 7- 
convergence. Roughly speaking, a two norm space is a linear space provided with 
two norms II II and II I1", the second dominated by  the first. A sequence (xn)r in a 
two-norm space is said to be y-convergent to x 0 if supn Ilxn [I < ~ and [[ x~ - x  0 IJ *-+ 
0, n-->c~. The two-norm spaces, and in particular their linear funetionals continuous 
with respect to the y-convergence, were examined in great detail in a series of papers 
[3, 4, 5] of Alexiewicz and Semadeni. The Saks spaces, which have many  properties 
in common with the two-norm spaces, have been studied by  Orlicz [11, 12] and 
Orlicz and Pt~k [13]. I t  is natural  to ask whether on a given two-norm space E there 
exists a topology, which generates the two-norm convergence, and thus makes it 
possible to apply the theory of Iinear topological spaces. The first to construct such 
a topology was Wiweger [15, 16], and he also proved its uniqueness under certain 
additional requirements. In  this paper  we intend to give an extension of the theory 
of two norm spaces to the more general situation of a linbar space E provided with 
two locally convex topologies p and % such tha t  every y-bounded set is p-bounded. 
Thus we construct in a natural  way a third topology p~ on E, called the mixed topo- 
logy, which  is uniquely determined and coincides with Wiweger's topology in the 
special case of a two-norm space. In  this way the theory takes a form which very 
clearly shows its connection with well-known results in the theory of locally convex 
linear spaces, in particular with Grothendieck's construction [9] of the completion 
of the conjugate space E '  of a locally convex linear space E. Although Wiweger's 
topology is well defined in the general case too, it does not seem to give an adequate 
generalization of the two-norm convergence. Using the theory of locally convex 
linear spaces we then give a detailed s tudy of the space E endowed with the topology 
ju: and of its conjugate space, thus generalizing and sharpening known results for 
two-norm spaces. As an application of the theory we obtain in section 2 a characteriza- 
tion of (semi-) reflexive bornological spaces. For Banach spaces a similar criterion 
was given by  Alexiewicz and Semadeni [5]. 

1. The mixed topology 

Throughout the paper  E shall denote a real or complex linear space, and whenever 
we speak of a topology T on E we shall suppose tha t  T is locally convex and separated. 
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A subset M of E considered as a topological space in the topology induced by v shall 
be denoted by  MIx]. I f  z 1 and T 2 are two given topologies on E,  we write x 1 ~< T2 when 
x 1 is weaker (coarser) than  x~ or, equivalently, x2 is stronger (finer) than  xl. 

Definition 1.1. A triplet {E, tz, x) o] a linear space E and two topologies/~ and r on E 
such that every z-bounded subset oj E is p-bounded is called a bitopological space. The 
finest locally convex topology on E which is identical with iz on the z-bounded subsets o] E 
is called the mixed topology on E and is denoted by #~. 

Hence, by  definition, p~ is the finest locally convex topology on E which has the 
property~that the canonical injections 

~vs: B[~]--->E 

are continuous for each r-bounded subset B. I t  is obvious tha t  one may  here restrict 
oneself to all sets B in a fundamental  system for the bounded subsets of E[T], hence 
in particular to all absolutely convex z-bounded subsets. Therefore a fundamental  
system of neighborhoods of 0 in E[# "] consists of all absolutely convex subsets W of E 
such tha t  ~B-I(W) = W N B is a neighborhood of 0 in B ~ ]  for each absolutely convex 
z-bounded subset B of E. 

I t  follows immediately from the definition of the mixed topology tha t  

/~ ~<pT, (1.1) 

and tha t  p~' =p~' for any two topologies x~ and x2 on E which have the same bounded 
subsets. In  particular, if ~ denotes the bornological structure on E associated with 
the topology v (see [6, Ch. I I I ,  w 2, ex. 13]) we have 

~ =~. (12) 
We Mso notice tha t  

<8;  (1.3) 

for the identical mapping I :  E[~]-->E[p] of the bornological space E[~] onto E[ju] 
maps bounded subsets onto bounded subsets, and thus is continuous. Another conse= 
quence of Definition 1.1 is that ,  if Pl and Ps induce the same topology on x-boun- 
ded subsets, then p l  =P~. In  particular 

p~ = (p~)~. (1.4) 

ProBosition 1.1. I j  { E, p, 3) is a bitopologieal space, then every T-bounded subset B oj 
E is #r-bounded. 

Pros]. Let  (xn)~ r be a sequence of elements in the T-bounded set B and (2n)~ a se- 
quence of positive numbers such tha t  2n--> 0 for n-->oo. Because B is also bounded in 
the associated bornological space E[/~], it follows tha t  2nxn-+ 0 in E[/~] and hence, on 
account of (1.3), in E[p]. But  the sequence (~tnxn)[ ~ is clearly z-bounded, and since 
ju ~ is identical with p on z-bounded subsets, we deduce tha t  2~x~--> 0 in E[#~]. This 
shows tha t  B is bounded in E[p~], and thus the proposition is proved. 

Corollary 1.1. I~ { E, In, x} is a bitopological space and fl the bornological structure on E 
associated with 3, then la <.#~ <-ft. 

Proo]. The first inequality is (1.1), and the second is proved exactly as (1.3). 
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Proposition 1,2. Let ( E, /~, "c} be a bitopological space. Then a linear mapping u ol 
E[# ~] into a locally convex linear space F is continuous i /and only i/, /or each v-bounded 
subset B, its restriction to B[#] (or, which is the same, to B[~])  is continuous. Moreover, 
among the topologies on E which are identical with/~ on v-bounded subsets, #~ is the 
only one that has this property. 

Proo/. The first part  of the proposition is an immediate consequence of the defini- 
tion of #~. On the other hand, let a be a topology on E which satisfies the first state- 
ment of the proposition and which is identical with/~ on v-bounded subsets. Then it is 
obvious that  the restriction to every v-bounded subset B of the identical mapping I: 
E[~]-->E[/z ~] is continuous. Hence I is continuous, that  is ju ~ < a. Since the inverse 
inequality is valid by definition, we conclude that  #~ =a. The proof is complete. 

Among other things this result shows that  the mixed topology is uniquely deter- 
mined by the two conditions: (1) #~ is identical with/z on v-bounded subsets; (2) a 
linear mapping u of E ~  T/into a locally convex space F is continuous if and only if its 
restriction to B[#] is continuous for every T-bounded subset B of E. I t  follows in 
particular that,  in the case of two-norm spaces, #3 coincides with the topology intro- 
duced by  Wiveger ([16] Theorem 2.6.1). 

Another immediate conclusion is the following: 

Corollary 1.2. Let (E,~u,v) be a bitopologieal space and F a complete locally con- 
vex linear space. Then the space s F) o/ all linear continuous mappings o/El/z/ 
iuto F is complete in the topology o/ uni/orm convergence on v-bounded subsets o/ E 
and in the topology o/uni/orm convergence on ~t~-bounded subsets o/ E. 

Proo/. We give the proof of the first case only. The second case follows from the 
proof of the first and Proposition 1.1. If r is a Cauchy filter on s the projec- 
ted Cauchy filter r on F converges for each fixed x e E ,  since F is complete. The 
limit u(x) is a linear mapping of E[/z ~] into F,  whose restriction to every v-bounded 
subset B is continuous, for by assumption ~ converges uniformly to u(x) on B. 
Hence the desired result follows from Proposition 1.2. 

In the theory of two-norm spaces the normal spaces play a fundamental role (see 
[3, 4, 16]). This notion has several possible generalizations to the general case. We 
shall adopt the following 

Definition 1.2, A bitopoIogical space (E,la,V} is called a-, b- and c-normal, respecti- 
vely, if it satisfies the/ollowing requirements: (a) E/T/has  a fundamental system B/or  
its bounded subsets such that every B E B is absolutely convex and/~-closed; (b) E/v/ 
satis/ies (a) and B is in addition countable; (c) E/v/ has a/undameutal system ~l /or 
its neighborhoods o/ 0 such that every IrE ~l is absolutely convex and p-closed. 

Clearly every b- or c-normal bitopological space is a-normal. In the special case of 
a two-norm space all three kinds of normality coincide. I t  is also immediate that,  if 
(E,/~,v} is a- or b-normal, the space (E,/~,fl} is a- or b-normal, respectively. 

Theorem 1.1. I / { E , ~ , v }  is b- or c-normal, then E/v/and  E[~u ~] have the same bounded 
subsets. 

Proof. Suppose first that  (E,/~,v} is c-normal. In view of Proposition 1.1, it suffices 
to show that  every/~-bounded subset B is v-bounded. This will in turn follow if we 
can prove that  every sequence (xn)F such that  xn-~ 0 in E[/~ ~] is bounded in E/v/. In  
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fact, let B be/z~-bounded and assume tha t  this condition is already proved. Then, if 
(x~)~ ~ is a sequence in B and (2n)[ ~ a sequence of positive numbers with limn~o, ~ =0,  
it follows tha t  V~ nxn --> 0 in E[p~], tha t  is, (V~n x~)[ ~ is bounded in E[v]. Hence 2n xn --> 0 
in E[v], which proves the desired fact tha t  B is T-bounded. 

To conclude the proof, let (xn)F be a sequence such that  x~--> 0 in E[/Z ~] and suppose 
tha t  (Xn)~ ~ is not T-bounded. Since (E,/Z,v) is c-normal, there exists an absolutely 
convex/z-closed neighborhood V of 0 in E[v] and a subsequence (xk~)~ ~ of (xn)~ ~ such 
tha t  

x~,~nV (n = 1,2,...). 

But  all nV  are closed in E[p], so tha t  we can find a sequence (U,)~ ~ of neighborhoods 
of 0 in E[/z] with the property tha t  

x ~ ( n V + U n )  (n = 1,2,...). 

Consequently the absolutely convex set 

oo 

W = fl (n V + Un) 
nff i l  

does not contain any of the elemertts xk,, n = l , 2  ..... Hence we are through, if we 
can prove tha t  W is a neighborhood of 0 in E[p~]; for we have then obtained a contra- 
diction to the fact tha t  x,--->O in E[D~]. But  if B is any T-bounded absolutely convex 
subset, then B ~ n V  for all sufficiently large n, say n > n  0. Therefore 

n o  

W N B = ~  (nV+ Un) N B ~ f 3  (U~fiB),  
nff i l  n = l  

which proves tha t  W N B is a neighborhood of 0 in B[p] for each T-bounded absolutely 
convex subset B, tha t  is, W is a neighborhood of 0 in E[p~]. Hence the proof is com- 
plete in the case (E,/z,v) is c-normal. The other case is proved analogously. 

In  order to clarify the connection between the mixed topology and the ~-converg- 
ence introduced by  Alexiewicz [2], we state the following consequence of Theorem 1.1. 

Corollary 1.3. Let ( E,/z,T} be a b. or c-normal bitopological space. Then xn--> x o in 
E[/z ~] i] and only i / ( x , )~  is bounded in Ely] and x,--> x o in E[p]. 

Proo/. I f  x,--->x o in E[p~], then (xn)~ ~ is bounded in E[/z~], hence in E[T], and xn--~xo 
in E[/z] on account of (1.1). The converse is a direct c~)nsequence of the definition of 

We shall now prove a result which shows, roughly speaking, tha t  in the most 
interesting cases the mixed topology is in certain respects no "good" topology. 

Proposition 1.3. Let {E,p,T} be a c-normal bitopological space such that v= ~  is 
bornological and v is not identical with/Z on T-bounded subsets. Then E[/z ~] is not quasi- 
tonneld} 

Proo/. Let V be an absolutely convex and/z-closed neighborhood of 0 in E[v]. Since 
# ~</Z*, V is closed in E[/Z*], and since by  Theorem 1.1 E[/Z *] and E[T] have the same 

x I borrow the French term. 
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bounded subsets, V absorbs every p '-bounded subset of E. Therefore, if E[p T] is 
quasi-tonneld, V is a neighborhood of 0 in E[p~], which proves that  T ~<p~. Hence, 
according to Corollary 1.1, v =p~. This, however, contradicts the assumptions of the 
proposition, so that  the proof is complete. 

In  particular, under the conditions of Proposition 1.3, the mixed topology is 
neither tonneld, nor bornological. If in addition E[~] has a countable fundamental 
system for its bounded subsets, which consists of sets that  are  metrizable in the 
topology p, then E[# ~] is not a (DF)-space. For  a (DF)-space with this property is 
quasi-tonnel6 (see [10, p. 71]). We conclude this section by noticing the following 
result, which is an immediate consequence of Definition 1.1. and a theorem of Raikov 
[14]. 

l~elmsition 1.4. /1 {E,p,~} has a countable fundamental system/or its bounded sets 
consisting of subsets which are complete (and hence closed) in the topology induced by p, 
then E[p ~] is complete. 

2. Dual i ty  in bitopological  spaces 

The dual space of a locally convex linear space E ~ ]  will be denoted by E[p]'. 
Provided that  nothing else is indicated, E[p]'  will be considered in the strong topo- 
logy, tha t  is, uniform convergence on p-bounded subsets of E.  For  brevity we shall 
often use the notation (rp for the weak topology or(E, E[p]') on E belonging to the 
duality between E and E[p]'. 

An important  property of a two-norm space {E,p,T} is tha t  E[# '] '  is a closed 
subspace of E[v]'. This was shown by Orliez and Pts  [13]. In  our general case one 
obtains: 

Theorem 2.1. Let { E,g,v} be a bitopological space and, as before, fl the bornological 
structure on E associated with ~. Then E[p~] ' is complete and we have the (topological) 
inclusions 

.~[p]'~ E[p~]'~ E[3]'. (2.1) 

Moreover, E[p~] ' is a complete and hence closed subspace o/E[fl]'. 

Proof. The inclusions (2.1) follow at  once from Corollary 1.1, and the rest of the 
theorem is a consequence of Corollary 1.2. 

The theorem which we are now going to prove was stated for two-norm spaces by 
Alexiewicz and Semadeni in [3]. In  view of Proposition 1.2 and Theorem 2.1 it is in 
fact a simple consequence of a more general result of Grothendieck [9]. However, for 
the convenience of the reader we give here a short proof extending the arguments in 
[3]. 

Theorem 2.2. I f  { E,p,v} is an a.normal bitopological space, the closure of E[p]', 
considered as a subspace of E[/~]', is identical with E[p~] '. 

Proof. In  virtue of Theorem 2.1 it is sufficient to show that  E[p] '  is dense in E[p']  ' 
in the topology induced by E[fl]', i.e. in the topology of uniform convergence on v- 
bounded subsets. Therefore, let ~/0 be a given element in E[p~] ' and B an arbitrary 
absolutely convex T-bounded subset of E. Let  
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V(B,70) ={7: I < ~ , 7 - 7 o >  I <1, xEB, 7eE[p~] '} 

be the corresponding neighborhood of 70- We shall prove t h a t  V(B,70) contains some 
element ~ E E[#] ' .  I t  is no restriction to  assume tha t  70 + 0. Let  x 0 be a point  in E for 
which <x0,70> =1 ,  and denote by  H the closed hyperplane in E[#  ~] on which 7o 
equals zero. Then every x E E can be wri t ten uniquely in the form 

x = h(x) + t ( z ) .  xo, 

where h(x) E H and t(x) is a complex number.  Since H is also closed in E[fl], the linear 
form x-->t(x) on E[/~] is continuous, so tha t  

sup It(~)l < ~ 
XEB 

Hence h(x) runs th rough  a z-bounded subset h(B) of H when x runs th rough  B, for 
h(B) ~ H N (B + t(B).xo). Let  B' be an absolutely convex p-closed z-bounded subset 
of E which contains h(B). Then the closed absolutely convex hull B 0 of h(B) in E[p]  
is identical with the closed absolutely convex hull of h(B) in B'[#~], and hence B o ~ H.  
But  x o ~ B0, for x 0 ~ H,  so tha t  according to the H a h n - B a n a c h  theorem there exists an  
element ~ E E[#] '  such tha t  < x 0, ~ > = 1 and [ < x, ~ > [ ~< 1 for x E B 0. 
Hence we obtain 

I<x, -7o> I = [ < h ( x ) + t ( x ) ' x o , ~ - 7 o > ]  = [ <h(x),s I < :  

for each xEB,  t h a t  is, ~E V(B,7o ). The proof is complete. 

Corollary 2.1. I [  {E,g ,v}  is an a.normal bitopological space, the weak topologies ap  
and ~[x ~ induce the same topology on z-bounded subsets o / E .  

Corollary 2.2. Let {E,gl ,V ) and {E,/~2,v } be two a-normal bitopologicaI spaces. 
I/E[~I]' = E~ud' ,  then E[~I]'  = E[p~]'. 

Corollary 2.3. I /  {E,#,v} is a-normal, then the bitopological spaces {E, att, v } and 
{E,a#~,v} are a-normal, and we have the/ollowing identities: 

(ap)~ = (a#') �9 , (2.2) 

a/x �9 = a(~/x) �9 = a(a#~) ~. (2.3) 

Proof. As the closure of any  absolutely convex subset of E is the same in bo th  of 
the toplogies # and ~p, we conclude t h a t  {E,a#,v} is a-normal.  Since a/x ~<a/x ~, this 
implies the  a -no rmah ty  of {E, ap~,v}, too. The equali ty (2.2) is an immediate  conse- 
quence of Corollary 2.1 and the  definition of the  mixed topology.  The second 
equali ty in (2.3) follows from (2.2), and the  first is a consequence of Corollary 2.2, 
since E[p] '  = E[ap]'. 

Let  us short ly examine the two extreme cases t ha t  might  occur in Theorem 2.1, 
t ha t  is, the cases E[p~] '= E[fl]' and El#] '= E[#~] '. 

Proposition 2.1. For an a-normal bitopological space {E,~t,v} we have E[~t~] ' =  
E[~] '  i] and only q ~/x and a~ are identical on z-bounded subsets o[ E. 
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Proof. The necessity of the condition follows at once from Corollary 2.1. Suppose 
conversely that  the condition of the proposition is satisfied and let B be a Y-bounded 
set. The restriction to B of every ~ E E[fl]' is continons in the topology aft and thus 
in ap. Since a/z ~<p, we deduce that  ~ is continuous on B[p] for every y-bounded set B 
and therefore, by Proposition 1.2, ~ E E[p ']  '. Hence E[fl]' c E[#']  ', which proves the 
proposition, since the inverse inclusion is always valid. 

For two-norm spaces the equality E[/~]' = E[#~] ' can only occur in the trivial case 
p = v  (see [3]). Since by (1.4) we have E[tu~]'=E[(ju~)~] ', this proposition does not 
hold true in the general situation without certain restrictions on {E,p,v}. We have 
the following result. 

Proposition 2.2. Let {E,/~,v} be a b-normal bitopological space such that E[/~] is 
bornological and E[v] and E[#] have a countable fundamental system for its bounded sets. 
Then E[/~]' = E[/~] ' / / a n d  only i/]u =ft. I n  particular p =v i /E[v] is bornological. 

Proof. Since the dual space of a bornological space is complete, E[p]'  is a Fr~chet 
space. The same conclusion can be drawn for E[#~] '. In fact, E[p~] ' is complete by 
Theorem 2.1 and the b-normality implies that  E[p ~] has a countable fundamen- 
tal system for its bounded sets, i.e., E[p~] ' is metrizable. In  virtue of (2.1) the iden- 
tical mapping I: E[p]'-~E[p~] ' is continuous and hence, by a well-known theorem 
of Banach, E[p]'  and E[ju~] ' are isomorphical. This implies, however, that  E[p] and 
E[~u~], and hence E[~u] and E[fl] (Theorem 1.1.), have the same bounded subsets. 
Since p and fl are bornological, we infer from this that/~ =ft. The proof is finished. 

A locally convex linear space E ~ ]  is said to be reflexive if the dual space E[#]" 
of E[ju]' is identical with E (semi-reflexive in the sense of Bourbaki [6]), and it is said 
to be completely reflexive if it is reflexive and the strong topology on E[p]" = E is 
identical with the initial topology p (reflexive in the sense of Bourbaki). We recall 
tha t  E[#] is completely reflexive if and only if it is reflexive and tonnelg. Hence it 
follows from Proposition 1.3 that  we cannot expect E[/~ ~] to be completely reflexive. 
We shall say that  the bitopological space (E,/~,v} is /~-, /~- and fl-reflexive, when 
El#f, E ~  ~] and E[fl], respectively, are reflexive. 

Theorem 2.3. Let (E ,p , v )  be b- or c-normal. Then El#  ~] i s  reflexive if and only i/ 
every Y-bounded subset B o / E  is relatively compact in the topology ap. 

Proof. I t  follows from Theorem 1.1 that  E[p ~] and E[v] have the same bounded 
sets. Moreover, the normality condition of the theorem implies tha t  a/~ and aju ~ 
induce the same topology on each v-bounded subset B of E (Corollary 2.1), and that  
B has the  same closure in E[tu ~] as in E[p]. Therefore the result is a consequence of 
the general criterion on reflexivity [6, Ch. IV, w 3]. 

Eorollary 2.4. 1] ( E,/a,v} is b- or c-normal and/~-reflexive, then E[p ~] is reflexive. 

Corollary 2.5. I f  (E ,p ,v )  is b- or c-normal, la <~v and E[v] reflexive, then E[~u ~] is 
reflexive. 

Proof. Let  B be a Y-bounded subset of E and /~  its closure in E[a/z]. Then B is v- 
bounded, and hence, in view of the reflexivity of E[v], compact in aT. But  a/~ ~-<av, 
since p ~-<v, and therefore/~ is compact in ap, too. This proves the corollary. 

As an application of the theory we shall now give a criterion on reflexivity of 
bornological spaces. This criterion is the extension to bornological spaces of a some- 
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what sharper result for Banach spaces, which was proved by Alexiewicz and Semadeni 
[5]. We also wish to point out that,  according to the remark before Theorem 2.2, the 
proof of the necessity of the theorem is essentially a corollary to the theorem of 
Grothendieck [9]. 

Theorem 2.4. Necessary and su/ficient /or a bornological space E[/~] to be reflexive is 
that E[p]'  is dense in E[/~]'/or every locally convex topology/~ on E weaker than ft. 

Proo]. Suppose tha t  E[fl] is reflexive and let/~ be a given topology on E weaker than 
/~. Then every/3-bounded subset B of E is compact in the topology aft, and since 
al~ <<-aft, we conclude that  ap induces the same topology as aft on B. This implies in 
particular the a-normality of {E,p,fl}, but  also, in virtue of Proposition 2.1, that  
E[p~] ' =  E[fl]'. Hence, by Theorem 2.2, E[D]' is dense in E[fl]'. 

Let  conversely the condition of the theorem be fulfilled and suppose that  E[fl] is 
not reflexive. Then there exists an element x"  4= 0 of E[fl]" such that  x"r E, i.e. there 
is a dosed hyperplane H of E[fl]', which is dense in the topology a(E[fl]', E). The linear 
spaces E and H are therefore in duality with respect to the bflinear from < x, x' > .  
The associated weak topology a(E,H) on E is weaker than aft, and hence also weaker 
than ft. But  the dual space of E in the topology a(E,H) is identical with H. Hence 
we have reached a contradiction, for by construction H is not  dense in E[fl]'. This 
completes the proof of the theorem. 

3. Relat lv izat ion o f  the mixed topology 

If  F is a subspace of the locally convex linear spaces E[/~], we write PF for the rela- 
tivization of the topology p to F.  Every linear subspace F of a bitopological space 
(E,~u,v} determines in a natural way a bitopological space, namely (F,pp,v~}. I t  is 
easily seen that,  if (E,ju,v} is a-, b- or c-normal, then (F,p~,vF} is a-, b- or c-normal, 
respectively. One always has 

(~T)~<~/~. (3.1) 

For (P')F induces the same topology as pp on bounded subsets of Fly], and thus (3.1) 
is a consequence of the definition of/~ ~F. The inverse inequality is in general false. 
Hence the problem arises of determining sufficient conditions on (E,/~,v) and F for 
the equality sign to he valid in (3.1). As will be seen below, this problem is also con- 
nected with the question, whether p" is the//nest  and not only the/inezt locally convex 
topology on E which is identical with/~ on Y-bounded subsets, in which case a subset 
H of E[/z ~] is closed if and only if H N B is closed in B[p] for every Y-bounded subset 
B o f  E. 

Theorem 3.1. Let {E,p,T} be a bitopological space such that #~ is the finest topology on 
E which induces the same topology as p on y-bounded subsets. Then (l~T)p=ltF T~" for 
every pT-closed subspace F o[ E. 

Proof. On account of (3.1), it is enough to prove that  every p~p-closed subset H 
of F is closed in the topology (p')v. Let  BF be a vF-bounded subset of F,  tha t  is, BF = 
B N F, where B is bounded in E[v]. Then H N BF =H N B is closed in Bp[p]. Since F 
is pT-closed, BF is closed in B[p]. Hence H fl B is closed in B[p] for each y-bounded 
subset B of E, i.e., H is closed in E[p ~] and therefore in F[p~]. This proves the theorem. 
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We shall now define an important  type of bitopologieal spaces that  satisfy the 
hypothesis of Theorem 3.1. 

Defu~tion 3.1. A bitopological space {E,p,v} is said to be p~-compad i] every v- 
bounded subset o / E  i8 relatively compact in the topology induced by p. 

In particular, if {E,p,v} is b- or c-normal and p~-compact, ~p and # induce the same 
topology on y-bounded subsets, and E[p  ~] is reflexive (Theorem 2.3). 

Proposition 3.1. I /  {E,p,v} is b.normal and pT-compact, then p~ is the finest topo- 
logy on E which induces the same topology as p on Y-bounded subsets. 

Proof. The hypotheses imply that  E[p~] ' is a Frgchet space. Moreover, from the 
above remark it follows that  E can be identified with the dual space of E[p~] ' and 
that  p~ is the finest locally convex topology which coincides with ~p on Y-bounded 
subsets. However, a subset B of E is Y-bounded if and only if it  is equi-continuous, 
regarded as a subset of the dual space of E[p~] '. Hence the proposition is a conse- 
quence of a result of Dieudonn~ and Schwartz [7, p. 84]. 

Corollary 3.1. 1/ {E,p,v} is b-normal and p~-comt~wt, then (p')p=/z7 ~ /or every 
p~-closed subsl~uce F o~ E. 

I t  is an immediate consequence of the general criterion on reflexivity that,  if 
E[p ~] is reflexive, then P i p ' / i s  reflexive for any p~-closed subspace F of E. A little 
less trivial is the following: 

Proposition 3.2. Let {E,p,v} be a b- or c-normal bitopological space and F a subs1~ace 
o/ E. Then F[p  ~] is reflexive q and only q F[pF TM] is reflexive. In  particular, q {E,p,~} 
is p~-re/lexive and F is p'-closed then {F,pp, vF} is pF~'-re/lexive. 

Proof. Since in view of (3.1) we have 

F c F[pp'p]" c F[p ' ]" ,  

F [pJF]  is reflexive if F [p  "] is reflexive. The normality condition on {E,p,v} implies 
that  F[p  ~] and F [ p ~ ]  have the same bounded sets as F/v/. Therefore, if F[p~B] is 
reflexive and B is a bounded subset of F[p'] ,  B is relatively compact in ~ ( p l  v) and 
hence, by Corollary 2.1, in apr. But  for any locally convex topology p and any sub- 
space F of E we have ~pp = (ap)v, so that ,  using Corollary 2.1 again, B is relatively 
compact in (ap~)v. Hence F[p  "] is reflexive, and the proof is complete. 

In Corollary 3.1 we gave a sufficient condition for the equality (p~)~ = p ~ f  to hold. 
However, it  is also interesting to know when 

a(p')~ = apv *p. (3.2) 

For  it is easily seen tha t  (3.2) is a necessary and sufficient condition for each linear 
functional on F,  continuous with respect to the topology p ~ ,  to have an extension 
to the whole of E, which is continuous on E[p'] .  We shall say that  a subspace F 
satisfying (3.2) has the extension property. Corollary 3.1, or more general Theorem 3.1, 
gives, of course, a sufficient condition for F to have the extension property. However 
the following result, which is a generalization of a theorem of Wiweger [17], is more 
general. 
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Theorem 3.2. I] {E,p,T} is b- or c-normal and/~.re]lexive, then every p~-closed 
subsl~ace F o] E has the extension property. 

Proof. I t  is easily verified that  {E,a#,T} satisfies the same normality conditions 
as {E,p,T}. Since ap ~<ap ~, the same proposition holds for {E, ap~,T}. The reflexivity 
of E[~u ~] implies that  {E,~p,T} is (~#)~-compact. Since ap and ap ~ induce the same 
topology on T-bounded subsets of E {Corollary 2.1), it follows that  {E,~p~,T} is 
(~p~)-compact. Hence, by Corollary 3.1, 

((a~u')')F = (a# ' )7 ;  (3.3) 

for each subspace F, which is closed in p ' ,  or, which in virtue of (2.3) is the same, in 
( a ~ )  �9 

By repeated use of (2.3) and the fact that, for any locally convex topology T on E 
and any subspace F,~TF = (~T)r, we deduce from (3.3) that 

~ F ~  = ~ ( ~ p ~ ) ' F  = ~ ( a ~ ) / F  = ~ ( ~ ) ~ ' F  = ~ ( ( ~ , ) , ) ~  = ( ~ ( a ~ ' ) ~ ) ~  = ( a f ) ~  = ~(/~)~. 

Hence (3.2) is valid and the theorem is proved. 

Corollary 3.2. I] { E,p, T} is b- or c-normal and E[B ] reflexive, then F has the extension 
property/or every B-closed subset F of E. 

Proo]. In virtue of Corollary 2.5, {E,p,B} is p~-reflexive, or, which is the same, 
{E,/~,T} is p~-reflexive. Moreover, it follows from Theorem 2.4 that  ~p'=~p~=a B. 
Hence every B-closed subspace is p~-closed, so that  the result is a consequence of 
Theorem 3.2. 
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