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On distribution functions with a limiting stable

distribution function

By HArRALD BERGSTROM

1. Introduction?

The general stable d.f.’s* have been introduced by P. L&vy?® who defined them
implicitly by help of their characteristic functions and explicitly as limiting
distribution functions. To every «, 0<a<2 there belong stable distribution
functions G, (r) and these have the following property.* If x denotes the con-
volution and o,, 0, and ¢ are positive numbers with

(1) o1+ o3=0¢"

we have

o) o))

In the following we shall only use the property (2) and the fact that G, (z)
has derivatives of bounded variation of all orders.®

Let now F(z) denote a d.f. and let F*" (z) denote the n-fold convolution
of F(x) with itself. W. DoEBLIN has given necessary and sufficient conditions
which F (r) must satisfy, if F*" (b,2) shall converge to a stable d.f. G, (),
0<a<2® If «=2 then G,(z) is the normal d.f. and the conditions for con-
vergence are then well known.

Our method can be used to get the conditions for convergence and we 'shall
return to this problem later. Here we shall give estimations of the remainder
term

! Mr. Kar Lat CHUNG drew my attention to the general stable d.f.’s in a discussion which
I had with him on the application of my methods. ’

? d.f. — read distribution function(s).

* P. Lévy (1), pp. 94-97, 198-204.

* We call « the exponent of the stable d.f.

® We omit the singular case, when G, (x) is discontinuous.

¢ W. DoEsLiN (1), pn. 71-96.
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H. BERGSTROM, On disiribution functions

F*" (@) - Ga" ()

1 1
when F*"(naz) converges to Ga" (nez)=G,(x)." Our main result is the follow-
ing theorem.?

Theorem. Let G (x) denote a stable d.f. of exponent «, 0 <a<2, and let g(x)
denote a mon decreasing function such that there exist positive numbers A, and A,

with Ay <[A]+1 for which
Ay a A
1(@) S(z&) g_@sa(zﬂ)
al\y y/ 9y )

with a constant a when x>y>02 Further suppose that F (x) is a d.f. which
satisfies the following conditions

o T lel'g(z]) Al @) -G @)]]<oo,
20 Fx’d[F(z)—G(x)]=0

for v=0,1, ..., v,. Pullting

we then have for fixed v and large n

0[6" (n)] always,

) (1) e @x1F@-a@r- |
o[0"(m)], if =[]
Ay <[A]+1.
Assuming that
30 S wtgery (n}‘) < oo,
n=1

! In the general case F*" (bnx) converges to Gq(x) when bn is some suitable possibly
more complicated increasing function of n. Compare DoEBLIN loc. cit.
* In the following we write G (z) instead of Gg ().
* We can for instance consider g (z) = ¢ with some exponent ¢ > 0 or g (v) =log z. If
g—~(£x—)=y(c) #+ 0 for some ¢ in the interval 0<<c¢<1 we may choose 4;—« and 4,—«
z>00 g (X)
o log ¥ (¢) .
arbitrarily close to loz o and then g (z) has the mentioned property.
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we have the asymptotic expansion

(i) P =3 (M) ot o) ¢ 70— @1
with » ,

0[8*™ (n)]+0(n ). always,

(iid) ot = ‘

o[0" m)]+0(n o), if w=[A],

Ay <[A,]+ 1.
If furthermore the condition®
4o lim V{ F*? (z) % [F (z)— G (x)] } =0
P>00

1
1s satisfied then 0 (n <) may be omitted n (iii).

Remark I. The estimations of 73'? in (iii) can be given such that they
are independent on other quantities than s, «, 4;, 43, #, and n. If 4° holds and
1
0(n @) is omitted the estimation is more dependent on F (z).
Remark II. Independently on the condition 3° the expansion (i) is
asymptotic with

1

o | 008 (n)1+0[a%a (n)]+0(n <) always
FED o
o [0 (n)]+0[6k(n)]+0(n =), if »=[4],
Aa<[AJ+1

Remark ITI. If we change the assumptions 1° and 2° to

10a flxl“l !F (@) -Gz |dx<00
and

203 [ & [F(z)-G(2)]dz=0

for »=0, 1, v,— 1, the theorem still holds.

Remark IV. The theorem can easﬂy be generahzed to the case of multi-
dimensional d.f.2

L ¥7{} denotes the total variation.
* Compare H. BERGSTROM (2).
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H. BERGSTROM, On distribution functions

If we can chose g (z)=2" with some r>0, it follows from (ii) 1and (i1i) that
F*" (z) cannot have jumps of larger order of magnitude than n <. In the case
1

«=2 we know that F*" (z) has jumps of the order n <, if for instance F (z)
is the Bernoullian distribution function.

We shall prove the theorem by the same method that we have used for the
proof of the corresponding special theorem for the normal d.f! In fact we
have only to change that proof at some points in order to get the proof of
the general theorem. However, we shall give the complete proof here.

We start by proving a lemma.

Lemma. Let g(z), F (z), G (z), A1, A, and a be defined as in the theorem, and
suppose that the condition 1° is satisfied. Then the moments

[ a1F @)~ 6 @14

exist for v=0, ..., [4,], and if y(z) is a function with bounded continuous deriva-
tives of all orders <[A,]+1 for all z, we have for p>0

0 v (;f)) % [F (@) — 6 (2)] = MZ]Q %’ﬁ) v (g) "

NERERY ‘f)l}
porn 2

Proof: We put h(z)=2"¢g(z), [A,]=2. Expanding ¢ (a%‘) by Taylor’s for-

mula we get

(53505 () smien

0070 () { Mx

D (@) l +Max
yi z

Here 0 may be changed against o if Ay<[A]+1.

where the remainder term may be written in either of the forms

T L = R R

or

-1 A+1 ¢ A+1 —0,t
(4 b) ada (.’l?, t)=§}.+i)' (;) 'p(1+1) (?‘-p—l'), 0< @1< 1.

Owing to 1° the moments 8 exists for »=0, ..., 1. Applying (4 a) and (4 b)
we then get

1 H. BEsz'rxbx (2), p. 5.
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v () x F@-61- fw(”"‘)d[F(tJ—G(t)]=

B A‘(__l)vﬂ(v) , ? 0 B
g w<'(p)+igl(z,t>d[F<t> )

Using (4 a) for [t|>b and (4 b) for [¢[<b and observing that, owing to the
made assumption about g (z),

|| <aoeh(jt]) for |¢|=b,

h(b
|zﬂ+lx<a9~ﬁ<ltn for |t]<b,

we get

; fga(% t)d[F(t)“G(t)]I <
) 2ba

< ) 2%

m()l fh[;md[p (t)-6 )]+

iti>0

b&ﬂ a

(/Hl) ! fk(ltl [(Z[F(t) Gt)”

1t=b

A+l Ma'X

AT D)IRG) D
Putting
r(b)=mfbh<ltl)ld[F(t)~G(t)]_!,

we now have to consider the quantities

2 . a+1
b r(b) and b

@ AP T

Here r(b) is bounded for 6=0 and nonincreasing for >0 with hm r(b)=0.

If we choose b=p the quantities (5) are both 0[A™"(p)]. Therefore (1) holds.
But for b<p we have more over

& r () *hip) r(d) _ 7(b) (p\*
oY () RO @)= h(p)(b)

v (é)‘“ﬂ@ 1 __a ()‘
k(b)p“lw p) - .

(6)
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If ,<1+2 it is obviously possible to let b=0(p)<p tend to infinity in such

. . 1
a way that the right sides of (6) are o [m]
We are now going to prove the theorem. Then it is sufficient to consider
the case »,>[A,], for if »,<[A,] we may choose g (z)=a"""""
We get the relation (i) of the theorem in the case v=1, y,=A=[4] if we

apply the lemma with

Thus the lemma is proved.

1

w(‘l’):G*"'l(w)fG(;—i), p=(n—1).

p

Generally (i) of the theorem may be proved by help of induction. Putting

p(H=0(f) irm-eer, pmmoser

we get (i) of the lemma. Here is

v (2) =@ (2) < F @-a@r

and we can apply the lemma again putting now

v (2) -6 (2)xr@-c@r

for u=4 and w=Ai+1. In this way we prove (i) of the theorem by help of
induction.

In order to prove (iii) we shall also use induction. We assume that the
inequality

g <o
bolds for g <n with
1 1
Max [g7¢"P (ge), o 2], if %=2

o) =
1(0) Cayn Gt 1

Max [p a ,p e}, U »<i
and a constant C and then we prove that
(8) 2P <C(n) 61" (n)
where C'(n)<C if n is larger than some constant n», and also
Cn)=o(n), i »n=[4] <[4]+]

and
1

n a=0[86 " (n)].
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Obviously (7) holds with a sufficiently large constant C for n <mn,. Thus the

theorem follows by induction.
In order to prove (8), we consider

50 (z) % ¢ (pﬁ),
1

where ¢{(z) iS the normal d.f. with the mean value 0 and the dispersion I,
and give an estimation in the form -

)

4 (2) % ¢ (pﬁ) | <M n, py)

where M (n, p;) depends on n, p, and C. Then applying a lemma for Weier-
strass singular integrall, and observing that

1 1

d % 7 — - *&
E;G (@y=n <G (n <z),
we obtain
) 1
(10) |75 | < Max [k M (n, p,), Bpin =]
with constants £ and . By suitable choice of p, it can then be proved that

(8) holds.
For abbreviation we put

(’:) G** " (2) % [F (@) — G (2)]** = AD.
Owing to an identical expansion we have?

T(;H)= Z (/"_1) F*n_‘“* (F_G)*s+1 *G*,u—s—l’
p=s+1

S
Le.
(11) KV = T PRk AP % (F-G)
H=s+1
and
(12) ' F*"=3 AP +05.
v=0

Let m,= [%T, n>mn, where m, is a suitable fixed integer. Observing that then
owing to the property of g(z)

0 (my)
3 (n) > ¢y

! H. BerostroM (1), p. 143.
* H. BeresTrOM (2), p. 2.

464



H. BERGSTROM, On distributivn functions

with a constant ¢,,' we get in the same way as we have found (i) of the
theorem

n

(13) S PP AR, x (F-@)|<Max 3 |42, % (F-G)|<

p=m;+1 T p=my+l
<ay (n) 8" (n)

where a,(n) is smaller than some constant ¢, for all » and tends to zero'for
large n if vy>[4;,], 2,<[4;]+1. In order to estimate the members in the right
side of (11) for w<m,, we express F*" by (12) changing n to n—pu. Then
we get

(14) Z F*" Py AD, % (F-G)= Z ZA"”,,*A}f’l*(F G)+
pn=s+1 u=s+1»=90
+ El % AP, % (F—G).
. n=s+1
Analogous to (13) we find for n>n,

(15) Z ZA‘,:”,,*A},’H*F G)

p=3+19»=0

<ay (n) 8™ (n)

where a, (n) is defined in the same way as g, (n).
Further we have with an integer m,<m,.

(16)

,‘gﬂr‘“”*dﬁ’l*(F G)*qb( )
< zl 1(,“8 ) Max|r(”l)*G*" s-1 (F—G)"“|+
p=my+

,'.(8+l)*¢( )*(F G)*s+1

-+ %2 ( _l) Max

p=3+1 §

In the members of the first sum of the right side of (16) we apply the

lemma with
1

v (E)-rpxo (D), pm-s-1r

and observe that for any positive integer »

» ff)'=
e

! The “constants” ¢ in the following depend only on the quantities @, s, 45, 4;, « and v,
defmed in the theorem.
2 All derivatives of @ (z) are of bounded variation, what for instance easily may be ob-
tained from BERGsTHOM (3).

50 % GV (‘E) '<Max [rex2] j | G¥*Y () |dz?
D
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Assuming that (7) holds for p<# and observing that
0, (n—p) <cy 6, (n)
with a constant ¢, for y<m, we get
| 75321 <Ces 687 (n)

with a constant ¢; and thus according to the lemma

an Zl ( ;1) Max |32 % G L x (F-)** <
H=mgy+1 T
<C 61 (n) ay (my) Zl L g (n—1),
,u=m,+1,u—]-

- where a,(m,) is defined in the same way as @o(n). In the members of the
second sum of the right side of (16) we apply the lemma with

z e 8D (m) —
=950 x o [—]), =p,.
.w(p) wxdlp) P

Then we get in the same way as we have obtained (17)

(18) 5 (" _1) Max <

#=8+1 s

7 % ¢ (ﬁ) * (F— @)+
D

<08 s o) ([ 1%) 7708 o)

where a4 (p,) is defined in the same way as a,(n). Combining (11), (13), (15),
(17) and (18), we find that we can choose M (n, p;) in (9) equal to

(19) M (n, p1)=06"*" (n) [@g (n) +ay (n)] +
iy (m)C [a2 (my) /4=§,+1 ;%T O (u—1)+

ray o) (1) 508 00|

Owing to (10) we have then to show that
1
M?x (kM (n, py), Born 2]1<C 8" (n).

Now the sum in the right side of (19) is the partial sum of a convergent

~Potl-a . )
series. (If d(n)=n ¢ we may assume y,+1—a>0 for otherwise there is
nothing to prove.) ‘
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Therefore we may choose m, so large that
kay(my) Y -—53“(/£ 1<

p=my+1 ,u

where %k is given in (10). Having thus determined m, we may choose p, so
large that

1
bay (o) (%) e 8 o < -

If further C is so large that

@

k[ag (n) +a, (n)] <

we have
kM (n, p,) <C & (n).

If C also is so large that
Bp,<C

where f is given in (10) it follows from (10) that (8) holds with C(n)=0, if
(7) is satisfied for p<n and = is larger than some value n,. But (8) holds
with a sufficiently large constant ¢ for n<mn,. Thus (2) holds with C(n)=C
for all .

In order to prove the stronger inequality when v, > [4,], 12<[).1]+1 we have

only consider the case
1

n a=0[6"" (n)], »y=[A,].

Then we know by the just proved theorem that (8) holds with a constant C
and we get (19) with this known constant. It is then possible to let p, tend
to infinity in such a way that

1

Bpin «=0[8" (n)]

and to let m, tend to infinity in such a way that

My sa D) §E+D ey o (]
(e ) oreerm e e =o

and then is also
) —6" Hu—1)=o0(1
L2 e =)

when n tends to infinity. Therefore (iii) holds.
Let now the condition 4° be satisfied. Then it follows from a general theo-
1

rem’ that 0(n <) may be omitted.

! H. BERasTROM (2), p. 4.
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At last we have to prove the statement in the remarks of our theorem. The
contents of the remarks I and III are immediately drawn from the proof given
above. In order to prove the remark II, we only need to consider the case

1

d(n)=¢g "' (ne), ,,=a. If we put
1 1
85! (n) =Max [6°" (n), R (n), n o]

and assume that (7) holds with &, instead of §; we obviously obtain (19) with
1

0, (n) instead of d; (n). Choosing m;=m,, putting p,=nag and observing that
for 0<g<1

. d(pi)  g(ne) e
(20) =g <ag W9
8(m) g (neg)

we may write (19) in the form

(21) M (n, p,) <6°*" (n) [ag (n) +ay (n)] + C ay (n‘; Q) g ¢ 65" (n) 6°7F (m).

Further (10) may be written
(22) | T(7‘:+l) I = Max [k M (%a pl)) ﬁ Q]

Now we choose
1 1

If then C is so large that
C
klaq (n) +ay (n)]< 5’

1‘ _ A2 (8+1)
ka4 (naq)o Ay (s+D)+1 <§

and
A8+
/30 A 6+D+H1 < ]

for n>mn, and n, is so large that ¢<1 for n>n,, it follows from (22) that
(23) S < C 65 (n).

Since this inequality obviously holds for n<mn, if C is sufficiently large it then
holds for all » with suitable C. (If 8,(n) doesn’t tend to zero when n tends
to infinity it isn’t perhaps possible to get ¢<1 but then (23) is trivial.)

In order to prove the stronger inequality when »,>[4,], 4;,<[4;]+1, we now
start from the true inequality (23) and then get (21). We have only to con-

sider the case
1

n"am o0 [8 (n)] + o [35 (n)]
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and then it is possible to choose
1

g=0[0% (n)]
1
in such a way that meg—oo and

) .
ag (neq) g ¢ 8" (m)=o (1).

1
Then the right side of (21) is o [6°*! (n)]+ o [6% (n)].
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