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A problem of Newman on the eigenvalues of operators
of convolution type

By AnpERs Wik

In [1] Newman has studied the problem of uniqueness of the class of equations
AF(z)— f FO)K(x—t)dt=G(x) for z€FE
P>

under the restriction that K has compact support. However, the result in [1] is
true also without that restriction:

Theorem 1. Let G be a locally compact abelian group with Haar measure dt and let
K(z)€ LNG). Then for any measurable set E

lF(x)~fF(t)K(x—t)dt=O for z€E and FeL®=F=0
E

if A¢ H,= CH{R (£)|£€G}=the closed convex hull of the values assumed by the Fou-
rier transform K of K.

An equivalent theorem is obtained by looking at the class of operators on L*

FxK for z€E,
K F=
0 for =z¢FE,

where the kernel K € L'. The theorem then states that for any measurable set £,
K; has all its eigenvalues inside Hg. Thus Hy is a bound, uniform in H, for the
eigenvalues of K;. The question of the “best’” uniform bound has not been settled.
The eigenvalue problem when G=R or Z has been solved in the cases E= (— oo,
o), (—o0,0) and (0, o) (see e.g. Krein [2]). Together these eigenvalues form the
set

Ag= {K(§)|§Jeé}\u {Alind(A— R)= (2n)“1f°° d: arg (A— K(&)) 0},

i.e. the set of points on or “inside’ the curve deseribed by the Fourier transform
K. Consequently, if My is the best uniform bound for the eigenvalues then
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AxE My Hg. In [1] there is an example where G=Z and K for suitable & has
eigenvalues outside 4. In that example My is strictly between A, and H.

For the proof of Theorem 1 the-following expression for the integral equation
in question will be useful

| F(z)]*= F(z) (F % K)(x) forall z€g@. 1)

Proof. Tt is sufficient to study the case A=1. Following [1] we observe that
1 ¢ Hy implies the existence of a complex number o« such that

Re(x(1— R(£))=1 forall Zeq. (2)

Let x, denote an arbitrary point of @ and let V be a compact symmetric subset
of G such that

[ ix@le<ilal
[Ha 2]

For abbreviation we define f(x)= X,(x) - F(z) where %, is the characteristic func-
tion of zy+ V*={zy+ >/ 12;|x,€ V}. With these notations Parseval’s theorem
gives us

|“|—1f |F(x)|2dx=loc|‘1f |f(x)l2dZ=|oc|’1fA |f&)de.
Zot VR G ¢

From the inequality (2) and from Parseval’s theorem once again it follows that

e f |f(&)Pde < ‘ f ; [f&PQ - K(&)de

=Ualf(x)lz—f(7)(f*lf)(x)dx

f | F(e)?— ﬁ@f F@¢) K(x—t)dtdz|.
T+ Vn To+Vn

Now by the relation (1) this equals

f F(z) f F(t)K(x—t)dtdx
zo+ Vo Zo+C(V7)

After a change of variables (y =z —¢; x=x) we can use Fubini’s theorem to get

[ Fere-gxewal-|[[  Fore-prway

Y—TE€—Tot+B(VH) Ve VRV

<[ k@[ Fe Feyldsdy
G Tot+ Ey

where E,= V"0 {y+ (V™}. Thus we have arrived at the inequality
f | F(e)Pde< loclf |K<y)|f | F(z) Fw—y)| dwdy. 3)
Tot VR G Zot+ Ey
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Define Pro() = f | F(x)|*dx
Tot+ VR
and p(n) = sup p,(n).
To€ G
Thus (3) yields
Puuln) <| 2| f | K ()| dyf | F(a) F(z — y)| dudy
v Tot+Ey
ol | 1Kol 1r@ Re—ylsdy- 1,41,
[He'2] Tot+ Ey
Now E,= V" so
AASEIE fw) | K(y)|p(n)dy < } - p(n).

Schwarz’s inequality gives us

)
f |F(x)F(x—y)|dx<{f |F(x)|2dxf |F(x)|2dx} . “4)
Tot+ Ey zo+ Ey Zo—Y+Ey
But for YEVE,=Vrn{y+ (Vs Y\ Ve i\ pr!
and —y+ Eyzc(vn) n {“?/‘*‘ Vn}g Vn+l\Vn§ Vn+1\Vn—-1

so the right member of (4) is less than ¢, (n+1)— @g(n—1). Therefore

Fum) < || f K@y {pain+ 1) - gufn— 1)} + dpin)

SIE e+ 1) = @o(n— 1)} + $p(n)
But as ¢,,(r) and y(n) are increasing this yields
1K+ 1) @o(n— 1) < [ Kl @elm + 1) + Fp(m + 1)

Varying x, we get

+
w(n—l)/HKniJri yn+l)=p-prn+1)y (u<l).

So p(2) < u" p(2n). (5)
We need the following simple lemma of Newman [1].

Lemma. Let V be a compact subset of G. Then there exist constants ¢ and d such that
m(V*)<ec-né,
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Applying it in this situation we get p(2n) <C - M - (2n)* and thus from (5)
Y2)<C-M-u* - (2n)°>0 (n—>o0).
From the definition of ¢ we get that F(z)=0 and the theorem is proved.

Remark. The proof is valid with a minor modification also in the case F€ L?(G),
2<p< co. The only place where we used |F(x)| <M was to prove that ¢(2n) <C-
M - (2n)*. We can write |F|*€ L?2, |F|*=F,+ F, where F, € L' and F,€ L™.

Then y(2n) <C- (2n)? - || Fy || + || F, ||, and the result follows just as above.

The only remaining case of interest is FE€L?, 1<p<2. It isreduced to the
above by the following

Lemma. If |F(z)|* = F(x) - (F % K) () where K € L\(G) and F € L*(G), 1< p< 2 then
FeIXG).

Proof. Suppose p=1. Other cases are treated similarly. It follows that | F|<
F|%|K|. Now K can be written K=K, + K, where K,€L', K,eL'n L* and
K li<e<?, | Kyllo=M< co. Then

(| <] | Kol + 1P % Kol ©
Using this estimate of |F| in the first term of the right member we get a new
estimate | F| < g, + &, where g, =|F| x| K,| % | K|
and = B | Kol | o+ F ¢
We repeat this procedure on the term |F|x|K,| in (6) to get successively new esti-
mates |F|<g,+ h, where
gin=¢;%|K,| and kg =hx| K|+ |F|%| K,

Therefore |gi1|

_ husslla< ellBalla+ M| Pl Tt follows that [|g,ll, <
&1 || Fll, and |

; and we get

1< 8"91" and
h|l.<2M | F|

[F=hlly<e**- | Fll,>0 as i>oco where |&/,<[la <22 F,].

We can choose a subsequence {k,} such that h;(x)>|F(z)| a.e. The conclusion
that F € L* now follows from Fatou’s lemma:

fG|F|2dx<liminffa|hik|2dx<(2M||F1||)2.

Thus we have proved the more general form of Theorem 1.

Theorem 2. If K€ LYG) then the operator Ky defined in any one of the spaces
L2(@), 1<p< oo, by

K F=KxF for z€E,K;F=0 for x¢E
has no eigenvalue outside the set Hp.
Department of Mathematics, University of Uppsala, Uppsala, Sweden.
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