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Convolutions of random functions

By HArRALD BERGSTROM

1. Introduction

Let a probability space [X, B, P] be given and denote the set of real numbers by
R. Let L be the class of all random variables & with E|§|"< + oo, p=1 and the
norm ||&|l,=E"?|&P. A random function is said to belong to L? if &(t) € L? for
t € B. We shall consider the topology in 1 given by this norm and deal with limits,
continuity, etc., with respect to it. Then we talk about limits, continuity (L”) or
LP-limits, LP-continuity, etec.

A random function ¢ is called a.s. non-decreasing if it is real and &(t;) < £(t,) a.s.
for any pair (£,1,), #, <t,. (Since we do not require that the random functions are
separable, the sample functions need not be non-decreasing for a.s. all z€X.) The
LP-limits &(¢+) and &(f—) exist for such a random function (Theorem 2.1). If
E@)=%[E(¢— )+ & +)](LP) we say that £ is LP-mean-continuous at that point and
if such a relation holds for all ¢ we say that & is LP-mean-continuous. Let M? be the
class of LP-mean-continuous a.s. non-negative, a.s. non-decreasing random functions
and let V?= R(MP®) be the linear closure of M? over R. We shall define a generalized
convolution & ® n €V? for £€VY, n€V®, ¢,>1, ¢,>1,1/9;+1/9,>1/p and show
that the commutative and associative laws hold for this convolution.

Let My ={£:£€ M?, £(— 00)=0 a.8.} and let ¥§ be the linear closure of M§. The
LP-FS-transform (F.S. read Fourier—Stieltjes) of &€V?Z will be defined in section 5
as an RS-integral in respect to the L”-norm and it will be shown that &@n has the
LP_FS-transform & -7} when €V and 5 €V have the L% FS-transform & and L%-
FS-transform 4} respectively (1/¢,+1/9,<1/p, ¢, >1, ¢;>1, p>1). In a forthcom-
ing paper [2] we shall prove a generalized Bochner theorem which gives necessary
and sufficient conditions for a random function to be the L?-FS-transform of an
a.8. non-decreasing random function belonging to VZ. Then it is also possible to
define the convolution of random functions with the help of L?-RS-transforms in
such a way that the two definitions agree. We have also given limit theorems for
convolution products of random functions [3).

In many cases the generalizations of theorems for functions on the real line to
corresponding theorems for random functions are quite simple and we can refer to
[1] for details in the proofs.

2. The linear space V7
The following simple lemma will frequently be used.
Lemma 2.1. If £ and 5 are a.s. non-negative random variables belonging to L? and
if £2n a.s. then
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1/p

é—nll,<ml&lz—lnlz

Proof. &=(n+E&—nP=y"+ (E—n)* as. Using then Minkowsky’s inequality we
get the desired result.

Theorem 2.1. If & is an a.s. non-decreasing random function on (— oo, + oo) then
the limits £(t— ) and E(t+) exist in thv LP-norm for t€(— oo, + oo).

Proof. We may assume that £>0 a.s. Applying Lemma 2.1 we get for £, <t,.

1 £(ta) — &) |l <[l &) |2 — 1| €6 12T 2.1)

But || &) [, = 1| £¢)]l, and thus the left-hand side of (2.1) tends to 0 as ¢, 1 £,
ty 18y Or & 4y, by | to, 8, <t,. Hence the directed classes {£(t):t<?,} and {&(f):¢ >4y}
are mutually convergent and thus the L?-limits &( —) and &(f + ) exist.

Now consider the class M?. We call the point ¢ an LP-discontinuity point of
EeM? if ||&c+)—E(c—)]|,>0. Clearly &(c—) and &(c+ ) are LP-limits of sequences
{&(c—a,)} and {&(c+ a,)} respectively where a, | 0. Then {a,} may be chosen such
that £(c—) and £(c+) are a.s. limits of these sequences ([4], p. 164). Hence
Ec—)>0, &c+)>0 as. Put a,=&(c+)—&(c—) and let A(£) be the set of num-
bers ¢ for which a,>0 a,s. By Lemma 2.1 we find that ¢ € A() is a discontinuity
point of the non-decreasing bounded function |||, and hence A(£) is a countable
set. Let e be the mean-continuous unit distribution function (e(t) =0 for 1< 0, =1
for t=0, =1 for ¢ >0) and define ¢° by €°(t) =e(t+ ¢). It is easily seen that § — o, €°
belongs to M? and is LP-continuous at ¢ =c¢. By the help of induction we then get
(cf. [1), p. 19) also observing that

" 2 el <[l&(+ ) [,-
ceA®
Theorem 2.2. A4 random function &€ M? has the representation

E=but 2 e, (2.2)
ceAd

where &, belongs to M? and is LP-continuous, o, >0 a.s. and 2 «, is convergent in the
LP-norm.

Corollary. The representation 2.2 also holds for E€V?® and then &, belongs to V* and
is LP-continuous and 2 |a,| is convergent in the LP-norm.

We say that £ is uniformly LP-continuous if there to any & >0 belongs a § >0
such that || &+ k) — £(t)]|,< & for 0< A< & and all ¢.

Theorem 2.3. If & belongs to V® and is LP-continuous then it is uniformly LP-con-
tinuous.

Proof. It is sufficient to deal with £€M?. Then if £ is continuous we find by
Minkowsky’s inequality that ||£||, is continuous and clearly || &]l, is uniformly con-
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tinuous since it is non-decreasing and bounded. By (2.1) we then find that £ is uni-

formly LP-continuous.
We say that £ is of bounded variation in respect to the L?-norm if

élé(ti) ~ &(t-)| u< + oo

sup
N
(N being any net fitted on any interval) and that & is of L?-bounded variation if
n
sup 21 &) — E@i-a) < + oo

It can be shown that V? is the class of LP-mean-continuous random functions of
bounded variation in respect to the LP-norm. However we omit the proof of this
statement-

3. Lr-RS-integrals
Let N:a=t,<i, <...<t,=b be a net fitted on a finite interval [a, b]. We call
N’ a refinement of N and write N' >N if any subinterval of N’ belongs to some
subinterval of N. The set of nets on [a, b] form a direction in respect to refinements

([4], p. 67). To random functions £€V®, n€V% where ¢, >1,¢,>1,1/¢,+1/¢,<1/p
we form the RS-sum (RS read Riemann-Stieltjes).

ol (€)= 3 6t 1+) Inlt) = nlti-2)] (3.1)

Definition. 4 random variable is called the left LP-RS-integral of & in respect to g
on [a,b] and is denoted by
b
- | e dinty

if there to any ¢ >0 belongs a net N, such that
o (&, 9)—ol,<& for N>N..
It is easily seen that ¢ is uniquely determined by this definition. Left L*-RS in-

tegrals on infinite intervals are defined as LP-limits of corresponding left integrals
on finite intervals which tend nondecreasing to the infinite interval. Further we put

f E@) dint)=§(— o0)n(— o) + f e,

Right integrals are defined in the same way.!

1 Stochastic integrals as limits in probability of sums have been studied by K. Ito [5], [6].
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Theorem 3.1. If & and 7 satisfy the conditions given above, then & has left and right
L*.RS-integrals with respect to n. If furthermore 7 ts of LP-bounded variation, then the
left LP-RS-integral is equal to the corresponding right integral.

Proof. Clearly it is sufficient to prove the theorem for £€ M%, € M*. Let [a,d]
be any finite interval. Since

0<a’" (&) <o (& n) <E(+ o)n(+ o0) aus.
for N’ >N: we get by Holder’s inequality

ot & mllo <lla & mlls <NE(+ o) la 19+ o) lan- (3.2)

Applying Lemma 2.1 we further obtain

ot & m =o' @ mll, <{llot” & pE— Mol €™ 33)

When N and N’ are infinitely refined and N’ >N the right-hand side of (3.3) tends
to 0, according to (3.2). Hence the class o7 (&, %), directed in respect to refinements,
is mutually convergent and thus convergent. The corresponding LP-limit is the left
Lr.integral on [a, b]. It belongs to L? according to (3.3). The existence of the L?-
integral on any infinite interval then easily follows. The existence of right integrals
is obtained in the same way.

Let now 7 be of L%-bounded variation. By Hélder’s inequality we get

” 0'5(5, 77) - O'IN(‘S; 77) ”p < :an ”.E(ti - ) - E(ti—l + )"a1 " 77('51') - ﬂ(ti—l) "qa' (34)

i
We may choose the net N on [a, b] such that
6@ —)— &t at+)a<e

for any &£ >0 and for all i (since | &||,, is of bounded variation). Then

o & o) = ot € )| < 3 lntt) = i) o

Hence the left and right L?-integrals on [a, b] are equal (L?).

Remark 1. When the left LP-integral is equal (L?) to the right L?-integral it is
also the L?-limit of any RS-sum of the form 3.1 where &(f;+) is changed into &(ty),
7, being any point on the open interval (t;_1, t;).

Remark 2. Since the left (right) LP-integral can be given as the L”-limit of a
sequence of RS-sum it is also the a.s. limit of such a sequence.

A random variable & is called a.s. uniformly continuous in respect to a random
variable & € L? if there to any positive number >0 exists a positive number
h(g) =0 such ihat

[E(t+h)— Et)] <&y as. for |h|<h(e).
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Theorem 3.2. If£€V%),neV%),q,>1,¢,>1,1/q,+1/q:<1/p,p>1 and if &
s uniformly continuous in respect to a random variable &3 € L™, then the left and right
LP-integrals of & in respect to 7 are equal.

Proof. For any £ >0 we may choose the net N such that

o &, m) = o (&, m)] <k 3 Int) —nr-n)| 5.

A sequence {7, } of random functions is said to converge L?-completely to a random
function % on an interval [a, b] if |7, — ||, tends to o(n—> + o) at t=a, t=D and
all other points on [a, b] except at most a countable set. We shall state a general-
ized Helly’s theorem as follows.

Theorem 3.3. Let f be a continuous function and 5, € M? for n=1,2,... If n,—>y
LP-completely on [a, b], then

Remark, If 5 is LP-continuous and belnngs to M? and @, is a sequence of random
functions tending to G' at all finite points and at @ and b, then

b b
L 1) dn, (8) - L 1) dn(®)

—o(n—> + o0),
D

b b
fn(t)dana)» f 0)dCE) (7).

a

The proof follows as in [1], section 2.7,

4. Convolutions

For £€V, peV® where 1/¢,+1/q,<1/p,q,>1, ¢, >1. p>1 we define left and
right L?-convolutions & % and & %% by
l r

sxn= [e-nin@,  exn= =i @)
If these convolutions are equal (L) we write
Exn=Exn=25x.

Denote by &(° +c¢) that function which is equal to &(t+c) at the point ¢ (Hence
E("+e)=£Ex¢).
Theorem 4.1. If & and n have the representations

=8+ > e (L"),
ceA®
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=Mt 2 Paet (I7)

Am

according to Theorem 2.2, then
=& ¥ oo (" +o)+ +d
591617 d 91“7 * cexzx:(é)a n(+o) de%(n)ﬂdé( )

XD afeett (L), (4.1)
ceA® deAm)

where the series are absolutely and uniformly convergent in the LP-norm.

The corresponding relation holds for right convolutions.
The proof follows immediately (cf. [1], p. 44).

Theorem 4.2, The relations
Exm=nx§ Exn=nx§
hold.
Proof. Clearly we may consider the case £€ M, 7€ M* and by Theorem 4.1 we
find that it is also sufficient to deal with that case when & is L#-continuous and 7

is L*-continuous. Further we may consider the convolution at the point ¢=0. Then
&% 7(0) can be approximated arbitrarily closely in the L”-norm by a ES-sum
r

n

E(—t_p)n(t_n)+ i=?_:n+l§( =) [n{t) — n(ti-1)]-

By an Abelian transformation we can write this sum

n—1
n(ta) &(—t,) +i=Zn () [E(— 1) — &(—t_111)],

and it approximates 17*5(0) arbitrarily closely in the LP-norm for suitable choice
of the net.

Lemma 4.1. If £ belongs to M% and is L%-continuous and 7 belongs to M%, then
&% is LP-continuous to the right and & n is LP-continuous to the left.
i r

Proof. Let t€(— 00,4 o) and let [—a,a] be a finite interval and N:—a=
tp<t,< ... <l,=a some net fitted on [ — a, a] such that

f &t —1)din(r) —||2§t—t () — piti-01]5< 3 & 4.2)

for a given number £>0. We observe that the BS-sum is a.s. not larger than the
integral since the RS-sums are a.s. non-decreasing in the direction of refinements
of nets. Now £ is L?-continuous at # and hence we can determine % >0 such that
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(6 —2;) [n(t:) — n(ti-1)] : - 1e?.  (43)

n Iy
(PEG IR
But the second sums is a RS-sum belonging to the right L?-RS-integral and hence

4.4)

[ = B t)n(t) — (60

D

Combining (4.2) — (4.4) we obtain

<8”

f Et—-r)d,nt) f Et—T—h)dm(z)

Applying Lemma 2.1 we then get

_a Et—1)d.n(r)— f_u Et—h—1)dn, (1)

¥

Also observing that

[+ [ eemndne

we find that

<[lé(+ o)

oo o],

||§-)re17(t)—§9re17(t—h)“p—>0 as h{0.

The L*-continuity of &% to the right follows in the same way.
1

Lemma 4.2, Let £,€ M%, i=1,2,3, and let £, be a.s. uniformly continuous in re-
spect to the random variable o € L, where ¢;>1, 231 1/¢,<1/p<L.
Then
(51*52)*§3= &% (5295‘53)‘_‘ & % (5291653) (L*).

Proof. The convolution &, * &, exists according to Theorem 3.2. Further to any
£>0 we can find (h)e >0 such that

0<é,(E+R)— &t <ex as.
for 0< h< h(g). Then

+ o0

El*fz(t—l-h)—&l*fz(t):f [+ h—7)— &t — 1)]d&(T) Seaby(+ o) as.

and thus & % &, is a.s. uniformly continuous in respect to the random variable
oby (+ o). Hence (£, % &,) ¥ &; exists. In the same way we conclude that &, % (&, * &)
and &, % (52* &;) exist.

Now choose the positive number a and a net N fitted on
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(—a.a), —a=f<t, < ... >, =a,
l&(— @) =& (= =)l <e& &+ )~ & @ ]a <&, (4.1)

Eult) — Eitioy) <ea  a.s. (4.2)

such that

Using the definition of the L?-RS integrals and the fact that these are a.s. limits of
sequences of BS-sums, we get the inequalities

Eal+00) E1(—0) & 3 6= 1) 16 (6)— & ()] SEax 200

n

S&E(+ ) [ (—a)+ & (+ )~ & (a)]+ Zl Lot —bi-a) [£,(8) — & (ti-1)] as. (4.3)

Forming the left convolution by &, we then get from (4.3)
Ea( e0) 1~ 00y (+ 00)F 3 £y &~ ) (8, (0)— £y (6]
S E)* £ <E(+ ) [E(~ @) + £ (+ 22) — & @]y (+ o0)
+ 5 ExE) - o) TE 0 —a )] as (44)

Now it is easily seen that this inequality also holds if we change (&, % &) % &, into
(52?6 &3) % &. Hence we get regarding the inequalities (4.1) and (4.2)

(&% &) % &) = (G x £ x &1,
<"52(+ °°)”qz '"53<+ °°)”qa{“§1(_a)_§1( - °°)”q1+ ”51( + °°)_§1(“)”al}

+ef| 3 16 —t0) - &6—1)]

¥4

<e{2[[&(+ eo)la [16a(+ ) oy + ot 2 (+ 20) o N &5+ o0) -

Since ¢ is arbitrary we conclude
(Ea% &) % &= (fz*fés)*fl (L7).
In the same way we obtain the corresponding relation for the right convolution.

Theorem 4.3. Let £ and n satisfy the conditions in Theorem 4.1. Then &%n and
l

&% n have the same LP-discontinuity points and their jumps are equal (L®) at given
r
LP-discontinuity points.

Proof. Clearly it is sufficient to consider the case £€ M®, € M® and, according
to Theorem 4.1 it is also sufficient to deal with an L®-continuous £ and an L%-

534



ARKIV FOR MATEMATIK. Bd 7 nr 39

continuous 7. Smce & *17 and & %17 are LP-continuous to the right and left re-

spectively, they have representatlons {(according to Theorem 2.3 and the remark on
this theorem.)

Exn=0+ 2wl (L) (4.5)

1 ceA(STn)
d =%+ ¢ (L7, 4.6
an 597972 e deAgfﬂ) Baes  (LP) (4.6)

respectively, where {; and [, ard L*-continuous,

0 for t<ec, 0 for t<c,
eﬁ (t) == elc =
1 for t>c, 1 for t>c.
Let G be a symmetrical continuous distribution function and let G(* /o) denote
that function which takes the value G(¢/s) at #(c >0). Applying Lemma, 4.2 with
=@ /o) we get

i) (o) i pol 2

Letting ¢—>0+4 and applying Helly’s generalized (Theorem 3.3 and the remark on
this theorem) we obtain

Gt 2 ae=0+ > fet (L)

¢ eA(éélén) ceA(Exm)
r

and from this relation the proposition follows.
Now we define a generalized convolution {@®# by putting

£®n=y[§§m+§9§n}

The generalized convolution is a commutative operation according to Theorem 4.2
and by Theorem 4.3 £@®% belongs to V7 if £€V%, y€V® where 1/¢;+1/¢,<1/p,
@=1l¢=21p>1.

Theorem 4.4. The genemlized convolulion is cm associative operation tn the following
sense. Let £ E€VY, q,>1 for i=1,2,3, where >3-11/q;<1/p,p=1. Then

6 ®E)BE=E®(E®E) (LP).

Proof. Clearly it is sufficient to deal with the case & € M%. According to Lemma
4.2 this relation holds if furthermore &, is a.s. uniformly continuous in respect to a
random variable a € L%. Hence observing that & % G(" /o) is a.s. uniformly contin-
uous in respect to &(+ o), we get
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(%0 (0))@a|@a-(axo(S)jotaoe-¢ (o) »aoe®an @)

(4.7)
Since G(. /g) is uniformly continuous we also have

(%6 (;))@e-c () *e®s @ (48)
and o ;) xcon|@a-a () xeones w. “9)

Combining (4.7)—(4.9) we obtain

¢ (5) *E@L®E]=6 (;,) *[E@E®E) (L),

Letting o | 0 we get
(Li®&E)BE= 51@(52@953)-

5. Lr-Fouriertransforms

If £€V} then the LP-RS-integral

E(s)= f " exp its dE(t)

exists. It is called the LP-Fourierintegral of £ at the point s.

Theorem 5.1. Let £€EV§, 5€ Vi, n€ Ve where 1/¢,+1/¢,>1/p, ¢, >1, ¢:>1,
p=1. Then

NN L " .
Exn=£&-7 (LF).
Proof. It is sufficient to consider £€ M, n€ M*. If G is a continuous distribu-
tion we have
Ox (@) =(@xExy (L7 (5.1)

(cf. Lemma 4.2). However then this relation also holds for any continuous func-
tion G of bounded variation since @ is the difference between two continuous bounded
and non-decreasing functions. Since & x (— o) =g(— o0)=0a.s. it then also follows
that (5.1) remains true for any bounded continuous function which is of bounded
variation on any finite interval. Thus particularly (5.1) holds for G(—#)=sin is,
G(t)=cos ts and hence also for exp-its. Choosing G(f)= exp its we get successively

+00

Gx E(t)=j exp its (t— 7) d&(zr)=E(s) exp its (L%),

-0
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(G &(t)) % () = §(s) 7j(s) exp its (L),

T
G % (£@n) () = E@n(s) exp its (L),

and thus according to (5.1)
/\ " A
§eom=¢-1.
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