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Renewal theory and the almost sure convergence
of branching processes

By PETER JAGERS

Let Z(t), t>0, Z(0)=1, be an age-dependent branching process, defined in the
usual way on a probability space of the family tree type. Let the probability
law be determined by the right continuous life-length distribution &, G¢(0)=0, and
the reproduction law {pi}i-0, Py + P1<1, h(s)= 2 7-0pxs*. Thus, in an applied
language, we count the number of individuals at time ¢, Z(¢), in a population
where each member has a random life-length, distributed according to @, and
where any individual at its death is substituted by a random number v of new
individuals, P{y=k}=p;. Different individuals are supposed to act independently
of one another and independence is also assumed between the life-length and the
reproduction of any specific individual.

The distribution of Z(t) is determined by its generating function, F(s,t)=
E[s’®],E for expectation, F being in its turn determined by the integral
equations

F(s, t)=s[1— G{t)]+ ft B{F(s,t ~u)}dGw), |s]<1,
1}

as is well known. Differentiating this for s<1 and passing to the limit s 41
with a certain care yields a renewal equation for the mean M, M(f)= E[Z()],

Mt)= 1—G’(t)+mftM(t-—u)dG(u),
0

m=F}'(1), supposed finite [2, p. 140]. From an analogous relation for the generating
function of the vector (Z(t), Z(t+ 7)), 7>0, equations for the second moment
ke, ko(t)= E[Z(t) Z(t + 7)], 7> 0, may be obtained in a similar manner,

k()=1—-G(t+7) +mme(t+ 7—u)dG(w) + h"(1) ft M(t—u) M+ 7— w)dG(u)
t 1)

+m ft k.t — u)dG(u),
0

h"(1) assumed finite [2, p. 144]. With the help of renewal theory [cf. 1], these
equations may be used to investigate the asymptotic behaviour of the process,
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as time passes. If ¢ is not a lattice distribution, i.e. its points of increase are
not integer multiples of some positive number, m>1 and « satisfies

mf e ®dat)=1,
0

m—1

am? J‘ te~dQ(t)
0

then M@E)~ae®, t->o0, a

If further A"(1)< o, then

h”(l)a,zf e~ 2 dG(u)
kot) ~ce™ ¥ s o0, 720, c= -

1- 'm,f e~ ** 4G (u)
0

and from this it follows that

converges in mean square, as {—oco, to some random variable W with expec-
tation 1 but a strictly positive variance [2, p. 146]. In 1960 Harris proved that
if m>1, A"(1)< oo, G is non-lattice and, furthermore,

f " BUW ()~ W)de< oo,
0

then W(t) converges also with probability one to W [2, p. 147]. If @ has a den-
sity g a more manageable criterion is known. Suppose that m=>1, A"(1)< oo
and that

f "l Pdi < oo
0

for some p>1, then W()—W almost surely, [2, p. 147]. Here we shall prove
that the last condition in these theorems may simply be discarded:

Theorem. If m>1, A"(1)< oo, and G is not a lattice distribution, then W(t)—~W
almost surely, as t— oo,
The idea is to show that Harris’ condition

f " BUW@) - Wy de< oo

0

is actually satisfied under the assumptions of the theorem. For the sake of clar-
ity the proof will be given as a chain of simpler propositions.
We shall use traditional convolution notation:
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t
Fxglt)= fof(t—u)dg(u),

0, if t<0
%0 — » >
e {1, i $>0,

f*n= f*f*("_l), n>1,

f and g supposed to be functions such that the definitions make sense. Integrals
fa should be mterpreted as rangmg over the half-closed interval (a,b], except
when a= 0 Then zero is included in the integration. The statement [ f(f)dg(t)
converges” simply means that lim,_.. [}(f)dg(t) exists.

Our main tool of proof will be renewal theory, where some results of inde-
pendent interest will be derived, though Tauberian arguments and Laplace trans-
forms might seem nearest to hand. Let us therefore begin by stating the so-
called key renewal theorem in a form suitable for our purposes.

Proposition 1. If u is a non-lattice probability on (0, co) with finite second
moment, f is of bounded variation on finite intervals and converges o zero as its
argument tends to infinity and

o0
J' f)di
0

converges, then the solution x of the renewal equation x=f--xx% pu satisfies

fima

lim z(¢) =

t—>o00

where w= [§ tdu(t)

This theorem is well known, though seldom deduced in detail. A proof can be
given by applying the fact that, * denoting [§°#*du(?),

0< 3 L2

= w 2u®
as t—co [1, p. 3567], to the formal solution of the renewal equation:
z=f% > u*.
n=0

Elementary approximations will yield Proposition 1.

We shall also need a much simpler fact, the renewal theorem for defective
measures [1, p. 361]:
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Proposition 2. Assume that u is a non-decreasing function on [0, o) with u(0)=0
and u(oo) <1, and that lim,,.. f(t) = f(co) exists. Then, if x=f+x*u,

(o)
3&““’ 1— p(oo)

This statement is a direct consequence of the following well-known theorem.

Proposition 3. If f is bounded, lim,,. f(t)=A, g(t) increases to B, as t— oo,
and fxg ts well defined, then lim,., . fxg(t)= AB.

Proposition 4. Suppose that pu is a probability on (0, o), salisfying v*=
J&tduty< oo, that [T f(t)dt=0 and that Him,_, [§(t—u)f(u)du=r exists finitely.
Then, if x=f+xxp,

i r
fo x(t)dt— E’

and s, thus, convergent.

Proof. Introducing
t
X({t)= f x(u)du
0

and integrating the equation for x, we obtain
t t
x0- [ fwdu+ [ Xe—udue,
0 1]

after a change of the order of integration in the double integral. This is again
a renewal equation and since

t u t
[ duf fy)dy = f (t—u)f(w) du,
v o 0 0

the assertion made follows from Proposition 1.
An analogous assertion for defective measures can be deduced by the same
trick from Proposition 2:

Proposition 5. If u(0)=0, u(t) 4 p(eo)<1, as t—>co, and [§ f(t)dt converges, then
the solution of the equation x=f+xx u has a convergent integral on [0, o)

° _JO
fo M= ooy

Proposition 6. If the conditions of Proposition 4 are satisfied, f is of bounded
variation on every finite interval, f(t)=o(t™"), as t—> oo, and [§ tf(t) dt converges,
then [ tdx(t) is convergent, too.
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Proof. Introducing & by
t
Z(t) =f udx(u)

0

(evidently this integral is well defined), we conclude that

t t . .
()= f udf(u) -+ f x(t — wyudpu(u) + fo (t — u)dp(u)

0 0

in the following way: Integrate u from 0 to ¢ with respect to z and apply the
relation x=7+xz%u to obtain

¢ ¢
(t) = foudf(u) + f ud(x % p) (u).

0

Here, integrate the last term by parts, apply Fubini’s theorem and perform
another integration by parts. But the relation thus obtained is again a renewal
equation, for £ Since

1 t
[ narwo=s0- [ e,
0 0
it follows that
lim tudf(u)=0 and that fmdtftudf(u)
1) 0

t—>o0 0
f B ft)dt
0

converges. But because

it is also true that

t
J‘x(t—u)ud,u(u)»o, ag f->o0,
0

by Proposition 3. This one combined with Proposition 4 also shows that

J‘Ddtft x(t — u)udp(u) = J‘tud‘u(u) fvuux(t)dt+w£=r,
0 0 0 o w

as v—oco. Thus, the key renewal theorem, Proposition 1, may be applied, guar-
anteeing the existence of

" tf(t)dt

Eﬁﬂt) =w? U: tf(t)dt — J‘:’dtﬂﬂu)dqu T] = LT
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Proposition 7. Under the assumptions of Proposition 6, it kolds that x(t) = oY,
as t— oo, Furthermore, under these assumptions x(t)=o(t™*) if and only if {§ f(u)du=
o(t™Y), as t— oo,

The proof is immediate: Integration by parts shows that

¢ ¢
tx(t) = f oudx(u)-i-f z(u)du.

]

As ¢ oo the right-hand side has the limit

oo - 00 t
w! f t(tyde+ f x(t)dt=w‘1U t/(t)dt+tlim f (t—u)f(u)du]
0 >0 J 0

0 0

t ft flu)du

Jo
” .

We now apply our results to branching processes with a nonlattice life-length
distribution and 1 <m < co.

= lim
t—=>00

Proposition 8. M(t) ~ ae™, as t—>co and

f [e" M (t) — aldt
0
converges

Proof. M is known to satisfy M =1— G+ mM % G. Multiplication by e~ yields

a renewal equation, since G,

Gt)=m ft e ““dG(u),
0

is a probability distribution on (0, o). But @ has finite moments of all orders
and, thus, the key renewal theorem is applicable showing that e M({t)—~>a, a
well-known fact mentioned also earlier in this paper.

As to the second assertion of the proposition we note that

e~ M(t) — a=e~*[1 — G(t)] - a[l — G(t)] + f " [0 B (¢ — ) — a]dB(w).
0
The fact that

f m{e““t[l — Q] —a[l—G)]}dt=0
0

is easily checked and in order to apply Proposition 4 it remains to show that
the function g,

i3
o) = f {11 — 6w)] — all — BT} du,
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has a convergent integral on [0, o). But
et)= af:o [1— Gu)]du— f:o e **[1 — G(u)]du.
However, by Fubini’s theorem
f: dt fj e *[1 — G(u)]du= f: e *[1— GQ(u)]du JZ dt= f: ue” *“[1 — G(u)]du < oco.
And, similarly,
f: dt f:c [1—Gu)du= f: u[l — G(u)]du < oo.
This completes the proof.

Proposition 9. As t—~ oo, e “M(t)—a=o(t™?).

Proof. By Proposition 7 we have only to prove that
lim t{e*[1 — Q(¢)] — a[l — G(t)]} =0,
{0

that pt)=o(t™),

and that f mt{e“"‘[l —G(t)]—afl — ()]} dt
0

converges. But these facts are immediate.
Consider now again the integral equation for k., k.(t)= E[Z(t)Z({E+ 1)],

ke(t)=1— G+ 1)+ mme(tJr 7—u)dG(u)+ h"(1) f M(t—u) M+ 7—u)dG(u)
t 0

~t
+m J Tt — ) dG(w),
0
k"(1) assumed finite. Multiplying this by e **~**, we verify the above-mentioned
fact that

lime 22t (t) = ¢,

t~>00

uniformly in 7>0, using Proposition 2, since m [’ e ?*dG(u)< 1. Subtracting c,
we get the equation
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t+7T
e L () —c=e "1 - Gt + v)] + e'“’mf e TV M+ T— u)e *dG(u)
¢
V t
+1(1) f €W M (4~ w) e VY (¢4 7 — ) 2 G u)
0

t 1
—c [1 -m f e‘z““dG(u)] + mf [e~ 22~V (¢ — u) — c]e” 2*“dG(u).
0 0

Let us check whether this equation is such that Proposition 5 is applicable. The
first and second terms at the right-hand side are evidently integrable [0, co), since
e “M(t), t>0, is bounded. The two subsequent ones may be rewritten as follows,

£ t
B"(1) f e O M(t—u)e O Y (t+ 7 — u)e T dG(u) — ¢ [1 —m f e”z““dG(u)]
0

0

=h"(1)a® f ) e UG () — ¢ [1 —-m f t e‘z“"dG(u)] —h'(1)a? fm e > dG(u)
0 0

¢
+h"(1) J: [e ¢ VMt —u)e "D M(t + T — u) — a¥le” ***dG(w).
But
h’(1)a? f: e dQ(u) —c [l —m f ; e‘z““dG’(u)] =—c f :Q e 2 dQ (u).
0

However, f dtf e‘z““dG(u)=f ue 4G (u) < oo,
[ t

Hence, it remains to prove that

T t
lim | d¢ f [e * DMt —u)e * VM (t+ v — u) — aFle *“dG(u)
o Jo

T—>00

exists. Since the double integral equals

f e‘z““dG(u)f ) [e™ ™ M(t)e~ O M (t+ 1) — a®)dt
0

0

it is enough to prove that
f [e ™ M(t)e **OM (¢t + 1) — a®)dE
0

converges and then apply Proposition 3. But by an elementary algebraic identity
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e M(t)e * VMt + 1) —a’=[e O Mt + 7) — al[e” " M(t) — a]
+ale “M(t)—al+ ale **" P M(¢-+ 7) —al.
Proposition 9, however, shows that
[e- D M(t+ 1) — a][e “ M (t) — a]= o(t %),

as t— oo, whereas the integral
f: [e D Mt + 1) — aldt
converges for any v>0 by Proposition 8. This completes the proof of
Proposition 10. If A"(1)< o and T=0, then

f A [e7*" k. (t) — c]dt

0

converges.

Consider now for =0

ot +7) , Kolt) k.(t)

k
E[(W(t+7)— W(t))z] = pryrTasy + ateZ? -2 alerT et

Since W(t)— W in mean square, as oo, a fact following from this relation,
it is also true that

lim E[(W(t -+ 7) — W(£))%]= E[(W () — W)*]

T=>00

k.(t)

and that Letn — BLW(E+ ) Z(1)

tends to some limit k(f), as v—co. Dividing the integral equation for k.(f) by
ae®®*® and then passing to the limit 7— oo, we get, by dominated convergence,

kt)=m Jw e **dQ(u) + R"(1) ft M(t—u)e ™ dG(u)+m ft E(t— w) e **dG{(u).
¢ 0 )

Multiplication of this by e and an application of Proposition 2 show that

lim ae™*k(t) = c.

t=>00

We have thus proved the first part of
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Proposition 11. If k"(1) < co, then

ae~®k(t)—>c, as t—>oo, and

f [ae™*k(t) — c]dt
0
converges

The rest of the deduction follows the pattern of earlier proofs, apply Pro-
position 5 to the integral equation for ae *k(t)—c.
Since lim,_ . e 22k (t+17)=c¢, it follows that

Q?B[(W(t) — W) = ¢+ e~ 2ky(t) — 2ae~k(t) = [~ 2 ko(t) — €] — 2[ae*k(t) — c],

and, hence the integral
[ mowe-wrna
0

converges by propositions 10 and 11. This completes the proof that W(t)—>W
almost surely, as t— oo,
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