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Introduction

The statistical problems dealt with here are more or less discrete, but in one
respect there is a main thread between them, as they are all concerned in a
wide sense with questions about servomechanisms. Servo technics are to a great
extent a matter of measuring, and these measurements are, of course, subjected
to a great many random errors. It will be our task to study these errors for
some important servotechnic problems. At the same time we will pay some
attention to errors committed through the use of approximation formulas. Further,
in servo circuits there exists a great deal of noise which will have some in-
fluence on the signals going through the circuits. Such questions will also be
dealt with here. Finally a couple of problems in the information theory will
be touched on.

By a servomechanism according to I. A. GeErTiNG (Theory of Servomecha-
nisms; Radiation Laboratory Series 25) is meant “‘a combination of elements
for the control of a source of power in which the output of the system, or
some function of the output is fed back for comparison with the input, and
the difference between these quantities is used in controlling the power”. This
definition will be adopted here. Suppose we have to study the behaviour of
an aircraft. This aircraft may be driven from its right course by a gust of
wind the moment of which may be M () where ¢ denotes the time. This mo-
ment (the input) will cause an angular deviation (the output), say a(f), of the
airplane. The principle task of the servomechanism is now to reduce a(¢) to
zero. As long as a(t) is not equal to zero, the actual value of a(t) will affect
the motion of the rudders in order to bring down the effect of M (t).

The reader is assumed to have at least an elementary knowledge of servo
technics, and thus only a few definitions will be mentioned here.

. Suppose that we have to study a servo cycle with the input f; (f) and the.
output fo (f) where ¢ is an independent variable, generally the time. The relation
between these two quantities and eventually other auxiliary quantitiés may often
be described mathematically by a system of differential or integro-differential

equations, e.g.
[ (fi; f‘i, ooy fO} fO, ey t) =0

(1)
y=1,2,...
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the number of which must be equal to the number of variables minus two
(¢ and f;). A

When the system (1) is linear in the dependent variables and their deriva-
tives and has constant coefficients, this being a very common case, the equa-
tions are generally solved by the introduction of Laplace transforms. We define
the Laplace transform of f(¢) as

Fls) = [t f s @)
¢

s being a complex quantity. We then obtain
" Fo(s) = Y (s) Fi(s) (3)

where Y (s) (the transfer function) is assumed to be a rational function of s
with the degree of the numerator not higher than that of the denominator.
In the case of a stable system all poles of Y (s) must lie in the left halfplane.
On the imaginary axis we will sometimes admit of a simple pole in the
origin. .

For s=jw (j=V—1) we write

Y(io)=Re{Y (o)} +iIm{Y (o)} =o€ (4)

where Re { } means the real and Im { } the imaginary part. When nothing special
is said about it, we always assume that s = jw. As usual we call

e=o(@)=|Y({o) ()
the amplitude and
¢ = p(0) = arctg Tty ©)

the phase of the transfer function.
From the Laplace transform F (s) we can obtain the corresponding time func-
tion by using the formula

f(t)=2—7% ] e F (s)ds . (7
b—joo

where we have to choose & in such a way that the integral converges for all
t for which f(t) exists.

If the equations (1) are non-linear!, the methods generally used in linear
cases! will fail, and the treatment becomes much more complicated. In the
sequel we will be concerned also with non-linear cases.

Before we attack our principal problems, we are going to make some simple
general investigations about random errors (chapter I). The notations given there
will be used throughout the whole paper. :

! When talking about ‘“linear equations” in servo technics one generally means linear
equations with constant coefficients.
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I. A few notes on errors
a) Various errors

As in all investigations based on an empiric material we have to consider two
principal kinds of errors: 1) Errors due to observations and 2) Errors due to
APPToOTLMALIONS.

The error of observation of a certain quantity ¥ will be measured from the
mean value (the probable value) of y, denoted by My, and will be represented
by the standard deviation

Dy = VM(y—W

The error of approximation will be denoted by Ey.

b) Reduction of errors by smoothing

Suppose we have to study the relation between two wariables  and y, %
being exactly given while y is assumed to be subjected to random errors of observa-
tton (on the contrary, systematical errors are not considered here). According
to the fundamental theorem of the calculus of errors the observations generally
can be supposed to be normally distributed. Let the result of observation be
plotted as points P, with the coordinates @,/y, in a coordinate system (fig. 1).
We presume that the different observations of y are independent of each other. The
footpoints x,/0 may be called F,. We now draw a smoothing curve

| ——
S=61Q-..@n

with the most simple algebraical equation (a polynomial), using » points of
observation Py, Py, ... P, (1 <z << -+ <) the footpoints of which do not
occupy too large an interval, so that the standard deviations Dy, of the dif-
ferent observations may be regarded as approximately equal. Furthermore we
require the sum of the squares of deviations

Y
Ghowo oo ) 4 B
[¢) B |
R
/Q1 l
|
|
|
|
L o
T = ®» %8 % % O«

Fig. 1.
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PR AN

to be a mlnlmum We now ask for the remaining random errors of y after the
smoothing.!
Under the above conditions the smoothing function, as we shall see, will be

linear in ¥y, #s, ... ¥n. The coefficients of this linear expression are polyngrplals
of z of the same degree as that of the smoothing curve and with coefficients
which are rational functions of z, zg, ... a.

If the smoothing curve is
y=ag+ o+ - +ayz¥ (N<n),

the sum of the squares of deviations becomes
. | n .
Zl(ao +ay2 + o+ ayz) —u)
e

The derivation with respect to a, gives

n

Zw_’:(ao+a1xy+--~+aN$,l,V—yv)=0 (p=0.1,...N).

Let us put
?S_‘
=D o
y==1
0 M ay
A= a; Uy ON+1
aN ay+1 azN

and let A;; be the minor of the ¢-th row and the j-th column of thls deter-
minant. It follows

Aay= zoAu+1,A+1 21-’”,’,‘% (A=0,1,...N).
n= pe=

Hence we have the development
n

v@ = 3 k@ v ®
with the coefficients
¥ A RS
b= 30 5 Aoy o

From fhis we obtain
3 kp(@) = Zﬂz““m
p=1

! More precisely, we ask for the random errors under the assumption that the function
used by the smoothing ig the right one.
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But ,
¥ Aur1,a1 ‘[1 for A =0,
S A4 ™70 for 250,
Hence

S kp(2) - 1. (10)
p=1

Then y(z) (formula 8) is a sort of modified weighted mean valuel of the y,:s
with the weights k.

I will only give here the expression of kp(z) in the case of a linear smooth-
ing curve, We then obtain

(n. Tp — v§1 xv) x + vgl 22—z vglx, 1
ky (z) = n”21x3~(ix,)2 . (11)

r=1

This expression will sometimes be used in the following for numerical computa-
tions of correlation coefficients.

Let us represent the quantities kp (z) in a space of »n dimensions (in fig. 2
n = 3). Hereby x is to be considered as a parameter. The points

IL{kp (@) (p=1,2,...0)}

Ak,
1

Fig. 2.

1 Observe that kp (z) is not necessarily positive.
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are lying in a plane (L) defined by (10). When z varies from.z, to x, the
point II, moves along a curve (C) from Iy to IT, in the plane L, while the
point @ (fig. 1) follows the smoothing curve S from @, to Q.

Of particular interest, as later will be shown, is the point I (£) defined by

b () = k(&) = = k(&) = © (12)

n

. : 1
which represents the average value § = ﬁzyp.

If my and o, denote the theoretical mean value and standard deviation of
any particular observation Yo, We have from (8) for the smoothed values y (x)
the mean value

My (@) =p§7cﬁ (2)-my N (E)

-1/ St (14
p=1

according to the assumption that the different values are independent.
In practical investigations we are often able to comnsider op (p=1,2,...n0)
as a constant, and thus obtain

Dy(@) = c]/iltfcp @ - (1)
= X

The exact calculation of Zkz (z) is, of course, a tedious procedure. In order

to diminish the work of calculation, we can consider the value x = I where the
greatest error can be expected. We then have

() < a[/ 3 ks @)P. | (16)
p=1

A .useful piece of information about the average deviation ean be obtained
by studying the projections on the y-axis of the results of observation (fig. 1).
In the most common case, i.e. when the observations are normally distributed
with the same standard deviation o, the arithmetic mean § of the projections

and the standard deviation

is also normally distributed with the mean value M g = ;llzm,, and the standard
deviation

Dj= (17)

Vn
Often we can be content with the last expression, especlally if it 18 not pos-
sible to obtain a good estimation of ¢.
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¢) Correlation between smoothed values

Between two neighbouring values y (&) and y(&;) defined by formula (1)
there is, in consequense of the smoothing, a certain correlation that may be
characterized by the coefficient of correlation -

_ M{ly (&) — My (E)ly (&) — My (&)} .

18
e Dy (&) Dy (&) s
We see at once that r > 1 when & <2&,.
If we assume that the standard deviations of all y» are equal, we have
n
3 ko (E0) oy ()
712 L (19)

Vil @F Sl

Finally, if we can choose &, in such a way that for this &-value (12) is valid
with satisfactory approximation, (19) changes to

1
" Va s ke T

In many problems of correlation it is enough to draw a linear smoothing
curve using a few observations in the neighbourhood of each other.

d) Errors of derivatives

An important problem is to determine the error of the derivative y’ = iz

Y | ) ] .

= lim TZ at an arbitrary point P (z/y) of the smoothing curve ¥ = y(z). We
A4z—0

take two points P; (& /7:) and Py (£5/7,) in the vicinity of P, one of each side
of P. Then

d_?/ - & N2 — M
dz EyrE1 T fz - 51
It follows

dy . 1
D?—= = lim ——[D¥n, + D¥ny— 27,3 Dy D 20

dx (52;_51)2[ T N2 a7z h ?,72] ‘ (20)
where 71, denotes the coefficient of correlation between #; and 7;. The nearer
the points P; and P, are lying to each other, the more 7, approaches to +1.
The expression for r;, was given in the foregoing section (formula 18). If
Dy = Dny =0 we have

dy _ o oV2 o 21
Dda:_hméz—fl 1—17y. (21)
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According to (8) the deviation of a smoothed value y from its real mean

value can be written
n

&= Ekp(a;)'sp,

p=1

&, being the deviations of the different observations. As the ep-values are

independent of each other, we have, &Y and &% being the deviations of #;

and 7,
M %) — 1oy Do Dy — (ﬁkml)kq(fz)apsq) = 3k @) 1y € D
Further

D2y, =\p§1[kp E) Dy, (=1, 2).

From (20) and the last two relations follows

Dzﬂ/ — hm i I:kp(fz) - ]Cp (El)]zpz Yo (22)

AT gstismp=1 &—&
i.e.
dy & Jdk (atc)]2
20Y » 2
p2! ,Zl[ 2\ Dy, (23)

Of course this limit can also be found directly by taking the derivative of (8).

With the formula (23) the problem is theoretically solved, as soon as we
know the smoothing function (8), since it is easy to put up an expression for
the derivative of k,(z). But if we use a graphical method for determining the

.. d .
derivative Eagc’ we cannot go to the limit & — & = 0. Then there must be

made a systematical error

1 @y
1, d2y 4
dz 2 (62— &) (dwz)x=sl+0(sz—5,) 0

where ¥ is some number in the interval 0 <@ << 1. For the second derivative
it is satisfactory to use a crude estimation.

To make it easier to determine the derivative from a glven curve it is con-
venient to prolonge the corde between P, and P,. This does not enlarge the
probable error.

e) Errors of integrals

Now we are going to calculate random errors of integrals. Suppose that y (z)
is a random variable depending on a parameter . Then the integral

)

b
b—dz
I=fy(x)clm= lim 3 y() 4z
) Az-0 z,=a
a .
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is a random variable too. For the sake of simplicity we write
I=mAz+npde+ -+ mmdx

where 7y, ... % are a sort of average values in the corresponding intervals and
Ax = (b—a):m. )

If ¢, denotes the standard deviation of 7, and 7., the coefficient of correla-
tion between 7, and 7#,, we obtain

DI=3 Ax2a§ + > A2%0,0, 7T : (25)

p=1 BFEY

If we can assume that the standard deviations of all 7, are equal (= o), there
exists an average coefficient of correlation (r), so that

b—a b—afb—a
27 _ 0780 o 4 2 - 2 4.2
DI 1z ° Ax? + Ax(Ax l)ra Az
1.e.
DI =a?[b—a)Az + (b—a)(b—a— dx)r].
b*a . 1
If Adz=o0 —,") Ve have approximately

DI~o(b—a)Vr. (26)

(A more exact method will be given in V:e). ‘
When y(x) is a smoothing function calculated with the method of least

squares from » values #y, ...y, we have according to (8)
n b
I=3u [ 1 (@) d
and
" b
DI = > Dy | [ I (@) da]. (27)
p=1 p

II. Experimental determination of transfer functions

a) General reasoning

In many questions of servo technics it is a difficult problem to determine
the differential equations of the studied system, but then we often have the
possibility to make an experimental investigation of the transfer function Y (s)
(formula 3), here supposed to be at least approxzimately rational.? But as it is

1 Of course, in this case r must be > 0. The symbol o ( ) means (according to Landau)
“small in relation to’’.

? With this expression I intend to say that Y (s) with a high degree of accuracy can be
approximated by a rational function where the numerator and denominator have fairly low
degrees.
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much more simple to read off the amplitude ¢ than the phase @, we wish to
avoid experimental determination of the phase. As a matter of fact, when all
the roots of Y (s) =0 have real parts << 0, this being assumed here, there exists
a simple relation between the phase and the amplitude.

Suppose that we have observed the amplitude ¢ from w =0 to w = wy and
wish to determine ¢ = @ (w.) in that interval. For the sake of brevity we write
gc instead of o (w.) and ¢, instead of ¢ (w.). We then have'

. 2 w °'ang—lng
et I 28)
o

where In denotes the natural logarithm.
Let us write

_ 2wcflng anCd LR

where, after the substitution z = %,2

1

R = —‘gi”fl—nﬁz;lﬁ"”dz. (29)

7 2t —z
0

I do not intend to say much about the first part of ¢, its determination
being very simple. On the other hand it is a rather sensitive matter to cal-
culate the integral of R,, as it often has a comparatively large numerical value
which depends on the goodness of the observations in the vicinity of @ = wp.

Let us assume that the error of a simple observation of p at @ = w. is &.
Generally e is normally distributed with the mean value 0. We call the
standard deviation o.. Further we presume that for z <<1(w > wm) @ can be
written in the form ' ’

e=1Y({w)|=0(@)=on2® (30)
‘where

(@) = pm + (2 —1) i +
1

1 ”
+—(z——1)2,um+ +m

5 (=11l + (. (31)

It is easy to see that u(z) gives the slope of the curve-vector In o —In gy
Tepresenting the relation between ¢ and z in a logarithmic scale. In most

"~ ! Bee H. W. BopE: “Network Analysis and Feedback Amplifier Design”.
* The reason that I have put z = %@ instead of coi is that I prefer to have the upper
m
dimit of the integral of Re equal to 1 instead of equal to oo.
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practical problems the slope for decreasing z very quickly approaches to a con-

stant, to, which in the case of a linear system must be a positive integer.
In order to investigate the convergence of the series (31) we put

] WOm ] On

s =l+jw.

bl
5

The singular points of u({) are those points (, for which Y (s,) =0 or
Y (s,) == co. These points must all be situated outside a circle with the centre
{ =1 and with a radius equal to 1. Thus

& —1]>1,
— A =1 (0, — oom)
Wt o > 1.

L wE— 20, 0n>0,
On > 2wy
If the greatest value of w, is denoted by @, we must have
wn > 2 .

If wm>2@ the only critical point of w({) could be ¢ = 0, but for this value
4 is assumed to be finite (Y (s) approximately rational).

Concerning the determination of the roots and zeros of Y (s), I shall not
deal with this problem here. I refer to the ordinary textbooks. I will however
remark, that if Ing as a function of Inz shows a tendency to tend to a straight.
line at w = wm, we have strong reasons to believe that wm > 2.

It is evident that we can construct the amplitude curve for w > wn as soon
as we know om, um and the variation of the slope for w > wm (2 < 1) presuming
that wm>2®. But this variation of the slope is uniquely determined by the
values of wm, ftm, .... A necessary condition is of course that the series (31)
converges in the actual region of z, but this must, as already mentioned, always.
be the case under the conditions that we have put up here.

If we put

Ze , Inz
L, =25 | 1) z2—z§dz (32)
0
and
1
Je= chnch#_f (33)
22—zl
0
we obtain
o (e .
R, = —;{Zolcv,ug?'_!]c,uc}' ) (34)
Here u. is defined by
_ In g, —1In om_
He Inz
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10}

0.s
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‘3/ < ~ ~—]
T

1 2 3 4 5 c

Fig. 3. I- and J-curves. For z,>>5 use the approximation formulas.

In fig. 3 the curves representing 1., (v =0, 1, 2, 3) and J. are drawn. In
order to obtain the same sign for all values I have there considered (—1)" I,
instead of I;,. The I-curves are very rapidly approaching to the z-axis when
p 18 increasing. ‘

When z, is not too small (>5), we have the good approximation formulas:

1
Lo~ =
Ze
1 . 3
2 1
I 2z e— — — = — — e e ZE e
ot cf(z 1inzdz e i2) | 4z
0
: 1
1 & 1 11
Lo~ — - _1\2 — N e,
°2 2ch(z inzdz +2z“§1v(7}+3) 36 z.
0
and s
J, ~ In 2
Zc
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The quantities fim, gm, tm, . .. and . are random variables, while I,, and
J. are constants for given ¢ and ». Hence R, is also a random variable.

We now have to calculate the mean value and the error of R.. We find
directly

MRcz—%{ﬁ Ic,Mﬂggg—JcMm}- (35)
JU \v=0

If wm i1s not too small, the series of formula (31) generally converges very
quickly. Thus, in practical investigations, we generally need consider only
a few terms. Very often two terms will be enough. If su denotes the sum of
the first A terms of (31), there exists for every arbitrarily small number 7
another number A, such that for every A’ > h

| — wul <n.
According to (29) and (30) we have

1 1
. L
7 T,
0

2 2 __ 2
22— 22—z

0

Then the corresponding error of R, becomes, if u. and I, are .exact,
2
ch-thl = EyRc<;IcO"7- ) (36)

The total error of computation concerning R, can be written
ER.=E,R. + E, R, (37)

where the last term arises from errors committed when estimating u., the quan-
tities I and J being considered as exact. The last error is often of so little
importance that it can be omitted.

An exact computation of DR, is rather tedious, because the variables u&
are not mutually independent. But from a practical point of view we could
be satisfied with an approximation formula that gives a tolerably close upper
limit.

Let # =2, + x5+ - -+ z1 be a sum of mutually dependent variables. Then
we always have, according to the inequality of Schwarz,

A 2 5
(x~—Mz)? = [zl(x,,—Mz,)] <h Z:l(:zz,,~—M:1r:,)2

and

Thus we can conclude that!

! We have here assumed that there is no dependance between e amlif {yg;)}-
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4 h—1

D*R, < 7?{h z Ifﬂ-D2Iu§;’3+J§-D2Iuc}- (38)
»y=0

We now require a method to determine D®u® (v =0, 1, ... —1). Suppose

that we can consider all observations of o wn the wvicinity of om as being normally
distributed with the same standard deviation, o. Let ¢ be the mean value of o
and pub

g=20+te

(Of course, ¢ and ¢ are functions of z.) Then
’ 1/{e\?  1{e\3
In =1n—+1n(1+ ) 1n-+§-—(:) +~(:) —
¢ ¢ e “TeT2le) Tale

1(a (9)‘*_...
é H

2
Mlng=lné—§(5) —
4 1
R

2 3
(o=~ (%) — (%) +
o\® b
Dzlng=M(an——Mlng)2=(5) +§(

RlE wies

ORI
' oex(y

where K =~ and > 1, provided that s a small number (2 few per cents).

£
0 0 0

™ Q

The last formula is applicable to a single observation of p. But we have
assumed that the p-values are smoothed and that for the observation of ¢ we
have used n different values. Thus we can write according to the approxima-
tion formula (17)

K
Dln <L —=-
TV

If ¢ is a value in the neighbourhood of on, there is, as a consequence of
the smoothing, a strong correlation between In g and In om. Let the coefficient
of correlation be r() and put z—=zn = 4z Then, according to (21) and (39),

o Q

(K = and >1). (39)

D pim = Dliml_ni__hl,@.”l= lim Dhl@—_—hlﬂﬁ‘:lim_lg"_._]i%]/l_r(m.

21 Inz 4250 Az Vau 4 (40)

TR N~

As we cannot go to the limit, we have to add an E-error, which can be
calculated by means of a formula similar to (24).

Further, if 74y denotes the coefficient of correlation for the first derivatives
of u, we have

2
D pim = lim —= (Vé) V(l—ro) (1 —rq)-

A2—0

o Q
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Generally we can write

. K, (Va\™!
D[u%) = lim —= (zr) V(l—-r(o)) 1—rw) ... 1—rm) (f (41)
4z—0 YV n z ¢

After having computed the standard deviations of un and its derivatives we
have to put the values into (38).
The total error of R,

DR, + ER,,
can be determined from the formulas (36—41).

To obtain the total error of @. we have to add the error committed by the
calculation of

Y

2w, [ Ino~ g,
—f 5y 4O

T W — W,
0

b) Numerical examples

1) I think the best way to check the:method is to first study an easy
example where the mathematical expression of the transfer function is known.
We choose the transfer function

1
Y($)= —2
(s) (s +1){s +2)
and then have
Tab. 1.
o 0 Ine @
0 0.500 -0.693 -0
0.1 0.497 —0.699 —8°6
0.2 0.488 —-0.717 -17°.0
0.3 0.474 —0.747 —25°.2
0.4 0.455 —0.787 —33°%1"
0.5 0.434 —-0.835 —40°.6
0.6 0.411 ~0.889 —47°7
0.8 0.362 —-1.016 —60°.5
1 0.316 -1.152 —-71°5
1.5 0.222 - 1.505 —86°.8
2 0.158 —1.845- —-108°.5 |
3 0.088 —2.430 -127°.9
4 0.054 -2.919 -139°4
5 0.036 —3.324 —146°.9
6=cm 0.026 —3.650 —-152°1
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1

o(w) = -

Vot +502+4

B

3w
@ (w) = arctg P g
According to the reasoning on p. 150 we have in this case w = 0 and there-
fore there is no restriction concerning the choice of wy,. Some values of ¢ and
@ are given in tab. 1 where wy is put = 6.
Tab. 2 contains an outline of the calculation of @, for some values of w,.
The values of p, and its first derivative (um = 1.8, um = —0.25) are taken

Bd 2 nr 8

Tab. 2. ,
Outline of the calculation of ..
0,=0.15, 2,=40 | ®,=0.45, 2,=13.33 | ©,=0.9, z,=6.67
In @,= —0.709 Ino,= —0.811 Ing,=—1.084
#,=0.80 #,=1.10 #,=1.35
® w? =18 py,=—0.25
Integrand Integrand Integrand
0 0 —-0.711 g ~0.583 g —0.483 g
0.1 0.01 - 0.800 2 —0.582 2 —0.481 2
0.2 0.04 —0.457 £ —0.578 E - 0.477 E
0.3 0.09 —-0.563 2 —0.569 @ —0.468 23
0.4 0.16 ~0.567 n —-0.565 ] —0.457 Al
0.5 0.25 - 0.5%4 i —0.505 i —0.445 I
0.6 0.36 ~0.533 —10.960 —-0.495 —9.988 —0.433 —8.360
Integral — —0.365 | -0.333 -0.279
0.8 0.64 —~0.497 —0.469 - 0.400
1 1 -0.453 —2.974 —0.428 —2.799 -0.358 —2.391
Integral — —0.198 | —0.187 —-0.159
1.5 2.25 ~0.357 —0.339 —0.292
2 4 ~0.286 —2.167 —0.272 - 2.056 -0.239 —1.765
Integral — —0.361 | —0.343 —0.294
3 9 ~0.192 —0.184 -0.164
4 16 -=0.138 -0.133 —0.121
5 25 ~-0.105 —-0.101 —0.093
6 36 ~0.074 -—1.824 —-0.079 — 1757 —-0.073 -—1.582
Integral — —0.608 —0.586 - 0.527
D
2 [l“n—eie‘c 0.146 : 0.415 0.721
| w2~ w? ’ . :
0
Lot + 0.046 + 0138 + 0.276
It + 0.006 + 0.019 + 0.037
—~J, 1, + 0.076 + 0.220 + 0.391
R, 1 - 0.081 - 0.240 — 0.448
P —-13.0° -37.5° ~66.9°
@, (right value) -12.9° 36.9° —66.2°
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Fig. 4. Determination of # and g’ for o = lﬁwz—?.

from the g-curve (fig. 4). An exact calculation gives um = 1.87, pm = —0.29.
The table shows a good agreement between the right g-values and the corre-
sponding values calculated by the method described here. The difference between
these values for w = w, is what we have called E g,.

2) As a second example let us consider the curve of fig. 5 that gives the
amplitudes of a certain regulator. The amplitudes are observed up to @ =10 (= wm),
but the observations for the highest frequencies do not seem to be reliable.
This will not affect very much the phases corresponding to small w, but for
large w the error, as will be shown, can be very important. In spite of that
I have chosen this example, because it gives a good picture of the difficulties
that arise in problems of this kind.

When drawing the smoothing curve we cannot avoid a certain degree of sub-
jectivity, and especially not for large values of w where the accuracy is small
(0 seems here to be highly underestimated by the observator). In this way
the smoothing becomes more a matter of feeling than a matter of logical
reasoning. This holds true even more so concerning the calculation of coefficients
of correlation (see below). If we could rely on the observations, but this is
not the case here, we should determine these coefflclents by means of the
formulas (9) and (19) -
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Fig. 5. Amplitudes of a certain regulator. Observed values 0. Smoothing curve —.
For on I have taken the value 0.16. Further I have put

In0.27 —In0.16
In10—mn9

By the calculation of D un according to formula (40) I have used the values:

=5.0.

Hm =

n =4,
10 10 1
dz=j5=9 =7y
r= % (not computed; only a rough estimate),
Z-01
4

and thus obtained Dy, = 0.5. This value is possibly undervalued, because the
quantit'y o/¢ may have been chosen too small. On the other hand r probably
is >0.5. As a comparison the values of Dy, for w, = 0.15 and w, = 3.5 have
been calculated with the following assumptions and results
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D2y,

In z

D [ln 0. —In Qm] < 1n21 - [D?In g + D?In gm] <

1 FAGE Om\2 K AV
S ol B T) B 2) | = s (2] + 0],
7 In® z. e Om 7 In®z |\ @,
w,=0.15 w,=3.5
He 1.44 2.45
n 4 4
In 2 4.29 1.06
el e <0.05 0.1
D e <0.02 <0.1.
Tab. 3.
Computation of ¢, for w, = 0.15 and w, = 3.5.
©,=0.15 w,=3.5
2,=66.7 2,—2.86
In g,=4.20 In g, =0.74
) 0 Ing p,=1.44 po=2.45
Integrand Tntegra.nd -
0 113 473 —22.7 E —0.322 g
0.1 82.5 4.41 ~-15.2 g - —0.296 2 =
0.2 56 4.03 —-10.9 E & —0.265 g %
0.3 38 3.64 - 8.6 @ 2 —0.234 2 2
0.4 28 3.33 - 6.5 1 G —-0.210 A 5
0.5 21 3.04 —~5.2 1 I —0.188 I I
0.6 17 2.83 —4.1 -177.6  —~5.92 —0.172 4316 -0.144
0.8 12 2.48 —2.80 ~ ~0.146 :
1 9.5 2.25 —2.01 -17.31 .~115 -0.130 ~0.886 —0.059
1.5 5.7 1.74. — 111 -0.095
2 4.2 1.43 ~0.70 -715 -1.19 —0.078 -0.588 —0.098
3 2.6 0.96 -0.36 —0.052
4 1.9 0.64 -0.22 —0.040
5 1.4 0.34 -0.16 ~0.035
6 1.00 0.00 ~0.12 —0.033
7 0.65  —0.43 —0.095 —0.033
8 044 —0.82 —0.079 -0.031
9 027 -1.31 ~0.068 —0.031
10 0.16 -—1.83 -0.061  -433 -—1.44 -0.030 —0.920 -0.307
Om
2w Inog—In
c[RO_ & ~0.93 ~1.35
] 0? - o?
0
Lo, +0.08 +1.75 .
—Icl ”;n 0 0
~J u, +0.09 +0.93
R, —-0.11 - 171
@, (calculated) -60° T —~175°
@, (observed) —58° —190°
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I think there is no point in this case to study the derivatives of u at w = cwm,
not even the first one. On the other hand it would be valuable to know the
limit of 4, when w — co. But suppose we know nothing about the construc-
tion of the regulator. Then we have no possibility to estimate uo. except from
Hm and its derivatives.

The calculation of ¢, has been carried out for w. =0.15 and w; = 3.5. The
result is given in tab. 3. We see from the table that for w, = 0.15 there is
a rather satisfactory accordance between the observed and calculated values of
@. whereas for w. = 3.5 the difference is considerable. But now, of course, the
whole error is not to be referred to g.. The errors of the phases are at least
as great as those of the amplitudes.

Let us estimate the error of ¢, for w, = 0.15.

First we obtain (36 and 37)

n<1l,
ER.<0.01.

Further we have according to (38)
Dy R, < 0.01.

Thus the total error of R, is less than 0.02 (as a matter of fact this number
is definitely too high). The corresponding error of ¢, becomes = 1°.

III. Determination of inverse Laplace transforms
a). General reasdning

Let a Laplace transform F (s) be given (either as a mathematical function
or as observations of amplitudes and phases) and suppose we have to compute
the corresponding time function f(f). This can be carried out by means of
formula (7), i.e.

: b+joeo

8¢
27”fF Yertds.

b—joo

We assume here that F(s) 18 a rational function (at least approzimately) with
no poles in the right half-plane or on the axis of tmaginaries. Further the degree
of the denominator is supposed to be higher than that of the numerator. If there
were a pole of the first order in the origin (other poles on the imaginary axis
will not be considered according to the assumption of the introduction), we

could separate the corresponding partial fraction S where

k= lin&sF(s,) = f(o0)

from F(s). Now the inverse transform of l: is % and consequently we have to

apply a special method only to ¥ (s)— %
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If 4 (w) denotes the real part of F(jw), it is easy to prove', F(0) being
£ oo, that

@)= %fA(w) cos wtdw. (42)
0

A similar formula exists for the imaginary part B(w) of F (jw). In most cases
4 (w) and B(w) are random functions known by a set of observations in a
limited frequency inteival (0, wm).

A direct calculation of the integrals of (42) and especially their random errors
is rather tedious, and therefore we transform the integrals before the numerical
computation. Putting wt =+ 2xv (»=0,1,...) we obtain

0= 55 [4(E2)aunc

The substitution sin { = t gives

2n
fA(C-i-;‘Zm;) = fA(arcsmt+2m/) fA( arcsmr+27w)dr__
b

1

f (n+arcs1nt+2nv)dr+ fA(2n—arcs:nt+‘2nv)dT.
: b

0

Using the following notations:
i = %‘ . (43:a)

AA:ﬂ%n—’ (43:b)

}.1=2'Vﬂo+ Al
=@y +1)3g— 42

(43: ¢)
=@2v+1)i + 42
=2y +24— 42
Ay (73 t) = A(Ay) — A (Ag) — A () + A(A) (43:d)
Uy (t) = 4, (v;t)dr (43: ¢)
/ .

! See “Regelungstheorie” by Jost HANnNY.
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we have
2 0
= g (44)

In the case of F being a random variable we have further

Mf(t)=3§Muv(t)=»2—§fMA,(r; fdr. (45)

7t oo 7t y=0

The formula (44) is not convenient for the computation of f{(0) and f(oco).
The value of f(0) can of course be taken from (42), but often this calculation
is unnecessary, as the determination can be made directly from the physical
conditions of the problem. Further we have assumed that F(s) has no pole
for s = 0. Hence f(o0) =0,

In order to facilitate the calculation of w, (f) T have constructed a table con-
cerning the variation of the A-values a fragment of which is given in tab. 4.
WithA the aid of this table and a pair of compassors it is easy to take the values
of A from a curve of 4 (w) and then evaluate the integrals by means of
Simpsons formula. The error hereby committed is, according to the notations
of section I a), Du,(t) + Eu,(t). Of course, if we know the mathematical ex-
pression of F (s), the error of observation disappears.

Before a discussion of the errors let us take into consideration two other
questions,

Lo, If we do not know the value of 4 (w) beyond a certain upper limit
wm, we have a problem of the same kind as that treated in chapter II. Since
4 = Re{F (s)}, it is evident that In 4 has the same critical points as In F (s).
Let @ have the same meaning as in the foregoing chapter, i.e. the greatest
imaginary part of any root or pole of F(s). Then for @ = wmn>2® we put

— Om
w b
A @)= An-2*?, (46)
’ 1 4
,u(z)=,um+(z~1),um+é—'(z~—1)2,um+--- (47)

and let pum denote the first A terms of this series.

2:0. According to the assumption that F(s) is a rational function with the
degree of the denominator higher than that of the numerator we can find such
a number w, that for w > w, the approximate formula

Aw) ~ 4, (‘-j;) (48)
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Tab.
Table of the func-
N T
t AN 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Y N\
0.2 0 A 0 0.100! 0.200| 0.300{ 0.400| 0.50 | 0.60 | 0.70 | 0.80 | 0.90
Ag 1571 [ 15.61 |15.51 |15.41 |15.31 15.21 § 15.11 | 15.01 | 14.91 | 14.81
Ay | 1571 [15.81 |1591 [16.01 |16.11 | 16.21 | 16.31 | 16.41 | 16.51 | 16.61
Ay 31.42 | 31.32 |31.22 ;31.12 |31.02 30.92 | 30.82 | 30.72 | 30.62 | 30.52
0.4 0 Py 0 0.050 [ 0.100] 0.150] 0.200] 0.25 | 0.30 | 0.35 | 0.40 | 0.45
Ag 785 | 7.80 | 775 | 770 | 7.65 | 7.60 | 7.55 | 7.50 | 17.45 | 7.40
Aq 785 | 7.90 | 7.95 | 800 | 805 | 810 | 815 | 820 | 825 | 8.30
Ay 11571 |15.66 |15.61 |15.56 |15.51 | 15.46 | 15.41 | 15.36 | 15.31 | 15.26
0.6 0 A 0 0.033| 0.067| 0.100| 0.133| 0.167| 0.200| 0.234| 0.268| 0.302
As 5.24 | 5.21 5.17 5.14 5.11 5.07 5.04 5.01 4.97 4.94
As 5.24 | 527 | 531 | 534 | 537 | 541 | 544 | 547 | 551 | 554

Ay 10.48 | 10.45 |10.41 |10.38 |10.35 |10.31 [10.28 |10.25 |10.21 |10.

1 Ay 10.48 | 10.51 |10.55 [10.58 |10.61 [10.65 |10.68 |10.71 |10.75 |10.78
As 15.72 115.69 |15.65 |15.62 |15.59 |15.55 [15.52 [1549 |15.45 |15.
Aq 1572 {15.75 |15.79 |15.82 |15.85 |15.89 |15.92 15.95 |15.99 |16.02
Aq 20.96 | 20.93 |20.89 |20.86 |20.83 |20.79 |20.76 |20.73 |20.69 |20.66

0.8 0 2 0 0.025| 0.050( 0.075| 0.100| 0.125| 0.150| 0.176 | 0.201
Ay 3.93 | 3.91 3.88 3.86 3.83 3.81 3.78 3.75 3.73
As 3.93 | 3.95 3.98 4.00 4.03 4.05 4.08 4.11 4.13
Ay 7.86 | 7.84 7.81 7.79 7.76 7.74 | 171 7.68 7.66

1 A 7.86 | 7.88 7.91 7.93 7.96 7.98 8.01 8.04 8.06
Ay 11.79 {1177 1 11.74 [11.72 |11.69 |11.67 |11.64 [11.61 |11.59 |1
As 11.79 |11.81 |11.84 {11.86 |11.89 [11.91 |11.94 |11.97 |11.99 |1
Ay 1572 {15.70 |15.67 |15.65 |15.62 |15.60 |15.57 "|15.54 [15.52 |1

7.63

8.09
1.56
2.02
5.49

where u is an integer >>1 is valid with a arbitrary degree of accuracy. Sup-
pose that we take so many terms of the development (44) that the remaining
expression will be independent of frequencies << wq, i.e. if

t_
wqt<2n(v=LC<~—<1)

- 2x 2r
we use only one term, if 27 << w,f <47 we use two terms and so on. We put

F) = fr @) + fu @) (49)

where fi(¢) is the sum of the terms of the development (44) for which some
o <<wq and fi1(¢) the remaining expression, i.e.

2 & 2 e cosCd¢
e = 3 ()~ ~dgoge f e d (50)
%27
where » = [92)4—7: + 1]. Some values of the integral are given in the following

table.
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4.
tions A (Formula 43:c).

0.20 0.25 0.30 0.35 040 | 05 0.6 0.7 0.8 0.9 1 Ao

4 101 1.26 1.52 1.79 2.06 2.62 3.22 3.88 4.64 5.60 7.85 | 15.71

1470 |14.45 1419 [13.92 13.65 | 13.09 | 12.49 | 11.83 | 11.07 | 10.11 7.86
16,72 |16.97 |17.23 |17.50 1777 | 18.33 | 18.93 | 19.59 | 20.35 | 21.31 | 23.56
30.41 [30.16 |29.90 |29.63 29.36 | 28.80 | 28.20 | 27.54 | 26.78 | 25.82 | 23.57

0.50 0.63 0.76 0.89 1.03 1.31 1.61 1.94 2.32 2.80 3.93 7.85
7.35 7.22 7.09 6.96 6.82 6.54 6.24 5.91 5.53 5.05 3.92
8.35 8.48 8.61 8.74 8.88 9.16 9.46 9.79 | 10.17 | 10.65 ! 11.78
15.21 {15.08 |14.95 |14.82 14.68 | 14.40 | 14.10 | 13.77 | 13.39 | 1291 ) 11.78 |.

0.336 | 0.42 0.51 0.60 0.69 0.87 1.07 1.29 1.55 1.87 2.62 5.24
4.90 4.82 4.73 4.64 4.55 4.37 4.17 3.95 3.69 3.37 2.62 :
5.58 5.66 5.75 5.84 5.93 6.11 6.31 6.53 6.79 7.11 7.86

10.14 }10.06 9.97 9.88 9.79 9.61 9.41 9.19 8.93 8.61 7.86

10.82 | 10.90 [10.99 |[11.08 11.17 | 11.35 | 11.55 | 11.77 | 12.03 | 1235 | 13.10
1538 | 1530 (1521 |15.12 15.03 | 14.85 | 14.65 | 14.43 | 14.17 | 13.85 | 13.10
16.06 |16.14 |16.23 |16.32 16.41 | 16.59 | 16.79 | 17.01 | 17.27 | 17.59 | 18.34
20.62 |20.54 |20.43 |20.36 20.27 | 20.09 | 19.89 | 19.67 | 19.41 | 19.09 | 18.34

0.252 { 0.316 | 0.381 | 0.447 0.51 0.65 0.80 0.97 1.16 1.40 1.96 3.93
3.68 3.61 3.55 3.48 3.42 3.28 3.13 2.96 2.77 2.53 1.97
- 4.18 4.25 4.31 4.38 4.44 4.58 4.73 4.90 5.09 5.33 5.89
7.61 7.54 7.48 7.41 7.35 7.21 7.06 6.89 6.70 6.46 5.90

8.11 8.18 8.24 8.31 8.37 8.51 8.66 8.83 9.02 9.26 9.82
11.54 [11.47 |11.41 |11.34 11.28 | 11.14 | 10.99 | 10.82 | 10.63 | 10.39 9.83
12.04 1211 (1217 |12.24 1230 | 12.44 | 1259 | 12.76 | 12.95 | 13.19 | 13.75
1547 1540 |15.34 |[15.27 15.21 | 15.07 | 14.92 | 14.75 | 14.56 | 14.32 | 13.76

Tab. 5.
o
fcos C-i+di.
%-2n
M '
N 1 2 3 4
%\ |
1 0.02257 0.00651 0.00138 0.00026
2 0.00612 0.00095 0.00011 0.00001
3 0.00277 0.00029 0.00002 0.00000

Let us now return to formula (44) and try to estimate the error due to
observations. Firstly, it is evident from (43:d) that!

DA< 4D Aoy -0 (51)

where D Apax means the largest deviation of any 4, w varying in the interval

! For the sake of brevity I have often omitted the variables ¢ and 7. I do not think
this will cause the reader any trouble.
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for which 4 is calculated, and % has the same meaning as in chapter 11 (number

of observations used at the smoothing). If the four terms of 4 are uncor-
related, we have

DA <2DApax-n

The standard deviation of u, can be evaluated by the aid of the formulas
of section I e). I think (26) will be good enough in most cases and heénce
we write

Du, () < 4D Amax -0~ Ve (1), T (52)

7 (t) being a sort of average coefficient of correlation between different values

of 4.

Summing up the errors of u, for different »-values we are able to determine
Df1(t), provided that we succeed in determining the coefficients of correlation
between different w, (v =0,1,...). In most cases this correlation is very
small. .

The error of computation Efr(f) is to be referred to the calculation of the
integrals of u, and can easily be estimated.

We now have to consider the errors of fui(t). The random error of f (¢)
arises by the determination of 4, and becomes from (50)

oe

2 ac
DfII(t)x;DAq-a)’;t"_1 [%l-

%27

(83)

The error of computation arises from the fact that, when using formula (50),
we put the sign = instead of =. Suppose that the true value of fi1(¢) corre-
sponds to a certain average value of u, say u + Au. Then we may write

o0

. Efn(t):;%Aqutu—lAﬂfm(ﬂgj)&sg‘dg. (54)

x-2m

For Au it is enough to find an upper limit.

Let us now concentrate the results of this investigation.

1. Formula (44) gives the required time function and formula (45) its mean
value. We have supposed that the amplitudes and phases are known for w =< w.
For @ > wn we calculate the missing real parts by the aid of (46).

2. By the calculation of f(t) we divide the time function into a sum of two
parts according to (49), the first of which being a certain number of terms of
(44). The second part is estimated by (50).

3. If the amplitudes are obtained by observation, we have for each term of
(44) a certain error, the standard deviation of which being estimated by (52).
Further there is an error of computation committed by the numerical inte-
gration.
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4. The random error resp. the error of calculation for the expression defined
by (50) is to be calculated from (53) and (54).

5. The total error is obtained by combining the errors mentioned in the
points 3 and 4.

b) Numerical examples

1) To obtain a conception about the accuracy of the method let us first
consider a simple example where the mathematical expression of the Laplace
transform is given. Of course, the difference between such an example and the
general case, when there is a schedule of observations of amplitudes and phases,
is only formal.

Take the same transfer function which we have studied in the foregoing
chapter

1
FO =i ne+y
Then
2 — w?
A = e v ob
Hence u = 2.

The curve of 4 (w) has been drawn in fig. 6.
By the computations wg is chosen = 15. An outline of the calculations is

given in tab. 6. Here the columns 3—5 contain the values of 4, (z; ¢), the dif-
ference between the t-values being: in col. 3 0.02, in col. 4 0.05 and in col. 5
0.1. TFurther the table shows:

Uy (¢) according to (43:e)\(col. 6)
fi(t) the sum of a number of terms of (44) (col. 7)
fir () the rest of the sum (44) according to (50) (col. 8)

(@) (col. 9)

and finally (col. 11) the difference between the values of f(¢) calculated by the
method here described and the exact values of f(¢). Column 10 contains no
numbers, as in our case there are no random errors.

2) If the amplitude ¢(w) and the phase ¢ (w) are directly observed, they
are random variables. Then 4 (w) and A (r;¢) are also to be considered as

random variables. As a computation of the random errors of 4 or 4 from the
distributions of ¢ and ¢ is rather hard work, it is often preferable to estimate

the error of 4 or 4 directly from.the calculated values of these quantities.

Suppose the variation of 4 is that of fig. 6 (the cross points). Between these
““observed” values of A4, i.e. the values calculated from the observations of p
and ¢, is drawn a smoothing curve which is here assumed to be the curve
given in example 1.

Looking at the figure we have the feeling that the error can nowhere in
the considered interval (0 << w << wm = 10) exceed 0.01. Then according to (51)
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Tab.

Outline of the cal-

1 2 3 4
A’.‘v (T; t)
¢ >< 0 0.02] 0.04}0.06 | 0.080.10 ; 0.12 ’ 0.1410.16 | 0.18 ‘ 0.20 l 0.25 ’ 0.30 | 0.35| 0.40
{
0 \
02| 0 508 | 497 | 473 | 434 | 387 | 337 282 232 | 187 | 142 | 106 | 037 |—006)— (33| — 042
04| 0 527 | 522 | 516 | 506 | 492 475 453 | 429 405 | 380 | 355 | 285 2231 163) 121
06| 0 552 | 550 | 547 | 542 | 534 523 | 513 | 501 | 487 | 474 | 461 | 421 376| 327| 2717
1 |-0025 .
0.8} 0 576 | 572 | 570 | 569 | 567 | 562 | 555 | 548 | 541 534 520] 492 460 428 392
1 {-005 | - 004

with n =5 DA < 0.02. This quantity is surely overestimated, for D A4 (4,) for
instance must here be much less than DA (4;). Furthermore the correlation
between A4 (4;) and A (i) must be practically zero. With a high probability
DA <0.01. 1If we take r = 0.5, formula (52) gives

Du, () < 0.007.

For ¢t = 0.4 we obtain, using only one term of f1(t) (wg = 15 as in example 1),

2
Df1(0.4) < 5---0.007 <0.012
A Alw)
0.s . |
04 <
K
0.3 \
)\
02 N
\ :
0.1
0 % Ols 2 3 —
\.. x
-0
Fig. 6. 4 (w)= o’ Concerning the cross points see example 2.
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ulation of f(¢).

5 6 7 8 9 10 11
1 w,{t) | fy@ | fm@ | f@ | DI@)| B
0.5 0.6 i 0.7 0.8 0.9 1
—048 | ~041 | —036 | —026 | —016 | 000 0.047| 0.151 |-0.001 | 0.150 - 1+0.002
043 000 | —019 | —025 | —022 | 000 0.140 | 0.223 |—0.002 | 0.221 - 0.000
199 131 078 033 003 | 000 0.236
- 0017 » - 0000 |—0.001] 0.249 |—0.0004| 0.249 - |+0.001
327 255 185 124 070 | 000 0.319
— 003 000 |[—0.002| 0.252 |~ 0.0005 0.251 - 1+0.003

that makes about 5 % of f1(0.4). Further we have, according to (53), putting
pm=2,

Dfu(0.4) < y_zt 0.0005 - 152 0.4 - 0.00651

which will have no effect on the total error. Thus

Df(0.4) <0.012.
Earlier we have found
1{0.4) = 0.221.

IV. The effect on the output of omitting input frequencies in
linear systems

a) Arbitrary inputs

Let the relation between the input f; (¢), defined for 0 < ¢ < T, and the output
fo(t) be given by the differential equation '

m n

. zo a [P (t) = zo b, [ (2) (55)

y=

where the coefficients a, and b, are real constants (am = 1, m = n). The input
may be given in the form of a Fourier series

h) = 3 dpott (56)

k=—o0

which is always possible, at least in a finite ¢-interval. In this formula % is
presummed to be real but not necessarily integer. Now suppose that from this
series only the terms for which |k| < will be used. Then the error committed
hereby becomes
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Ef©) = 3 A 7)

e

We are going to determine E fy(¢). In order to avoid unnecessary complications
we assume that there are no random errors.

Owing to wellknown technical reasons (condition of stability) the roots p,,
P32, . .. pm of the characteristic equation

m
P(p) = Zoavp” =0

are, in most cases, all lying in the left half-plane. We will assume here that
there are mo egual roots among them. (If there were equal roots, the amend-
ments to be made are almost selfevident and can be omitted here. Besides
this case is not very common.) A simple root in the origin can exist (for gy =0)
but is easily eliminated by studying fo instead of f,.

The general solution of (55) can be written

m o
fo®) =2 Coetrt + 3 ApY (7k)ef* (¢ > 0) (58)
»=0 k=—o0
where Y ( ) as before means the transfer function. From the fact that fo(£)=0
when f;(t) =0 follows that C, = Cy =--- = Cp, = 0. Thus
Efo (t) = D> Ap Y (jk)er. (59)
klzx

If we use the notations:
Re (Y (s)} = R (w) = ¢ () cos ¢ (w),

Im{Y (s)} = I (w) = o (w) sin ¢ (w),
we obtain '
Efo (t) :|k|z Ak@ (k) &l kt+o(@)] (60)

As a consequence of the assumption m = » made in connection with equation
(65) we can find a number wp so that for w > wp

Wp

o {(w) = gp (;}‘)ﬂ (= m—n), (61: a)

__Z -1 C-2 .
@ (w) = Qi+t st (61:b)

with an error which can be made arbitrarily small for increaéing wp. These
expressions can be used for the highest frequencies of the expression (60).
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b) Step input replaced by a Fourier series

In many practical problems the step iInput

Ic for t>0
i(t) = A
fi (2) lo » t<0 (4)
is replaced by a pulse function
¢c for ... —2T<t<—T, 0<t<T,...
gi (¢) - (B)
L0 » other values of ¢
The corresponding curves are drawn in fig. 7.
A
2 .‘ c :',‘.‘.'."‘.'..‘ ______ :.'.".-'n...-'n:.- ______ n&
.",,“ it 4 '.'*.,."‘. ey Hpephote e ¢
-T T ’ RT 3T
Fig. 7.
The Fourier expansion of the pulse function becomes (With Wy = %)
¢ 2¢& 1 .
() == + = — . C
gi (t) 5+ :'z,,gl‘lv—lsm(zv 1) wet (©)

e . . . 1
From this series we use the terms up to and including 5m—1
(the dotted line in the figure). The corresponding sum will be denoted by
2n—16i (£). The problem here is to find the error of the output za—1go (£). Note
that it is only errors of computation that are dealt with here. Random errors
are assumed not to occur.

We assume as before that the transfer function Y (s) has the following
qualities:

sin (2n—1) wyt

1. Y (s) is rational. ¢

2. The degree of the denominator is x unites higher than that of the nu-
merator.

3. Y (s) has no poles in the right half-plane or on the axis of imaginaries.

Let us further assume % to .be so large that the formulas (61:a and b) are
valid for @ = (2n~—1) w,.
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If the transfer function is written in the polar form
Y(s) = Y([io)=o(w)e*®,

the output corresponding to the step input f; (¢} = ¢ can be given by the well-
known formula
o0

fot) =2 YZ(O) + L [ "—(CZ’—) sin [0t + ¢ (w)]do. (62)

It is important to observe here that

e(w) Im {Y(jo)}
w ®

lim
w—0

sin [wt + ¢ (w)] = t Re {Y (0)} + lim

w0
is finite. This follows from the fact that Y (s) is rational with real coefficients.
Hence Y (0) must be real, i.e.

lim Im {Y (j w)} = lim ¢ (@) sin ¢ (w) = 0. |
@0 w0 ‘

Using the input (C) we obtain the output

_cY(0)  2cwy 3 e[(2v—1)wy]
gO(t)_< 9 + 7[0;,:1 (21’— )

sin {2v—1) wet + @[(2v—1) we]}. (63)

This formula can be derived from (62) by calculating the integral for w > wy
with the trapezoidal formula by means of the ordinates at the points »wg
(»=1,3,5,...) and then adding p (w,)sin[wyt + @ (we)]. Obviously this fact
could be used to determine the error of gg ().

First there are reasons to expect that a great part of the error of go (t) wiil
vanish, if instead of the series (63) we use the series

2%/ sin [wtv + @(w)] +

400 § o)

e 2 G sin ot + g en)), (D)

ie. if we use the ordinates at all points vw, (» =0, 1, 2, ...). Thus we can
wait to obtain a valuable piece of information, if we consider the difference

2,._1g.,(t)—2,,_1g3(t)=—{ “"'h 9( e(®) i [wt+¢ (o )]+9( °)s1n[wot+tp(wo)]——

o 0(2260 ) sin (200t + <P(2wo)] + [33w o) sin [Bwot + @(Bewe)] — -
g_[%’;_ll)who] sin {(2n—1) wet + @[(2n—1) “’0]}}..'/ (64)
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I have failed in my efforts to find a general closed expression that gives a
good approximation of 2n—1gg (£)— 2n—1¢6 {), but this has no great importance,
as the series generally converges rather quickly.

The next step is to find the error of 2,195 (). 1 think a good way to gain
a satisfactory result is to use the following graphical method. In a coordinate
system (fig. 8) we mark the points P, with the coordinates vw, and

o (v @)
Vg

sin [v wgl + @ (v wy)]

for v=0,1,... (2n—1). If we connect the points P, for Which y 18 an 9dd
number with straight lines, the ares between the polygon and the w-axis gives

A g-(vigl)-Sin[Vwot + P(vw,))

Fig. 8.

the >-expression of 2a—19o (f). On the other hand, if the polygon is formed of
all the points P,, we obtain the corresponding expression of 2,_1g5 {¢). The sum
.of the small triangels in the figure yields the difference l2n—190 (8)—2n—105 (£)]-
The remaining error, i.e. the difference between the polygon of 2n—106 (t) and the
real curve, can be estimated directly from the figure, at least in such cases
where we are satisfied with a rough estimation of the error.

The total error can be written

2n—19p (t)_fo (t) = [2n—lgo (t)_‘2n—lg('; (t)] + [27»—193 (t)_zn—lfo (t)] + [2n-1f0 (t)‘—fo (t)]

13 } 171
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From (62) follows that
c Qp Wp #
t J— —_— .
lfo ) 2n— lfo t)l ((27& l)wo)
Let us also consider go(f) —2x4-10p (). According to (61) we have

go (t) — 2n—190 (t) =
_2cop

where , stands for (29—1)w,. The majorant series

ad 1
v=n+1 (2 y— 1 );H-l

has its sum less then

1 ] dx 1

2 J) a4t 2u@2n—1)p
n

and thus we have the approximation formula

_ cop wp "
lgo (t) 211—-190 l < U ((2% 1) wo))

c) Numerical example

wp i 1 n c-1
- (wo) Y ,,EH @v—1)t sin ( LS )

(65)

(66)

(67)

We are now going to study a numerical example of the formulas given in
section b). For a certain servo system we have found the transfer function

Y (s) = 1.313s* +5.735 5% + 477.49 52+ 110.02 s + 2.948

Thus u = 2.

Putting wy = 0.2, i.e. T =57, and using 14 terms of the series (C), n =

we obtain the following table.

2v~-1= k w,

v =k (ra,d) e (kwo) 14 (k wo)
1 1 0.2 1.040 - 5°
2 3 0.6 1.260 - 21°
3 5 1.0 1.570 — 48°
4 7 1.4 1.550 — 88°
5 9 1.8 1.030 —-130°
6 11 2.2 0.700 —143°
7 13 2.6 0.500 —153°
8 15 3.0 0.420 -166°
9 17 3.4 0.280 —180°
10 19 3.8 0.230 -195°
11 21 4.2 0.185 —203°
12 23 4.6 0.150 —216°
13 25 5.0 0.125 —228°

i72

3.176 s +17.855 s° + 229.09 s* + 313.48 s® + 489.54 s +-110.04 5 + 2.948 )

13,
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For w>5.0 o(w) and ¢ (w) can be calculated with satisfactory accuracy with
the aid of the formulas (61:a and b).

For the time function 459, (¢) there have been obtained the following values
(¢ =1).

¢ 0 0.25 0.5 0.75 1.0 L5 2.0
2590 (2) ~0.029 +0.012 0.136 0.351 0.610 1.091 1.322
t 2.5 3.0 3.5 4.0 4.5 5.0 : 5.5
2590 () 1.367 1.274 1132 1.006 0.931 0.937 0.956
' 6.0 6.5 7.0
2590 (£) 0.998 1.023 1.029

" Let us compute the error of g, for ¢t = 3. The terms of the series (D) are
given in the last column of the following table. Fig. 9 contains the same values
in a Jogarithmic scale.

YWy 3vwy+ 2(2%0) .
o (v ay) 3vw, Y ) v
(rad) 7 TP ) gy [3vomy+ @ (vw)]

1 0.2 1.040 34° - 5° 29° +0.504
2 0.4 1.130 69° - 12° 57° +0.474
3 0.6 1.260 103° - 21° 832° ' +0.416
4 0.8 1.450 138° —~ 35° 103° +0.353
5 1.0 1.570 172° — 48° 124° +90.260
6 1.2 1.600 206° — -68° 138° +0,178
7 1.4 1.550 241° — 88° 153° +0.101
8 1.6 1.300 275° -110° 165° +0.042
9 1.8 1.030 309° —130° 179° +0.002
10 2.0 0.830 344° —139° " 205° - —0.035
11 2.2 0.700 378° —143° 235° —-0.052
12 2.4 0.580 413° —150° 263° © —~0.048
13 2.6 0.500 447° —153° 294° - 0.035
14 2.8 0.420 481° ~163° 318° - 0.020
15 3.0 0.400 516° —166° - 350° - 0.005
16 3.2 0.360 550° -170° . 380° +0.008
17 3.4 0.280 584° —-180° 404° +0,011
18 3.6 - 0.250 619° -~ 185° 434° +0.013
19 3.8 0.230 653° -195° 458° _ +0.012
20 4.0 0.200 688° —-199° 489° +0.008
21 4.2 0.185 722° —203° 519° +0.003
22 4.4 0.175 756° ~211° 545° -0.001
23 4.6 0.150 791° —216° 575° . - 0.004
24 4.8 0.140 825° —224° 601° - 0.005
25 5.0 0.125 859° - 228° 631° - 0.005

From the figure we can see at once that the error of 506 (3) is so small that
it can be omitted. For s590 (3) — 2506 (3) we obtain the value — 0.018.

We now ask for the error due to the abbreviation of the input series. This
error is. for all ¢ less than

T 2n

Thus the total error must be less than 0.040. In another way the real error
for ¢ = 3 has been found = 0.021.

173



M. SUNDSTROM, Some statistical problems in the theory of servomechanisms

A
an — T
= -y
A
100 \\g
50 —y
AW
\a
% sassse
5 —\t = — N
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‘ ':"’ [ A
1 ) 7o 15 /i 2o \*\? AF*U
Hl\ Y
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-1 —
" b
1\ 2 -
\ y4l
| -«
- 50 W
Fig. 9. “Ylog {1000 ﬁ:a)*o) sin [3v g + @ (v )] |+ sign (Q (vvwo_) sin [3vwy + @ (uwo)]) .

V. Some fundamental investigations of the probability distributions
of the input and the output '

a) General considerations

If we are concerned with the problem to decide which of two available
servomechanisms is the best one for a certain purpose, it is not sufficient to
send a certain input signal through the servomechanisms and with the aid of
the responses obtained try to find an answer. It may happen that one of the
servomechanisms in a special case shows an obvious superiority above the other
while the latter is to be preferred in many other and perhaps practically more
important cases. Therefore and also for other reasons it is necessary to try to
get some experience about the probability distributions of the inputs. Such
problems are treated, among others, by R. S. Phillips in a book earlier referred
to: Theory of Servomechanisms; Radiation Laboratory Series 25. His treatment
is based on the concepts ‘‘autocorrelation function” and “‘spectral density”.
These concepts are of great theoretical interest concerning stationary processes.
However, in this section will be considered not only stationary processes and
therefore I prefer to use ordinary time functions.
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Any input signal is a random variable with a certain probability distribution
which can vary with the time. To make the reasoning easier. we divide the
time axis in intervals each of which may have the length A¢ which is assumed
to be able to become arbitrarily small. Then an arbitrary time can be re-
presented by an interval of the length n A¢. During the »-th time interval,
(v—1) At <t <<vAt, the input z = x(t) is supposed to have the change Az,
(higher differences will not be considered here) with the distribution function

G, (u;z) = P{Ax, £ u when x,_1 = a}

where P{ } means “probability of’ the facts given within the brackets. By
acting in this way we lose the finest details of the structure, but often we are
not interested in those details. In any case it is always possible to take with
“the granulation” to as high a degree as we want.

For the derivative of » we have the distribution function -

lim @, (w At; z) = P {&’ < u when z, = z}
4t->0 .

under the assumption, of course, that this limit exists. _
The distribution function of the combined variable (Azy, ATy, ... Axs) will
be denoted here by G (uy, us, . .. un; z);

G (uy, thgy oo . Un; 7)) = P{Axy <y, Azy Sy, ... A2y < uy when xy = 7).

The value of the input at the end of the n-th interval
n
$n=m0+ z Ax,,=xn_1 -+ Awn
v=1

will become a random variable the distribution function of which we denote
Fu(u). The functions F, (u) can be determined from the functions &, (u; ) by
the aid of the recursion formula

[

- Fy(u) = f G (4. — z; ) d Fp_q (). (68)

— o

On the other hand, this formula can uniquely give G, from F,_; and F, only
when all quantities 4, are independent of each other. In this case we have
the well-known composition formulas

oo

Fo(w) = [ Gu(u—2)dFn1(z) = Fa (u) % Gn (w)

and -

The output signal after the time n At is denoted by y. (in the contmuous
case by y () and the increases by Ay,;
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n
yn =0+ 2 Ays;
5=

yn and Ay, are functions of {Ax,} and thus random variables.

We go back now for a moment to the question put at the beginning of this
chapter. Suppose that y,, always being bounded, with increasing » has to tend
to a function f,=f(n At) in such a way that the mean deviation from this
function will be as small as possible. In order to study this question we form
the mathematical expectation of (yn — fa)%

M (yn— fa)* = f (yn— f2)* 4G,

the integral taken over all values of uy, u,, ... un. The quantity Mz defined by

M = 913 M. — 1y (69)

is commonly called the rms error (root mean square error) and is of great
importance in investigations of disturbances. In the actual case Mz is a finite
function of T. Supposing T to be large, we are tempted to say that the best
servo system is the one which minimizes My. We come back to this question
many times in the sequel. ,

Let us put for the sake of simplicity f,» =0. For stationary processes M y2
i1s independent of n. Then IMr is independent of T and we use the notation

M instead of My
ME = My2 = [42dG.

On the other hand, if Wr is independent of 7', the standard deviation is
independent of time. This follows from the relation

At T
= oAt om -
0= 4M; T+At‘%+T+AtMyN+1 (N At)
l.e.
My, = M}

which is independent of time. But therefore it is not sure that the process is
stationary in the general sense; for this all statistical moments must be in-
dependent of t.

Of course, the output y, or y (¢} depends on the construction of the mecha-
nism the behaviour of which must be regulated by the servo system. In other
terms, y (t) is generally the solution of a differential or integro-differential equa-
tion which is completely defined as soon as x (¢) and the mechanical system
are given. Let us for example consider the behavior of an air torpedo. As
soon as the torpedo is constructed and the acting forces are given, the path
of the torpedo is completely determinable. The problem is to construct the
torpedo in order to obtain the best possible stability against disturbances. First
"wé¢ have to try to achieve symmetry in such a way that the probability of &
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deviation y, from the right path in one direction is equal to the probability
of the same deviation in the diametrically opposite direction. A necessary and
sufficient condition for this is that :

Myn= [4ad6 =0

for all »>0. Evidently it is difficult to get this condition exactly fulfilled.
In any case it is important to know the mean value of the output at every
moment of time. Further we have to minimize the r ms error of y. Eventually
we also need higher moments.

To be able to use the probability reasoning above we should always have
the same ‘‘conditions of probability”’ for the same torpedo path. But, strictly
speaking, there exists an infinity of different conditions of probability everyone
of which with a certain probability. The distribution function of z (¢), F (u),
considered above will then give the unconditioned probability distribution (i.e.
without our knowing the probability conditions). Thus we have to consider a
universe of all disturbances that may happen to the torpedo in gquestion and
in that universe in an empirical way determine the probability distribution.
Of course, this is a procedure that requires a great many practical experiments
but I do not think it to be impossible to realize. Sometimes it may be prefer-
able to employ the distribution for the most risky case.

As previously mentioned only if the Auw,:s are independent of each other
the probability distribution of the change of the input can be determined from
the recursion formula (68). In this case we obtain at once by the aid of La-
place-operations '

L{Fn(u)} = L{Gn (u)} - L{Fn1 ()},

F,
LG ()} = f%;.—f%’
1 [ LiF)
0= g2 | in o™ "

When the time interval At tends to zero,

lim Gy (u At)

A4t—0

gives the distribution function of the derivative of z, of the limit exists.

In the general case, i.e. when the functions G, (u) depend on z, Gy (u) =
= Gu(w; ), we must study Gy (u; z) for different values of z.

There are many random processes which can be expected to become sta-
tionary, if they only would be allowed to proceed far enough. But in the case
of a torpédo which has to fly through different layers of air the process of
disturbing factors can scarcely be waited to reach a stationary state. In any
case there will always be a transient state at the beginning of the path. The
most difficult question is to treat the problem during this transient state. .
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Suppose that a stationary state really exists and that the distribution function
of Az at that state is G'(u; ). We then try to find a function G, (u; x)
which gives the distribution of Az, after the time v A¢ and which for increasing
v tends to G (u; z). The function @, (u; ) may depend on a set of parameters
varying with time.

We cannot always wait to be able to describe the evolution of G, (u; x) only
with the aid of the mean value m, (z) and the standard deviation o, (x) of
Ax,. But using further the third and fourth moment, us,(x) and py, (x), I
think we will always have a satisfactory description. Thus in the well-known
development

G, (u; x) = /go% DD (y)

where

—
I\
|
ol %
S
R

=y

—o0

¢, = (— 1) {Hz (w)d G, (u; z)

and H;, means the A-th polynomial of Hermite we have to use only the five
first terms. Then for the normalized variable

Az, —my(x)

& (x) = o @)
we can write
G, (&; z)=D(&)— % S, (z)- D7 (&) + %E,, (x)- PP (&) (71:a)
where
S, (x) = —%[‘Zf”(:;]):, (the skewness), (71:b)
1 v
E, (x) = é{['l;j (;:;;])4 —3} (the excess), (71:¢)

In the case of symmetri we have § = 0.

After having obtained a satisfactory delineation concerning the random pro-
cess of the input z(f) we have to study the probability distribution of the
output y (¢). It is very likely that the distributions of Ay, and y. can be
described by formulas similar to that of (71). Of course, we are always able
to determine the process of y () from that of x(f) by direct computation but
this is a very tedious procedure except in the case of linear systems. A possible
way to obtain a practical treatment of the problem is to construct an apparatus
which produces disturbances according to the probability law adopted for the
input. However, I do not intend to deal with this question here.

We begin with the study. of the simpliest case, viz. that of linear systems
with constant coefficients. .
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b) Linear systems with constant coefficients

If the relation between the input and the output can be described by a
linear differential equation with constant coefficients

3 aro-olow (72)

where ¢ [z (t)] means a linear function of x (t)] and its derivatives, the mathe-
matical treatment is rather simple compared with what is required in the gene_ral
case.! For the sake of simplicity we assume here that the characteristic equation

has no equal roots. Then the solution of the given differential equation can

be written

t
m

y(t) = z{ , [ er(t—’)m(r)dr—l-C,.e”vt} (73)

to

where A4, are the coefficients of the Heaviside expansion of the transfer func-
tion and C, the “arbitrary constants” determined by the initial conditions.

The expression
m

v = 2 Aot

18 generally called the weighting function of the system and gives the response
of the unit impulse function acting at ¢ = 0.

In the following probability consideration the process is supposed to start at
t=0. Thus I put z(0) and all C, equal to zero. Then, from

=Y A,
v=1

we obtain
n 4t X

m Vigs
Yn = zArfe”r(”‘”") > daz,dz
o

v=1

n At

m
> A4, fe”r‘“‘")dxrdr

r=1
v At

Ms

(I
R

v

~ z Ax”z A___[ep,(n—v)At,__l]

! If g[(t)] is not a linear function with constant coefficients, we can consider glz ()] =
= g(t) as an input function.
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(The sign = instead of = 1is caused by the fact that A¢ is not exactly
equal to 0.) ‘
Thus, if A¢ 1s small, we have
Yn= 2 kwndm (T4: a)
r=1
where
m Ar
bon= Y “[eprn—mat 1), (74:b)

r=1 Pr

In the case where the characteristic equation has equal roots, the relation (74:a)
still holds, but then, of course, we have to modify the expression of k.

The quantities {k..} can be used instead of equation (72) to characterize the
relation between the input z(¢) and the output y(t). If we do not know the
coefficients @, of equation (72), we have to determine the numbers k,» in an
experimental way. This is always possible, as k,» are independent of the input
signal.

Let us continue considering the torpedo taken as example in the foregoing
section assuming that this torpedo will behave linearly. In order to determine
the probability distributions of A%, we have to study the qualities of the air

especially in respect to the strength and direction of wind gusts. Az, can for
instance l)e the deviation of a variable wird force vector from its mean vector.
Then Az, can be used to characterize the atmospheric turbulence. By studying
the air it is preferable to use the height above the ground instead of the time
as an independent variable. Thus we write G5 (u; z) instead of G, (u;x) for the
distribution functions of the disturbance Az (= A ;) during the height interval
Ah. Then, knowing approximately the path of the flying body, it is possible
to make a transformation from height to time. In this way we can determine
the distribution of Ax for each value of z and for each time interval A¢.
The moments of Az, up to that of the fourth order may be contained as
parameters in the function G(w;z) (71:a—c). Higher moments are supposed
not to be required. :

Now assume {4z} to be normally distributed ({m, (40}, {0, (48)})! with
the correlation coefficients r,,. Then the frequency function of {4z} will be

@ (U, U, ... Un) =

- 1 _ L [ m (A 0] [ —m, (A1)
@2 [T, (40)- VR e | IR (404

Ip 1
R,. |
where

B =]

- and R,, denotes the minor corresponding to the u-th row and the »-th column
of R. Of course R must be 0. The characteristic function of {A4z,} becomes

! According to a commonly used notation z normal (e, b) means that = is normally
distributed with the mean value a and the standard deviation b.
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M(exp.jZu,2) = exp. (§ Zmy2o — 2 X 04 0o Tus 20 20)-
Thus the characteristic function of z =X 4z, is
M (exp.jz2%u,) = exp. (12X m, — 122 X6, 0,74)
which means that z is normally distributed (X m,, Z 0,0, 7u»)-
We now proceed to the study of the probability law of y,, thereby assuming
that the mean value and dispersion of yn be finite for all walues of n. The

combined distribution function of (Azy, Ax,, ... Axs) being G (uy, Uz, . .. Un),
the mean value of y, becomes

My, = f(z k,nu,)dG= > kn | . dG.
=1 v=1
But

— 0 ~00

fuudG = f‘fudG', (w; x)d'F,_l (z) = "f‘om,,‘(w)dF,_l(x)

where

o0

my (2} = fudG,, (u; x)

—o0

gives the mean value of Az, for z,.,=2. If the mean value of m, (x) for
varying z is denoted by m,, we have the simple formula

. .
Myn= 21 Fvn 0. (75)
The mean value of the square of ¥, becomes

My? =3 kf,,,f“fda + 2 knnkvnf“#“"da'
p=1

. uFEy
Then
. " .
. D2 Yn = z k?,n 0’% + 2 k‘un kvn O‘ﬂ Gy Tuy (76)
p=1 uFv

where o, means the standard deviation of A, for all values of z,1 and 74,
the correlation coefficient between A, and A, for all values of z,-; and
#y—1. For the numerical treatment we have to tabulate m,, o, and 7., for dif-
ferent indices. Then, in the case of the torpedo for example, we determine,
iff nﬁcessary through interpolation, the corresponding quantities along the path
of flight.

If we want the moments of the third and fourth order of y., we have to
introduce correlation coefficients of the same order.
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If we construct an air torpedo in such a way that the disturbing forces be-
come nearly symmetrical, the distribution of (4 zy, A z,, ... 4 x,) will probably
be approximately normal. Then the distribution of %, also becomes approxi-
mately normal, and we can be completely satisfied with knowing the quantities
studied above.

Remark. The autocorrelation function between z (¢) and z (¢ -+ 7) is defined
by the formula

T
.1 ;
R(r)= Tlgrold_T / z(t) -zt + T)de
)
in the continuous case and
N
R (m) = lim Tn* Tntm

Now2N + 1,2y

in the case of discrete observations and gives the mean value of the product
of pairs of values of the random variable which differ from each other by a.
constant time interval. Of course this concept has its greatest importance,
when the ergodic hypothesis is valid. (The ergodic hypothesis states that the
time average is equivalent to the ensemble average.) Then, M denoting the
ensemble average,

R(t)=M[x(t) z(t+ 7)]

for every value of ¢&. In this case r,“; in formula (76) will be the normalized
autocorrelation function between 4z, and Az, i.e. the autocorrelation function
between these quantities divided by the product of the standard deviations.

As a simple example of the method described here we consider the differ-
ential equation

vty =z

We assume all Aa,::s to be normally distributed with the same mean value
m(A4t) and the same standard deviation o(At). Further we make the assump-
tion that the time series is stationary. Then the correlation coefficient 7,, de-
pends only on the difference y—» and will be denoted by 7., (4¢).

The characteristic equation

pP+1=0
has the roots p, = +§ and py =—34. A simple calculation gives'
k=~ 2 sin? (n—v) 4t
7 2

Hence
yn =2 Y sin’ (ﬁ—_%i’ﬂf Az,

r=1
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—») At

4

n
My,=2m(At) z

v) At

3 +

D2y, = 4]0 ( At]z{i nt (0

+ 3 sin? (n—’u)AtSinz (n—_v)At-r”_y(At)}-
H*= Y 2 2

According to the consideration above y, will be normally distributed.

c) Approximate treatment of general systems

Method 1. Suppose that the input z(f) and the output y (¢} be connected by
the relation

Fa,yty=F(z, 2", 2", ..;9,9,4", .. =0

where F( ) means a function of z,y,t and the derivatives of the first two
variables with respect to ¢. Let the variations of z and y during the time

interval (v —1-At<<t<<v-At) be designed by 4z, and Ay,. These quantities
are random variables, both of them assumed to be continuous functions of ¢
satisfying the equation

AF (z,y,0)=F(x+ Ax,,y + Ay, t + At)—F (2, y,¢) = 0. (77)

If At is small, Az, and (for every practically serviceable servomechanism) also
Ay, generally will take only small values and for decreasing 4, the change
of y will also decrease. Of course, Az, can become large, but the probability
for this is generally small.

Thus we first choose a region (—e<< Az, < + ¢ —&< Ay, < + 6) where
the squares of Aa, and Ay, and of their derivatives can be neglected assuming
thereby that the error of Ay, will be less than % %. In that region we put

oF oF oF oF oF
5o Ao+ 55 Ad+ A G Awt g ATt G Ae=0. (18)

For given x,y,t this equation can be solved with the ordinary methods of
linear systems. Then the quantities ¢ and % can be determined (sometimes
through practical experiments) for any value of £ and at any time point ¢.

Provided that At is small, the lowest derivatives of A, and 4y, will have
greater influence than those of a higher order. The probability for a change
of for instance Az, is often notably unimportant. If we approximate the
curves Az, = Ax (t) by parabolas of the second degree, the third derivative
is exactly equal to zero.

For large Az, and Ay, we cannot use the equation (78). Then the problem
of determining Ay, from (77) is identical with the problem of solving the
equation F(z, y,t)=0 and this is, of course, a procedure which we want to
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avoid.” But, as a matter of fact, every servomechanism must have such damping

qualities that Ay, will never grow large. Thus, for practical reasons, we are
often able to write

oF oF OF

F(:c-l—Aw,,y,t)-l-ﬂAy, a,Ay,, +hAt—0 (79)

This is again a linear differential equation of Ay, the solution of which some-
times can be used in the whole region of variation (4, 4, t).

The equations (78) and (79) are of the same form as the equation discussed
in section b). The only difference is that we now have to deal with the varia-
tion of y instead of y itself.

After having solved the equation (79) for a set of values of z, y and ¢ we
are able to build up the whole random process. Starting from an arbitrary
point (Zy, ¥y, ty) We obtain for every value

n”
Tn = Ty + E A Ty
=1 .
a corresponding value of y,

n
Y=yt 2 At

where A4y, is a function of A, z,—1, ,—1 and ¢ (=v- A¢). With regard.to
formula (74:a) we are going to denote this function kyn (A4 2, z,—1, y»—1), ie.
for ¢y =y =0

n

Yn = z kvn (A Ly, Ty—1, f[/v—/l)- - (80)

y=1

In the linear case we have considered the expression (80) as a linear function
of the 4,5, but we must remember that this is only an approximation. The
real difference between the linear and the general case lies in the fact that
the right member of formula (74:a) is merely a function of the changes of the

input while this function in the general case must be replaced by a combined
input-output function.

Method 2. Another perhaps more perspicuous method which also assumes the
existence of the derivatives but which does not require any researches on the
linearity of the system is the following. Let z() be the observed mean value
and s(¢) the standard deviation at the time point ¢ of a certain input signal
z (t). Further, let 5‘7)@_) and s, () be the corresponding values of the »-th

derivative of z(t) (# =1, 2,...). The observations are supposed to have been
made at a set of time points ¢, &5, .

From F(z, y,t) = 0 we can always form the corresponding differential equa-
tions giving the relations between @, 9,t), (’,y”,t) and so on. These equa-
tions may be denoted Fy (2, ¥, t) =0, Fy(z”, y y ,t)=0 and so on.

In order to obtain a rude conception of y(t) we use a bundle of input signals

(t) + ks(t) where k is to be considered as a parameter. In the same way a
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conception of %’ (¢) can be found by considering the inputs z ()+ k sy () and
so on. Hereby many essential features of the signals will be taken into con-
sideration. For stationary processes all mean values and standard deviations
are constants. Then the input signals are step functions.

The signals considered now constitute in one way the most risky cases, as
they do not lead to any compensation of the disturbances.

Knowing the probability distribution of the input, we are able to determine
the amount of probability mass between the curves corresponding to different
values of k. If we let these signals pass through the servo system, we obtain
a new distribution of the k-lines, and’ from the concentration of these lines we
can judge the distribution of the output. Of course, this method can be used
only when we are not interested in studying the phase relationships. Some more
details will be given in section f).

d) Chain processes

Linear case. Suppose that the output y. obtained by means of formula (74)
be used as input in a new linear system characterized by the quantities {l,}.
Then the output z, may be written

n
Zp = levn Ay,

The total process can be symbolized by fig. 10.

X, ) Y 2
—— {kn} ] (L}
Fig. 10.

Remember that the last relation as well as equatlon (74) only holds ap-
proximately.
From (74:a) we obtain

i r—1 v
Ay =9— 1= Dk -Ada,— > ko1 Axy= 2 Sku- A,
. ° n=1 p=1 pu=1
with

6# k/u/ = k,uv - k,u,v—-l (67 kvv = kvv)-
Thus

Zn = Zl bn Ay, = 21 Lin }jl 8, by A 2,
v= p= p= v

n

=2 (2 lun' 0 k,,,,) Az, (81)

=1

Let us assume that we have another element {m.,} in the chain (fig. 11).
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xﬂ 91\ z'l u’n
— (e} e () ] (o
Fig. 11.
Then
v v r—1
Az =3 (Elﬂ,-a,‘k@)Am— > (zzm 10, kz,l)Am_
=1 \u=1 a=1
=3 (z O lyy+ 0 k“)Axa
=1 \u=z
and

Un = E Myn A2, = z Man i (i 6vl,“,-6,,k,1,,)Am

n

n
Un= 2 (2 i Mun Sulau - 517@1) Az, (82)

y=1 i=v

In this way we can proceed to an arbitrary number of elements in the chain.
If there are N elements, defined by {ik..} (: =1, 2,... N) we write for the
last output

= z Nton -+ A 1. (83 a’)
y=1

The coefficients yx,» are determined successively by the following formulas:

1%vn = 1kv ny

n

2¥yn = szun “0u (1) = 227“#”' Oy (1kvn),

B=v H=v

~ (83:b)

n n @
3%yn = Eak,un 5 (2%1,:4 2 12370;4” 6 (27‘71#) 02 (lkvi)
u=v u=y A=y

noou A ’
o = 24]9/4"'6# (3%/4) = Z Z Z4kun‘5y (3k1u)'5l (2]‘56/1)‘50 (17€v0):

w=v pu=v i=v 6=y
and so on.

General case. In the more general case treated in section ¢) (Method 1)
we have to replace the sets of numbers {ik,»} by sets of functions

{ikvn (A Lyy Ty—-1, yv—1)}.

Of course, this makes the treatment much more complicated..
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e) Continuous determination of the variance of the output

In previous sections of this chapter we have considered the processes going
on step by step. We are now going to use a direct continuous reasoning for
the special case where the system is linear. Starting from the formula (73)
and putting all C, equal to zero we can write

t

y () = t f {éAp em—ﬂ} z(7)d.

The integrand contains two factors the first of which being an ordinary func-
tion of (t —1)

p(t—1) = ZlA” epyt—v (84)

(the weighting function) characterizing the servo circuit and the second z(7)
a random variable characterizing the disturbances. The function v (¢ — ), being
the response of the unit-impulse input, can be determined once for all for every
servo circuit.

The mean value of y(f) becomes

M?/(t)sz(t—‘r)Mx(r)dr. (85)

For the variance of y(f) we obtain, writing R (u, v) for the coefficient of
correlation between x(u) and z(v) and remembering that R (u, u) = 1,

¢t
D2y (1) = fftp(t——u)%p(i—v)-l)x(u)Dx(v)'R(u, v)dudv.

ty

For the sake of simplicity I write

¢t :
Dry@)= [ [¥@—u t—v) M v)dudv (86:a)
to o
‘where
Y(—~ut—v)=ypt—u)pt—r) (86: b)
and ‘
M (u,v)= Dx(u) Dz (v)- R (%, v). (86: ¢)

For W (¢t —wu, t—v) = constant = 1 we have the case where x(t) is a velocity
and y (¢) the distance during the time ¢z —¢,. Then

D¥y(t) = ftftM(u, vydudo.

ty to
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In section I:e) we have given an approximate treatment of the problem of
determining the error of an integral where the integrand is a random variable.
The method used here yields the exact expression of the standard deviation.

By wusing the formulas (86) the greatest trouble concerns the computation
of R(u,w). This computation must be carried out by means of observations
for a set of points (u,v). But because of the symmetric relation R (u, v) =
= R (v, u) we only need investigate the case u <<w.

Now let us return to the chain processes of section d). If there are N links
in the chain, we have to determine a function x¥ (¢t — u, t —v) similar to that
of the formulas (86) and corresponding to all N links. Thus the variance of
the output wy(t) becomes

t ¢
D*ry(t)= [ [ 5P (¢ —u, t—2) M (u, v)dude. (87)
to

t

f) A method of computing the probability distribution of a Laplace trans-
form from the distribution of a time function and vice versa.

Many times it is much easier to deal with the probability distributions of
the Laplace transforms than with the distributions of the time funetions. As
an example let us consider a linear system where the Laplace transforms of
the input and the output are connected by formula 3 of the introduction.
Then we have )

DFo(s) = |Y (s)]- DFi(s).

On the contrary, the relation between Df,(t) and Df;(¢t) is rather complicated.

An important question in this connection is whether a random function can
be Laplace-transformed or not. The answer will be affirmative for each member
of the random process for which the Laplace transform exists. It is also clear
that every statistical quantity (e.g. the mean value and the standard deviation)
can be transformed.

An exact determination of the distributions of Laplace transforms requires
studies of integrals of random functions and is often too tedious. Then some-
times, when we do not care of phase relationships, the following method, already
used in section ¢) of this chapter, could be useful. s

Suppose we have computed the mean value f(f) resp. f¥(t) (v=1,2,...)
and the standard deviation s(t) resp. s, (f) of a time function f(t), defined for
t>0, and its derivatives for a set of time points &, fy, ... . The derivatives
are supposed to exist almost everywhere. Then in a coordinate system between
t and f(t) we can draw the lines

@ =1 +k-s(t) (Co

for different values of % and similar curves for the derivatives. However, in
the following I only intend to deal with f(¢), the reasoning for the derivatives
being completely analogous.

Let us consider all curves lying in the band between £ =%; and k& = ks.
These curves will of course produce a certain bundle of lines in the Laplace-

188



ARKIV FOR MATEMATIK. Bd 2 nr 8

plane. The concentration of the %-lines givés a measure of the concentration
of the probability mass. For a fixed f-value % is a random variable. If we

knew exactly f(¢) and s(f) we should have Mk =0, Dk = 1. Now the charac-
teristics of f(f) are assumed to be computed from observed values and there-
fore we can only expect to have M% =~ 0 and Dk = 1. However this question
is of no great importance for the following reasoning.

In the case of normally distributed functions the distributions are completely
determined by the mean values and the standard deviations. In this case the
amount of mass between two k-lines can be taken directly from tables.

For the Laplace transforms of the Cj-curves we have

L)) =F@Gw) = _Fcoswtf(t)dt——-jfwsinwtf(t)dt
0 0
and
4 (0) = Re {F (jo)} fcosw t+kfcoscots(t)dt

(Ch)
B(w) =Im{F(jw)} =— [ sinwtf(t)dt—k [ sinwts(t)de
0 0

J

After having calculated these expressions for some values of w we can draw
the corresponding curves (C) in the complex domain A (w)/ B(w).
Two lines C’k1 and Ckz (ky 7% ky) can cut each othier only if

klfwcos wts(t)dt = k‘szcos wts(t)dt
and ’ ’

klfsin wts(t)dt = szsin wts(t)dt
ie. only if ’ ’

fcos wts(tydt = fsinwts(t)dt = 0.
0 0

These relations can be replaced by
Lis(t)} =0.

Thus all intersections are lying at the points (4 (w)/B (w)) for which L{s(¢)} =
Further, through those points all %-lines will pass.

Summmg up the foregomg results we could say that to every distribution
of probability mass in the f(t)-plane there corresponds another distribution in
the F(s)- plane and both distributions can be represented ed by bundle of curves
(Ci resp. Cy). This is true even though the values of f(t) and s({f) cannot be
expected to be correct. Thus I replace the distribution functions commonly
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used to represent the distributions by those bundles of %-lines. Of course, the
k-lines cannot give the same amount of information as the distribution func-
tions, but many times the conclusions one can draw from those bundles are
sufﬁment for a particular purpose.

A vpractically important case is when f(¢) is normally distributed and the
random errors of f(¢) and s(f) can be expected to be small for all £. Then
we have

A (w) approx. normal (fcosw r lfcos wts t)dt') ]
o 0

B (w) approx. normal (—f sinwt f(t) dt, U sin wts(t)dt|).l
0 0

In many servo problems we have to go from the F(s)-plane of the input
to the F(s)-plane of the output and then to the f(f)-plane of the output. But
often we can stop at the complex planes and carry out the investigation there.

If we want to come over from a complex plane to a time plane we can
use to the expression (42)

o0

f () =‘%fA(w) cos ot d w.

0

Thus we once again meet an integral of a random function, i.e. the same prob-
lem with which we were confronted when we were going to determine the
distribution of a Laplace transform from the distribution of a time function.

In order to obtain the distribution of the %-lines in the complex output plane
we write the transfer function

Y (jw) = R (w) + 11 {w).

Then the real part of the output transform becomes

Ag(w) = U{w) + kV{(w) (88:a)
where
U(a)):R((o)fcosth)'dt—l—I(w)fsmwtf(t dt, ]l
" . L (s8:h)
V {w) =R(w)fcoswts(t)dt+I(w)fsinwts t)dt. J
0 0

A similar formula can be obtained for the imaginary part. We have only to
change coswt to — sin wt and sin w¢ to + coswt. Putting the expression of
4o (w) in (42) we obtain a linear function of %k and are thus able to study the
bundle of k-lines in the f; (¢)-plane.
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g) Variation of parameters in a servo circuit

Linear case. Firstly, suppose that we have to deal with a linear servo circuit
and that we know the form of the transfer function

Y(s;0,b,...)=R(w;a, b, ..)+il(w;a,b,..)

where @, b, ... are parameters to which can be given arbitrary values in cer-
tain intervals. The parameters should be chosen in such a way that we obtain
the smallest possible random error of the output. This statement includes the
case where we have the possibility of choosing among a number of types of a
certain serve link and want to take the best one of t}}ese types.
. Using the method of section f) we draw the curves Cy in the complex output
plane for different values of the parameters and study the concentration of the
k-lines. The better the concentration the more reason we have to be content.
From the formulas defining % and Cj follows namely that the distance between
the curves Ci decreases at the same time as the distance between the Cy-lines.
If we instead of moving in the complex plane want to carry out the in-
vestigation in the time plane, the numerical calculation is a hard work. Ac-
cording to (42) and (88:a and b) we have

fot) = %{[U(w; a, b, ..)ecoswtdow + k [V(w; a, b, ...)cos wtdw}- (89)
o o '

In this expression %k varies at random while U and V are supposed to be
ordinary variables. Thus

Dfo(t)=7—2T|[V(w; a, b,...)coswtdw!-Dk. (90)
0 .

For a fixed value of ¢ Dfy(¢) will take its smallest value when
fV(w; a,b .. )coswtdw
0
becomes a minimum.
But these conditions are depending on ¢ and we want a criterion valid in

the average. Then we could use the same method as that one which led to
formula (69) and consider the expression

T,
1 N
2 . 2
mT;Tg Tz—Tl.[D fo@®)dt. (91)
T, :
Here T, must be taken so large that all events of interest for us are hap-

pening in the considered time interval. The reason that I have not put 7', =0
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is that we have to be cautious concerning the first time, for ‘a servo that will
cause a lag during the first time can in spite of that be much better than a
more sensitive one. .

There are many reasons for believing that we obtain a sort of best values
of a, b, ... when minimizing the expression (91). But, of course, there are many
other expressions about which we can also say that minimizing them gives the
best wvalues of our parameters. A further condition will be discussed in the
next section. In this connection we could also mention the maximum likelihood
method by R. A. Fischer. However, for many purposes I think the integral
(91) will be most suitable. Since Dk =~ 1 and thus very slowly varies with ¢
we could sometimes omit this factor in (90).

In a case where we do not know the form of ¥ (s) the formula (91) still
holds. But now the function ¥ (w) in (90) is entirely unknown and we have to
use the calculus of variations in order to determine this function.

Very often we have to choose among a few different constructions of a servo
link.  Then the computation of (91) always gives us a tool by means of which
we are able to decide which of the constructions is the best. one.

General case. There remains $o say a little ‘about the case where we cannot
use the Laplace transforms. Thus, let us assume that the relation between the
input f;(¢) and the output f4 (¢)

g(f’l:,f‘::’"';f()’f(’b."';‘t;a) b,"')=0

is entirely arbitrary. Also then, of course, minimizing

T.
1 2
Tz_TJD folt) dt
Ty

makes it possible to determine the best values of the parameters, but now we
cannot always put up an explicit expression of Df, (¢). Gemnerally only approxi-
mate methods stay to our disposal. However, in the frame of this investiga-
tion falls only that part of the problem which deals with the determination
of the relation between Df,(t) and Df;(t). The rest of the problem, ie. the
determining of f,(f) from f;(f) is a purely mathematical one. The question that
interests us now can be concentrated into the following statement. If we know
Dz, what is Dy(z, o/, 2, ...) and if we know Dy(z, o/, ”, ...) what'is D%
This question, being of an utmost importance in the theory of probability, can
generally not be solved explicitly. One way to treat the problem is to apply
the method 2 of V:c¢), putting

fi(@) = fit) + ksi(0),
f%v)(t) = fs;v)(t) +ksi(t) (v=1,2,.. s

and solve the differential equation for the output q;nd its derivatives approxi-
mately for some values of k. By the solution we have in each case to con-
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sider k£ as a parameter. Thus the output time function also will contain £ as
a parameter.

From the more or less strong concentration of k-lines in the output time
planes we are able to decide which of different cases is the best one for our
purpose.

h) Representation in Hilbert spaces

By a Hilbert space we mean a vector space vhere each vector has an in-
finite but enumerable number of components the sum of its squares being finite.
In formula (69) we have met such a sum of squares with the number of terms
tending to infinity when A% — 0.

As before, the standard deviation for an observed value, e.g. z,, will be de-
noted by Dz, For the rms error vector corresponding to all observations during
the time (0, 7') we write X7p. Thus Xz has the components

We often have to compare the input z, = (%) and its observed mean value
@, with the output y = y(f) and its mean value #. It is no restriction to
assume that §, — &, when v - oo, since this result, if it is not valid, for stable
systems always can be gained simply by a coordinate transformation. However,
this quality of the servo system is almost self-evident and need not be an
object of any investigations. The good or bad behaviour of the system can
only be characterized by the relations between the deviations of the input and
the output. We therefore consider the vectors Xz and Yz with the components

—
VAthl! At.DZ'g, e Véjpr
T
At /At At
—TD?/D V;Dy27'~']/TDyN

respectively. The deviations of x are, of course, measured from their observed
mean values. Concerning the output there may be a systematical error which
we want to get rid of. Let y, be the mean value of the output without such
a systematical error at the time point ¢,. Then, by the computation of Dy,
we have to use the deviations y, — y, instead of y, — %,. The systematical error
¥» —¥» can be studied separately.

An important question is the one concerning the mutual dependence between
the components of each vector. The observed values of the standard deviations
are random variables and generally not independent whereas the unknown real
standard deviations are constant numbers. It could therefore be of interest to
try to estimate the deviations of the deviations.

Now let us consider the way by which the process is built up assuming A¢
to be fixed. It is immediately seen that X, lies along the z,-axis, X, in the

and
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(7, zo)-plane, X; in the (x; 75 x3)-space and so on. At the same time as the
number of components increases, the components themselves will become smaller
and smaller. If for increasing T Dz, tends to a limit, the rms error will also
tend to a limit (X).

The vector representing the rms error of the output moves in a similar way.
We have to consider this vector as depending on a certain number of para-
meters which characterize the servo system and ask for the values of these
parameters that can be looked upon as the best ones in some way. Firstly it
seems natural to demand that the servomechanism shall minimize the rms error.
But then we often have to disregard more or less what is happening during
the first time, say 7. The reason for this was given in section g). Disregarding
the time 7'; means in the language of our Hilbert space that we project the
vector Yr on the space corresponding to the remaining T'— T; components.
To the wvector

Yro=Yr—Yr,

we have to give a minimum length. Then, if we are going to determine some
parameters a, b, ... In the mathematical expressions of the servo system, we
must have

d
54 Yruzrl=0 | (92)

and similarly for the other parameters.

From the nature of the problem we can conclude that there must mostly
for each T exist at least one minimum satisfying (92). If there is more than
one such minimum value of ¥r,p and if there exists a systematical error which
has not been eliminated, we have not always without further reasons to take
the minimum value which is smallest, at least not for large 7. The reason
that it cannot always be desirable in this case that the dispersion of the output
will become smaller than the dispersion of the input depends merely on the
following fact. TFirstly we have to remember that we have assumed lim 7, =

n—>o0

= lim #,. Further for large T neither | X7, r| nor | Yr,z| will vary very much.

n—oe
If now | Yy, r| would be considerably smaller than |Xr, z|, it could mean that
the servo system would be too insensitive.

But there is also another possibility to judge of the best values of the
parameters and which can be combined with the foregoing method. It can
namely be demanded that the angle # between the vectors Xr,r and Yr, 1 be-
comes as small as possible. This can be expressed by saying that

cos ¥ = —_“XTIT- YTIL)
| Xr, 7|+ Yr, 7|

1.e. the correlation coefficient between the two vectors (where XY means the
scalar product of the vectors X and ¥) must be a maximum. Now |Yr,r|is
a minimum. Then we must have
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0
5o Xnr Yr,r) =0 (93)

and similarly for the other parameters. Since the vector X7, 7 is independent
of a, equation (93) can also be written

0
XTIT‘E_ Yr,r =0, (94)
a

ie. the changes of Y must be orthogonal to X.
. In the most general case we do not know the mathematical relation betwqen
the input and the output. Then we have to study empirically the quantities

%Dyy for a set of time points ¢, ¢, ... and for different values of a.

i) More than one input function

In a servo circuit there can, of course, exist more than one input random
variable. Suppose we have to take into consideration the disturbing functions
12(¢), 2x(t), ... with the distribution functions F, 2F, ... and have to deter-
mine the distribution function of the output y(f). If the input functions are
given, the output will also be given according to the mathematical relation
that must always exist. Then the distribution function of the output must
be an ordinary function of the distribution functions of the inputs. But,
except when the equations are linear with constant coefficients, there is gener-
ally no hope of determining the distribution function of the output in an
explicit way. Then we must try to obtain satisfactory results by means of
approximate methods. One such a method consists of studying the changes of
certain statistical characteristics with the time and was described in section ¢)
(Method 2). )

As an example of a “device” with a great many of servo links let us con-
sider a human being. Every input signal concerning that device belongs to an
infinite universe. The response of an input is the acting of the human being
and that acting occurs in a different way for different persons. The deviation
from “the right way” should be a measure of the variance. But what is the
right way? It can scarcely be the acting of a group of devices, the laws of
whose acting being determined by the devices themselves more or less against
the nature. The right way must be the average acting of a large collective
of persons being influenced by the same nafural inputs. If there should be
something wrong with a link of the servo circuit for an individual the variance
of that individual from the right average acting would increase. The same
thing is valid for a mechanical servo system. It is therefore very important
to know the probability distribution of the natural inputs for every link of
the system.
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VI. Noise in linear systems
a) Non-stationary discrete processes. Two noise components

In a book by Norbert Wiener (The Extrapolation, Interpolation and Smoothing
of Stationary Time Series) the noise problem is treated for linear systems? in
the case of stationary input signals. However, we have many times to deal
with time series which are not stationary and therefore we must also try to
obtain a solution for those cases. On the other hand, the linear systems are
s0 common also for non-stationary inputs that they deserve a special treatment.

In section V b) was shown that the relation between the output y, and the
input x, (after a time n A¢) in linear systems can be expressed by the formula

Yn = i koo A2, (74: a)
v=1

where 4z, means the variation of the input during the time interval (v—1) 41 <<
<t<<vAt. If A¢is small, the transfer.coefficients %,, can be considered as
independent of the input. On the contrary, k,, is highly dependent on A¢
itself. ‘

The discontinuous reasoning used above generates a special form of error of
very great importance in noise problems. As a matter of fact, frequencies
> 2/ At radians-sec™! cannot be studied in this manner. Thus we have to
take care of the highest noise frequencies by special arrangements. The error
of the output committed by omitting the highest frequencies can be calculated
according to the method of IV a).

Let

n
T =D Az,
v=1

be a message? which shall be sent through a stable system. By passing the system
the signal is assumed to have a time lagg A¢. Thus we have to compare the
message ., at the time point » At with the output yn., at the time point
(n-+q) At. As an initial condition we assume x, and ¥, to be zero.

First of all we must now be precise about what we have to investigate.
Using a mathematical definition we could say that we have to determine the
transfer function in such a way that the accumulated effect of the noise will
be as small as possible. Thus we once again have met a problem where we
can use the rms error. This way has been followed by Wiener in the book
mentioned above,

Since equation (74:a) does not contain the transfer function directly, we
have to determine the relation between that function and {k.}. In order to
do so we start with the Laplace transform of the differential equation between

z and y:
. S 4, 4% = 3 b,a®
that gives

! With linear systems are here meant such systems which can be described by linear
differential equations with constant coefficients.

? Of course, it need not be a “message’”” in the ordinary sense. The word is used here
only for the sake of convenience.
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Ly} =Y (5)- | g L4

where Y (s) as usual denotes the transfer function. We can assume ay # 0
(.- Y (0) finite), since in other case we have only to study y' instead of y.

The time function Az, varies only in the interval (v — 1) 4t <<t<<» At and
is equal to zero for ¢<C(y— 1) A¢. Therefore its Laplace transform becomes

vAt 0
LAz} = ( e " Ax, (v)dr + A, / eftdy = é‘%e‘““‘+0(l]9@-z_’lt)l
o-1)41 v At

under the assumption that Re(s)>0. In the first integral Ax,(r) means the
change of x,_; during the time (v—1)A4¢... (¥ —1) At + 7.

When talking about random processes, stationary or non-stationary, in this
chapter I always presume, as in section V:f), that the process starts from zero,
continuously or with a jump, at the moment when we begin to take care of it.
Then we can always use the Laplace transform of a random process.

The Laplace transform of y, can be written

L {yn} =§:1{AnyT(s)e*s“” +Y(s)-0(4dx,- At)}-

Hence
b4joo

+

* Az, Y (s ro1

v s(n v)At = sndt At 95

2 12757[ ds + 22 j Y40 (Ax,- Atyds.  (95)
b—joo —joo

Here we have to choose b in such a way that the integrals converge. Since g is
assumed to be 0, we can let b—0. Comparing the formulas (74:a) and
(95) we see that, when taking

oo
o = [ Y8) pnnr atgs, (96)
279 y s .
e

we commit the error of y,

Eyn——— fY Yer 40 (Aa,- At)ds 97)
v»—127{?

—joo

Omitting Fy, is the same as using step inputs Az, at the time points » A¢.
Since the system is assumed to be stable, we have Ey, = 0(4¢t).

From (96) it is seen that, if A¢ is small, k,, depends only on the difference
n —v. The same thing follows from the approximate expression of k,, in V b).
Therefore we write here k,—, instead of k,,. Hence

n—1
=3k A2ars. | (98)

v=0

* The symbol 0( ) means as usual “small of the same order as”.
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From (96) it is further evident that k,, being the response of a unit step input,
must be real.

If we use a continuous reasoning, k.—, can be considered as a function of
(n—9) At = 1. Thus formula (96) can be written

j oo
1 [Y6) .
70(1)—27”,/ Pk ds.

In opposition to (96) this formula is exact for stable systems. Inversion of
this formula gives

Y (s)= sfoolc(r) e~ 7 dr. (99)
b

As previously stated we have to build up the system in such a way that
the noise will be eliminated to as high an extent as possible. Firstly, we have
to consider the internal noise which always exists and depends on the structure
of the system. This noise is approximately stationary. But there is also a lot
of external noise caused by disturbances which are not generated by the system
itself and this kind of noise cannot always be expected to be stationary. In
order not to complicate the mathematical treatment too much we assume here
that there is only ome kind of external noise with the tnput function u (t). Further
suppose that w(t) has the same transfer function as z(f). The internal noise v (t)
may also be of only one kind with the transfer function Z(s) and the transfer
coefficients 1,,. Then according to (96)

s
ln = ln—y = —— Z6) )es("_”)"‘ds.

For more than two noise components it is not convenient to use the dis-
continuous method discussed here, because it would be difficult to survey the
operations. In the general case a solution can be accomplished, at least theo--
retically, by means of calculus of variation (see section ¢). However, the treat-
ment in this section could give us an idea how to get a numerical result.

The output at the time point n A¢ becomes, according to the assumptions.
made above, '

n—1
Un = 2 [k (ATny + Aup—y) + 1 Avay].
»=0 .

If the signal by passing the system will be delayed ¢ A¢ units of time, the:
error at the time point (n + ¢) A¢ is

n—1 ntg—1
entq = Tn— Yntqg = ZOAxn_,—— Zo [k (4 Tniq—r + Atnig—y) + b AVurg] =
f4-g-1 ' :
- ;) (chy ATnygq—r— ks Arprq—y— L 4 ’Un+q—v)’__ (100: a)
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where
—k, for v<<q,

k, = 100: b
“ l1—k » »=gq. ( )

We now consider the rms error I, given by

n+g—1 2
I = lim + ZM Z (kv Anigoy —ky Atnygms— b Avnig—s)| ,  (101)

N> N

assuming this expression to be finite. Our task is to determine either the
transfer functions Y (s) and Z(s) in the whole or some parameters of these
functions by minimizing the expression (101). The signals z, » and v may be
real or complex Firstly, denotlng the conjugate quantity of a complex variable
% by 2", we have

ntg—1 : 2
ZO (qu A4 Tntg—v —— kA Un+g—v — 1, 4 Un+q-—v)
y=
n+g-1 a
> I 5 * A &*
= 2 (q!ﬂ” q]\p A l‘n+q_ﬂ A wn+q_, + - —-—qlﬂ ky A xn-{-q-—” A Un4-q—v + » .).
u#,r=0

For the correlation functions will be used the following notations:

M(Azu—p Ax5-2) = ntys
M(Aup—p+ Aun_y) = nfuy
M (Avu—y- Aviy) = nPus
M (Azn—p+ Aun—y) = nbp»
M (Axp—p AVay) = sNp»
M (Avwn—p - Avp—y) = nBu»

for u<<n and v <n. (For u or » = n these quantities do not exist.) In the
actual case we have m + g instead of » as first index. However, in order not
to complicate the text too much this index is omitted in the following. In e,
f and y we can permute the indices x and v (as a consequence of the fact
that the imaginary part of I2 is=0), but concerning 4, n and 0 this is gener-

ally not permitted. Further, a removal of the conjugate quantity symbol from
the second factor to the first does not have any influence on 13.

Let us temporarily introduce the notation
n+eFuv = Re {qéﬂ ’ qz'v oy + hu ke Buy + L b Yuy —
- (qiﬁu k- 6/4:: + qvifv : kﬂ : ‘swt) - (qi"’u' L Nuv T qi"v ) lﬂ ' 77”‘) +
+ (ku by Ouw + ko L 0,0)1. (102)
Then it is immediately seen that ,4oFup = ntoFou.
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Using the expressions (102) we obtain

ntg—1 : 2 ntg—~1ntg-—1
M Z (ql'v 4 Tntq—y — k, A Un+q—v — I, A Un+q—v) = 20 z n+qF,uv
y=0 p= v=0

and
1 N n+q—1n+g-1

I‘) = llm ey Z 2 z n+qF#y. (103)

N~>°°N’n 1 =0 »=0

In order to study the convergence of the series (103) we start from (101)
and write this formula

I hmZ_V leen+q[

N-—>o0

where e,14, as already said, denotes the error of the message at the time pomt
(n + q) At. We see at once that a satisfactory condition is that M |eniq|? i
finite. This condition is assumed to be fulfilled here.

In practical problems we cannot proceed to the limit N = co. We therefore
assume that the highest value of » to be considered is N and thus put

n+g—

3 § widFur. (104)

2
q

||M2

1
N ;

Many times a non-stationary random series after some time becomes more
or less stationary. Then I, according to (101) converges against the same value,
as if we do not consider the first non-stationary period. However, this first
period is the most important for us now and therefore it is convenient to
choose N At equal to this time. Better still would be to carry out the calcula-
tions for different values of N and take that value which in the best way
corresponds to the actual case.

The expression (104) is a quadratic form of the 3 (N + ¢) quantities ghv, &
and /, with the side conditions between q),, and k, given in (100:b). The real
number of unknown quantities is 2 (N + ¢). Since all 4k, & and I, cannot be
zero according to the definition of qfrv and since other solutions of I, = 0 cannot
be expected to exist (this should mean that the noise could be entirely elimi-
nated), Ig is always >0 and the quadratic form is positively definite. It is
known that a positively definite quadratic form has always one, and only one,
minimum value and the coefficients {k,} and {l} corresponding to this value
give the solution of our problem.

I am only going to treat here the case where all signals are real. Then the

quantities «, §, ... are also real.
Further

a n v 7

¥ilIAFu = qu Uyy — kv 6;“' _ lu Nuyv for M 7 v,
0 ¢k,

0 naoF .

—mHs g (aku % — Fo Qe — Lu M),
0 gk
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Onselur o g1 25y and »,
9 s
a I2 2 N ntg—-1
I A by oty — Ky Oy — by Nuv)
i) abu Nn=[ﬂ—§+1, 1] ,go (et ey ‘ e

and similarly for the derivatives with respect to k, and I,. From the conditions
(100: b) we obtain

dbe
k- !
for all y and
2 ., 0 . 0 4
akqu(k’ l)_ﬁlq(k’k’l) qu}qu(k’ k, 1).

In the following I consider IZ as a function of only two sets of variables
{k,} and {L}. Then the minimum will be reached for

0 s 0 .

(k1) = T2 (s, B, 1
6qku q( ) akﬂ q( )
0

— T2(] —_
3 lqu(k, kED)=0 (105)

fc={ —k, for ,u<q}
N~k oy pu=g

p=01 ... (N+q¢—1)

Employing the relations (100: b) we obtain

102 2’\’ n+g-1 1 év: nJ§—1 b (s + 80 4 ]
- > = a7 » 3 » (Oluy v v v]s
2 qu,, Nn=[/4—q+1, 1] wz—-:q o Nn:[,u—-q+1, 1] »=0 { . “ e

We now have to remember that Gy Oy and’ 7uv.are functions of n + ¢ (more
exa.qtly, functions of n +g¢—p and n +g—7). Then, interchanging the sums
in the expression of 612/ 0 ¢k, we get the result

1 012 Nig-1 Nig~1 N N
QN' L= E 2 T Z [kv E (duy + Opy) + 1, Emv]
a ql{?” =g N=w . y=() n=w n=w

where @ = [u—q + 1, »—g + 1, 1] means the greatest of the numbers u~—gq + 1,
v—¢g+1 and 1. It is seen that the solution of our problem will not be
directly dependent on the correlation functions ay,, Buv, ... but of their sums
for n varying from w to N. If these sums are denoted
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N
Apvg = 2 ntq%uv,

=w

N
B,uvq = z n+qﬁ;w,
n=w
Lypy = 2 n+9Yuv,
Ausg = Z ntg0ur,

,uvq Z nt+gluv,

,uvq E n-Hlelw ’

we have
1, 0IF Nig1 N4g-1
SN — = z Apvg — E [k (Aurg + Auva) + 1 Hyugl
2 6 qL'” v=gq =0

and, after a similar reasoning,

1 0 I" N4g-1 N+g-1

N oy = — Avﬂq + Z [kv (B/wq + Awq) + 1 @#vq]:
2 d k v=q v=0

1 01 N+g-1 N+g—1

- N—q = — II,,#Q + Z [kv (Hv,uq + @VHQ) + l” I'I“'Q]'
2 0 l'u v=q »=0

Using these expressions we may write the equations (103)
N+g¢-1 N+g-1
|2, T ooe + Bron + D+ o) 4 1B + O] = 3 (o + Do)

(106)
N+q-1

N+g—-1
vgo [kﬂ (vaq + Qp”q) + ly .I-'”yq] = gq H,,ﬂq
(u=0,1,... N+q¢—1)

We have seen (p. 200) that our minimum problem has always one, and only
one, solution, obtainable by solving the equations (106) with respect to {k,} and {4}.
By means of formula (99) we are then able to determine the transfer func-
tions Y (s) and Z(s) corresponding to {k,} and {I}. It is easily seen that for a
finite time N A¢ (and all messages must be of finite duration) the ‘transfer
functions thus obtained have all the qualities of a stable system.

The most difficult part of the problem is perhaps the determination of the
correlation functions «, 8, ... 6. Taking for instance d,, we have to put up a
correlation table between Axzn—, and Aun—, (Tab. 7).

After having determined the length d of the intervals in a convenient manner
we have to reckon the number of cases for which the variations are lying within
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Tab. 7.
Correlation between Azn—, and Awup,.
\\Au ~3ed| ~Yad| +1a2d 54 XAz Au
VEAN ~Yad| +Yad| +%2d ® Az const
N\ .

—3ad

— g ! 7 ) 2 l

—ad

+Yad l ¢ 6 } 10 \ ‘

+Y2d

+3ad 3 7 i l

S A ] k |
T 4z du) ‘ |

Au const, |

the different squares of the table and then determine the sum over all pro-
ducts Ax- Au. The correlation functions must be computed for a sufficient
number of pairs u, ». For other pairs these functions may be obtained by
Interpolation.

b) Stationary processes as a special case

If all the interfering time series are stationary, the formulas will be con-
siderably simplified. Firstly, all the correlation functions a, 8 ... 6 will be
dependent only on the differences u —». Thus instead of .., we write &,—,
(the index m can, of course, be omitted, since n only appears in the differences
n—p —n-—v). Further it is easily seen that the correlation functions will
become even functions of g—9». This is a consequence of the fact that the
frequency functions of the combined variables are even functions of this para-
meter x4 —v». Finally, we do not need again the quantities A,uq, Buvg, .. .,
since all terms of those sums are equal. For the sake of brevity we employ
the notation 1‘;0,“, for the number of terms divided by N, i.e.

1 for p=gqand v=gq

¥ _N+1——w_[1—M_qfor‘u2qand,u2v
qow—‘r—' N
[1—-

Y1 gor v=gand »=p

i

15 203



M. SUNDSTROM, Some statistical problems in the theory of servomechanisms

The equations (106) become now

Nig—1 Nt
[ 2, IZOM (& (otu—s + Bu—v + 28u—) + b (u—v + 0u—s)] = Zq IZO’”’ (v + Ous)

| (107)
Neg—1 N4g-1
l C o[ (Qu—y + Ouy) + l Yu—s] = gq lgolw Nu—v

Q

II

v

In his book mentioned above (p. 196) Wiener has given an explicit solution
of the noise problem in case of stationary processes employing a continuous
reasoning. Thus in Wieners treatment the output has the form

y(t)= [z(t—v)dK ()
instead of

= zky Axn—y.

¢) Continuous reasoning. An arbitrary number of noise components

Let us now assume that there exists an arbitrary number (A4) of noise
components vy (2), v5(f), .. . v4(t) (stationary or non-stationary) with the transfer
functions Z, (s), Zy(s), ... Z4(s) and the transfer coefficients &, (z), k2 (7), ... ka(7).
Thus we have the relations .

g» Za(s)
1 ,1(8 -
ki(7) 9o . ¢ ds,
—j oo
thereby assuming that Z;(0) #£ o0 (A=1, 2, ... A4).

The message may be z(¢) with the transfer function Y (s) and the transfer
coefficients k(r). In this section all variables are presumed to be real and to
vary continuously as well as their time-derivatives.® Further, the derivatives are
supposed to be finite with the probability 1.

For the sake of simplicity we postulate that there is no time delay in the
system. Then the error at the time point ¢ becomes

2()—y(t) - — [[k() S A = TR
0 .

where k(z) = 1 —k(z). The transfer coefficients %(z) and k1(v) (A= 1,2, ... A)
are t0 be determined in such a manner that

T
It = —%fMlx(t) —y()Pde (108)
1]

! As before we assume z(t) =0 and v, (f) =0 for ¢ < 0.
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becomes a minimum; T means the time being of interest in the actual case.
Since the integral over the mean value of a function always equals the mean
value of the integral, we can also write

- M(%flw(t)—y(t)lzdt)~ (109)
0

Upon introducing the notation

dw(t—

o5, = b U=D — $ P20

we obtain
T ¢

I’ = M{%Of [Ofg(r, t)dr]zdt}- (110)

According to its definition g (z,t) is a linear and homogeneous function of

the transfer coefficients & and {k;}. The transfer coefficients are continuous
functions of the time. Without further restrictive conditions the minimization
of I? would make all transfer coefficients identically equal to zero and that
is of course an impossibility. A sufficient assumption is the natural postulate
that one of the noise components has the same transfer function as the message.
Then putting k(z) = k,(r) we have

F@)=1—k(2).
In order to obtain the most symmetric form of g (z,¢) we put for a while

= ’UO’
b=k
and thus obtain
A d t—
95,0 = — S hm 220 =0
i=0 T

with the restrictive condition
ko(r) = 1— ks (2).
By the minimization of I let us employ the methods of the calculus of

variation. Thus we replace ki(r) by ki(v) + axi(zr) (A=1,2,...4) and try
to determine the k18 in such a way that

ar
PR

for a = 0 and for all possible functions s (z).*

1 Tt is easily seen that the wuse of different a-values (o) for dlfferent k, (‘r) implies no
further generality in this case.
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If we introduce the notation

4 d
YT, t)= — 2 mlr
. A=0

v (i — ‘L’)
dt
with
1y (T) = — %1 (7)

and further put
¢

G() = fg(‘r, Hdr,

0

¢

re=[yode
0
formula (110) changes into
ol 1 ;
P+adl? + 56212 = M{Tf[(}(t) + ocI’(t)]zdt}
0

where 612 and 6%1% are the conventional notations for the first and second
variation. Hence § 1% = 0 gives

M{fTG(t)I'(t)dt} = 0. (111) -
0

Now it is time again to place the symbol M after the integral sign. According
to the relations given above the random factors of the integrands are

dvu(t—o) dv,(t—1)
do ‘ dt

Thus, putting

M (dv,,(t—a).dv,(t—‘r)

do dt ) = M (0,7, 8),

we have from (111)

t

[aff,

0

%, (0) ko () - My (0, 7, t) dodt = 0.
0

Mk
M

0

Since the sums contain only a finite number of terms, they do not cause any
troubles. Separating that part of the triple integral which is free from the
arbitrary functions x, (o), i.e.

t
H,(o,t) = fé:ok, (t) myy (0, T, t) d7,
0
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our equation becomes

T ¢
#Zofdtf".u(a) H,(o,t)do = 0.
[} 0

The functions my, (a,7,¢), k. (r) and x,(c) are all assumed to be finite and
integrable in the region (0 <¢,7,¢t< 7). Then also H, (o, t) must be finite and
integrable in the same region and we can interchange the order of integration
of the last equation and thus obtain

7 T
’éofx,‘(a)dafH”(a, tydt =0, (112)
0 o

In the actual problem we can be satisfied by considering such functions
#.(0) which are continuous and possess continuous derivatives for 0 <o < 7.
Further we shall have #,(0) = x,(T) = 0. Then, as shown in almost all books
on calculus of variation, equation (112) can be fulfilled for all possible fune-
tions 2,(0) if, and only if, for all ¢ (0=<o0<1T) the coefficients of these
functions disappear, i.e. only if

T T

— [Hy(o, tydt + [ Hy(o,0)dt =0,
. (113)
[Hu.(o,)dt=0 (u=2,3,... A).

Introducing the quantities % (z) and m (o, 7, t) we can write the equations (113)

T ¢
A
ZO dtfk, (r) [m1s (0, T, t) — Moy (0, 7, )] dT = 0,
a 0 »

o
zofd‘fkv(r)mm(a,r,t)dr=0. (u = 2).
a 0

Since k(r) and m (o, 7,t) are supposed to be finite, the integral signs may be
mterchanged, which gives for u = 2.

.vgo{(fky(r)dr(j?mm(a,r, t) dt -l—jk,(r)drjm,,da,r,t)@t} =0

and similarly for 4 =0 and 1. If we put

T
ml“’ (0:. T) = fml“' (0’ T, t) dt:

[, 7]
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we obtain

A

E flt (7) [Mo» (0, T) — M1, (0, T)]dT = 0

~

E k(7)) Myuv(o,7)dT =0 (1= 2).

If we now pass from v, back to z, we have to change the signs of m,, and
M,, in all cases where one of the indices x and v (but not both of them)
equals zero. Thus, in the following we let my,o denote the correlation function

d d d d
between % and 77 instead of, as before, between d_v and dvto If we further
pay regard to the relation between k, and %,;, our equations take the form

f o (1) [ Mo (0, 7) + Mo (0,7) + Min (0, 7) + Moy (0, )] d7 +

MM;

fk (0) [Mow (0, 7) + Mo (0, 7)] d ~f[c%o(o 7) + Mo (0, 7)) d,
0

0

r (114)
fk,, M,y (6,7)dT =
0

flu ) [(Muo(o,7) + M1 (o, 7)]dT +

&M>

v

=fc7)7,‘o(a,‘r)dr (u=2,3,...A4).
0

Before studying the equations (114) in details we are going to check these
equations by comparing them with the corresponding equations of section a).
Then we have to put A = 2 and replace the variables according to the following
schedule:

Section c¢) Section a)
N - u
Vg - v
ky - k
kg — l
o - udt
T -~ v At
t - nAat
T - N At
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From this follows, with the notations of section a),

dz{t—o) do(t — M(Azp—p ATn—p) Oy
moo(d,"’t):M( iio‘ 2. flr T)) : A - Zli;—2

du (t — do(t—1 M(Aup—p Ava—y)  20u»
m12(0,7’t):M( uiio- 2. (dr )) ( A’;2 - -A_L;é

T
1 X 1
moo (0', T) = fmoo (0', T, t)dt = 'A——tngwna,” = Z—*t'A,‘po

o, 7]

r .
M, = fdt ~ § 1
12 (01 T) - Mis (0', T, ) = A Lo A ¢ uv0

[o,7)

Using these approximate expressions we have

N-1 N-1 N-1
Zokv [A;w() + AvyO + A,qu + B,qu] + zolv [Huv() -+ @yvo] = ZO[A;MO + AruO]‘

N-1 N-1 N-1
vzokv [va0 + @va] + golv F;wO, =’=20Hv,u0

(u=0,1,...N—1)

Le. exactly the same equations to which we were led in section a), except
that there we had not assumed ¢ = 0.

The equations of the system (114) are all of the form

T . T .
4 .
S | b(x)Ku(o,7)dr= | Kuolo,7)dT (115)
of of

v=1

where K,, (0, 7) are known functions.
If there is only one source of noise with the transfer coefficients k (z), these

coefficients are obtained from an integral equation of the first kind
T
[k(x) K (0,7) dv = {(0). (116)
0

Some hints concerning the practical solution of this equation will be given n

the next section. On the other hand, in case of more than oné noise component,
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there exists a method by Fredholm by means of which the system of integral
equations can be replaced by a unique equation. The following derivation has
been taken from Goursat (Cours d’analyse mathématique).

If we put
o _
T~
Ir_
T y)
by (v) = b (Ty) = K0 (y),
K (G! T) = Kl“’ (Tws Ty) = sz (.'U, y);

O\'i

Kuo(o,7)dr =T f2 (),

our equations get the form

A
) f (4) K2, (@, 1) dy = £2(2) (117)
nw=1,2,...4).
We now introduce a new kernel, defined for 0<z<<d4, 0<y<A:

p—l<z<<pu
y—1l<<y<w

w=1,2...4, v=1,2,... A).

H(z,y) =K2,(x—,u+ 1,y—»+ 1) for (

Let us further consider a function F (), defmed in the interval (0, A) by the
conditions

Flay=file—u+1) for p—1<a<u (=1,2,...4).

It is evident that the linesz=1,2,...(4—1); y=1,2,...(A4—1) generally
are singular lines of H(x,y). Let A%(y), A3(y), ... k% (y) be a system of solu-
tions of (117). Then we can define an auxiliary function

b(y)=kK(y—v+1)for v—1 <y<v,
valid in the interval (0, A).

From the equations (117) we obtain

4
21 fkg(y—v+ l)ng(z—,u-l-l,y—v+ l)dy=f2(x—,u+ 1)

y—1
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which can also be written

) A
[@W) Hz,y)dy = F (a). (118)
1]

Having once solved this equation, we obtain the solution of (117) by means
of the relations

kv(r)=7€,?(?/)=¢(%+w—~1) w=1,2,...4). (119)

d) Discussion of the solutions. Short summary of results

In the foregoing sections we have assumed that one of the noise components
follows the message into the transmission system. Thereby we succeded in
avoiding the unnatural solutions k,(z)=0 for all ». The question concerning
the solutions of equations (114) or (115) when the kernels are arbitrary func-
tions is a delicate mathematical problem which cannot be treated in the frame
of this paper. This is also by no means necessary for our purpose. As a matter
of fact I* is always =0 and varies continuously with the transfer coefficients
which are always supposed to be finite (in other cases the output would become
infinite according to (98)). It is evident that I® need not necessarily have a
minimum within the range of the transfer coefficients that can be used for
practical purposes, but if a minimum exists within this range, we will find it
with the methods of sections a—c). Generally we have the possibility to judge
of the existence of minimum solutions from the intrihsic physical properties of
the system.

Now a few words about the uniqueness of the solution. The system of
integral equations (115) can be transformed into a system of linear algebraie
equations, as was shown in section a) in case of two noise components, the
number of equations of the last system being the same as the number of
values of the transfer coefficients, i.e. /1 times the number of time intervals.
For each (arbitrarily small) length of the time interval I2 is a positively definite
quadratic form of the transfer coefficients. Thus the algebraic system has always
one, and only one, solution, and this solutlon must approximately satisfy the
system (114).

Probably the reader has asked himself what practical use we could have of
the formulas derived here. I do not think time is wasted by discussing this
question a little. Having once determined the transfer coefficients we have to
construct a transmission system with the properties of these transfer coefficients.
As T have pointed out before it is not necessary to consider the transfer func-
tions, since the system is as well characterized by the transfer coefficients as
by the- transfer functions. In most practical noise problems there are some
parameters allowed to vary within certain limits. These parameters can be
calculated by the method of least squares. Many times the system corre-
sponding to the minimum rms error conditions may not be realizable for prac-
tical reasons, but then we have to do the best we can with the situation. The
way to do this is highly dependent on the special circumstances and can hardly
be argued about in a general way ) !
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e) Some considerations about linear integral equations of the first kind

Some pages now will be devoted to a method by means of which we are
able to give a practical solution of the integral equation

T .
[k(x) K (0,7)d7 = {(0) (116)
0

where K (o, 7) and f(6) are given functions and k(z) is to be determined. This
equation appears, according to what is said in section ¢) of this chapter, in
almost all linear noise problems. I think the method described here can be
used in most practical cases. The only (almost self-evident) restriction is that
K {0, T) must be integrable in the sense of Riemann.

We divide the time (0,7) into N parts with the length A7 and the divi-
sion points 7o =0, 7, ... 7y = T. These division points will be used also for
the variable 0.! In each interval %(r) may be approximated by a polynomial.
Here we assume that the approximation curves are straight lines

ku+1 _ kﬂ .
A T (T TI‘)

(Tn=t=7441; u=01...N—1)

or more conveniently written

k(t) =k, +

Tut1— 7T T—1,
k(r) = ku_ﬂj—r + k1
It is obvious that the'right values of k(r) could be obtained from the ks
by some sort of smoothing process, but since we cannot get hold of this pro-
cess, we should at least have a method by means of which we are able to
determine the maximum difference between the right and the approximate
values of k.. A possibility to avoid this question is to use different sets of
division points: :

(120)

{17l {2":#}’ te

with for instance At =} 147, 347 =3} ,;47, .... Evidently, if equation (116)
has one and only one solution, this process always converges. On the other
hand, if the process converges, lim k, gives a solution of (116). It remains to
consider the case of more than one solution and the case of no solution. We
will be concerned a little with this question below.

Firstly we introduce the notations

Tut1
0(0) = [ T @ ) ar
T
Tut1
b,‘(a)=fr—A—Tl‘K(a,r)dt
T

! Observe that ¢ and © belong to the same time interval.
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It follows
Tu+l
a,(c) + bu(o) = f K (o, 7)dr.
Tu
If, as a special case, the kernel K (o, 7) can be approximated by straight
lines, we have the simple formulas

au(0) = [ K (0,7,) + § K (0, 7ut1)] 47 }
bu(0) = [§ K (0,7,) + } K (0, 7ut1)] A7

With the aid of the functions a, and b, and the relation (120) equation (116)
becomes

Ng:[a,, (6) - ky + bu(0) - kusa] = f (o). (121)
(0 =19, T1 ... TN)

This is a linear system with N + 1 equations and N + 1 unknown quantities
ko, k1, ... ky. Disregarding the case where the equations (121) imply an ab-
surdity for all values of N (then equation (116) has no solution) we have to
consider two possibilities. If the determinant A of the system is 0 for all
Az, equation (116) has only one solution. In the case of 4 = 0 the system
(121) gives an infinity of solutions from which one is to be taken according
to certain side conditions.

We are now going to set up recursion formulas for the computation of a,
and b, for one interval division from another. Hereby it is convenient to begin
with the smallest interval which we intend to consider and from this calculate
the auxiliary quantities for greater and greater intervals. In this way we
obtain, assuming that we are going from 2# to n intervals and putting 7,43 =

= %(Tﬂ + T,‘.-}-l),

Tutl Tutl Tu+1l

= T“_‘H.__.__ = Tutl — =
20y f v der e fth'r
Tu
Tut+i Tu+1 Tut+1
Tu+l ;4+1
= K Kdt =
22nA1,’f dt 227,A det 22nA fthT 22nA f v v
Tutd ﬂ+%
s 1 1 1 1
T — T
= %A—;‘—ﬁf Kdr + ézna,‘ + é2naﬂ+* = only + ’2“21&“,4-{-} + "2“2nby-
T

In this formula 7, means the same time point for both interval divisions.
However, to the u:th point of the great-interval scale ought to correspond the
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2 u:th point of the small-interval scale. As a result of that we write, employing
the same reasoning for b,

alty = 2nl2u + $2n02u41 + 3 2ub2u ‘ (122)

nbuy = Yonbop + 2nb2pt1 + § 200211

This is no place for a complete mathematical discussion of the validity of
the method and the existence of solutions. However, it may be valuable to
give a few notes concerning a special case which has turned out to be of
particular interest. This case is defined by the assumptions 1-3 below.

Firstly we assume that the kernel can be developed in a convergent functional
series of the form! ,

K(o,7)=

Ms

«i(0) - fi (v

i 0

[

(assumption 1} and write

N
K (0,7) =g;0rxi (6)- Bi(z) + exn(o, 7).

If the kernel is degenerated, ey = 0 for N greater than a certain finite value;
in other case ey—0 when N — oo, Omitting ex(7 0), we can only obtain
approximate values of k(r) which will be denoted by £'(r), but if k(z) is
limated in (0, T) (assumption 2), the approxunatxon will become better and better
the more N increases.

If we put

fﬂ V' () dt=a; (i=0,1,...N), | (123)

the integral equation becomes

M

«i(0) -z = [ (a). (124)

1

This relation which must be valid for all values of o2 and all N >0 implies
that there must exist an expansion of f(¢) in a functional series of {«;(c)}, if
not, equation (124) would convey an absurdity. We write

f(o) = zcz %(o) + nn (o )

If ny(c) is not equal to zero for N greater than a certain number N', we.
must assume that gy — 0 when N — oo (assumption 3).

Putting z; = ¢; we commit no error on z;. On the other hand, omitting the
quantity 7y (o) implies a reduction of the right member of equation (116) and
must have influence on the quantities %'(r). The total error of equation (116}
becomes

1 As shown in the theory of functional series this is possible under very general conditions.
? At least within a certain interval. 's
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T
'nN(d)—-feN(o, T)]C(T)d‘l:‘.
0
Since, according to assumption 2, the integral

T

[k@adr

0

converges, the error tends to zero when N —> oo, Then, for N — oo, a solution
of (123) must become a solution of (116.)

As the last step we have to consider the solution &’ (z) of the relations (123),
thereby using the approximate expression (120) and the auxiliary guantities

Tutl
T, i 4
a,,i=f,3i(r)—”i;'—7—dr
o

Tu+l
T —T,
b= [ B0
Tu
One finds

Nl , , .
Zo(““'k” Fbuirkps1)=¢ (i=0,1,...N). (125)
=

Note that these equations are independent of ¢. Here lies a difference with
the equation (121) where the coefficients are functions of o.

Evidently the conditions given above are not enough for the existence of a
solution of (125). As shown in the theory of linear equations there must also
exist certain relations between the quantities a,;, b, and ¢;. However, I shall
not deal with this question here.

In order to see how the method works let us apply it on some simple
equations.
1) For the equation

fk('l,’) dz 5 = 1-—0'arctg£

@+t

the method cannot be used when ¢ = 0, since

1

dr

o + 2
0

does not converge in this case. As a corsequence of that a,(0) and b (0)
become infinite.
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2) On the contrary, in the case

Ulli—‘

fk(r)(a +7%) %

the kernel is integrable in (0, 1). This equation has at least the solution
k(r) = 1%
After some simple calculations we obtain

1
ay (o) = é02A1+T1—2—A13

wyﬂ(a)—i-b,,(a)=(721114—‘::’;411:—}-2‘;,,411'2+(—Zd'z3 (u=0,1,...N—2)

1 L, 1, a1 .3
bN-l(o)—2o A1:+2Ar 3A-r +12AT
Thus the equations (121) become

N-2 : ‘
(%azdr+%§dr3)ko +#§0(O‘2AT+T§AT+2T,,ATZ+ gAT3)]C,/4+1 +

1, Tl ., 1 ) _o .1
+(2a A17+2Ar 341 +12Ar3 k"N 3+5
(60=7%=0,7,...784=1)
which also ean be written
1 N-2 1 0.2 1 .
é}coazAt+ 2 kur(a® + ) A+ Shy(e® + ) dv+ By =5 + ¢
o . 27", 3 6

where
By= sty A8+ S hues (27, 4% + © 473 +k(—1A2+iAﬁ)-
N 1ok AT = ut1 2T AT 6 N 3497 T 1o

If 5, (u=0,1,...N) is assumed to be finite, the remainder expression Ry
tends to zero, when At~ 0.

It is easily seen that the problem has an infinite number of solutions. As
a matter of fact, this appears always when the kernel contains no singularities.
For N =4(47=0.25) four of the quantities k,, ... %, can be chosen arbi-
trarily; the fifth is given by the relation

ky = 2.314120 — 0.548022 k, — 1.163840 k, — 1.367 229 %, — 1.706 212 k5.

It we take the Values of kg, k1, ky, ks that corresponds to the solution k(7) =
=% ie.

o =0, ky =0.0625, ky=0.25, ks = 0.5625,
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we obtain ky = 0.94 (the right value is &, = 1). When N increases, more and
more arbitrariness will be involved in the equations. Now, let N ->o0, ie.

At — 0, and put
1 1
[k(t)dr=ft2df= %
0 0

N-1 1
lim Y k247 ==
Az—>0 u=0 “ 5
Now

1
f]{)(‘t)‘tzd‘r = ;;
0

Evidently this equation has an infinite number of solutions which may contain
an arbitrary number of discontinuities.

Then we have

or

3) To show that the number of solutions will be diminished when discon-
tinuities appear in the kernel we consider the equation

: ’fk('r)K(o, 7)dt =&°
0

with
K (s,7) [0 for 6<%
0,T) =
Ior for o =1
One finds
(%) 0 for 1, <1,
tu(T,) = .
“ 1y A7 for 1,> 1, ie. = T4t

0 for 7,=7,

bu(w) = {

1y A+® for 7,> 1, i.e. = 1441

0 for ,<1,
i1 () + bu(v) = 3v 47% for 7, = Tup1
" vy A7? for 1,> 1411
Thus the integral equation will be replaced by the following svitem of L~

equations
ko + kl = 2

k0+2k1+k2=4
ko"‘2k1+2k2+k3=6
ko+ 2k + - +2ky_1+kn=2N
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Here we can choose only one of the k-values arbitrarily in order to obtain
the others fixed. Putting kg =1 we have k=1 which satisfies the given
aquation. :

f) Some examples of linear noise problems

Example 1. The first example which we are going to study is not directly
concerned with the formulas given in sections a—d) of this chapter, but in
spite of that I think it will be useful for many reasons. We consider the simple
differential equation v
ij+ay+by==x() (126)

where z(f) means a random time function given in the form of a uniformly
convergent Fourier series

2(0) = 34y + 3 4, cos (272” + qbu), (127)

valid for ¢{>0, while ¢ and. b are two constants which are to be determined
in some way or other. For t <0 we put z(t) = 0. L 18 a positive quantity
which may be chosen arbitrarily, If ¢t < L’, z(f) is independent of what value
= L' we take for L. The case z(¢) =0 corresponds to the undisturbed move-
ment. This movement is supposed here to be zero.

We assume that the amplitudes 4, of the series (127) be finite and approxi-
mately normally distributed with the mean values m, and the standard devia-
tions o,. The distributions of the phases @, are supposed to be uniform for
each turn. Thus we have

2n

M cos (2n”+¢,,) =-2—17-Ifcos (M—l—@)d@:O,
0

L L

2n

2mvi 1 2yt

2 - 2 =1

M cos (T+¢,)—2nfcos( 7 +<D)d¢ 1.
‘ 0

Finally we presume that there is no correlation between the different amplitudes
or phases nor between an arbitrary amplitude and an arbitrary phase. Then we have
Mz(t) = L mye

The conditions laid down above can be realized, at least approximately, in many
radio circuits.
Let » and ¢ be the roots of the characteristic equation

s#+as+b=0.

For the sake of stability » and ¢ must have real parts <<O.
According to (74:b) for 4t =10

T qT
k(z) = _L[u . 1]
rq pP—4q
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In the case that we have to consider now it is better not to use the limit
of (74:a) for At =0, because it is a difficult problem to determine the deriva-
tives of the random variables 4 and @, but to integrate this limit by parts.
According to the assumption that z{0) = 0 we then find

y(t) = [z(t—1)dk (D).
0

Introducing the expression of k{z) we obtain

t

y(t)=0fx(t—~r)%;—:§q—rdt.

Since the expansion (127) is assumed to be uniformly convergent, we can inte-
grate term by terra and thus get

t |4

_ Ay [T —e" 2my(t—1) T —ef*
¥ =3 - ——dr +”ZA fcos [———~—L +@p]——~———p_q dr.

The integrals become:

¢

2y (t—r1) pr g _ 2y (&U_’_t .
fcos [——«L +Q5,,]e dr—L——kw sin | —5 + D, _
b

P Qe Y ELL D ]
hvpcos( 7 +Q5y) € [Lhwsm D, kwcos D,

(r=12,..))
where
2xv\2,
byp = (—L) +p

and similarly for the parameter g. Hence

‘40 [qept’_' peqt ]
t) = + 1|+
v(t) 2p9L »—¢
1 £ 2n 1 1 . [27avi
+ 3 A, |5 — v ) —
’P"‘ngl L A (}lvp kq) sm( L i ¢) 198
-———E’:A( )008(2nvt+¢)_ =
P—4qvy=1 L Y
%0 Ty &Pt eqt) pePt qeq‘) ]

— A, — A, — D,
p —q vgl [ L ( vp kvq SIn qj ( k"l’ h"q oo8
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Frowmn this formula follows, according to the foregoing assumptions,

t__ t
My(t) = g pel 1]- (129)
2pq P—q

We now have to study
Dry(t)y=Mly(t)— Myt
This expression will contain the following mean values:
M sin®(c,t + ®D,) = M cos® (¢,t + D) = 4,
M sin (¢t + D,) cos (et + D) =0
M sin (¢,t + D,) sin D, = £ cos 6,
M sin (c,t + @,) cos D, = 1 sin o,¢,
M cos (¢t + D,) sin @, = — } sin ¢,

M cos (¢t + D,) cos D, = } cos o t.

In case of different indices of @ in the two trigonometric factors the mean
values become zero. Thus we obtain

y . qt 2
y(t) = - [qe Pe_ 1] +
q r—q

L 2av\3 1 1)° P__q_)z
*2@ 22“’2“"” [(L)(k hm)“L(m hg) ©

2mv\2 [ePt 2t pePt edt
Y- (,M, )

2my 1 1 27tvt
=07 () (5 a0
+2.27w( 1 __1_)( e’" 2nvt
L \hyp gy
_O_an(p __g_)(e’” __ﬂ)sn27wt_
- L hyp hyq hvp th L

P g\ [peft g 2nvt]
—9 4 — .
(hw k,q) ( hop k) L
It is worth while to observe that notations of mean values and stand?,rd devia-
tions concerning the phase angles do not appear in formula (130). This depends

of course on the special assumptions that we have made about the phase
distributions.
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2y

L

The coefficient of (o} + m;) in (130) can be developed in powers of

which development converges at the same time as

LS S 1[1 _ (2_n£)2+ (22)4_ ]
hop (27”})2-#102 P pL oL

L

. . 1 .
and the corresponding series of 5 Le for
vq

2wy

——pL.<1

and
2w

7 <1.

From these two inequalities follows

Llpl 'V<LIQ|'

v < 27’ 2m

Thus for a given finite L we cannot use the expansions for such values of »
which are greater than the least of the numbers L|p|/2x and L|q|/2x. If
we let L tend to oo, the expansions become valid for all », but then, of course,
we have no use of them. In this case (L = o0) D*y(f) becomes

Pl __ g ol 2 00
Dy - g | LD =S | [t St et |- sy
- y=1 -

The expansion (131) converges at the same time as 3 (of + m3). Let us for
for instance take

A

Tiree #70

with MA =m, DA = o¢. Then

0 ’ . o 1
21(03 +mi) = (6® + mz)glmvz—)z‘

This series is obviously convergent. Employing frequencies up to v = N we
disregard the remainder term

o0

a2, 9 dv. | = _arcthV%_ﬁ N ] 2 2
ro= ot ood) [ = |5~ e e ) @
N
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We now have to consider the mean dispersion during the time (0, T), de-
fined by

T
- %szy(t)dt,
0

but since the calculations are trivial and contain nothing. of interest, I exclude
them here. T only give some notes concerning the limit case L = oo,
The only critical points of I% are p = ¢. In this case we obtain for L = oo

D) = 51+ (pt—1) ' [103 £ (4 mf)]
2p 2 y=1
and

PT opr 3 opr 5 4 _ 211T]
g ¢ € T(l e2rT) .

4
2 __ 9 pT {1 — 2T
If [1+Ze —t—pT(l e? 1) + 3 ip

1
2 pt
1 S 2 s
J508+ X (o +md)|-

2 y=1

This expression has obviously no minimum, for I? -0 for increasing {p|. It
is easily seen that this statement is true also for p£¢. The more remote the
roots are situated from the origin and from each other, the less D?y(¢) and,
since D?y(t) >0 for all ¢, also the rms error I becomes.

Example 2. In many noise problems the derivatives of a random function
appear at the same time as the random function itself. Let us for instance
take the equation »
§+ay+by="rkz(t)+ kyz(t) (132)

where the left member is the same as in example 1 but where the right member
is a linear function of the disturbing function and its first derivative instead
of the disturbing function alone.

We are going to prove that the probability distribution of

2(6) = ky2(t) + ka2 (t)

is of a form very similar to that of z(f), when z(¢) is distributed as z(t) in
example 1. Assuming that

Qavie
L

where the amplitudes B, are finite and approximately normally and the phase
angles y, uniformly distributed and that

2 () = %B‘, + 213, cos( + ‘P) (133)

() = éAo + 3.4, oos (2 ’2” + qs,), (134)

its distribution being unknown, we must have the identity
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Qi

fl

%A0+2Avcos( + @v)
=1

X 2yt ‘;"vakl . [(2mve )
+v§=:1k2B,,cos( 7 +’I’,,)-—Z—L—B,,sm( i3 +T,,)

r=1

fl

DO
e

This identity can also be written

1 & 2avt & . -, 2avt
QAO +v§1A,, cos D, cos T ——V;A,, sin @, sin =
. 1 & ‘2 vk 2mvi .
=, k +,§1B” (k2 cos ¥, —= sin . ) cos
it . 27y ik . 2mvt
ngy (k2 sin ¥, + —— 7 cos v, ) sin —
and can be satisfied only if
4o =k By

Avcosdi,:(kzcos‘l’y— n;klsn?lf) , (v=1)

L

4, = Byl/ 2 (2 n k1)2 (135)

which proves that 4, and B, obey the same distribution law, i.e. they are both
approximately normal. If the dispersion of B, is denoted by s,, we have

A,sin¢,=(k2sin?[’,+ y”klcosT) , (v=1)

From this follows

. ;
ol = [kﬁ +'(———2’”’k1) ] (136)
L .
If we introduce the auxiliary quantities «, and g», defined by
0y COS &, = _i___
]/k (2 Y kl)
2 L -
2my ’Cl

o, §in a, = 5 k
l/lc”+ AL

we obtain
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o =1

2avk
Lk,

tg o, =

and
cos @, = cos (¥, + a,),

sin @, = sin (¥, + «,).

It follows that if ¥, is uniformly distributed, so is @, and vice versa.
For the rest the reasoning is the same as in example 1.

Example 3. As a third example we take the differential equation

§+ay+by=a(t)+ () (137)
where z(t) means the time function of a “message’” and v(t) the time function
of the noise; a and b are two constants which are to be determined in such
a way that the effect of the noise on the message will be as small as possible.
We put x(0) =0, v(0) = 0. Both the message and the noise may be given in
the form of uniformly convergent Fourier series

x(t)=1A0+ EAvcos(2Mt+¢,), (138: a)
2 y=1 L
1 & 2mvt

v(t) =5 ap + 2, ay cos + @ (138:b)
2 r=1 L ]

where L can be chosen arbitrarily (>0). We assume that the amplitudes be
approximately normally distributed, while the distributions of. the phases may
be uniform. Further we presume that there is no correlation between message
and noise or between amplitude and phase for each one of the two signals
nor between different amplitudes or different phases, in other words, that there
is no correlation at all. Finally we put

MAO = Mao = 0, IMA3= Mag= O.
From the above assumptions foilows
Maz(t)=Mv(t) = 0.

As in the first example we do not use the derivatives of the signals. In

the formulas of VI:c (A = 1) we therefore replace g—@—%—;—a) by. z (¢ — o) and
dv(dt%r—r) by v(t —7). Instead of that we have to take the derivative of k(%).

A_part from these modifications we use the same notations as in VI:c. Thus
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oo 9 .
Moo (0,7,0) = M [ — o) a(t—)) = | 3 M A cos > 2T =0
Moy (0, 7, t) = myo (o,7,8) =0

=) 9 L
M (0, 7,8) = Mv(t — o) v(t —7)] %ZW@ GOSJL’L(LTE(L)J

From this we see that mgg (0, 7,t) and my (0,7,1) only depend on 7—¢. The
series are uniformly convergent.

Since the correlation functions m (o, 7,t) are independent of ¢, it is easy to
determine the. functions M (o,7). We find

Man(0,7) = | (T — [0, 3 1 42 cos 272 =)
2 v=1 L
WM (G: T) = 3}710 (0', T) =0
M (0, 7) = }(T”_[U:T])gMaf' cos 2¥ (T —0)
2 p=1 L

In this case (4 =1) the system of integral equations (114) is reduced to
one single equation

T
[ K (0,7 k' (x) d7 =} (o)
0

of the type studied in section e) with

K(o,7) = [at]EMA§+Maf)cosgiw(£——o)
and

fo) = (T—~o)2MA§-cosgnLvG-
r=1

The kernel K (o,7) is apparently symmetric and has all its singularities on
the line ¢ = 7. It is convenient to write it in the form

1) = S0 l1(0) fr1 (1) + 22(0) fra(v)]

where
= MA2 + Ma?
o1 (0) = (T — o) cos 2avo
L
%2(0) = (T — o) sin 222°
L
, for vy
_ COSvar
ﬂ”l(r) L
Boo(t) = sin 2721} i
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2nve
1{0) = cos —
. 2@vo
ev2(0) = . sin
L >
9wy T for t =0
Bo1(t) = (T — 1) cos
L
B2 (t) = (T — 7) sin %’ﬂf
L
If we further put
yo(0) = (T —o) M A2- cos27}j}0

and remember that the necessary conditions for integration term by term are ful-
filled, the integral equation becomes

T
S0 [ [01(0) (@) + m(0) fa(@IF () d = Sprlo).  (139)
0

This equation can be solved by the method of e). Thus we put

Tu+1
T, — T
Cuvi = f Zetl 2 ﬁvz )
'[" .
(1=1,2)
T+l
T
. d,“i = f i )dr
Tu

For facilitating the solution we further introduce the auxiliary quantities:
C.'“'(G) = %y [Cur1 i1 (0) + €ure “Vz(a)],
Dyy(0) = # [durr ow1(0) + dyya te2(0)].

The equation (139) becomes

N-1 oo
z [ 2 G) + ku+1 z D;w (U ] E y., (140)

pu=0

If in this equation we put ¢ = 74, 7;, ... T§, we have a linear system with
N +1 equation and N + 1 unknown quantltles ko, k1, ... ky.
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VII. Some problems in the theory of autocorrelation functions and
spectral densities

a) Random errors in autocorrelation functions and spectral densities
calculated from an empirical material

In the foregoing sections we have been concerned only incidentally with auto-
correlation functions (this function is defined in a remark in section V:b),
whereas spectral densities have not yet been comsidered in this treatise. The
theory of these concepts is treated very carefully in the servotechnic literature®
and will not be dealt with here. However, the errors committed by using
empirical material by the computation of autocorrelation functions and spectral
densities seem not to have been studied so much.

Autocorrelation functions

Suppose that the time function y(¢) has been observed for 0 <¢< T and
that the result is given in the form of an oscillogram. Further we presume
that the process can be considered as stationary. Then a great deal of informa-
tion can be obtained. from the autocorrelation function

T

R(7) = l_r)n ~—1—,fy(t)y(t+r)dt. | (_141)

-r

If T is not too small and = not too large, we can use the approximation
formula

T—v
R() ~ Ro(s) = 7— fy(t)y(t +7)de (142)
or ’
: 1 N—m
R(zr) = Ry(m) = j— Z:O Yn Ynim (143)

where ¥, = y(n At) = y(t). We are going to estimate the error committed by
the use of these approximation formulas. Thereby it is always assumed that
the mean walue of y{t) v zero. Of course, this does not mean any loss of
generality. ‘

By the calculation of Ry(m) instead of Rr(r) we commit a computational
error E Ry (m), depending on the fact that the interval A¢ has a finite length.
This error can easily be estimated and will not be considered here. It is more
difficult to master the random error represented by the standard deviation
D Ry (m);

Dt = it (Zyamin) = [ 22 (20 y"“")]zk

! See for instance the treatise by R. S. PmrLires in “Radiation Laboratory, Series 25°°.
Many of Phillips’ notations are used in ‘this chapter.
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Since the process is assumed to be stationary, M (YnYn+m) is independent
of n. Thus ’

MCY@%M)=W—m+URm»

n=0

When computing M (3 4 yn+m)® we have to consider the correlation not only
between two quantities #, and y,im but also between the products ¥, ynim
and Yntp Yutp+m. Let the last correlation function be denoted by R (m, p), i.e.

R (m, ) = M (Y Yn+m " Yntp Yntp+m) = R (p, m).
Then

1

2 = ———
D Ry (m) N—m+1

{R (m,0) +

N-m
+23 (1—N—_1;n~ﬁ)R(m,p)‘—(N—m+ 1)[R(m)]2}~ (144)

As a limit for A¢ =0 we obtain

Tz

DZRT(T)=T2_IOf (1—T‘—_T) [R(v,t) — R(1)}] dt. (145)

The formulas (144) and (145) will now be applied to a couple of hypothetical
distributions.

y (t) normal (0, ¢). In this -case R (m,p) can be expressed as a function of
o, R(m), R(p), R(m—p) and R(m + p). This follows from the form of the
frequency function of the combined variable {¥n, Ynom, Yntvs Yntpim}:

1 2 2
? (61, b0, 5, ) = (—»—«M; s e
where
c* R(m) E(p) R(m + p)
D B (m) a® R(m—p) R(p)
R(p) Rm—p) o R (m)
R(m+p) R(p) Rm) o

and D,, means the minor of the u:th row and the »:th column of D.
In order to determine R (m,p) we introduce the characteristic function

g(ul’ Uy, Ug, u4) = M(ei(“151+"'+ua54)) — e—«}[a‘u12+-~-+2R(m)u1ug+~~-].
One finds
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- 09 _ 2 , — | 2
VR(m,p)— (0u1 auzm)y,=o = R(m)* + R(m + p) R(m — p) + R(p)

v=1,...4
and specially
R (m, 0) = 2 R(m)? + o>

With these expressions we have

DzRN(m) = N#H{R(m)z + g +
N-—m
+23 (1 - N—_’ﬁ) [R(m + p)R(m —p) + R(p)z]} (146)
and
T—v
DRz (v) = Tirf (I_Tt—r) [R(z + ) R(r — ) + R(t)*)dt.  (147)

0

Modified normal distribution. Many times the distribution of ¥ (t) is not exactly
normal but can be represented by a frequency function of the form

- L uepg
oV2n

1(8)

where P (&) is a polynomial in & D? Ry (m) can also then be given in terms
of the autocorrelation function. Firstly, the frequency function of the combined
variable can be written

f(fl’ 52’ E3a ‘:&4) = (’)(517 527 53, 54) Q(‘El’ §2> 53: 54)

where Q(EII, &5, &3, &4) means a polynomial of &, &,, &, &. The characteristic

function of {&,,&,, &, &} is derived from ¢ (us, uy, us, us) by operations of

differentiation, multiplication by constants and addition. Making further the
Py

operation =————————
4 0uy Oug Oug 0uy

we obtain R (m, p). If for mmztance

Q = 0151 + 0/252 + a3§3+ (1454 + bfﬁfggg,

‘we have
0t 13 ) 1 012
R o T T (Rt L B e LUK
16
= bm (fOI‘ Uy = Ug == Ug = Uy = 0)-

‘There is no point, in this case, to give a compact expression for D? Ry (m).
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Spectral densities

We define the spectral density of a time function y(¢) as

G(f) = Jim 7 ldz()F (148:3)

where Ar(f) means the Fourier transform of the function

yT(t)={y(t) for —T=<t<T

0 elsewhere
le.

Ar(f) = [ yr(t) e it dt. (148: b)
In the case of G (f) being infinite at a frequency f; one usually puts
M. 1
6 = | fim s las gl |80 —1 (159)

where 6 ( ) means the Dirac delta function.
One of the most important relations states that

hm -—f[y t)]zdt-—fG(f)di
In the case of the ergodic hypothesis we obtain

M@ =[G adf.
0

Further, between the input and the output spectral density exists the simple:
relation
Go(f) =Y @ajf)Gi(f)

Y ( )} being the transfer function of the system.
The spectral denmty can be derived by determining the autocorrelatlo'l fune-
tion R (r) and then using the well-known formula -

G(f)= 4f°°R(r) cos 2xnfrdr.
0

This way, however, is not appropriate, if R (r) converges slowly, when 7 co.:

Besides, in most cases it is difficult to judge of the convergence of R (). There-
fore it seems preferable to start directly from

! It is easily shown that lim R(t) = [My]%
>0
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T
= lim -—1‘ fe“z’”” dt
T—)oo]
=

and omit the limiting process. Further the integrals are approximated by sums.
Thus the following expression will be studied:

Gy (f) = 2\2] ftl [( %y, cos 2nft,)2+ (%yy sin 2nf?v)2]

where ¢, = (v — Z;_f) At. We find easily

2 AL [X N N_m
Gr (f) = V1 1[zy,,+221 Z Yy Yprm COS 2nfmAt] (150)

and

MGwx(f)y=206>At + 4 At ﬁ ( )R(m)cosanmAt. (151)

. N +1
When At->0 one finds

T
MGr(f) =4 | {1—2Z)R(z) cos 2afrdr. (152)
fli-3

. For the computation of M [Gy(f)]> we introduce the autocorrelation function

C(m,p,q)=M (Un Yntm Yntmtp Yn +m+p+q)

related to R (m, p) by
O(m’ p— m, m) = R(m5 p)'

Then the following powers and autocorrelation functions are to be considered.

Power C-function - R-function
y! C (0, 0,0) R (0, 0)

v e Yum C(0,0,m) Not existing

Y Vo ((m=1) C (m, 0, 0) »
Volhom C(0,m,0) ~~ R(m,0)=R(0,m)

Zl,% Yrmburmep C (0, m, p) Not existing
YV mYprmip ( (M P=1) C(m, 0, p) »
YuYusmYptmin C(m, p,0) o
YeYurmYptmip Yutmipiq C(m, p, q) »

(m,p,¢=1)
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In the case of a normal process we have
C(m,p,q) = R(m)R(q) + R(p) R(m + p + q) + R(m + p) R(p + q). (153)
The mathematical expression for M [Gx(f)]* does not look very fascinating.

Nl e (HE=C10,0 0)+2§ 1—ﬂ)o(o m,0)(1+2 cos? 2 fm At) +
4A 2 N » Y ~. N+1 ) 3

N
+4m§=:1( N+1)[C(O0m)+0(m00)]cos2nfmAt+

1 N—m

42 > ( mip)[COmp)cos2nprt+

=1 p=1

+ C(m, 0, p) cos 2xf(m + p) At + C (m, p,0) cos 2nfm At] +

N+1
+ C(m,0,p)cos 2afm At-cos2nfp At +
+ C(m, p,0) cos 2xf(m + p) At-cos2xafp At] +

N—1N-m m+p
8y ¥ (l— )[C’(O,m,p)cos2nfmAt-cos2nf(m+p)At+
m=1 p=1 .

N—-2 N-m—1 N~

+8Y X Z (1—%)C(m,p,q)[cos2nfmdt-cos2nqut+
m=1 p=1 g=1 J

+ocos2af(m+ p)Adt-cos2xf(p+q) At +
+cos2nf(m+ p+q)Adt-cos2xfpAt]. (154)

Generally, however, only those terms for which m, » and ¢ are all small have
any importance.

Since it is a tedious procedure to compute DGy (f), We try to avoid, if
possible, this computation. As a matter of fact some information can always
be drawn from M Gy (f) by comparing the curve of this function with the curve
of G (f). If for large N the two curves do not differ much from each other,
we have reasons to believe that the values obtained for Gy (f) are tolerable.

In practical problems we do not know the theoretical autocorrelation func-
tions. If we then use the empirical values of these functions, the error formulas
will give more or less wrong values — how wrong can never be said exactly,
as not even a probable value of this new error can be given, since we cannot
arrive at the probability distributions of the computed quantities by studying
a time series during a relatively short time. By prolonging the observation
time gradually we obtain more and more correct values only if all the influencing
circumstances are unchanged, but about this invariance we can never be absolutely
convinced. Thus the judgement becomes more or less a matter of experience
and common sense.

Let us now study the limit of M [Gx(f)}® for 4¢—0, i.e. the value corre-
sponding merely to the abbrev1at10n of the observation time (T instead of oo).
One finds

232



ABKIV FOR MATEMATIK. Bd 2 nr 8

T—& T—&-9

MGz ()] = 32fd§fdnf dc( — £ om0

‘[2cos2nf&-cos2mfl +cos2mf(§+2n+ ). (155)

If C always (or at least in a considerable part of the observation domain)
is =0, we have .
T—§—n

MG () 7f Ej—fnf de (1= 58 060 = M G2 OF:
A

Generally the factor 1 —(&+ % +{): T has only a little influence. Thus we
obtain a rather good conception of the error by employing the formula

M[Gr (0 ff O n t)dEdndt (156) .

@)

where the integral is to be taken over a region bounded by the planes through
the points (0,0,0), (T,0,0), (0, T,0) and (0,0, T).

For further simplification of the computational work we can consider a
series of concentric spheres with the origin at (0,0,0) and denote the mean
correlation at the distance v from the origin by R(r). We then find

fffosn, YdEdndl ~ f‘*’”

(€2)

and
7

MGz O ~ 115,0 f 2R (7) dr. (157)
0

It is to be observed here that R has the dimension of C.

If the studied distribution is approximately normal, the triple integral of
(155) is by means of (153) transformed into a sum of double integrals.

By carrying out calculations of that kind studied above it is a good help teo
dispose of an autocorrelator, i.e. a device which automatically evaluates the
correlation coefficients. :

Numerical examples

We consider a stationary and normally distributed random process with the
mean value 0, the standard deviation ¢ and the autocorrelation function

R(z) = 6% e 27 cos 40 7.

I have chosen 47 = 0.02 sec, N = 100. Thus 7 = 2 sec. In this case the series
of (146) converges very rapidly and using the expression
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Rygo(m) = 6% e 0487 cos 0.8 m
we have
' DRy (0) = 0.17 6%,

DRy (5)=0.12¢6%
DRIOO (10) = 0.13 02,

.D RIOO (100) = 1.00 0'2.
The spectral density corresponding to the theoretical autocorrelation function
given above becomes

0

1 !
@) = 4fR(T) cos 2nfrdz — 48 0* [242 L@l a0 T2t (2nf—40)2]'
J ]

" In the following table G (f) for some values of f is compared with the corre-
sponding values of MGy (f) and MG (f) calculated by means of (151) for
At = 0.02 sec. . ‘

f(eps) @(Hle® MG (f)lo® MG (f)lo®
0 0.044 0.048 0.047
4 0.070 0.073 0.073
6 0.090 0.091 0.093
8 - 0.076 0.079 0.080

In this case, the convergence of R(t) for v — oo being very rapid, the greatest
part of the error comes from the choise of the mterval At. Thus the choise
of T = 2 sec is adequate.

As a simple example of the calculation of M [Gx(f)]* we use the formula
(157) thereby assuming that R(7) can be written in the form

R(z) = Ke 1%l cos B 7.
One then finds

M[Gr(0)P = *(—12%{2&(“2_3,32) —
e TaT? (o + 22+ 2T (a* — BY) + 2 (x> — 3 8%)) cos BT —
— BT (a2 + B2 + 4aBT (a2 + B°) + 28 (32— p2)) sin B T1}.
p =0 gives )

M[Gr(0)]2 = 1;0 Ko T (o272 4 20T + ). i

For the values used above (T = 2 sec, « = 24, K = 0%) the last formula gives
MG, (0)F = 0.011 ¢%
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b) Spectral densities for small time intervals. Instantaneous spectral
densities

We will now make some remarks concerning spectral densities for small
time intervals.

We assume that the servo circuit can be described by a system of linear
differential equations with constant coefficients the solution of which may be
written

o0

z(t) = Z Y (t— ) W,(s)ds (158)

where y,(f) are the different ‘“‘signals” from which z(¢) is built up and W, (¢)
the corresponding weighting functions. These weighting functions are related
to the transfer functions Y,(f) by the wellknown formula!

= [ W) e=2mitt .
J |

We now introduce the Fourier transforms

T—s
[ ot +u)e 271" du = g4, (f, 1] —s). (159)

—8

For s =t = 0 this formula gives the ordinary Fourier transform.
Taking the Fourier transform of (158) for the time interval (¢, ¢+ 1) we
obtain

A (f,t]0) = é: fW,,(s) e_z"i‘fsds-TA,,(f, ¢/ —s).

If T is small, the formula (159) cannot be expected to be. representative for
the whole process. But instead of choosing a longer observation time we can
consider other time curves in the same interval. Thus we have to study the
mean values of the Fourier transforms (159)

T—s

M4, (f, t] —s)] = o4, (f, t] —s) = f Fo (t + u) e 2710 gy,

—8

It follows

A (f,t/0) = Z W, (s) e~27itsds- p4, (f, t/—s) : (160)

Let us for finite T-values define the spectral densities as

2, -
G, t] ) = 2|2 (f, el —) P (161)
! For the sake of simplicity I write ¥ (f) instead of Y(én ih-
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and the cross-spectral densities as

_2

TGI“’ (f’ t/ _S) T

rdu(fyt) —s) 24, (f, t/ —s). (162)

This new definition of the spectral densities is in many respects more natural
than a definition that is based on observations during an infinite time.
If the quantities 74, (f,#/—s) are independent of s and ¢, the integrals in

(160) become B
Y, (f) rd, (f)-

In this case, by taking the square of the absolute value of rA(f) and then
dividing by 7'/2 we obtain

16 (1) = SV () 26.() + S Y2 Yo () 16 1) (163)

In the following we write AT instead of T. When AT —0, we have
ATA"(/‘: t/'—s) = O(A T)’
under the condition that My, is finite in the interval in question. Then

ar@ (f, t]—s) =0(47T).
It follows that :

AiT- a1Gy (f, t] —s) = ZET—ZATJ: (. t] —8) - a2 Ay t] —s)

tends to a limit when AT ->0. This limit may be defined here as the in-
stantaneous spectral density and denoted by g, (f, ¢t/ —s).

In the following we have to consider the case where A and A are referable
to different times. We therefore introduce the quantities

g (f, t] —u, —v) =A1Tir£0—}T~2 ard? (f, t] —w) - ard, (f, t/ —v). (164)

Similarly the instantaneous cross-spectral densities are given by

i (8] =, —0) = lima AiTz ar Al (f, tl—u)- an Ao (fy o] —0).  (165)

The spectral densities defined in this way are generally complex.

Knowing the instantaneous spectral densities for the different input signals
we can put up an expression for the instantaneous spectral densities of the
output, but, of course, this expression will not have such a simple form as (163).
We find

=2 f f W,,(u)W,(b)e-2"9‘f<“+v>gw(f, t] —u, —v)dudv.  (166)
u,vo 5 .
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It is difficult to see how to have any practical use of formula .(166), the
most important reason for that being the impossibility to get rid .of the
weighting functions. One way is of course to define two mean durations, i

and @, such that
)= 2Y.() Yolf) g (1, t] — i@, —),
ll,‘V
but this way is not practical, because # and # are generally depending on ¢.

In connection with the problem treated above it is of interest to consider
also the instantaneous autocorrelation functions defined as the ensemble averages
of the products ,(t) v»(t + 7). Thus

. Buv (v, 6) = M {yu(8) -9 (¢ + 7)].
Then it follows immediately from (158)

R(t,t) = f W, ()W, (v) Buy (v +u—v,t—u) du do. (167)

VIII. On the influence of noise on the quantity of information

a) Derivation of a mathematical expression for the quantity of information
in linear systems

In this chapter the influence of disturbances on the possibility to send
messages through an information channel will be dealt with. This problem does
not belong to the servo theory in the general sense but is intimately connected
with it. If we for instance have to steer a rocket from the ground, informa-
tion must be sent to the rocket in some way, and this information is always
affected by noise. The steering is assumed to be carried out according to the
given orders by means of a servo system.

The mathematical aspects of the theory of information have been treated by
SEHANNON, GABOR, TULLER! and others. However, unique mathematical defini-
tions of the basic concepts seem still to be missed. Further, only rude ideal-
izations have been objects to treatment. In this chapter an attempt is made
to restrict the idealizations in some respects, thereby as much as possible
following the conceptions which have been accepted by the authors men-
tioned above. .

We consider here the transmlssmn of messages only through that part of an
information channel which can be assumed to be at least approzimately linear.
In what concerns the noise this is often the most important link. The message
1s supposed to be given in the form of a time function y(¢), defined for 0 =¢=<T.

Y SmANNON: A mathematical theory of communication. Bell Syst. Tech. J. July 1948,
October 1948. — SHANNON: Communication in the presence of noise. Proc. IRE. Jan. 1949.
— GaBoRr: Theory of communication. J. IEE. Nov. 1946, — TULLER: Theoretwal limitations
on the rate of transmissions of information. Proc. IRE May 1949.
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For §tationary processes this time function can be uniquely represented by its
Fourier series or, if we are not interested in phase relationships, by the corre-
sponding spectral density function

G2(f) = 214z (D]

where Az (f) denotes the Fourier transform of y (¢);

T
Ar(f) = [e 21ty (o) de.

0

We assume that only those frequencies lying in the interval 0 < f=/f, will
be used for the transmission of information.

The greater T and f, are, the more information can be transmitted. It is
natural to assume that, by unchanging noise conditions, the quantity of in-
formation is proportional to T, but it is not as natural to presume that the
same is valid concerning f,. If we say that the quantity of information which
in the optimal case can be transmitted is proportional to the length of the
frequency band, the pronouncement is, of course, correct, but as soon as noise
appears, we ought to have a new formulation. Let us for example consider
the case where the spectral density of the message is represented by the curves
of fig. 12 @) and b). ‘

If the information is measured by the amount of Gz(f), it is evident that,
in the case of noise independent of the frequency, the relative effect of the
noise will be less for the frequency band (0, f») than for the frequency band
(fm, 2fm). Thus the quantity of valiuable information is greater for the low-
frequency band than for the high-frequency band. On the contrary, if the
information is obtained by the change of Gr(f), the value of information is
the same for all frequencies.

From this example follows that it depends on the coding how the quantity
of information shall be measured. We therefore introduce a weighting function
V (f,t) measuring the ability of transmitting information at different frequencies
and different times.! Furthermore we put

Im

: T
Quantity of information H={atfct,0V{df.
0 [

For stationary processes V (f,t) is independent of time (=7V (f)). Concerning
the original messages we put V(f)=1 (no disturbances). Then the guantity
of information can be written ‘ ‘

H = CT fm (168)

where ¢ is a quantity depending on the coding. But ¢ must also depend on
the greatest possible amplitude of oscillations (the quantity of information must
increase at the same time as this amplitude). As shown by TuLLER (Proceedings

! For the sake of simplicity V has not been made dependent on the amplitude, but it
is easy to extend the reasoning to this more general case.
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a) A ST(S)
Undisturbed message
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Disturbed message

Y
-~

Sm

Fig. 12.

of the IRE May 1949) ¢ can be made arbitrarily large. If we choose a finite
value for ¢, this is caused by practical and economic not by theoretical reasons.

If no disturbances at all occur, the quantity of information goes unchanged
through the channel. Our task is to determine the influence of disturbances.
Another important problem is to construct the channel in such a way that
the loss of information will be reduced as much as possible.

To every point in the transmission system exists a time curve corresponding
to the message in question. Beside these time curves we consider the corre-
sponding spectral density curves. The following notations will be used to define
the spectral densities.

Gy (f) specﬁral density of message
Inputs: | G,(f) spectral density.of noise (v =1, 2, ...)
Gy (f) cross spectral densities (u 5= »)

Output: =z(f) spectral density of the outcoming message
Error:  &(f) = [Go(f)—2())|

The spectral densities are to be calculated for finite time intervals. It is
assumed here that all information or loss of information is contained in these
spectral” densities.

Knowing the probability distributions of the inputs and the corresponding
transfer functions Y,(f) one can derive the probability distribution of z(f)
and ¢(f). In fact, in linear transmission systems z(f) becomes a linear function
of the input spectral densities the coefficients of which in an éasy way are
determined by the transfer functions. If there are n noise components, we
have according to (163)
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20 =ZIV0F 60 + STY20 L) Gus ()

where Y means a transfer function and Y its conjugate.

As is said before the quantity of information depends on the magnetude of
the largest amplitudes. The relation between amplitude pr(f) and spectral
density Gz (f) for finite T-values is expressed by the formula

or(f) = ]/% Vr (.

v
T
(»=1,2,...). In the following 7 will be omitted as index and replaced by
indices with other meanings.

In order to derive, in a rational way, a mathematical expression for the
quantity of information in the case of noise we consider a coordinate system
with three dimensions (¢, f, o) where ¢ means the time, f the frequency and ¢
the amplitude. The phase will, for the present, not be employed as a source
of information. In accordance with the foregoing ¢ is assumed to be able to
vary from 0 to T and f from 0 to fm. The amplitude g is supposed to be
limited upwards by a quantity depending on f and ¢, 0 < gm (f, ¢). The space of
variation is divided into small parts by the intervals AT, Af, and Aom.
These intervals will be more carefully defined below.

Two neighbouring information lines in a frequency plane (f = const.) can be
looked upon as representing different messages only if the difference between
the amplitudes for a certain time A7 amounts to or exceeds the noise ampli-
tude for this time. Thus we have to determine the probability distribution of
e(f) during the time intervals (¢, t + A4 T). By stationary processes this distribu-
tion is independent of ¢. On the contrary, the length of AT must always
affect &(f) and also its distribution. During the intervals AT all signals are
supposed to be stationary. The division into the intervals” AT furnishes a
possibility to take into consideration the fact that different parts of a message
may be affected by noise in a different degree. ‘

Let the statistical frequency function of &(f) during the time interval
(t. t - AT) be denoted by w(e; f, ¢, AT), ie. ‘

The amplitudes of the Fourier coefficients are obtained by putting f=

ple;ft, AT)de=Ple<e(fl<e+de for t=t=<t+ AT}.
Further we put

i = |/ ZVemid.

The probable number of distinguishable information bands! for every time
point in the interval (¢, t + A T) becomes?

! To speak about information lines would, of course, be inadequate. ]
2 There exist, of course, many other ways to introduce the influence of the noise on the
quantity of information.

240



ARKIV FOR MATEMATIK. Bd 2 nr 8

Zp ()

Ven(f)
AT)de
Ve ylesft, A1)
which conveniently can be written
e (7) Vs (N, a7

The number of information bands will, according to well-known reasons, be
given in logarithmic units. If we use binary units, we have to take logarithms
with the base 2.

Let us assume that the weighting funetion ¥V (f, ¢) be constant in (A fn, AT).
This assumption does not imply any loss of generality, since 4 fn can be taken
arbitrarily small. In the case where the information is concentrated to discrete
frequencies (Example: The Fourier coefficients), one can consider A4f, as the
difference between the frequencies employed.

The quantity of information which can be transmitted over the region
(AT; Afr) may according to the above principles be defined as!

Ve f)Jt AT}'

As‘ i1s already noticed the frequencies have to be weighted with a convenie?nt
weighting function V (f;¢), depending on . Hence the total quantity of in-
formation becomes

H=¢ ATAmeZV(f t){log Vem(f) + logM[

cAT Afm{log Vem(f) + log M[

] 169
Ve (f) ]t anf (169

The derivation of formula (169) is in a few words based on the following
train of thought. All signals (messages as well as disturbances and covariation
signals) are for each time interval AT coded as spectral densities. The pro-
bability distributions of these spectral densities are put up. The information-
and noise-channels are defined by the transfer functions Y,(f). The capacities
of these channels are assumed to be limited in such a way that neither the
amplitudes nor the- frequencies are allowed to exceed certain values. Generally
the maximum amplitudes depend on the frequencies. Finally, to the parts of
a message transmitted at different frequencies have been given different weights
defined by the weighting function V (f;¢). The weighting function ought to be
determined with respect to the method of coding and the kind of noise.

In the case of all processes being stationary the formula (169) changes into

— 1 |
. ) ) 170, 170
cT Af ;V(f){log Vz (f)+logM[Va(f)]AT[ (170)

b) Determination of the maximum quantity of information

An extremely important problem is to construct the information channel in
such a way that it transmits the greatest possible quantlty of information per

1
¢ is here a calibration factor. |,
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unit time. From purely mathematical point of view the task is to determine
the transfer functions Y,(f) so that the expression (169) or (170) becomes
maximum. This is equivalent with maximizing the sum

Vzmm]
J = V [ 171
ZZ (; ) Ve ) (171)
or

= ’ Yf’ﬂ@]

J—sz(f)logzlz[ 2 dar (172)

respectively. Hereby we can assume that J > 0.
In practice it will be most convenient to let the form of the transfer func-
tions be given and to determine in the best possible way some parameters

T L VR
Let us now assume that information be transmitted only for discrete fre-
quencies: fi, fs, ... fm, but that the number of these frequencies can be made

arbitrarily large. Looking at formula (171) or (172) one easily finds associa-
tions with R. A. Fishers “maximum likelithood-method”, though the definition
of the concept ‘‘likelihood-function” in the present case must be modified in
several respects. It is easy to give an interpretation of Fishers likelihood-
function in terms of information theory. However, I do not intend to use
Fishers reasoning here.

As an example we are going to treat the case where all input spectral den-
sities are approximately normally distributed for every time interval A7 and
for all frequencies.! (That the distribution cannot be exactly normal is evident,
since the speetral densities are always positive.) Then according to (163) also
&(f) becomes approximately normally distributed. Further we assume that only
one parameter (o) can be varied and put

Me(f) = my(a) (always > 0),
"De(f) = o7 ().

Generally we do not know the mathematical expressions of my and o;. Then
these quantities must be assumed to be given by a table of numerical values
for different values of f and «. For every pair of / and « we have

(8—7”;)2 -]
1 2 o2 1 / | Ve
M — fd ay———— — e ”)d
[Ve(f)]AT oﬂ/“flf N Vamg J Ve :

where u = m;/o;. In the easiest case u is independent of «. This condition is
realized, if ¢(f) changes into ke(f) (k= constant) when « changes into another
value, say «’. Then we have to maximize the sum

1
vy l —————
vz V(5) log Va/”(oc)

! Further we assume that P {e(f) = 0} be practically zero.
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(under the assumption, of course, that this sum is positive) which is the same
as minimizing

L) = 2V (f) log o7, (=). (173)

Hitherto we have used two error-reducing methods: the rms method treated
in chapter VI and the maximum information method considered in this chapter.
Concerning the rms method there is no fundamental difference between con-
sidering the spectral densities and the squares of the time functions. But the
rms method deals with the standard deviations themselves, whereas the maximum
information method considers their logarithms (in the last case). Thus by the
former method we have given much greater weight to the greatest amplitudes
than by the latter one.

IX. Servo circuits defined by linear differential equations with non-
constant coefficients containing random parameters

In the former chapters we have mostly been occupied with the problem of
studying servo circuits characterized by linear differential equations with constant
coefficients. Let us now consider the case where the coefficients are functions
of the time containing one or more random parameters the variation of which
being due to disturbances. Further these functions are supposed to be depending
on one or more adjustable parameters.

For many practical purposes it is convenient to write the equation in the form

éo[“”(t) Ta(t)-f (‘)]%:‘ =[O + 9@y (174)

where B,(t) and y(f) contain the random parameters whereas a,(t), «, (¢), f(t)
and g (t) are ordinary functions; f, (¢) and v (f) may be considered as disturbances.

We assume that the probability distribution of the random parameters be
such that the time functions B,(t) and y(f) during a certain time interval
(¢1, t2) describe stationary processes, i.e. that the statistical characteristics during
this interval are constant. In the case of the coefficients a,(t) + & (£)- B (f)
being constants the influence of the disturbances on the solution of the equa-
tion has been studied by several authors! by considering the spectral densities.
We shall try to use a similar reasoning also in the more general problem
announced above.

In the present treatment only the spectral density values corresponding to
the harmonics will be considered. Thus, after having chosen the time interval
(1, tz) the functions are assumed to be developed in Fourier series for this
interval. In order to have a full description of the processes we must of course
take the ‘time t, —¢; at least so long that the correlation between the values
at the limit points can be neglected.

See for example R. 8. Purruips; Radiation Laboratory Series 25.
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Suppose that the solution of the non-stochastic part, of the equation be y (¢), i.e

n dv
Sa )5, = 1) (175)
y=0 [4

For the solution of (174) we write

u(t)=y(t) +n@)- L)

where ((¢) is assumed to be a stochastic and #(f) an ordinary function. The
variation of the conditions of disturbances has been taken account of by the
function #(¢). Many times it ought to be possible to determine this function
approximately by practical experiments. In this investigation #%(¢) is assumed
to be constant in (¢, t,).

The stochastic function ¢ (f) must satisfy the equation

d”y

772[“1’ + ) /3 (t ]dtv g "(t dtv : (176)
Postulating that {(¢f) represents a stationary process we try to write
mnt
= z X, cos — + Y, sin T) (177)

where T =¢,—t; .} Of course, without further assumptions it is not sure that
(176) has a solution of this form with a finite number of terms. Let us for in-
stance consider the simple equation

2
Z—tf +ky=cost (k stochastic variable)
which has the solution
cos ¢
y=1hb—1 for k1

fising for k=1

In the case k=1, however, the solution can be represented in every time
interval (¢, f,) by a Fourier expansion.
If a solution of the type (177) exists, the derivatives become

O R e |

A criterion for the possibility to use (177) must be identical with a criterion
for the existence of the quantltles {X., Y.}, giving a convergent series. We
shall come back to this question in the following.

We can proceed on two ways. Either we use the Fourier expansmns for all
of the functions contained in (176) and compare the Fourier coefficients of
both members of the equation, or we choose certain time points in the interval

! p = number of periods.
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(t1, t,) and observe the system functions and the inputs only at these time
points. In both cases we have to compute X and Y from a system of linear
equations. :

In the first case we have to deal with products of sines and cosines which
must be written as sums, e.g.

kt ) cos it = Lo [EEAE, @ =, 7]
cos(T+v2)cosT~2{cos[ T +v§]+cos[ 7 .v2

By comparing the coefficients of the corresponding sine and cosine terms of
both members of the resulting equation we obtain a system of equations which
will be linear in X, and Y,. The solution of this system gives X, and Y, as
rational functions of the Fourier coefficients of the observed quantities. Knowing
the probability distributions of these Fourier coefficients we can also determine
the distributions of X, and Y,. However, this method being very tedious, I
am not going to discuss it in detail.

By the use of the second method we introduce the following auxiliary
quantities:

4,(t) = a: () + %, () - B ()

% (£) =§0Av - (%)vcos (‘MTt + 7,725) -
H [

0] s 31 a0 (&

y=1

— cos?
COST

p=

Jut) = ﬁ:Av(t)(%)vsin (’iT_” + vg) _
H A alz]
T2 (— 1) As,(2) (T) — cos T gl

v

vfn"Am-un(§fwd

190 = 20O 00O = 10 + 90y — S LOTL
v=0 =0
"Then we have
Z (o0 (8) - X + Au(t)- Y] = P (8). (178)

u

The number of coefficients X and Y which can be determined must of course
be the same as the number of ¢{-values taken into consideration. Thus, the
more observations being made, the better our knowledge about the output
error becomes. But since the number of observations necessarily must be finite,
we always commit an error which will influence on X and Y. Unfortunately
this error cannot be determined in advance, but we can obtain some informa-
tion about its importance by carrying out the computations for different num-
‘bers of observations. The condition for the existence of a solution of the form
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(177) is of course that for an arbitrary set of ¢-values in the interval (4, 4,)
the linear system (178) has a solution {X,, Y,}. When talking about a solution
{X., Y.} T mean a series of number pairs (X,, Y,) for which the sum (177)
converges.

Suppose that (178) have a solution. This solution gives the Fourier coeffi-
cients of the output disturbance. As already pointed out the spectra of X,
and Y, are random functions for which we have to put up representative
expressions. However, in order to obtain a representative description it is ne-
cessary to repeat the computations for several input processes. This is of course
a lack but can hardly be avoided, since there exists no simple relation between
the spectral densities of the inputs and the output in the case studied now.

Our goal has not been reached when we have determined the spectra for
the output disturbance, though these spectra are of great importance by judging
the construction of the servo system. The kernel of the problem is the de-
signing of the system in an optimal way. In order to make this design pos-
stble we have already assumed tbat there are a number of adjustable para-
meters in the functions defining the servo circuit. We are going to determine
these parameters in such a way that the rms disturbance of the output becomes
a minimum or, what is the same, that the integral of the spectral density of
this disturbance becomes as small as possible. Of course, the adjustable para-
meters may be involved also in y(t), i.e. the non-stochastic part of the solution
of equation (174). In this rough treatment, however, I think there is no reason
to let this fact influence on the minimization procedure.

Since we know the spectral density only for the harmonic frequencies, we
have to minimize the expression

S = (X5 + Y).
“

For practical purposes it is no sense to treat this minimization in an exact
way. It ought to be satisfactory to solve the equations (178) for a set of
parameter combinations and then try to reach at the best combination by some
method of interpolation. By solving the system of linear equations there is a.
need of mathematical machines.

One of the reasons for avoiding exact methods is that S only contains the
harmonic components. By minimizing this expression we therefore have assumed
that the integral of the spectral density takes its smallest value at the same
time as S. In most cases this assumption will lead to acceptable results.

Tryckt den 2 september 1952

Uppsala 1952. Almgqvist & Wiksells Boktryckeri AB
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