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0. Introduction

We are going to study the distribution of the zeros of the successive deri-
vatives of analytical functions. The main problem is to find the distribution
of the limit points of these zeros. The concept of limit point will he used in
the following sense. A point z is a limit point of the zeros of the derivatives.
if and only if to every neighbourhood of x there is an infinity of derivatives
which have zeros in this neighbourhood. Thus e. g. if the analytical function
in question can be developed around the origin in a power series with gaps.
then the origin is a limit point of the zeros of the derivatives.

0.1. The following notation will be used

/(2) = the given analytical function.
) (g st

an (2) =’i-|—;fi; ) = Dan@) ().
| Il =0

n 14
gnm (t) = Van (x) where the index m indicates the branch of V a,. m is assumed
to take one of the values 0; 1;... (n —1).

» denotes a variable which takes the values 1, 2,3 ...

oy denotes a monotonic sequence of natural numbers.

C{a; B) denotes the circumference of the circle with center « and radius ;.

D denotes a bounded simply connected open domain which does not
contain any limit point of the zeros of the derivatives of f.

D_ denotes a simply connected closed domain < D (D.. is to be thought
of as being very close to D).

z€D will often be used to express that z is not a limit point of zeros.

When used with this meaning the relation is to be read thus: x is
an element of some D. In an analogous way the relation z ¢ D will
often mean that x is a limit point, and ought to be read: x 1s not
an element of any D. This meaning of the symbols €D and +¢ D
is used when D is not specified.

R(x) = distance from x to nearest singular point of f(z).
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H. RADSTOM, Zeros of successive derivatives

r(x) = distance from z to nearest limit point of zeros or singular point. Thus
r(z) = R (x).
Ny n,
A sequence V|a, (z)| is said to be maximal at a point z, if lim V]an, (2,)|
. 1
exists and = RY&;—)

A singular point s is said to be of type 4 with respect to a point zy if x,
lies within an open sector of a circle, the arc of which touches

C(z; R'zy) at s and which does not contain any singular point of f.
(Fig. 1.)

Fig. 1. Fig. 2.

A singular point s is said to be of type B with respect to a point z, if it lies
on C(xy; Rixy)) and if there exists an open sector of a circle with its
cusp at s, the angle of which is bisected by the line from s to x,
and is greater than m, and which does not contain any singular point
of f. (Fig. 2.)

Equivalent limit functions: We are going to study the family {gnm}. Two limit
functions of this family ¢, (z) and @, (x) are said to be equivalent if
there is a number % with [5{=1 such that ¢, =7 ¢,.

0.2. Preliminary remarks:

1. The case when f(z) is a polynomial is trivial, for then every point of
the plane is a limit point of the zeros of the derivatives. Therefore we shall
assume that f(z) is not a polynomial.

2. The following formula follows easily from the definition of ay: an =
=(n+1)ap+1.

3. R(x) and r(z) are continuous functions.

4. The necessary and sufficient condition for E(z) to be the modulus of an
apalytic function in the neighbourhood of a point z, is that there is only one
singular point s on C(z,; R{zy), and that s is of type B with respect to z,.

102



ARKIV FOR MATEMATIE. Bd 1 nr 12

Proof: If s is of type B with respect to z, and if s is the only singular point
on C(zy; Rixy) then there clearly exists a mneighbourhood of z, all points of
which have s as their nearest singular point. Thus R (z) = |s —z]|. Conversely,
assume that R (z) is the modulus of an analytic function in a neighbourhood
A of a point z,. Let s be a singular point on C(zy; Rix,). We always have

C(zy; R(zy)

C(xy; R(xy))

C(zy; R(@o)

Fig. 3. . Fig. 4.

R(z) =<|s—uz|. On the other hand, for points on the line between z, and s
the equality sign holds. Thus, as R (z) is the modulus of an analytic function,

this sign holds throughout 4 (maximum modulus theorem for Itf?;(%[) - But this
implies that s is of type B, for if we choose two points z; and z, in A
according to Fig. 3, then C(z;; R(zy) and C (zy; Rixy) pass through s. There
are no further singular points on C (zy; R (zy), for choose a point z; € 4 (Fig. 3).
Then C (z3; R (xy) passes through s.

5 If s€C(xy; BRzy) is of type B with respect to z, there exists a sector
of a circle with its cusp in @, all inner points of which have s as their nearest
singular point. Thus for the points of this sector R (x)=|s —x|. (Fig. 4.)
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(I{ s is the only singular point on € (xg; R xy) the same statement holds for
a crcle around »y as was the case in 4.)
1

6. If ¢ (s) is a limit funetion of the family [y.. ()} then |¢ ()] < B

TR (x) = Ry e

8. From 6 and 7 it easily follows that: If |z -- 2| < R (xy) then |@(2)| =
1

11’(.’/'“) c |f ‘-T()i.

- 9. If g (r) 15 a limit function of the family {guw ()} then 5 - ¢ (); (In] =1)
is vne,

1. Study of some normal function families

1.1. The problem of finding the limit points of the zeros of the derivatives
of f is Intimately related to the study of the convergence properties of the

functions g, == Va,. We begin with the following

Theorem: The family !g., ()] is normal in every bounded simply connected
domain which does not contain any singular point of f nor any zero of anyone
of the derivatives of f.

Proof: A sufficient condition that a family of functions be normal in a
ce~tain domain is that all the functions are holomorphic and the family uni-
formly bounded in this domain. The function g, (x) is holomorphic in a
certain simply connected domain if f is regular there and if f® has no zero
within the domain. We now regard a bounded, simply connected, open domain,
A, which lies at a positive distance from the set of singular points of f and
which does not contain any zero of f%. Let M denote a number which is
greater than |f(x)] within A. It is no restriction to assume that the boundary,
C. of .1 is such that it is possible to define contour integrals along it.

We get

@ 1 / [(z)dz
ln  2xi ) (z—2z)"
L P

Let L be the length of €, and assume that z lies within a domain B< 4
which has all its points at a distance > 6 from C.

7

e, @)L M <]/1ﬂ.1.
2l =0 lﬁf A O |gwn ()] = |/ 2nd 6

. 1 . . . .
s the right membher tends to | the family lg.,.} is uniformly bounded in B.

0
Thus the family is normal in B, and as 6 can be chosen arbitrarily small, it
= novmal in .1 too. Finally we see that the family must be normal in every
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domain of the type described in the hypothesis because every domain which
lies entirely within such a domain is of the same type as A. Thus the theorem
1s proved.

By the symbol {g..(x)}x we denote the family consisting of those functions
g which have »n > N. Now, if D is an open domain which does not contain
any limit point of the zeros of the derivatives of f, then to every closed domain
D_< D it is possible to find a number N such that no function guu; n >N
has zeros within D_. If we want to study the limit functions of {g.mi we
may equally well study those of {g.u}y. Thus the limit functions have no
connection with isolated zeros of the derivatives of f, but cnly with their
limit points.

We now regard the family I - 1 where the index, N, has the same
. . |gnm (-'l')lN o .
meaning as above. This family is normal in a certain domain if {g,x}y 15 normal

. ) . : 1
in the same domain and if no g.m; # > N has a zero there. Thus |- - ,,77]_
lgnm (x)'ﬁ

is normal in D_. provided N is sufficiently great. We assume that at a certain

- - -| are bounded. Then the family [ ] i
gn (.7)0) ) tqn m (-T ’ \

uniformly bounded within D_. (MonteL 2 p. 35.) ‘This fact may as well be

expressed in the following way: To every closed D_< D it is possible to find
n

a number N such that l/lra;(x |>a>0if n >N (with the same number a

point x,€ D the numbers

for all z€D_) or " shortly: lim Vla (@)|>0 uniformly in D_.

On the other hand, if hm 1 ]a, |> 0 umformly in D_, then D_ is free
from limit points of the zeros of the derivatives of f, for then every }|a, (x)|
(except possibly for a finite number) is greater than a positive number through-
out D_. Of course the absence of the condition of uniformity would make

such a statement impossible, i.e. if we only knew that lim VI x)_l > 0 every-
where in D_, then there could well be an infinity of points in D_ where

Vl]a, (z)| might be equal to zero. ,
_This may be used as a test in the study of the distribution of the limit
points. The regular points of f can be divided into three classes:

I: zy€l if there exists a neighbourhood A of z,, a number a > 0 and a
n

‘number N such that V|a.(z)| > a for n > N and z€ 4.

IT: z,€ll if lim V|av (o) |> 0 and if to every given triple consisting of a
neighbourhood 4 of z,, a number a > 0 and a number N there exist an

z€A4 and an » > N vith VI;n(m =a

IIT: 2, € TIT if lim Vla, (xo) ] =0.
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We have seen that the points belonging to the first class are not limit
points and that those belonging to the second class are limit points. As to the
points in the third class both cases may occur. Po6Lva (4) has given examples
of entire functions where the problem of finding the distribution of the limit
points can be completely solved, and the result shows that there exist limib
points as well as non-limit points.

1.2. We have seen (Theorem 1.1) that the family {g.»} is normal in every
domain where the derivatives of f(z) have no zeros. On the other hand, the
family is not normal in any domain containing such zeros. As is seen from
the proof, this depends entirely upon the fact that not all the functions are
holomorphic in such a domain. The upper bound common to all g, exists
independently of the zeros.

The family {azﬂ} consists of functions which may have other singular points
n

. o . a .
than those of f. Such a singularity is a pole. Thus the function Bam g

n
meromorphic if f is regular, and its poles are the zeros of f™.
The family {g.»} was treated as a family of holomorphic functions, but we
An+1

are going to treat as a family of meromorphic functions. We put the

"
question: In what points of the domain of existence of f is the family
{%tﬂ,
an | N
First we assume that z, is a point which is not a limit point of the zeros

a normal family of meromorphic functions?

(m+ Va1 =ap=(g",) =n g Gam

and

w= =,
As f is not a polynomial, then a, is not identically zero, and we have

ntl a1 gm, ()

n an Gnm

In order to prove that {@ZH} is normal at x, we prove that from any given
n

sequence of natural numbers we can choose a subsequence {n,} such that
Un 41

. converges uniformly in the neighbourhood of z,. We choose n, such that
nl’

gn,m, (¥) With convenient m, converges uniformly in the neighbourhood of z,
which is possible as {gum} is normal at z,. As gn,m, (%) converges uniformly,
gn,m, (z) does. We have

him gn m, (x) # 0.
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Thus
, .
R gn,,mm, . hm gnvmv
lim exists and = ——
n,m, lim In,m,
viz,
Con, 4+ 1 On+1 . Qo+ . .
lim ~-"--— - —— = lim —— exists (uniformly).

Ry An, Gn

Secondly we assume that z, is a limit point of the zeros of the derivatives

of f. If {%f—l} is normal at z,, then there exists a sequence of functions
Ap

C%i—l all of which have poles in the neighbourhood of x,, and which converge
(spherically) uniformly to a meromorphic function. This function is either the
infinite constant or has a pole at z,. But in both cases az::ai:)()) tends to
nfinity.

fan1)

We have proved that at a point which belongs to class 1 of § 1.1 | a, J

is normal, and that at a point belonging to class IT {a%tl} is not normal provided
n

Tim @+1(%0)

@ (%)
if 2, is a limit point and Lim @1 (o)
ay (o)

< oo. For a point z, belonging to class III we only know that

a1

< oo then =+ 1s not normal.

L

ay+1 (%) an+1

If lim V]a,(zo)| > 0 and lim 220 oo 4hen 1| 15 normal (not normal)
T Gy (o) Un

tf g 1s mot (is) a limit point of the zeros of the derivatives of f.

Especially we have seen:

. a . ) .
Having stated that {—ﬁil } 18 not normal at a certain point we may use any

(279
criterion of normality to draw conclusions concerning the distribution of the
values of q;tl in the neighbourhood of this point. Thus for example: If
T et (%) L .. . .
lim ——=5" < co and if z, is a limit point of the roots of a,(z) = 0 then z,

a, (o)
s a limit point of the roots of @1 (@) C, except possibly for two values of C.

a, (x)
1.3. 1. We shall prove the following proposition:

If lim V]a,(%,)| >0 for some point z,€ D, then there exists a number M

An+1

with < M for all z€ D_ and all sufficiently great n.

an
Let C be a contour within D containing D_. Let the distance between C
and D_ be 6 >0. From the proof of Theorem 1.1 it follows that there exists
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a number A such that |g.m(2)| < 4 for all z within and on C and for all n.
As ¢gum is holomorphic within C for all sufficiently great » we have (z€D_)

, 1 gnm (2) dz 1 4
| (@) =, [ o i )w)_2 =5 - - Length of C.
‘

Thus {¢. . (x)} is uniformly bounded in D_ for sufficiently great n.

On the other hand, [—1—]
lgnm(-’”)J
g,n.m. (7?)

great n as lim V|a.] >0 (§ 1.1). Thus {q ()
for sufficiently great m. According to the formula (a) of § 1.2 the same holds

aAp -

for |1
g1\ 1
n |m

| an
D_ and uniformly with respect to m, n and z, the values of n for which [ has
a zero within D_ being excluded. There is only a finite number of excluded
values of n.

Let C be a contour contained in D and containing D_. As has just been
An+1

is uniformly bounded in D_ for sufficiently

} is uniformly bounded in D_

m
2. But we can prove still more. Even / are bounded in

proved, there exists a number 4 such that << A on and within C except

n
for the values of n for which /™ has a zero on or within C. We may assume
these values to be those for which D_ contains zeros by taking C sufficiently
near to D_. Let the distance between C and D_ be 6 > 0. Now (z€D_)

Tanii(2)
1 ‘Lni@)‘"” _l ) e 1 4
Iﬁ( an () 2 (z—dc)’f‘“ T 2x ot Length of C.
¢

In particular this holds for z ==, which proves the necessity part of the
following theorem. The sufficiency part follows easily, considering the fact that
the zeros of /™ are poles of ani1/an.

Theorem: If lim V|a, (z,)| > 0 the necessary and sufficient condition that

be not a limit point of the zeros of the derivatives of f is that there exists
a number B such that for almost all n and for all m

(m)
(“"”) (@) | < |m - B™.
@n —
1.4. The case lim V |7,] = (), which is exceptional as is pointed out in the

preceding ought to be studied separately in order to decide for what types of

functions it may-occur. It will turn out that if lim V|a.|=0 at a certain
point, then in most cases this point i« a limit point of the zeros of the deri-
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vatives. Only for a rather limited class of functions f can the contrary occur.
In order to determine this class, we assume that z, is a point in D and that

v

lim Vla, (zy)| =0, and we try to draw conclusions regarding the behaviour of f

from these assumptions. As the family {g,m} is normal in D_, there must
exist a limit function ¢ of the family, holomorphic in D and with @ (z) = 0.
Now either ¢ (x) =0 or z, is a limit point of zeros of the functions g.
(MonteL, 2, p. 36.) But as z,€D, it is not such a limit point. Thus ¢ (x) = 0.

n,
This means that there exists a sequence V]an, (z)| which converges to zero
uniformly in D_.

(We observe that this means that if lim V|a_V| == 0 holds for one single point
of D, then it holds for every point of D. This is very often used subsequently.)

We shall say that a power series 2% z* has great gaps if there is a
w=0 .
sequence . of natural numbers and a sequence «, — oo of real numbers with
@ =0 for n, =< u <a,m,. We can now prove the following
'nv

Theorem: If z,€ D and if there exists a sequence V | @n, (x,) | tending to zero,

then either f is an entire function, or f is the sum of an entire function and
a function the power series (in x,) of which has great gaps. :

Proof: From the function sequence gn,m, (x) where the numbers m, are chosen

arbitrarily, it is possible to choose a subsequence which is uniformly convergent
im D_. As was proved above, the limit of this subsequence is zero through-
out D. (For simplicity we do not change our notation but denote this sub-
sequence instead of the original sequence by gn,m,@). As the convergence is

uniform in D_, there must exist a circle C (zy; p) around z, with the radius
¢ within and on which gn m, (z) converges to zero uniformly. Thus, if

Max |gnvmv| =g, then & -0
C{xg; 0)

lan, @)] < &% for x€C (xy;9) where & — 0.

It is easy to see that the following formula is correct:

(m + n) i (&) = 1 [ J’L_(%L}n%

m 2my J (2
C (g; 0)
where % lies within C (zy; 0). We get:
m + n, 1 &y &
( m )ldm+nvy(w0)|£§};.Qm+1.2‘7z9:—9;b

m -+ n, &y
or (as( m )21): [“nﬁm(%”ﬁ?m‘
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Put m = pu —n,:

n,

(o&). (a)

12 e 1
V|“M (%)I = é

Now we choose a sequence a, of real numbers such that «, - oo and
1

{o&)™ > 0! and divide the non-negative integers u into two classes

I: u belongs to class I if for some ¥: n, = u <<a,n,.

II: u belongs to class 1I if for no v: =< p < an,.

We construct two power series

o0 -

h(z) = Z ev(x—xzo) and k(x)= Z dy (& — z,)”
v=0 »=0
where
au (y) if p belongs to I {0 if u belongs to I
Cup = ) and d, = .
0 if u belongs to II a, if p belongs to 11

As u either belongs to I or to II: f(z) =k (x) + k(2). According to (a)

But then T > 1
T #

u =
Ve = %)(9 £,) provided p&, <1

which always holds for sufficiently great ». Thus

u
V0e.| > 0 if u€I and on the other hand
Icu

=

eu | =0 if p€ll
Thus % is entire.

Clearly % has great gaps. Thus the theorem is proved.

From a famous theorem of OsTROwskr’s (3 p. 251) we can now draw con-
clusions concerning the function f(z). Thus, e.g. f(2) has a simply connected
domain of existence, which implies that f(z) is uniform and has no isolated
singular points in the finite part of the plane.

__ log(gev) .
log | log (e¢v) |

' e.g. choose a,=
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2. Cauchy’s and d’Alembert’s Criteria of Convergence

The application of Cauchy’s criterion of convergence to power series leads
to the following formula:
1

lim Vo] = -

However, d’Alembert’s criterion does not generally give the radius of conver-
gence exactly but only an inequality:

1

Ayt T 1&gl
2= 2 < lim [
R

@y

lim .

v

It is well known that in the case when d’Alembert’s criterion gives the value

. . Ay+1 . . T .
of B, i.e. when lim | —"| exists, then lim V[a.| exists, but the converse does
a

not necessarily hold. It is clear that for subsequences n, of » the corresponding
An,+1

proposition does not hold, i.e. it is not generally the case that if lim -
n’l’

ny

exists then lim V|a,,| exists. Still less does the converse hold. However, we

shall see that theorems of this type exist, if the assumptions are completed.
In this section some theorems of this type will be proved.

2.1. We begin with the following

Theorem: If the family {g,»} is normal in the domain D, and if in this
domain the sequence g m, converges to a certain limit function ¢ (#) which is
a - ?
i1 (2) converges to ¢ (@) in D (uniformly in D_).
@n, (T} @ (z)

Remark: The completion of the assumptions consists in this case- primarily
of the assumption that the family {g.m) is normal. Secondarily we do not only

nl‘

assume the existence of lim Vidn,| for a certain value of z, but the existence

not identically zero, then

n

of lim Va,, for all z€D.

Proof: In D_ we have uniformly ¢ (z) = lim gn m, (). Thus, lim gn, m, exists
and is equal to ¢’ (z). As @ (2) is not identically zero we get
(p' (@) lim g;vmv In,m,

@ (x) ~ lim gn,m, On,m,

Now from the formula (a) of § 1.2 it follows that

@)y Ot () Q.E.D.

¢ (@) an, (@)
111
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2.2. As a result of Vitali’s theorem it is clearly unnecessary to assume that

n,

lim Va\nv exists for all z€ D, as we can accomplish this by assuming the existence

of the limit in question at an infinity of points of D_.

Ry

However, instead of requiring convergence of Vanv at an infinity of points,

ny,

we can require that me converges at a certaln set of points. We get a
theorem analogous to the above theorem by assuming this set to be such that

any function harmonic in D and zero in the set has to be zero throughout D.

ny

Assume that the sequence V|anv (zﬂ converges in such a set M. Let two of
n

the limit functions of the sequence Vc;y " be ¢, and @,. These are holomorphic

and are assumed to be different from zero in D. Further it is clear that, as
neither @, nor g, are =0 within D, we can find a function v (z) holomorphic
in D and satisfying ¢, () = @, (z) - ¢*@ in the whole of D. But if z€ M we
have |@;(z)| =|@s(z)| i.e. v(x) is real. But this means that the function
Imwv(z), harmonic in D, is zero in M. Thus, it is identically zero, and v is a
real constant (and we have |g;|=|@,| throughout D). Accordingly there is
n’l’

essentially only one limit function ¢ of the sequence Vanv. All the others are
of the form #-¢ where |p|=1. Combining this result with the previous
theorem we get the following

"v
Theorem: If V| an, (ac)| converges at a set of points M < D, if at one point
at least it converges to a number different from zero, and if M is such that
any function harmonic in D and zero in M is zero identically in D, then all
”v

the limit functions of the family {Va—n1 } are of the form # - @ (z) where ¢ is

an,+1 (p’ .
one of them and |5|=1. Further .. converges to p in D.
n

v

2.3. The best theorem of the type discussed here would be the following:

y

S On,+1 .
If VI an,| converges for one single value of x, z,€ D then — - converges in D.
an

I have not succeeded in proving either this theorem or any of the theorems
with the same hypothesis, only the following less extensive propositions:

an,+1 An,+1

1.

converges in g; ii. converges in x,.

anv n’l‘

On the other hand I have not found any example showing that any of these
theorems are false.
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However, it is easy to obtain a theorem with the required assumption by
imposing further restrictions on the proposition: we can determine an upper

anv+1 (xﬂ)(
bound of |————] (cf. § 1.31).
ount o ‘ an ) | (513 .
Accordingly we assume that €D and lim Viﬂ:(;ﬂ -1 # 0. If we knew

R,
that all the limit functions of {g. m,} were equivalent to one of them, say ¢ (z),
then the best of the theorems mentioned above would be proved. For by
a111,+1

=7. However, it is possible that
n, P
{gn,m,} has several non-equivalent limit functions. All of these have nevertheless

@p,+1 (1!0)

“_% (%o)

Theorem 2.1 we should fhen have lim

1 . —
the modulus —- at the point z,. To get an upper bound of lim

R,

<P’ (%0)
@ (@)
the set of all the limit functions which are generated by the sequence gn,m, ().
Now we have (by § 0.28)

1t is clearly sufficient to find an upper bound of where @ passes through

1

)| = —————— for |z— 12| < RB(x).
lg (@) R (z0) — | — #o| I o (o)
But
|9 (o) | ‘f =1
o) w—m) T o(R—o)
C (zy; 0)
o<7 ()

We get the best bound if gzg > but as p has to be less than » we can

R o .
accomplish this only when r > 9 in other cases we have to be satisfied with

letting ¢ tend to ().

24. By applying the above method to ¢®(z) instead of e ), where a 18 a
real positive number, we can get a better bound. As ¢%(x) is holomorphic
within C (xg; 7 (z,)) we have

ot o) o )l =5 | [ sdal,

C (2y; 0)
0 <1{(o)

We easily find an upper bound of the integral. After division by |a - ¢* (z,)|

we get
g_l_ . (—Rl )a.
ag \R—p

Vﬂm
@ (xo)
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The right membrum has its minimum for a = V1~——
M
log R—og
¢’ (@) <% R,
<-.log
\99(%) 0 R—o

Here o <<r(zy) but we see that by letting p - 7 we can restrict ourselves to
requiring only ¢ <. Thus

ny

Theorem: If lim V|an, (zo)| = év # 0, if 2,€D and if ¢ < r(x,), then
1
—— | @n,+1(20) e R
lim |————| <~ log 5—2-
an, (o) 0 R—p

Remark: The right membrum has its minimum if ¢ = Ru where u is de-

. . R]_ o u
termined from the equation: log R + log T —w 1—u

used if it is smaller than r({xy). In other cases we get the best result by
choosing ¢ = r(xz,). However, the bound we get in that way is not best pos-
sible, because the numerical factor e can be replaced by 2, as we shall see
later (2.6).

This value can be

2.5. The bounds given above can be essentially improved for such sequences
An,+1

where R; = R, 1i.e. for the sequences where the corresponding sequence

Gn,
n, M 1
V]an,| is maximal (see 0.1) or converges to lim V|a,] = - In this case § 2.3

R

4 and Theorem 2.4, which gives the best result for ¢ - 0,

gives the bound

R
gives 1%- The following theorem says that these bounds can be replaced by 71%
Theorem: If lim V| anv(:v_l)ﬂ — 1 and if xy€D, then
B (z,)
— | @n,+1 () 1
im | ——— | < ———
an, (o) R (z,)

Proof: Let ¢ be a limit function of gn,m,(x). We investigate the function

h (x) = log (R(@y - ¢(®@)) which is holomorphic in D. We have according to 0.2:
R (z0)
| B (zo) (p(w)l_R(:vo) [z =2, Now |R(z) @(z)] =1. Put u(r;v)=

=log | R (zo) ¢ (z)| = Re h(x) where 7 - €'? =z — =,
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R (z,) - K
(o) — [x - wol R (x,)

% {0;9)=10 and u(r;v)S]ogE |z — 7,

where K is a constant which can be chosen arbitrarily near to 1 if |z — ]
is small enough. Let (5%‘) be the derivative at the origin in the direction

v of the function w(r;v). We have

(%)zlim u(r;v)—u(O;'v)< K

or 0 7 _R(azo).
As r > 0 we can let K -~ 1:
(Qﬁ) .
drf)e  R(xg)
But
, g h(m)—k_(z_o)
k' (xg) = lim Py .

Let z — 2, tend to zero with its argument constant = v; we get

¥ (zy) = lim BeE@ —h@)] | Im[h(@) —hz)]
0 ' Iz_wol.eiv lz___xol.eiv

But this is valid for all v as the derivative of a holomorphic function is in-
dependent of the direction of the differential of the independent variable.

.. ’ 1 <P' (xo} — 1
R TN N A C.U) .
MU Tw el Py A 78
—— | On,+1 (230) 1
lim < . Q.E.D.
n, (o) R (z,)
—— an :
2.6. The bound  log 22 for lim L(zo) which has been found in § 2.4
e R—o an,, (%)

can be improved by use of the following theorem of Landau’s (1, p. 620,
Theorem 6):

If |byz+by22+ | <M for |z| <, then the function byz + by2? + - --
for |z]= o takes every value within a circle around the origin with radius

|61]0 -t (ITII‘IT&) where the function 7 (u) is defined by the equations

sinh v
= u.
v

T(u)=u-e";
T(u) is a convex decreasing function of u: 7 (1) =1; 7(00) = 0.
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We use the theorem in the following form, which is an immediate con-

sequence:
If Ib1z+b222+I<M fOI' |Z|SQ a:nd ifh(z):b0+b1z+b222+'

has no zero within |z| =g, then |by| = |b;|0-* e We define a positive
11¢

sinh v = M - As M > 1 this number exists, and as sinh v
|b1|9 |b1|9 v

is monotonic it is unique. According to the definition of z:

number v by

|bg| =M -e?; v=log ne
|80l

We now regard the two cases |by] <M and |by| = M. In the first case

. .. sinh v .
log |7bﬁ| is a positive number, and as increases for v > 0:
0

. M M b
lM _sinh v >Smh log[b0|:|b0| M
log = 2 log i
| 6o | o)

In both cases £ =1.
|b1|0

We construct a function @ (s) in the following way:

Thus we have proved the following

Lemma: If [byz + by2® + ---| < M for |2| <p and if h(z) =by + byz + -
has no zero within |z| = g, then

|61 (M)
u = %\u

We can now prove the following theorem (cf. §2.4)

ny

Theorem: If lim V]a,, ()| = Ri # 0, if 2o€D and if p < r(x), then
1

m

an'v+1 (xo)

an, (o)

r

<210 R,

= g .
e R—op
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Proof: First assume g <7 (x,). Then none of the functions a,(z) has zeros
within C (zy; ) provided = is sufficiently great. Therefore we can apply the
lemma to a,(x). Now

n+1
@) = an o) + (" T ) awes ) 0 — ) + -
Let o <<p; << R(z) and let the maximum of f on C(x;;0;) be A. Then

lav ()| = = and if |z — 2| <o we get

(n Jlr 1)an+1(xo) (@ — m) + (” —2L 2)an+2(w0) (@ —z)® + - l <

n+1y 4 n+2\ 4
T ()

A( ,(n+1)g (n+2)(9)2 ) A4 1 Ao,
ot 1 /& 2 01 o} (1_9)”“ (01— 0)"*?
1

Accordingly we put

The lemma gives

(n + 1) |ant1 (@) | 0 <@ (I“n(mo)l)_
M, M,

Bug @) _ 4 (@~

o, o Ao tends to zero when n — co. Thus for sufficiently
2 log 1
great » we can use the expression 1 for D (s)
-—s
s
M,
2 log "=
@) Ma " Fla@) 1
an (o) en+1)  Mu  |aa(@)| |an(z)|
|“n (wo)l M,
n+1
On+1 (1’0

on (%)

l/| n (wo ;-_‘(—I;% .

n

Now put %, instead of n and let v tend to infinity
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| an Z,
fi | Cet 2 B
@n, (%o) 0 01— 0
Let o, tend to R (x,)
= @) _2 Ry
an, (Zo) | ER—

We have assumed p <<r(z). But we might equally well assume ¢ = r(2,)
which is easily seen by letting ¢ tend to r(x).
Thus, the theorem is proved.

3. The Singular Points

In this chapter we are going to study the influence of the singular points
on the behaviour of the power series, still under the assumption that the point
around which the series is developed does not belong to the set of points
where the zeros of the derivatives accumulate.

3.1. We begin with the
Theorem: If z,€ D, and if s is a singular point on C (zy; R{xy) of type B

(§ 0.1) with respect to z,, then ?i_x is a limit function of {gnm} In D.

Proof: As s is of type B, there is a sector of a circle within D with its
cusp at x, such that, if z is a point in its interior, the relation R (z) = |s — x|
is satisfied (§ 0.25). Let x;, be a point within this sector. We know that it
is possible to find a sequence of functions gn, m, () whose moduli converge to

1 1
—— at th int z;. =|s— T
Ry at the point z;. As R(z) =|s—z| then |gn,m, ()] = =]
. , . . 1
By choosing m, conveniently we can make it converge to T Now we
— 4

can choose a subsequence which converges uniformly in D._. Then in D it
converges to a limit function ¢ (z). We study the function (s —x) - ¢ (z). We
have |(s—=z) @) =|R(z) ¢ (®)] <1 within the sector and for z=u:
[(s — ;) ¢ (z;)| = 1. By the maximum modulus theorem, (s — z)- @ (z) is then
constant. But (s — @) ¢ (2;) = 1

: (p(x)——-ﬂl—- Q. E.D.

§—X

Corollary 1. If s is the only singular point on O (zy; B(xy) then every

n n,

14 v

sequence VI an, (zo)| which converges to —-— corresponds to a sequence Vanv (x)

B (z,)

which has essentially only one limit function, viz. For in this case

there must exist a circle that touches C (z,; R (zy) at s, and that contains this
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circle without simultaneously containing any singular point of f(z). The centre
of this second circle is the cusp of a sector containing z, and to the points
of which s is the nearest singular point. The above method of proof can now

Ry

be used with =, instead of z; and we find that every limit function of V;m

. . 1
Is equivalent to ——-

a ’
Corollary 2. According to theorem 2.1 lim gk :% if Iim gn,m, = @ # 0.
n’l’
But if (p:_L; then g)—*——ﬁL-
s— p s—z

Therefore we can assert: If a singular point s of type B lies on C (zy; R(xy)

. An,+1 .
then there exists a sequence n, such that —— converges to - In particular,

An, S$—x

if s is the only singular point on O (xy; R(zy) and is of type B, and if
nV

im V] a,, (@) | = 17?(}5) then

. Gn,+1(%) 1
lim ———— == .
an, (Zg) § — &

3.2. The fact pointed out in corollary 2 of the preceding § that it is pos-
sible to draw conclusions concerning the sequence L4 from assumptions con-
a

cerning the singular points, can be used in other ways. If we do not consider
the behaviour of the limit function as a whole but only its value at a certain
point, we need only assume that the singular point s is of type 4 with respect
to this given point. In order to show this we need a lemma. This lemma is
a generalization of the maximum modulus theorem and will serve the same
purpose in the proof of the next theorem as did the maximum modulus theorem
in the above proof. In order to point out its connection with the maximum
modulus theorem, we give the lemma a slightly wider formulation than we
actually need.

Lemma: Let f(z) be holomorphic in C (%y;0) and let for z within the same
circle: |f ()| <|[f(2)| + K |o — 2o|* where K is a constant and n =1. Then
f(@o) =1f"(@g) = -+ =[""V(2) =0 and |{®(zo)| <eK - |_7£

Proof: If f(x,) =0, the proposition is trivial. Thus we may assume that
f(zo) # 0. Let m be a positive integer. If p =1, the following formula holds:

(f™)®) (o) = m =1 (o) - [P (20) (a)

and if p>1, it holds, provided we have already proved f (o) = f" (o) =
= ... = f®D(g) = 0. Now suppose, that (a) holds and that p <n.
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We get
"(x)dz 2
e o = on | [ OD ] ) kg
C (zo; 01 ¢
1=y

Divide by m|f™ (x)|
) (2 o) |

| ( K \"
Pl 221 )
(@) IS
This formula holds for all p; << p and all m. We may now let p; vary with m:
01 = 7m. We can construct 7, so that it tends to zero with the right member

of the inequality as m — oo. Viz. choose 7y M= I£( Ig? l,
, @) 1
m X 7-';::7’
P (z,) _ Kl_p ( 1)m
A =g ] + - 0.
o) | ™ [f (o)

The last conclusion is no longer correct if p = #n. As (a) holds for p =1 we
have [ (xy) =0. Thus (a) holds for p =2 etc. The induction continues to
p=n—1. Finally for p =n we get

/% (@) | = e K - |n

Thus we have established the lemma. It is clear that if K is zero, we get the

maximum modulus theorem because in that case the supposition holds for all «.

It is now possible to prove the following theorem, which is of type i. men-

tioned in § 2.3, the assumptions having been completed in two directions. On

the one hand, we have made an assumption concerning the singular points,
nl’

and on the other we assume the sequence V|an, (zo)| in question to be maximal.

fy

Theorem: If V]_(Zz:(x‘o)l converges to # 0, if z,€D, and if s is the

_(0)

only singular point on C(x,; R@,) and is a singularity of type A4, then

n,+1 (%) 1
———— converges to ————-
@, (Zo) s —x

Proof: As s is of type A, it is possible to find a point x, on the straight
line joining the points s and x4, @, satisfying R (z;) = R (o) -+ |2, — % | (Fig. b).
Put
s —uw =R e

x— 7 =09 €
—_ — .t
To— Ly = Qg €°
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Let @ () be a limit function of {gn,m, (x)}

|9 ()| = R—(L- (a)

According to 0.2:

Fig. 5.

For the triangle (s; z; z,) we get

s —z|=VR*+ o> —2Rp - cos (v —vy) =

¥(R—Q)]/l+(7§—fi%—)2v(l——cos(v——v0\).

Suppose now that « lies within a sufficiently small circle C' around z,. We
can find a constant K, such that 1 — cos (v — vy) < Ky (v — 0,)?

|s —z| < (R——g)]/l + (%‘-%Kl('v—vo)2.

Within C the formula |s — 2| < (R — ¢) (1 + K@ — v?) must hold if K, is
a new suitable constant, Combine this with (b): |(s —x) ¢ ()| <1 + K, (v — ).
Further the formula |v—w,| < Kz|z —x,| holds with the new constant Kj.
Thus, there must exist a constant K such that the formula |(s —2)¢(z)| =
=<1+ K|z—x,[? holds within €. Observing that R (z,) =|s — z,| and that
(a) holds, we find |(s — @) @ ()| = 1. Thus, |(s —z) @ ()| =] (s — o) @ ()| +
+ K|z — z4|* within C. From the beginning this circle may be chosen so
small that it only contains points belonging to D. Thus ¢ (z) and also (s—z) - ¢ ()
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are holomorphic within C. It is now possible to use the lemma, and we find
[(s—o)p@)] =0 for =2z,

This holds for every limit function of {gn, m, (%)}

" 1»—( ) converges at the point z,, but we
- ] 1 ,

. (@) g b 0

have not proved that it converges in the neighbourhood of z, (cf. § 2.3).

n

Remark: We have proved that

v

3.3. In the last section we have shown (theorem 2.5) that if Vm(xo)l is

. L. an,+1 (xo) . . .
maximal, then all the limits of m lie within or on a circle around the
ny 0
origin with radius -~ - This result can be improved. It is possible to show

B (z,)

that all the limits lie in the smallest closed convex domain containing all the

where s passes through the set of singular points of f (z) situated

0
on C(zy; R(xy).

If all the points of C(z,; R{xy) are singular points then the proposition is
proved by the theorem just mentioned, because in this case the convex domain
1
R ()
assume that there is on C(zy; R(x,) a point a where f(z) is regular. Let
vy = arg (@ — x,) and let s; and s, be the singular points of f(x) situated on
O (zg; R(xy) nearest to and on either side of a (Fig. 6). Put v; = arg (s; — %)
and v, = arg (s, — ¥p). We assume v, << vy << v, and 0 < v, —v; = 27. (Equality
holds if there is only one singular
point on C (z,; R(zy), in which case
s; = 8;). Now we choose a positive
number § << Min (v, ~— vg; ¥9—71), such
that v, + 6 <<wy <v; — 9. From z,
we draw rays with their arguments
cequal to v; + 8 and v, — 8. Then it
is clear that there exists a number
0, such that there is no singular point
of f(z) in the part of the circular
annulus between C (x,; R(zy) and
C (xy; R .+ 01), which is situated be-
tween the rays. We call 4 the open
domain, formed by the part of the
circular annulus. just mentioned and
the interior of C (xy; R). A contains
a but no singular point of f{z). We
now' examine the set of points z such
Fig. 6. that the distance from x to a is

points
s —

coincides with the domain not outside the circle C (0; ) Thus we may
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smaller than or equal to the distance from z to any point not belonging to 4.
By a geometrical investigation we can easily see that this set of points contains
all the points from a closed circle sector, S, consisting of those points lying

within or on C (xo; %1), which are seen from z; in directions with arguments

- —
vo+12)1 ! 6and Yy -I-;;z 6_
however, that we do not need in the following. The cusp of S is wy. The
points of S have the property that their distance from a is < their distance
to any point outside A. But every singular point is outside 4. Thus, if z€S
then |a —z| < R (x).

Now we study the function g (z) = (a — ) ¢ (z) where ¢ (z) is a limit func-
tion of the sequence which is supposed to be maximal at z,€ D. As the sequence

between The set contains other points too, a fact

is maximal at w, then |g@(z)] _ 1 As a lies on C(xy; Rxy) then

Rz,
la — 0| = R. Thus g(zo) = 1. But if €S then | — x| < R (z) and further
we always have o (2)| < E}ﬁx) Thus, if €S we have |g(z)| < 1. Thus the
function |g| is =<1 in the sector S and =1 at its cusp. Now it is possible
to use the same method as in the proof of Theorem 2.5.
Put 2 =1, + ¢-¢'? and consider the function

u(0; ) = Re log g (¥) = log {g (z)]

which is harmonic in D. We have % (0; ) = 0 and u (p; 6) < 0 if B ot =

<g<P TR0 4 ¢ < Min (f(xo); %1)
Now
(@) i 23 0) —u(0:0)
dole  o~o 0
But
Ju g' (xo) )
22} = Re (2 X0 4is).
(09)0 6(0(750) ¢
Thus

Re(ﬂ@-eia)go or £0+argu@S3%
g (%)

for all 0 satisfying

’b‘0+’l)1+6<0<’00+’02‘—6
2 - 2
. @ v0+v2—6(<n ) g () _3m ) 3x v+, + 9
o — 2T =T ) <arg LT _g) <2 T T h =
2 2 2 A8 5 (@) 5 )= 2
Let 6 —~ 0;

123



H. RADSTROM, Zeros of successive derivatives

But as g(z) = (¢ — ) - ¢ (x) we have

g’ (zq) _ 1 + ¢ (@) .
g(zo) a—xz (%)

. ’ . . . 1 . .
This means that ¢ (@) is a point seen from the point ——— in a direction

@ (%) a— X,
with argument lying between g— DL? nd 3?7! 2%—01~ According to
Theorem 2.5 ¥ ((7) is situated within or on the circle C (  Bia @ ))~ Thus we
Ty

Fig. 7.

have proved that &;0) lies within a certain peripheral angle of this circle

0
(Fig. 7). This angle can be described simply as the angle which has its cusp at

1 1 1
————— and the sides of which pass through ——— and ———-
a— Ty $1 %o Sg — Ty

1
Now let @ tend to s; along C(xy; B). Then — L tends to ——— along
a—x 8 — Xo

C (0; Ili)’ and the side of the peripheral angle which passes through s——~1—;
— 4y

tends to the chord between and _ L Thus L4 Ev)) lies on this chord

31 — &y Sp — Iy
or on a given side of it, viz. the side opposite to the side where the point

moves.
a — ‘TO

The same argument is applicable to any pair of adjacent singular points on

C (xg; Rxy). Thus ?H belongs to the closed convex covering of the set of
0 N
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[

0
on the circle C (zy; R(xy). According to Theorem 2.1 the same holds for the
an,+1(%)

points } where s passes through all the singular points of f(z) situated

We have proved the

n

Theorem: If V[a‘nv(aco)l is maximal (i. e. 917(1:6—) ;éO) and if xy€ D then all
o

. n,+1 (%) ) .
the limits of ———— belong to the closed convex covering of the set of points

n, (%)
1
{s - } where s passes through the singular points of f (z) lying on C (zy; R(zy).
)

E.g. if there is only one singular point s on the circle of convergence

n,+1 (%) .
C (%g; R{xy), then ———— converges to - If there are only two singular
o, (@o) 5— 2o
. . .. an,+1 (%)
points s; and s; on the circle of convergence then all the limits of m
n, (Lo
. 1 1
lie on the chord between and .
1 — %y Sg — o

3.4. From Theorems 3.2 and 3.3 it is possible to deduce a simple method
for separating the singular points on C (x,; R(x,) from the regular ones. Let

ny

—— . On,+1 (T 1 .

Vlllnv (zo) | be a maximal sequence such that 1 () - - Then, according
Qn, (o) R ()

.. On,+1 (o) .

to Theorem 3.3 all the limits of — have the form » where s is a
: an, (%) S— %y

singular point on C (zy; R(x,). Conversely, if s is a singular point on C (z,; R (z,))
. n,+1 (o)
then from Theorem 3.2 we can deduce that there exists a sequence m—)—

i n, (%o

. an,+1(%o) | A— 1
which converges to and such that —L(—O and V|an, (2,) | T
)] an,,(%) R ()

Viz. let z, be a sequence of points € D and situated on the line between
%y and s and let lim z, =x,. Further, let {e,} be a sequence of positive
muv

numbers with lim ¢, = 0. For every u there exists a sequence V|0LmM (.'B | which

is maximal in z,. Apparently the hypothesis of Theorem 3.2 holds for such a
41 (%)

sequence. Thus e K converges to

my, (®u) s —xy

- It is then possible to choose
l, so large that
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m,; +1 (%) 1 ]
e — < &
am, L () s—x,
and
m[ul‘u 1
T — < ég,.
#( 2l R (z,) "

Now we designate the numbers myi1, by m,. Thus, there exists a sequence
ne; p=1,2,3,... with

anlu—kl( ;4) o 1 < e
an,, (@) §— Xy
and
— 1
n,, (@u)| — m' <&

An obvious transformation gives (one side in a quadrangle =< the sum of the
three others)

@n L+l (:EO) 1

n, (zo) §— T,

1 1

an,+ 1 (Tu) _ Gm,t1 (%o)

ny, (xw) On,, {zo)

<&+
Ss—x, S§—x

and

# . u
Vanﬂ (o) — R_(lzo*)’ <.+ I~1— _ 1! n,, ()| — Vlan# (zo)| |-

R (z.) R(z)

Let 44 - co. Then by hypothesis the two first terms in the right members
of the two inequalities tend to zero. The two second terms tend to zero since
the functions involved are continuous in z,. It remains to prove that the two
third terms tend to zero. We begin with the first inequality. As the family

QZ—H} is normal in D, its functions are continuous uniformly with respect to n

(3
{(également continues) (MoNTEL 2, p. 28) in D.. This means that for every
value of n (e. g. for n =mn,)

On i1 (@) _ Gn1 (o) <e if |z '—‘$0|<6s
» .

Ay ($‘u) an (7;0)
Thus the term in question tends to zero with |z, — 2,|. — In the second
inequality we first use the formula |[a| —|b|| <|a — b| and then the same

argument as we used when treating the first inequality, now based on the fact
that the family {V(;:,} 18 normal in D.
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. . Gn,+1 (Zo)
We have now proved that there exists a sequence {n,} such that - (z0)
n, Ao
converges to and %a (To) | t 1 A ! 1 our pro
z 0 == As ———i=——0, -
§ —— g o B (xo) |s —zo|  R(m)

position is proved.

Thus it is possible to determine the singular points on the circle of convergence
of a power series of the type regarded here by the following method : Find all

oy

e n,+1 (%p) 1
sequences n, such that V)|an (x,)| as well as |— - - Determine all
[, ()| an (o) |~ R@o)
.o n,+1 (o) .
the limits L of all sequences p (;)— Determine all numbers of the form
7y \ L0

1 . . . .
Ty + A These and no others are the singular points in question.

4. Investigation of some Special Cases

4.1. We have seen (§ 3.1 corollary 1) that if s is the only singular point
on C(xy; R(xy) and if s is of type B with respect to x,, then to every maximal

7y,

sequence V| an, (%y)| corresponds a sequence gn,m,(x) all the limit functions of
which are equivalent. As a special case we get: If s is the only singular point

on C(xg; Rxy), p€D, if s is of type B with respect to z, and if lim Vm(a;,)—]
exists, then all the limit functions of {gun ()} are equivalent.

v

From Theorem 2.2 we see that if we do not merely assume lim Vray ()]

to exist but that V|a,(z)| converges for all # belonging to D, then the rest
of the assumptions in the above proposition becomes superfluous. It is not
even necessary to assume convergence throughout D but only at the points of
a set M < D of the type considered in 2.2. We shall see that the above assump-
tions concerning s follow from the assumption that VI av(z)| converges at the
poimnts of M.

By Theorem 2.2 we conclude that all the limit functions of {gum ()} i’n D

are equivalent to the same function ¢ (x) and that @r41(2) converges to 9 (@)
ax (2) @ (x)
@y v
But as aﬂ converges then converges and V|a,| must converge to the
same limit. Thus |¢|= ‘ﬂ or L= @ -€'®, where v is a real constant. This
® '

—iv
differential equation has the solution ¢ = ;ej; where s is the integration con-
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stant. s must be the same for all the limit functions of {g.m} as they have

to be equivalent. As Vm - ll% then |@| = %3; i.e. R(z) =|s —=z|. This means

that s lies on C(z; R@) for every z€D. Let s; be a singular point on such
a circle C(zy; R@y). Let z,€D le on the radius from z; to s;. The circle
of convergence around z,, C (x;; R(x,') contains only one singular point viz. s,,
and this point is the only one it has common with C (z;; R(z). But as s has
to lie on every circle C(z; R(z}), s and s; must coincide. Thus every singular
point on every circle C(z; R(); €D has to coincide with s, viz. s is the
nearest singular point to every z€.D .and there is no z€D such that its circle
of convergence, C(x; R{x)), contains more than one singular point. As R (x)
is the modulus of an analytic function s must be of type B with respect to
any €D (§ 0.24).

Theorem: If V]a, ()| converges for all €D to a limit different from zero
then there is only one singular point on the circle of convergence C (z; R(2))
and this singularity has to be of type B with respect to every z€D.

We can affirm that s is an isolated singular point under the following cir-
cumstances: f(z) is uniform in the neighbourhood of s and D describes at s
an angle greater than n. For in this case it is possible to find three points
in D such that their corresponding circles of convergence cover a domain
containing a circle around s.

In the iollowing number we shall see that the sequence Vm converges at
‘a point which is not a limit point provided it has a sufficiently dense maximal

subsequence.

4.2. We shall say that a power series 2 a,z* has Ostrowski gaps if there

n=0

1 T ;
are numbers 6>>1 and y < B and a sequence n, with V]a, | <y for n, < u < dn,.

In § 1.4 we noticed that the occurrence of great Ostrowski gaps in the

v
power series around a point in D is a necessary condition that lim V]a,| be
zero. We shall see that the occurrence of Ostrowski gaps is a necessary con-

dition for lim V]a,| to be different from lim V[a,].

Y — 1

Theorem: If z,€D and if lim V]a, ()] Em then the power series
0 T ]
2 a, (Ty) (x — x9)* has Ostrowski gaps.
u=0

Proof: Put lim V]a, ()| = a. The theorem has already been proved in the
@1 @) 50 ounded (§ 1.31),

case a =0 (§ 1.4). Therefore suppose a 3¢ 0. Then | —-
a, (%)
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v . 1 .
sa @1 (%) <M. Let § be a number with a << 8 << ———- Thus there exists
a, (zo) R ($0)
a sequence n, with V|an, (zo)] < f. Let u=mn,
On,+1(T) | | An,+2 (o). @ (%)
Ia.u, (wo)l - Iam (:EO) | ' a;:(zo) ' anv+1 (xo) a‘u—l (-7/'0) )

Ny

. " ﬁ" 1— —
| @u (mg) | < pv - M= V| au (@) <pe-M *».

Now, let y be a number with 8 <y < E(!;—) It is then possible to determine
0
1 1
1 -5 . M —1
a number 6> 1 such that B’ M =y viz. §= log og B

- Thus for u

satisfying #, < u < dn, we get

I - 1
Viaw @l =¥ < g

i.e. the power series has Ostrowski gaps. Q.E.D.

v

Corollary: If z,€ D the necessary and sufficient condition that lim V|‘av (o) |
n,

. . . . (Y .y
exists is that there exists a maximal sequence VI an, ()| with lim nﬂ = 1.

v

Proof: The necessity is trivial. The condition is sufficient, for suppose 1';hat
such a sequence exists, then the series does not present Ostrowski gaps since
for sufficiently great v there would in every such gap lie at least one coeffi-
cient ay, .
an+1 ()

an (x)

M
finite linear combination of the derivatives of f: h(x) = 2 Cyu - au (x). Then
#=0"

4.3. Let >8>0 for z€D_ and n > N. Further, let & (z) be a

h™ (x); n > N;, has no zeros within D_.

Proof: We have

M
K" (z) = ZC’# (e + 1) (e +2) ... (0 + n)aurnl®).
1#=0

We may obviously assume Cy < 0. Thus
h (@) = Cy - apryn (@) (M + 1) (M +2) ... (M +n)-

M-1
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Substitute R, for the second term of the [ ] and let Max Ou | a. We have
uw+ - M—1+47 1
M+i~ M+i 1
T — 1+
and
(ln+[u. n+ 1 . a”H—M;l <(1)M—lu'
nt M Gntu+1 Gnt+M 0
Thus:
S ()
|Re| < a #=0

ﬁ(H__lm)'

i=1
As the infinite product H (1 + 71) is divergent, R, — 0 as n — oo. Therefore
j=1i
a number N, must exist for which |R,| <1 if » > N; and then A™(x) can

have no zero within D_ as apmin(x) has not and 1 + R, cannot be zero.
Q. E.D.

The condition ''>8>0 for all z€D and all » > N (N independent

An
av+1 (%)
a, (%o)

For according to § 1.2 the family la H} is normal in D_. Thus {a } is
N n+1} N

of x); is satisfied if there is one single point z, of D where lim >0.

a
normal in D_. But for N sufficiently great all functions of this family are
Ay (xo)
@11 (Zo)
one point of D_. Then it is bounded uniformly in every domain interior
to D_. (MonTEL 2, p. 35.)

We get the following theorem

holomorphic in D_. Now lim I< oo i.e. the family is bounded at

Theorem: If z,€D;, lim a:?i %) >0 and A (x ZC,, ay(z); (Cu con-
- » (€]
stants) then Dy< Dy, and
K (@) | y

h_ml/ = lim V]a, ()| for z€D.
4.4. In the preceding § we saw that a linear differential transformation of

f does not essentially change the distribution of non-limit points of zeros of
the derivatives. We shall see that the effect of adding to / a function h does
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not disturb the distribution of these non-limit points in a domain, the points
of which lie sufficiently far from a singular point of k. We have the following
theorem :

Theorem: Let z,€D; and lim Via, (z,)]| = Rl # 0. Further, let 4 (z) be a
— 1

function the singular points of which lie at a distance > R; from ,. Then
iL‘OEDH.h.

Proof: Let o; be >R, but less than the distance from z, to the nearest

. . p —R
singular point of £. Choose a positive number & < % 71, Ag lim V|au (@) | =

2 Rl

n
there exists a number N, with V|an (z,)| > Y N 1- Further, choose
Rl + é
€1

a number p <—_:£1 and such that all points within C (zy; o) belong to D_.

Then there is a number N, such that {gum}y, is normal in C(x,; g). As

|gnm(w0)|>—1—8 for » >N, and {gum(z)}y, is normal in C(zy;p) there
R1 + 5

exists a number N and a number g, <o with |gum (z)]| > R—lﬂ——e for all
1

within C (2y; ¢2) and all # > N

|an (@)] > (-R:%:)"

for all n > N and & within C (zy; ).
On the other hand let Max |4| be A. Then for z within C(xy; 0s)

C (2g; 01)

k(“)

n

40,
(91 — 02

27!' [ {z —:1&')”+1

C (zo; 01)

)n+1 :

Now from g, < &—;ﬂ and &< 91—;ﬂ it follows that g, —o, > Ry + &.

Thus for all sufficiently great :

1 > A Ql
(By +&)" " (o1 — go)"*!

|an ()] > |w or |f™ (x) + B™ (z)| >0

for all & within C (z,; 5). Thus wOGD}+h. Q. E.D.
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Remark: An immediate consequence is that if z,¢ Dy and if

. 1
hm]/— |19 () + B (m)| = 1 then xy¢ Dy.».
s L,, R,

By means of Theorems 4.3 and 4.4 it is possible to solve the problem of
finding the distribution of the limit points of the zeros of the derivatives for
rather extensive classes of functions. We can for example prove a beautiful
theorem of Polya concerning meromorphic functions (see POLya 4 or 5 or

WHITTAKER 6). Starting from the function f(z) = p—_l_—; which has the entire

plane free from limit points we see from Theorem 4.3 that a meromorphic
function which has only one pole has the same property. Then we use Theorem
4.4 in order to prove for an arbitrary meromorphic function, that the points z
for which there is only one pole on C(z; B(x)) are non-limit points.

In the same way we see that if f is a function having (among other singular
points) a pole, then in the domain of action of this pole there are no limit
points. (The domain of action of a singular point, s, is the set of points to
which s is the nearest singular point. This domain is easily seen to be convex.)
On the other hand every point on the boundary of this domain is a limit
point, for assume this was not the case for a certain point z, on the boundary.
Then in a neighbourhood A of xz, the family {gnm ()} would have only limit

functions of type > where p is the pole and |5|=1, for this is the case

in the domain of action of p, a part of which belongs to 4. But this means

that Lim Ve, (z)| = “)—1; in A, which is impossible as there must be points
in A the nearest singular point of which is not p, i.e. for which
i Ve @] > ——-
lp — 2|
In this way, the problem of finding the distribution of the zeros for one
function being solved, it is automatically solved for an infinity of functions.

5. Further Connections between the Coefficients and the Zeros
‘of the Derivatives

In section 2 we began the study of the influence on the coefficients of a
power series of the assumption that the series is developed #tound a point
which has no zeros of the derivatives of the function in its neighbourhood.
In this section we are going to continue this investigation.

L4
We begin with two theorems concerning the behaviour of the functions Va,.

5.1. Theorem: If z€D and if gn,m, converges to a non-constant function ¢ (z),
it is possible to find a sequence of numbers I, such that g 11, (x) converges to ¢ ().
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Proof: We have according to formula (a) of § 1.2:

n Gnm N1 Gam
Ayl = an - =—" Ce
LRI R gnm 0+ 1 Inm Inm
n+l
n+l l( 1 )' 1
— E— nt+l-
Vl An+1 | l In ml Tnm (a')

Since ¢ #0 in D, 1 is bounded in D_-. Thus it must be possible to find a

domain FE< D_ where (é) is bounded. By cutting away small circles around

) 1\ .. . . .
any poss1ble zeros of (?’) ) it is possible to construct a domain F < E within

which - a / o is bounded. (As @ is not a constant (é ) is not identically zero.)

Thus we can find a positive number « << 1 such that for € F we have

(vl |

On the other hand gn,m, (#) converges uniformly in F to ¢ (z). Thus there
exists another number 8 with:

g <

1

a

a <<

(gn o (x)) l< — in F for all » (sufficiently great).

By combining this result with formula (a) we find:

n,+1
n,+1 -
1 n

l/ﬁm " (0nm, @] < Van 1 @] < g 11 )
n,+1
Let » >oco. Then lm V|an,+1(z)| exists and is equal to |¢(z)|. We have
proved that if ga,m, (@) > @(z) in D then |gn 41l (z)| > |@(z)| in a certain
domain F=D. Now we choose the number sequence I, so that gn, 410 > @

at a certain point z, € F, which is always possible. Then every limit function
¥ (z) of gn,+1l. (x) has the properties:

I’P(w)l = I‘P(x)l; y (@) = @ (1)

The first property gives ¥ = @ - €'” where v is a real constant. From the second
property it follows that: ¢? =1

@ =g mn F.

Thus gn,+1l, (z) > ¢ () in F and on account of Vitali’s theorem the same pro-
position holds in D. Q.E.D.
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5.2. Theorem: For every z€D the sequence V]a, (z)| has limits everywhere

v

between lim Vla. (z)] and lim Vm, except possibly for those z which have

lim &Iay(x)[ =0.

Proof: Assume that the proposition does not hold for a certain value of z, =,.
Then there exist two numbers b and ¢ with b < ¢ situated in an interval that
does not contain any limits of V|a. (x;)|. Further the two numbers can be

chosen so near to each other that nome of the values V]a, ()] lies between
them. The numbers V]a, (x,)| are separated into two classes by the numbers
b and c¢: one class containing the numbers less than b and the other containing
those which are greater than ¢. Both classes contain an infinity of elements,
for if they did not, either lim V]a, (z5)] = b or lim V[, (z,)| =< ¢, which is not
in accordance with the assumption that b and ¢ are situated in an interval
between these two limits. :

Now the class consisting of numbers less than b contains an infinity of
n n+1
elements V[an (20)] with the property that the following number V] an+1 (zo) |
belongs to the other class. Viz. assume that only a finite number of elements
from the first class have this property. Then there would exist a greatest n

such that V| an (z,)| has the property. But as the first class contains an in-
finity of elements, there must exist a number m greater than » such that
m_o m+l m+2
Vlan (@o)| belongs to the first class. Thus ¥|am+1 (e)] and therefore V]am2 (zo)],
and so on, would belong to the first class. But then the second class would
not contain an infinity of values. Thus there is in the first class an infinity
k(3 ntl
of values V|an ()| such that V]ani1(zo)| belong to the second class. The
values of » in question we call =,.
Thus

n, n,+1

Vian, ()| <b and V]an,+1(z0)| > ¢
or

[@n, (o) | <™ and |an,+1(zo) > ¢ - ™

("

But the right member of this inequality tends to infinity with ». On the other

An,+1 (%)

an, (o)

hand, according to §1.31 the left member is bounded if @V'av (o) | # 0.
Thus we have arrived to a contradiction and the theorem is proved.
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5.3. For the functions ¢

Ay

the above two theorems which concern the functions Va..

On 41 (2
Let 41 (2)

@, ()

Lt is possible to prove theorems analogous to

—— be a sequence of functions uniformly convergent in D. to the

Iimit function ¥ (z), holomorphic in D. Further we assume that v is different
from zero at one point of D. Then it is different from zero throughout D
(for if =0 at some point z,€D then either 9 =0 or x, is a limit of the

An,+1

zeros of But the last alternative is impossible.)

anv

n,+1 (2)

Now o (x) =lm an, (@)

i (anﬁ»l (m))'
"\, @)

—- On account of the uniform convergence

exists and is equal to ¢ (). Applying the rule a, = (n + 1) @nt1 We get

(g@i})’: an (n + 2) nt2 — Gni1 (n + 1) ans1 _
an

2
— (g'il) -+ (n + 2) [%_@i}

Qan An-+1

2
. An,+1 an,+2  On,+1) On,+1
lim [( : ) +(n,,+2)( - — .
An,, an,+1 an, an,

exists and is equal to v’

Thus

, Y o An,+2 O+l
v =9* + lim p, (ny + 2) —

7, an,+1 an,
. . - . anv
and the limit really exists. As lim 4
nv
the limit

. an,+2  QAn,+1

hm(n,+2)(” —= )

an,+1 an,

exists. Thus we have proved

»H1

Theorem: If lim

My

Iim n, (

v —9
L4

an,+2 an,+1)

n,+1 (7

v

exists and is equal to

ap,

exists and is equal to y 7 0 within D then

|

Gn+1
Ay

1 . . .
exists and is different from zero,
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This theorem is analogous to Theorem 2.1 which is fundamental in section 2
and in the proofs of Theorems 3.2 and 3.3. Therefore it would probably be

possible to deduce theorems for the functions Gv+l analogous to the theorems

v

for Va,. However, we shall not follow this program in detail, but only give
some of the conclusions which can be drawn as corollaries from Theorem b5.3.

Corollary I. If it

converges in D to a function y £ 0 then

ny

On,+2  Gn,+1

= 0(i) (uniformly in D-).

an,+1 Qn v

v

The second corollary is the analogy to Theorem b5.1.

an

an,+1

Corollary II. If Ak converges in D) to a function y # 0 then
an,-+2 .

— =y in D.

Qn,+1 ¥

lim

This follows directly from corollary I.

converges in D to a function p 7 0 then

-

N 1
for all z€ D implies 9y = ——— for some complex number s, and conversely.
s—zx

Corollary I 1f
an,

Qp,+2 G, +1

An,+1 Qn,

An,+2  On,+1 an,+2  Gn,+1

Proof: If

=0 (l) then lim n,( ) =0 for every
an,+1 an ¥
2

z€D. Thus ¥ ;1/1 =0 throughout D. This differential equation has the

Y An,+1 Qn,,

. 1 . . . . 1
solution y = P where s is the integration constant. Conversely if p = PR
2

then 'P_;_W_ =0 and

. an,+2  Gn,+1
lim », {-

an,+1 an,
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av41 (370)
a (%)

b -ud)
(

is bounded for every €D (uniformly in D_) (cf. § 1.32).

Corollary IV. If lim

> 0; 2,€D then the set of points

Ay42 ar—!—l

Proof: The functions » ( ) are holomorphic in D_. As the family

Ay4+1 Oy
Qyi1

is normal in D_ it is always possible to extract a convergent subsequence

ay

Tn,+1

is such a uniformly

. . Ay4+1
from any assigned sequence of functions ——. If

v dn,

A ,+2 anv+1
convergent sequence then n, { ——
Un,+1 An

) converges uniformly by Theorem 5.3.

v

Thus the family {v (%H — a;ﬂ)} is normal. It is then only necessary to prove
v+1 Ay

that the family is bounded in one single point in order to have proved that
it is uniformly bounded in D_. Assume that it is not bounded at z, (€D-).

(an,+2($1) ny+1 (xl)) ‘ - 00,

Then there exists a sequence 7, such that

' @n,+1(21) B an, (21)
. . Am,+1
It s possible to choose a subsequence m, of #, such that T converges to
, m,
. . . A+ 2 Am,+1
a function y (which is not oo by 1.31). Thus |m, — — —— (%) | con-
@m,+1 O,

Mﬂ — 9% (=)
Y (1) o

of a sequence which tends to infinity.
The fifth corollary is analogous to Theorem 5.2.

verges to what is impossible as the sequence is a subsequence

@v+1 (%)
ay (x4)

Av41 (w ) f

Corollary V. If lim a (w)
v (Zo

€D, then the limits of — orm

a connected set.

@s+1(2o)
. @y (7o) . .
positive distance from each other. It would then be possible to find two open
domains 4 and B at a positive distance from each other, each covering one
of the two separated sets, and such that only a finite number of points

@1 (%) lie outside their sum 4 + B. 4 and B must contain an infinity of

@y ()

points

Proof: Viz. assume that the limits of are elements of two sets at a

i1 (T )

8y (o)

any Iimlt point of these points. Then for an infinity of values = it must

for otherwise at least one of the domains would not contain
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happen that @ni1(2) €4 and g—'iz-(f"% €B (cf. §5.2). But the distance between

@n (%) an+1 (%
@ +1 (o) d @n+2 (o) is 0 (—1) (corollary IV) and therefore tends to zero with
an (24) 11 (Zg) n

increasing %, which is not in accordance with the fact that the distance be-
tween 4 and B is positive.

5.4. Most theorems hitherto proved are formulated in the following form:
“If z€D and 4, then B, where 4 and B are various propositions. They might
equally well have been formulated in the following equivalent way: “If 4 and
not B, then z is a limit point of the zeros of the derivatives of f.” In this
form they express sufficient conditions for a point z to be a limit point.

Regarding power series around the origin: f(z) ZZa» x” we have thus a
v=0

multitude of conditions for the coefficients sufficient to guarantee that the
origin is such a limit point. But except for what can be concluded from §1.3,
we have no necessary conditions of the same kind. It is then natural to ask
whether any of our sufficient conditions are at the same time necessary. This
is not the case. Except in §§ 1.3, 4.3.and 5.3 we have only considered suffi-
cient conditions with the following property: The conditions only contain
expressions in the numbers a, which do not change when the arguments of a,
are changed but their moduli conserved. If such a condition were at the same
time sufficient and necessary, then all the series with the same moduli of
coefficients as a given series would have the origin as a limit point of the
zeros of their derivatives when and only when this is the case with the given
series. But there certainly exist series for which the origin changes its character
in this respect if the arguments of the coefficients of the series change. This
is clear from the fact that there exist series which satisfy the assumptions of
the following theorem.

o0
Theorem: If f(z) = Z a,r' is a function with a singular point at a finite
»=0

distance and if the origin is not a limit point of the zeros of the derivatives
of f, then it is possible to choose numbers w, with [w,| =1 such that the
o«

origin is a limit point of the zeros of the derivatives of k(x) = Zaywv "
: =0

Proof: We use the fact that if a and 8 are any two complex numbers, then
it is possible to choose w with [w|=1 in the way that

la — Bo|=]al.

- . . l}+1 .
As f is not entire there exists a sequence - which tends to a number
nV
different from zero. It is no restriction to assume for simplicity that this

Qn+1

sequence does not simultaneously contain a number and the two next terms

12

138



ARKIV FOR MATEMATIK. Bd 1 nr 12

an+2 An+3 . . .
s and —“=. Now we choose w, in the following way: If m is one of the
n+1 Ap+2

numbers 7, + 2 then w, is chosen so that

an,+2 An,+1
Wy —
an,+1 Gn

n,+1

an

14 v

and if m is not one of the numbers 7, + 2, then w = 1. With this conven-
tion it is clear that

an,+2 Wn,+2  Gn,41 On,+1 an,+1

an,+1 Wn +1 Un, Wn, Qn,,

as

Wn, = wp 41 = 1.

But if the origin is not a limit point of the zeros of the derivatives of 4 then

the left member of this inequality is O(nl) (5.3 corollary I) which is not in

v

accordance with the fact that the right member converges to a number different
from zero.

Remark: The theorem does not necessarily hold for entire functions, which
is seen from the example e*.
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