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O. Introduct ion 

We are going to study the distribution of the zeros of the su,.,'essive ,b.ri- 
vatives of analytical functions. The main problem is to find the (listributi,m 
of the limit points of these zeros. The concept of limit point will he nseJ i, 
the following sense. A point x is a linfit point of the z~.ros of the deriw/tive~. 
if and only if to every neighbourhood of x there is an infinity ,,f derivat;~,,': ~ 
which have zeros in this neighbourhood. Thus e.g. if the amdytit'al flmcti(,l~ 
in question can be developed around the origin in a power serics with gaps. 
then the origin is a limit point of the zeros of the derivatives. 

0.1. The following notation will be used 

1 (~) = 

a .  (x) - -  

~ , , ,  (x) = 

n r  

c (~; fl) 
D 

D_ 

x E D  

R (x) = 

the given analytical function. 

1(") (x). 
- I n - '  "" 1 (=) = ~ ,  a,, (x) (~ - .~.),,. 

_ _  n=O 

/ -  
} ' a n  (x) where the index m indicates the branch of ] a),. m is ass reed 
to take one of the values O; 1 ; . . .  ( n - - l ) .  
denotes a variable which takes the values l; 2, 3 . . .  

denotes a monotonic sequence of natural numbers. 

denotes the c ircumlerence of the circle with center ~ awl ra(tiu~ 1;. 

denotes a bounded simply connected open domain which does n,)t 
contain any limit point of the zeros of the derivatiw, s of 1. 
denotes a simply connected closed domain c D (D-  is to be thought 
of as being very close to D). 
will often be used to express that x is not a limit point of zeros. 
When used with this meaning the relation is to be read thus: x i~ 
an element of some D. In an analogous way the relation x r D will 
often mean that  x is a limit point, and ought to 1)e read: x i~ not 
an element of any D. This meaning of the symbols x e l )  and ., '~ b 
is used when D is not specified. 
distance from x to nearest singular point of ] (z). 
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H. RADSTOM, Zeros of successive derivatives 

r (x) = distance f rom x to nearest  l imit  point  of zeros or singular point .  Thus  
r (x) - R (x). 

n~ n v 

A sequence V[an~ (x)] is said to be max ima l  a t  a point  x o if lim V~-~(Xo)ii 
1 

exists and = R(xo)" 

A singular point  s is said to be of type  A with respect  to a point  xo if xo 
lies within an open sector of a circle, the arc of which touches 
C (x0; R Xo~ ) a t  s and which does not  contain any  singular point  of ]. 
(Fig. 1.) 

Fig .  1, 

S 

~0 

Fig. 2. 

A singular point  s is said to be of type  B with  respect  to a point  x 0 if it lies 
on C (x0; R(xo~,) and if there  exists an open sector of a circle with i ts  
cusp a t  s, the angle of which is bisected by  the  line f rom s to x o 
and is greater  t han  ~, and which does not contain any  singular po in t  
of ]. (Fig. 2.) 

Equiva len t  l imit  functions:  We are going to s tudy  the  family  {gnm}. Two l imit  
functions of this family  ~1 (x) and q~. (x) are said to be equivalent  if 
there is a number  U with  I U [ =  1 such t h a t  •1 = ~  q% 

0.2. P re l iminary  remarks  : 

1. The case when ] (z) is a polynomial  is trivial,  for then  every  point  of 
the plane is a l imit  point  of the  zeros of the  derivat ives.  Therefore we shall 
assume t h a t  / (z)  is not  a polynomial .  

2. The following formula  follows easily f rom the definit ion of an: a~ = 
= (n + 1) an+~. 

3. R (x) and r (x) are continuous functions.  
4. The necessary and sufficient condit ion for R (x) to be the modulus  of an 

analyt ic  funct ion in the  neighbourhood of a point  x0 is t h a t  there  is only one 
singular point  s on C (x0; R(xo)), and t h a t  s is of type  B with  respect  to % .  
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Proofi I f  s is of type B with respect to x 0 and if s is the only singular poini~ 
on C (x0; R~x0 ~) then there clearly exists a neighbourhood of xo all points of 
which have s as their nearest singular point. Thus R ( x ) =  I s - - x ] .  Conversely, 
assume tha t  R (x) is the modulus of an analytic function in a neighbourhood 
A of a point Xo. Let  s be a singular point on C(x0; R(xo). We always have 

C(Xl;sR(X~)) 

C(x2, R(z2)) 

( 
Fig. 3. Fig. 4. 

R(x)  ~ l s - - x  I. On the other hand, for points on the line between x0 and s 
the equality sign holds. Thus, as R (x) is the modulus of an analytic function, ( R(x) 
this sign holds throughout A maximum modulus theorem for Is - -  x 1] But  this 

implies tha t  s is of type B, for if we choose two points xl and x2 in A 
according to Fig. 3, then C (xl; R (xl)) and C (x~; R (x2)) pass through s. There 
are no further singular points on C (x0; R (x0~), for choose a point xa e A (Fig. 3). 
Then C (xa; R (xa)) passes through s. 

5. I f  s e C (x0; R(x0?) is of type B with respect to Xo there exists a sector 
of a circle with its cusp in Xo all inner points of which have s as their nearest 
singular point. Thus for the points of this sector R(x)= [s--x I. (Fig. 4.) 

103 



iI. r~XDsTn/i_~t, Zeros of successire derivatires 

(lf s is the only singular point  on C(x0; R x0) the same s ta tement  holds for 
~ circle ar.m~d x 0 as wa.~ the case in 4.) 

1 
u. If  q (J) is a limit fimction of the family {g ..... (x)} then 

7. n (z) ~ t~ (~.,,) - I.r - ~,, 1. 

s. Fr,,,,, u ,m,1 7 i t  easily fol lows tha t :  I f  I --xol< R ( ~ o ) t h e n  Iq (x)l ~< 
1 

I- -x,,l 
!L I f  q (.r) is a l im i t  funct ion of the fami ly  {g,, , , (x)}  then r/.~c.(x); (l l=n 

i s  I p n e .  

1. Study o f  some  normal  funct ion famil ies  

1.1. The iwoblem of finding the limit points of the zeros of the derivatives 
- f  [ is in t imately related to the s tudy of the convergence properties of the 

v 

limctions .q, =~ I"a,. We begin with tile following 

Theorem: The family {g .... (x)] is normal in every bounded simply connected 
,Imnain which does not contain any  siz~_gular point  of ] nor any  zero of anyone 
~,f the derivatives of ]. 

Proof :  3_ sufficient condition tha t  a family of functions be normal  in a 
m'- tain domain is t ha t  all the functions are holomorphie and the family uni- 
l',,rmly bounded in this domain. The function g,,m(x) is holomorphie in a 
,mta in  simply connected domain if ] is regular there and if ](~) has no zero 
within the domain.  We now regard a bounded, simply connected, open domain, 
A. which lies at  a positive distanee from the set of singular points of / and 
whi ,h  does not  contain any  zero of ]("). Let  M denote a number  which is 
~r,. , ter than I /(x)l  within A. I t  is no restriction to assume tha t  the boundary ,  
{'. of A is such tha t  it is possible to define eontour  integrals along it. 

\Ve ~et 

l ~  1 [" l (z)  dz 

C 

l,et L be the length of C, and assume tha t  x lies within a domain B c A 
which has all its points at  a distance > 6 from C. 

n 

l the family J ~s lhe ri~l~t member tends to d o ~g,,*,,I is uniformly bounded in B. 

'l'lm~ t],e f, mily is normal in B, and as d can be chosen arbitrari ly small, it 
,: : , , rm , I  in .1 too. Final ly we see tha t  the family nmst  be normal  in every 
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domain of the type  described in the hypothesis because every domain which 
lies entirely within such a domain is of the same type as A. Thus the theorem 
is proved. 

By the symbol {g,,,,, (x)}:v we denote the family consisting of those functions 
g which have n > N. Now, if D is an open domain which does not contain 
any limit point of the zeros of the derivatives of ], then to every closed domain 
D _ c D  it is possible t'.) find a number N such tha t  no function .a,, : n  > N 
has zeros within D_.  I f  we want to study the limit functions of ~ 
may  equally well s tudy those of {g,,,,}x. Thus the limit functions have no 
connection with isolated zeros of the derivatives of /, but only with their 
limit points. 

We now regard the family ~ 1 ~ where the index, N, has the same 

meaning as above. This family is normal in a certain domain if {g,,,}~ is normal 

! Jx / in the same domain and if no 9,,,,; n > N has a zero there. Ttms [g,,,i(x)jx 
is normal in D_ provided N is sufficiently great. We assume tha t  at  a certain 

point x 0ED the numbers g, 1 l 1 / is (X0) are bounded. Then the family Ig::,,i(~:)Jx 

uniformly bounded within D . ( M O N T E L  2 p. 35.) This  fact may  as well be 
expressed in the following way: To every closed D_ c D it is possible to find 

a number N such that  I/]a,~(x)]>a>O if n > N  (with the same number a 

for all xED_) or shortly: lira V[a/(x)] > 0 uniformly in D . 

On the other hand, if lira Via,  ( x ) ] >  0 uniformly in D_, then D_ is free 
1 

from limit points of the zeros of the derivatives of [, for then every tla,:(x)[ 
(except possibly for a finite number) is greater than a positive nmuber  through- 
out D_.  Of course the absence of the condition of uniformity would make 

such a s tatement  impossible, i .e.  if we only knew that  lira ]/[ai,(x)- i > 0 every- 
where in D_, then there could well be an infinity of points in D_ where 

i ,  

V ~ ( x ) [  might be equal to zero. 
This may  be used as a test  in the study 0f the distribution of the limit 

points. The regular points of [ can be divided into three classes: 

I :  x o e I  if there exists a neighbourhood A of Xo, a number a > O  and a 
?b 

number  N such tha t  V[ an (x) ] > a for n > N and x E A. 

I I :  x o E I I  if lim Via, (Xo)] > 0 and if to every given triple consisting of a 
neighbourhood A of Xo, a number a > 0 and a number N there exist an 

n 

x e A  and an n > N  v i t h  ~/[a~(x) l < a .  

I I I :  x 0 e I I I  if lira v[a-,-(xo) l = O. 
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We have seen tha t  the points belonging to the first class are not limit 
points and tha t  those belonging to the second class are limit points. As to the 
points in the third class both cases may  occur. P6LYA (4) has given examples 
of entire functions where the problem of finding the distribution of the limit 
points can be completely solved, and the result shows that  there exist limit 
points as well as non-limit points. 

1.2. We have seen (Theorem 1.1) tha t  the family {gnm} is normal in every 
domain where the derivatives of ] (z) have no zeros. On the other hand, the 
family is not normal in any domain containing such zeros. As is seen from 
the proof, this depends entirely upon the fact tha t  not all the functions are 
holomorphic in such a domain. The upper bound common to all g ~  exists 
independently of the zeros. 

The family [ a n ]  consists of functions which may  have other singular points 

than those of ]. Such a singularity is a pole. Thus the function a~+l is 
an  

meromorphic if / is regular, and its poles are the zeros of /(n). 
The family {gnu} was treated as a family of holomorphic functions, but we 

are going to t reat  ~a~+~ as a family of meromorphic functions. We put  the 
l a n  ) 

question: ]n what points of the domain of existence of ] is the family 

a n  ~ a normal family of meromorphic functions? 

First we assmne that  x 0 is a point which is not a limit point of the zeros 
v 

of the derivatives of ] and tha t  lira ]/la~ ( x o ) ] >  O. We have 

and 

' n ' n - 1  . g n m  (n + 1) an+l ~ an = (g,m) = n" gnm 

a n  ~ -  ~ g n  
n m  

As ] is not a polynomial, then an is not identically zero, and we have 

p 

n + l an+l __  gnm 

n a n  g n  m 

(a) 

[ a n + l  I In  order to prove tha t  ~ - ~  is normal at  xo we prove tha t  from any given 

sequence of natural  numbers we can choose a subsequence {n~} such tha t  
a n , , + 1  
- -  converges uniformly in the neighbourhood of xo. We choose n,, such tha t  

a n  v 

gn~m,, (x) with convenient my converges uniformly in the neighbourhood of x 0, 
which is possible as {g~m} is normal at x 0. As gn~m~ (x) converges uniformly, 

g~m,. (x) does. We have 
lim 9n,,~v (x) ~ 0. 
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Thus 

viz. 

l i m -  exists a n d -  
g~ m,, lim g,~,, ,,,, 

lira n~ . . . . . . . . .  + 1 an~.+ 1 art,.+ 1 
- -  lirn exists (uniformly). 

n~ an~ an~. 

Secondly we assume tha t  xo is a limit point of the zeros of the derivatives 

of [. I f  / a " + ~  is normal at xo, then there exists a sequence of flmetions 
( a ~ /  

a n ~ + l  

- - - -  all of which have poles in the neighbourhood of xo, and which converge 
an,. 

(spherically) uniformly to a meromorphic function. This function is either the 
an~+l (x0) 

infinite constant or has a pole at x0. But in both cases tends to 

infinity, a ~  (x0) 

We have proved tha t  at a point which belongs to class I of w 1.1 i a,~ j 

fan+l  is normal, and that  at a point belonging to class I I  ~ a-~-j is not normal provided 

lira a'~:)~(-x-~ < co. For a point Xo belonging to class I I I  we only know that  

if x0 is a limit point and i-im a, .+~(xo)< co then la"+~] is not normal. 
a~ (Xo) [ a,, j 

Especially we have seen: 
v 

I /  lira V[a,,(Xo)] > 0 and lira av§176 < oo, then ~an§ J is  or. al (not norm Z) 

i] Xo is not (is) a limit point o/ the zeros o/ the derivatives o/ /. 

Having stated that  t-an+j~ is not normal at a certain point we may  use any 
t a n  ! 

criterion of normality to draw conclusions concerning the distribution of the 

values of a,+l  in the neighbourhood of this point. Thus for example: If  
a r  

lira a~+l . . . .  (x0) a,(x0) ~ co and if x0 is a limit point of the roots of a~ ( x ) =  0 then Xo 

is a limit point of the roots of a ,+l  ( x ) =  C, except possibly for two values of C. 
a~ (~) 

1.3. 1. We shall prove the following proposition: 
y 

I f  lira V]a, , (Xo)[> 0 for some point Xo eD,  then there exists a number M 

with an+l < M for all x E D_ and all sufficiently great n. 
Ctn 

Let C be a contour within D containing D - .  Let  the distance between C 
and D_ be (~ > 0. From the proof of Theorem 1.1 it follows that  there exists 
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a number  A such tha t  [.a ..... (z) l < A  for all z within and on C and for all n. 
As g ..... is holomorphic within C for all sufficiently great n we have (xED_) 

I g;,,,, (x) I = 1 I /~  g~": (z) d Z < 1 A 2 ~  . !  ( z - - x ) "  - - 2 ~ ' 6  2 " L e n g t h  of C. 
C 

T l u l s  I ' I ~g,,,,, (x)t is uniformly bounded in D_ for sufficiently great n. 

I 1 ] is uniformly bounded in D_ for sufficiently On the other hand, [9,m(X)j 

great  ,~ as lim t~laTI > 0 (w ~.1). Thus |.q~-~(x)/ is uniformly bounded in D -  

for sufficiently great n. According to the formula (a) of w 1.2 the same holds 
at ,  § 1 

for a~t,~- 1" 

. ,ovo :oro   von a '+ l< '>  ' 2. Bu t  �9 \ a~ / Im are bounded in 

D_ and uniformly with respect to m, n and x, the values of n for which l (') has 
a zero within D_ being excluded. There is only a finite number  of excluded 
values of n. 

Let  C be a contour contained in D and containing D_.  As has just  been 

proved, there exists a number A such tha t  a ,+ l  < A on and within C except 
I a = f  

for the values of n for which /(') has a zero on or within C. We may  assume 
these values to be those for which D -  contains zeros by  taking C sufficiently 
near to D - .  Le t  the distance between C and D_ be ~ > 0. Now (xeD-) 

j 
" a~+, (z). I 

] {an+l(X)t(m) I 1 an(Z) gz 1 A 
IL~ t a =  (x) f [ = ~ ( Z - - X )  m+l  ~ 22/5" 6 r e + l "  Length of  C.  

c 

In  particular this holds for x = x 0, which proves the necessity par t  of the 
following theorem. The sufficiency par t  follows easily, considering the fact tha t  
the zeros of /") are poles of a,,+lla~. 

Theorem:  I f  lira Via, (x0)l > 0 the necessary and sufficient condition tha t  x0 
be not a limit point of the zeros of the derivatives of ] is tha t  there exists 
a number  B such tha t  for almost all n and for all m 

" 

1.4. The case lim |/la,. [ =  0, which is exceptional as is pointed out in the 
preceding ought to be studied separately in order to decide for what  types of 

functions it may~occur  I t  will turn out tha t  if lim V[a,, I =  0 at  a certain 
point, then in most cases this point i~ a limit point of the zeros of the deri- 
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vatives. Only for a rather limited class of functions / can the contrary occur. 
In  order to determine this class, we assume that  x0 is a point in D and tha t  

lira | / ~  (x0) l --~ 0, and we t ry  to draw conclusions regarding the behaviour of ] 
from these assumptions. As the family {gnml is normal in D - ,  there must  
exist a limit function ~ of the family, holomorphic in D and with T (xo)~-0.  
Now either ~ (x )~ - -0  or xo is a limit point of zeros of the functions g. 
(MONTEL, 2, p. 36.) But  as xoeD, it is not such a limit point. Thus ~(x)--~0. 

n v 

This means that  there exists a sequence ]/~nn~(X)l which converges to zero 
uniformly in D - .  

(We observe that  this means tha t  if lira Y]av I--~ 0 holds for one single point 
of D, then it holds for every point of D. This is very often used subsequently.) 

We shall say tha t  a power series ~a~x '~ has great gaps if there is a 
re=0 

sequence n~ of natural numbers and a sequence a~--> c~ of real numbers with 
a ~ 0  for n ~ - - ~ # ~ a ~ n ~ .  We can now prove the following 

fry 

T h e o r e m :  I f  x o E D and if there exists a sequence Viand, (xo) I tending to zero, 
then either / is an entire function, or ] is the sum of an entire function and 
a function the power series (in x0) of which has great gaps. 

P r o o f :  From the function sequence g~ ,~  (x) where the numbers m, are chosen 
arbitrarily, it is poss ible  to choose a subsequence which is uniformly convergent 
in D_. As was proved above, the limit of this subsequence is zero through- 
out D. (For simplicity we do not change our notation but denote this sub- 
sequence instead of the original sequence by gn~m~(X~). As the convergence i s  
uniform in D_,  there must exist a circle C (x0; ~) around x0 with the radius 

within and on which g ~  (x) converges to zero uniformly. Thus, .if 

Max I g ~ , l ~ s ~  then s , - ~ O  
C(xo; Q) 

l an,(X)[--~s~ for x E C ( x  0;~) where s , - ~ 0 .  

I t  is easy to see tha t  the following formula is correct: 

n a,~(z) dz 
( m : )  am+n(x)-12zi f .  (Z--~)  m+i 

g(x0; Q) 
where x lies within C (Xo; ~). We get: 

o r  a s  m --> : l 
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P u t  m = / z - - n v :  

Now we choose a sequence a~ of real numbers  such t ha t  av ~ co 
1 

(~ e0)"" + 01 and divide the  non-negat ive  integers # into two classes 

(a) 

and 

I :  # belongs to class I if for some v: n+--< # < a ,  nv. 

I I :  # belongs to class I I  if for no v: n+ --< /~ < a ,  n , .  

We  construct  two power series 

h (x) ~-- ~ c, (x - -  Xo) ~ and k (x) ---- d, (x - -  xo) ~ 
�9 =0 ~=0 

where 

~ a ~  (x0) i f  ju belongs to I and d .  = ~ 0  if # belongs to I 
c~ ( 0 if /~ belongs to I I  ( a ,  if # belongs to I I  

As ~u either belongs to I or to I I :  ] (x) = h (x) + k (x). According to (a) 

1 
B u t  then  n ,  > __ 

/~ av 
1 

" VVA (e provided Q e~ < 1 

which always holds for sufficiently great  v. Thus 

# 

-+o 

Vl  l=o 

Thus  h is entire. 
Clearly k has great  gaps. Thus the  theorem is proved.  
F r o m  a famous  theorem of OSTROWSKI'S (3 p. 251) we can now draw con- 

clusions concerning the  funct ion /(z).  Thus, e .g .  ] (z) has a s imply  connected 
domain  of existence, which implies t h a t  /(z)  is uniform and has no isolated 
singular points  in the finite pa r t  of the plane. 

if # E I and on the  other hand  

if # e I I  

1 l o g  (~ ~ )  
e . g .  choose  a v ~ --  log [ log (~e~) [" 
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2. Cauehy's  and d'Alembert's  Criteria o f  Convergence  

The application of Cauchy's criterion of convergence to power series leads 
to the following formula: 

l ira  I = k" 

However, d'Alembert's criterion does not generally give the radius of conver- 
gence exactly but only an inequality: 

limla~+~[-<- l a ~  R -<]~m a"+l l a ~  " 

I t  is well known that in the case when d'Alembert's criterion gives the value 

of R, i. e, when lim a~+_ t exists, then lim Via, I exists, but the converse does 
gv 

not necessarily hold. I t  is clear that  for subsequences n,, of v the corresponding 

proposition does not hold, i.e. it is not generally the case that if lim ~ 1  
n v 

exists then lira V[~ , ]  exists. Still less does the converse hold. However, we 
shall see tha~ theorems of this type exist, if the assumptions are completed. 
In this section some theorems of this type will be proved. 

2.1. We begin with the following 

Theorem: If the family Igor/ is normal in the domain D, and if in this 
domain the sequence g~,~, converges to a certain limit function ~ (x) which is 

not identically zero, then a~,+l (x) ~'(z) a~(x-)- converges to ~ - ~  in D (uniformly in D_). 

Remark= The completion of the assumptions co'nsists in this case" primarily 
of the assumption that the family {g~,,} is normal. Secondarily we do not only 

n v 

assume the existence of lim v[-a~l for a certain value of x, but the existence 

of lira Va~,~ for all x e D. 

Proof: In D_ we have uniformly ~0 ( x ) :  lim g , ~ .  (x). Thus, lim g~,~ exists 
and is equal to ~' (x). As ~ (x) is not identically zero we get 

t 

~0' (x) = lim__gn~m, = lim --g""~" 

Now from the formula (a) of w 1.2 it follows that 

~' (x) __ lim an~,+l (X) Q.E.D. 
(X) an~ (x) 
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2.2. As a result of Vitali's theorem it is clearly unnecessary to assume that  
n v 

lim Va,~ v exists for all x E D, as we can accomplish this by assuming the existence 
of the limit in question at  an infinity of points of D_. 

n ~  

However, instead of requiring convergence of V a ~  at an infinity of points, 
n v 

we can require that  Vlan,.] converges at a certain set of points. We get a 
theorem analogous to the above theorem by assuming this set to be such that  
any function harmonic in D and zero in the set has to be zero throughout D. 

n v  

Assume tha t  the sequence ]/[any(x)[ converges in such a set M. Let two of  
n v 

the limit functions of the sequence Vann~ be ~1 and q2. These are holomorphie 
and are assumed to be different from zero in D. Further it is clear that,  as 
neither ~1 nor ~2 are = 0 within D, we can find a function v (x)holomorphic 
in D and satisfying ~vl(x) ~%(x). e i~(x) in the whole of D. But  if x e M  we 
have  I l(x)l = I  (x)l i." e _  this that  the function is real. But  v (x) means 
Imv(x) ,  harmonic in D, is zero in M. Thus, it is identically zero, and v is a 
real constant (and we have I~1 [ = I q~ I throughout D). Accordingly there is 

n v 

essentially only one limit function ~0 of the sequence Va~-. All the others arc 
of  the form ~.~v where ]~l = 1. Combining this result with the previous 
theorem we get the following 

n v  

Theorem: If  Vla%(x)l converges at a set of points M c D ,  if at  one point 
at least it converges to a number different from zero, and if M is such tha t  
any function harmonic in D and zero in M is zero identically in D, then all 

n v 

the limit functions of the family {1/~,} are of the form ~.~0 (x) where ~0 is 

_ _  Q J  one of them and [~] l=  1. Further  an~+l converges to - -  in D. 
an v q9 

2.3. The best theorem of the type discussed here would be the following: 
n v 

anv+l 
If  V[a,~,. [ converges for one single value of x, Xo e D t h e n -  converges in D. 

an~ 
I have not succeeded in proving either this theorem or any of the theorems 
with the same hypothesis, only the following less extensive propositions: 

i. anv+l any+l[ --an~ converges in Xo; ii. I a,-~- [ converges in x0. 

On the other hand I have not found any example showing that  any of these 
theorems are false. 
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However, it is easy to obtain a theorem with the required assumption by 
imposing further restrictions on the proposition: we can determine an upper 

an~+l (Xo) t bound of ~ (~ )o )  (el. w 1.31). 

1 
Accordingly we assume that  x0 e D and lim V I a~ v (Xo) [ = R~ ~ 0. If we knew 

that  all the limit functions of {gn~m~} were equivalent to one of them, say q(x), 
then the best of the theorems mentioned above would be proved. For by 

Theorem 2.1 we should then have lim a%+~ _= ~v'. However, it is possible that 
an r ~P 

{g~mv} has several non-equivalent limit functions. All of these have nevertheless 

1 - -  an,+l(x0)[ 
the modulus ~ at the point Xo. To get an upper bound of lira I 

an~((Xo~ ) I 

it is clearly sufficient to find an upper bound of q' (x0) where ~0 passes through 

the set of all the limit functions which are generated by the sequence g%~.(x). 
Now we have (by w 0.28) 

But 

1 
I (x)l < - R ( x o ) - - I  x - x o l  for I x - - x  o l < R ( x o ) .  

(x - -  Xo) 2 e ( R ,  e) 

R 
We get the best bound if ~ = ~ ,  but  as e has to be less than r we can 

accomplish this only when r > 2R; in other cases we have to be satisfied with 

letting e tend to r (x0). 

2.4. By applying the above method to q~ (x) instead of q (x), where a is a 
real positive number, we can get a better bound. As ~ ( x ) i s  holomorphic 
within C (Xo; r(xo'~) we have 

11 f [a. ~V :-1 (Xo)- T' (Xo)] ~-~ ~ (x --  Xo) 2 
C (xo; (~) 
~<r(xo) 

We easily find an upper bound of the integral. After division by l a .  ~'~(Xo)l 
we get 

] ~'(Xo) < 1 
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The right m e m b r u m  has its m in imum for a -  
R1 

log R - -  

q~' (x~ [ _~ e . log R1 
~ (~)o) I Q R - - Q  

Here  ~ < r (Xo) bu t  we see t h a t  b y  lett ing Q ~ r we can restr ict  ourselves to 
requiring only Q <-- r. Thus 

n ~  

1 
Theo rem:  I f  l im Vla. (xo)l = o, if xoED and if e -< r(xo), then 

- -  lan,.+l(Xo)[ e R 1 
l im --< log 

R e m a r k :  The right  m e m b r u m  has its min imum if 0 = R u where u is de- 

R1 1 u This value can be te rmined from the equat ion:  log ~ + log 1 ~  ~- 1 - -  u 

used if it is smaller than  r(xo). In  other cases we get the best  result  b y  
choosing 0 = r (Xo). However ,  the bound we get in t ha t  way  is not  best  pos- 
sible, because the  numerical  factor  e can be replaced by  2, as we shall see 
later  (2.6). 

2.5. The bounds given above can be essentially improved  for such sequences 
an~+l 
- -  where R 1 ~ R, i .e .  for the sequences where the corresponding sequence 

an v 

,*v " 1 
VJan, I is max ima l  (see 0.1) or converges to lim V [ ~ - - R  In  this case w 2.3 

4 
gives the bound R and Theorem 2.4, which gives the best  result  for q - ~  0, 

e 1 
gives R .  The following theorem says t ha t  these bounds can be replaced by  R .  

n v 

1 and if Xo E D, then  T h e o r e m :  I f  lim ]/I a~v (Xo)[ - -  R (Xo) 

l i-~lan,-~l(xo) J <  1 . 
an,, (Xo) - -  R (xo) 

P r o o f :  Let  ~ be a l imit  funct ion of gn, m~(X). We invest igate  the funct ion 
h(x) = log (R(xo)" of(x)) which is holomorphie in D. We have  according to 0.2: 

R(xo) Now I R ( x o ) ' ~ ( X o ) ] - - ~  1. P u t  u ( r ; v ) :  I R(xo)"  ~(x)  l < 
- -  R (Xo) - -  Ix - -  Xo I 

= log JR (Xo)" cf (x)[ = Re h(x) where r -  e i" = x - -  Xo 
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K 
R (Xo) < I x -  xo I "" u(0;  v) = 0 and u(r ;  v) ~< log R(xo ) _ l x _ x o l -  R(~ 

where K is a constant which can be chosen arbitrarily near to 1 if I x -  Xo[ 

(~ is small enough. Let ~-r be the derivative at the origin in the direction 
v 

v of the function u (r; v). We have 

( 0 u~ u (r ; v) - -  u (0 ; v) K 
Or ]~ = lim ~< ~-~o r R (Zo) 

As r ~ 0  we can let K - ~ I :  

But  

0 u) 1 
~ - 7  < -  . . . .  

R(xo) 

h' (x0) = lim - -  
h(x)--h (xo) 

X - -  X 0 

Let x - - x 0  tend to zero with its argument constant = v; we get 

h' (Xo) = lim 
Re [h (x) -- h (Xo)] 

Ix--xol e~o 
+ i I m [h (x) --  h (Xo)] 

IX--Xol'e~~ 

Ou) = "" h'(X~ Orr + i ( " ) ;  Re(h'(x~ {Oul < 1 
~Or I~ - R (Xo) 

But this is valid for all v as the derivative of a holomorphic function is in- 
dependent of the direction of the differential of the independent variable. 

1 .  I~v'(xo)I< 1 
"" ]h' (xo) ] _< R (xo)' ~(x~- -- R (~xo) 

lim an~+i (Xo) I < 1 
an,(Xo) -- R(xo) Q . E . D .  

2.6. The bound e_ log RI - - lan*+l(x~  ~ for lim I I which has been found in w 2.4 
an, (x0) 

can be improved by use of the following theorem of Landau's  (1, p. 620, 
Theorem 6): 

If  b l z +  b2z 2 +  . ' - I < M  for Izl -<~, then the function b l z + b 2 z  ~ +  ""  
for I z[ ~< ~ takes every value within a circle around the origin with radius 

I b l l o ' ~  where the function ~(u) is defined by the equations 

sinh v 
(u) = u .  e - " ;  - -  u. 

V 

v(u) is a convex decreasing function of u: v ( 1 ) =  I;  T ( c ~ ) =  0. 
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We use the theorem in the  following form, which is an immedia te  con- 
sequence : 

I f  ]blz + b2z2 + . . . [ < M  for Iz[--<~ and if h ( z ) = b o  + bxz + b2z2 + "" 

(,L) has no zero w i t h i n  [z] = Q, then  [b 01 -> ]b l lQ '  ~ �9 We define a posit ive 

sinh v M M sinh v 
number  v by  - -  v v i b l [ .  As [ b ~  > 1 this number  exists, and as - - -  

is monotonic it is unique. According to the definition of r :  

M 
]bo] >- M .  e-~; v ~ log i b o-i" 

We now regard the  two cases I bol < M and [b ol -> M. I n  the first case 
M sinh v . 

log , , -~  is a posit ive number ,  and  as - -  increases for v > 0: 
I%l V 

M sinh v 

Ib l l~  v 

M 
I n  bo th  cases ] b]-l' 

Q 
- - > - - 1 .  

M M Ibol 
sinh log [b ~ I = !bo I M 

M M 
log lbol 2 log I bol 

We construct  a funct ion ~ (s) in the following way:  

[ 2 log 
8 

r (s) = 1 
- -  - -  S 

S 

1 for 1 --< s 

for 0 < s < 1 

Thus we have proved  the following 

Lemma: I f  [blz + b~z ~ + .... [ < M  for [z] < p and if h ( z ) = b o  + blz + ... 
has no zero within ]z I =  Q, then  

We can now prove  the following theorem (cf. w 2.4) 

n ~  

1 
Theo rem:  I f  l im V ~ n , ( x 0 ) ] - ~  ~ 0, if xoED and if ~ -<  r(x0), then  

an~+l (xo)] < 2 l o g  R R  1 �9 l im ~ ( x ~  I --~ 
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Proof :  First  assume ~ < r (%). Then none of the functions an (x) has zeros 
within C (xo; e) provided n is sufficiently great. Therefore we can apply the 
lemma to an (x). Now 

an(x)-~an(Xo) -I- ( n +  1) 1 an+l (Xo) (x -- Xo) q- ""; 

Let  Q < Q I < R ( x o )  and let the maximum of / on C(xo;Q1) 

]a~ (Xo) [ ~ A_, and if {x - -  x o [ --< ~ we get 
ei 

q(n+l) (n+2) I 1 an+l (Xo) ( x - -  xo) + 2 an+2(Xo) ( x - -  xo) 2 + "'" --< 

be A. Then 

- 1 2 + <  

A (]_j_ (n-~ 1)~ _~ (~-]-2) (~1)2_~ - ...) A.(  i tn§ A~I 
< o  ~, 1 ~ ~ ~? 1 - Q l f  ( ~ l - e )  ~§ 

Accordingly we pu t  

The lemma gives 

A ~ 
Mn = 

( 0 1 -  O) n+l 

(n + I) lan+l(Xo)[~ < r 
M,~ -- ~ M n ]  

But l an(xo)l _ A (el--  e) n+l - -  �9 tends to zero when n -+ c>o. Thus for sufficiently 
Mn O n A ~1 

1 
2 l o g -  8 

great  n we can use the expression I V - -  for ~b (s) 

-- -- 8 8 

] an+l (Xo) 
an (Xo) 

an+l (xo) 

Mn 
Mn 

2 log la.(xo) l 
~(n + 1) Mn lan(xo)l l n( o)l 

n+l 
2 V - - -  

--< ~ log 

l a~ (xo) l Mn 

Mn 1 

an(xo)] i -  i ' lan(x~ ~ 
\ M,~ I 

Now put  n .  instead of n and let ~ tend to infinity 
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Let  ~i tend to R(x0) 

__ a~§ (Xo) I 
lira an~ (Xo) 

- -  ~ §  (Xo) I lira a ~  (Xo) 

2 R 1 
--< �9 log - - - -  

-'-2- �9 log R1 
R - - e  

We have assumed ~ < r (x0). But  we might  equally well assume ~--< r (x0) 
which is easily seen by  lett ing ~) tend to r (x0). 

Thus, the theorem is proved.  

3. The Singular Points  

In  this chapter  we are going to s tudy  the influence of the singular points 
on the behaviour  of the power series, still under the assumpt ion  t ha t  the point  
around which the  series is developed does not  belong to the set of points  
where the zeros of the derivat ives accumulate .  

3.1. We begin with the 

Theo rem:  I f  xoED, and if s is a singular point  on C(xo; R(xo)) of type  B 
1 

(w 0.1) wi th  respect  to x0, t h e n - - - -  is a l imit  function of {gnm} in D. 
8 - - X  

Proof :  As s is of type  B, there is a sector of a circle within D with its 
cusp a t  x0 such that ,  if x is a point  in its interior, the relation R ( x ) =  I s -  x] 
is satisfied (w 0.25). Le t  xi ,  be a point  within this sector. We know tha t  i t  
is possible to find a sequence of functions gn~m, (X) whose moduli  converge to 

1 1 
R (--xl~ a t  the point  x 1. As R (x) = Is - -  x I then ]gn.mr (Xl) I ~-> 18 __ Xl  ~ "  

1 
By  choosing m, convenient ly we can make  it converge to - - - -  Now we 

8 - -  X 1 

can choose a subsequence which converges uniformly in D_.  Then in D i t  
converges to a limit function ~ (x). We s tudy  the function ( s -  x ) . ~  (x). We 
have  ( s - - x ) . ~ ( x ) l  = [ R ( x ) ' ~ ( x ) [ < l  within the sector and for x = x i :  
[(s - -  Xl) ~ @1) - -  1. B y  the m a x i m u m  modulus theorem, (s - -  x) �9 ~ (x) is then  
constant .  Bu t  (s - -  xl) ~ @1) = 1 

1 
"" ~ (x) = - - - -  Q . E . D .  

8 - - X  

Corollary 1. I f  s is the only singular point  on C(xo; R(xo)) then  every 
nv ~'v 

sequence I/I a,~ (Xo) [ which converges to R-(~0) corresponds to a sequence Van~ (x) 

1 
which has essentially only one limit function, v i z . -  For  in this case 

8 - - X  

there mus t  exist a circle t ha t  touches C (x0; R(xo)) at  s, and tha t  contains this 
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circle wi thout  s imultaneously containing any  singular point  of / (x) .  The centre 
of this second circle is the cusp of a sector containing Xo and to the points 
of which s is the nearest  singular point.  The above method of proof can now 

ny 

be used with Xo instead of Xl and we find t ha t  every limit function of Vann~ 
1 

is equivalent  to ---  
8 - - X  

anr+l ~ '  
- -  if lira g . , m ,  = ~v # O. 

an~ Cf 
Corollary 2. According to theorem 2.1 lira 

�9 ~ '  1 
But  if ~ - -  ~J , t h e n - - - - ~  

s - - x  ~ s - - x  

Therefore we can assert:  I f  a singular point  s of type  B lies on C(xo;R(xol) 
an~,+ l ] 

then there exists a sequence n~ such tha t  . . . .  converges t o - - .  In  part icular ,  
an~ 8 - -  X 

if s is the only singular point  on C (xo; R(xo) ) and is of type  B, and if 
n v 

1 then  ]im V] an~ (x0) ] ~--- R (x0) 

lira an,+l (x0) __ 1 
an~ (Xo) s - -  x o 

3.2. The fact pointed out  in corollary 2 of the preceding w tha t  it is pos- 

sible to draw conclusions concerning the sequence a~+l from assumptions con- 
a~ 

cerning the singular points,  can be used in other  ways.  I f  we do not  consider 
the behaviour  of the limit function as a whole but  only its value a t  a certain 
point,  we need only assume tha t  the singular point  s is of type  A with respect  
to this given point.  I n  order to show this we need a lemma.  This l emma is 
a generalization of the  m a x i m u m  modulus theorem and will serve the same 
purpose in the proof of the  next  theorem as did the m a x i m u m  modulus theorem 
in the above proof. In  order to point  out  its connection with the  m a x i m u m  
modulus theorem, we give the l emma a slightly wider formulat ion than  we 
ac tual ly  need. 

L e m m a :  Le t  ](x) be holomorphic in C(xo;~)  and let for x within the same 
circle: ] / (x ) ] - -< l / (xo) l  + K ] x - - x o l  n where K is a constant  and n - - 1 .  Then 
/ '  (Xo) • ]" (Xo) . . . . .  /(n-l) (%) • 0 and [ ]('~)(Xo) [ < e K .  In .  

Proof :  I f  /(x0)--~ 0, the  proposit ion is trivial.  Thus we m a y  assume t h a t  
](x0) # 0. Le t  m be a posit ive integer. I f  p ~ 1, the following formula holds: 

(]m)(p) (Xo) _~ m /m-1  (Xo) . /(p) (Xo) (a) 

and if p > 1, it holds, provided we have  a l ready proved / '  (x0)----]" ( x 0 ) =  
. . . . .  ](u-l) ( x 0 ) =  0. Now suppose, t h a t  (a) holds and tha t  p < n. 
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We get 

Iv /'~(x)dx tv 
Im 1"-' (=~ 1(~) (=~ = ~1- f (~ - x:)~+~ I <- ~ (I/,~o)1 

C (z~ 0~) 

Divide by m I/m (xo) l 

l ( ' ) ( x o )  <_ I___~ 1 +  " �9 
/ ( x j  m 

+ K ~?)m. 

This formula holds for all ~1 < ~ and all m. We may  now let Q~ vary  with m: 
~1 = I'm. We can construct  rm so tha t  it tends to zero with the right member 

I/(xo)l. of the inequality as m ~ oo. Viz. choose r ~ i n -  
K ' 

[1 (x0) 1 
"" ~ . r ~ =  K r~-~" 

. .  I 1  ( ' )  ( x o )  _ _ t(x;i [ < " ~  Kip ( l + l ) m  0. I 
The last conclusion is no longer correct if 
have / ' ( X o ) = 0 .  Thus (a) holds for p =  
v : n - - 1 .  Finally for v = n  we get 

p>- -n .  As (a) holds for P = l  we 
2 etc. The induction continues to 

I t ~) (xo) l -< ~ E.  ~ .  

Thus we have established the lemma. I t  is clear tha t  if K is zero, we get the 
max imum modulus theorem because in tha t  case the supposition holds for all n. 

I t  is now possible to prove the following theorem, which is of type  i. men- 
t ioned in w 2.3, the assumptions having been completed in two directions. On 
the one hand, we have made an assumption concerning the singular points, 

nv 

and on the other we assume the sequence V I an,. (x0) l in question to be maximal�9 

h e - - - -  1 

Theorem: If Vla.~(xo)] converges to R-(xo) r 0, if x o e D ,  and if s is the 

only singular point  on C(xo; R(xo~) and is a singularity of type  A, then 
an~,+l  (Xo)  1 

an,(xo) converges to s - - - - ' - -  x 0 

Proof: As s is of type  A, it is possible to find a point  xl on the straight 
line joining the points s and Xo, Xl satisfying R (Xl) = R (Xo) + Ix1 - -  x01 (Fig. 5). 

Pu t  
s - - x l = R . e  ivo 

X - -  X 1 ~ ~ " e i v  

XO--  Xl =-- ~0 " eiv~ 
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Let  ~(x)  be a limit function of {g,,m, (x)} 

1 
I~ (Xo)[ - -  R (xo) (a) 

According to 0.2 : 

i v ( x ) l <  �9 - .  I s -x l  (b) 
- R - -  e '  - R - - ~  

Fig. 5. 

For  the triangle (s; x;  xl) we get 

I s - -  x I = VR ~ + if2__ 2 R ~  �9 cos ( v - -  Vo) ~-- 

= ( R  - e )  + - - - -  
2 R Q (1 - -  cos (v - -  VOW). 

( R -  e) 2 

Suppose now tha t  x lies within a sufficiently small circle C around xo. We 
can find a coastant  K1 such tha t  1 - -  cos (v - -  Vo) -< K1 (v - -  Vo) 2 

V 2 R ~  K l ( v - v o )  ~- [ s - - x  I - < ( R - e )  1 §  ( ~ - -  e) ~ 

Within C the formula ] s -  x[ < ( R -  0)(1 + K2 ( v -  vo ~2) must  hold if K2 is 
a new suitable constant .  Combine this with (b) : [ (s - -  x) ~ (x) [ < 1 + K2 (v - -  vo) ~. 
Fur ther  the formula [ v - -  Vo [ ~ Ka Ix - -  x 0 [ holds with the new constant  K3. 
Thus, there must  exist a constant  K such tha t  the formula (s - -  x) ~ (x) [ ~ 
~--1 + K[x - - xo]  ~ holds within C. Observing t ha t  R ( x o ) =  [s - -xo  and tha t  
(a) holds, we find [(s x0) q (xo)[ = 1. Thus, [(s - -  x) q (x)[ <- [ ( s - -  xo) V (Xo)[ + 
+ K[x  ~ xo[ ~ within C. F rom the beginning this circle may  be chosen so 
small tha t  it  only contains points belonging to D. Thus q (x) and also ( s - -x ) .  q (x) 
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are holomorphic within C. I t  is now possible to use the lemma, and we find 
[(s - -  x) ~v (x)]' = 0 for x = Xo 

�9 . ~ ' ( x 0 ) _  1 
(Xo) s - -  x0 

This holds for every limit function of {gn, m, (x)}. 

a,,~+l (x) 
R e m a r k :  We have proved tha t  - - - - -  converges at  the point  Xo, but  we a~ (x) 

have not  proved tha t  it converges in the neighbourhood of x o (cf. w 2.3). 

3.3. I n  the last section we have shown (theorem 2.5) tha t  if ]/[a,~ (x0)] is 

a,%+1 (Xo) 
maximal,  then all the limits of lie within or on a circle around the 

a , ,  (x0) 
1 

origin with radius R~(x-o)" This result can be improved. I t  is possible to show 

tha t  all the limits lie in the smallest closed convex domain containing all the 
1 

points - -  where s passes through the set of singular points of ] (x) si tuated 
8 - -  X 0 

on C (x0 ; R (Xo)). 
I f  all the points of C(x0; R(xo ~) are singular points then the proposition is 

proved by  the theorem just mentioned, because in this case the convex domain 

coincides with the domain not  outside the circle C 0; 1 �9 Thus we may  

assume tha t  there is on C(xo; R(xo~) a point  a where / @ ) i s  regular. Let  
v 0 = arg ( a -  Xo) and let sl and s2 be the singular points of ] (x) situated on 
C(xo; R(xo'~) nearest to and on either side of a (Fig. 6). Pu t  'vl = arg (Sl - -x0)  
and v2 = arg (s 2 - -  Xo). We assume v 1 < v 0 < v2 and 0 < v2 - - v l  ~ 2~.  (Equali ty 

holds if there is only one singular 
J I l l l l l l ~  

t 

Fig. 6. 

point  on C (Xo; R(xo~), in which case 
sl = s2). Now we choose a positive 
number  ~ < Min (v2 --Vo; Vo--Vl), such 
tha t  vl + 8 < V o < V 2 - - ( ~ .  F rom Xo 
we draw rays with their arguments  
equal to vl +(~ and v2--(5.  Then it 
is clear t ha t  there exists a number  
Q1 such tha t  there is no singular point  
of ](x) in the par t  of the circular 
annulus between C (Xo; R(xo) ) and 
C(xo; R +  ~1), which is si tuated be- 
tween the rays. We call A the open 
domain, formed by  t h e  par t  of the 
circular annu lus  just mentioned and 
the interior of C(xr R). A contains 
a but  no singular p o i n t  of ] (x). We 
now: examine the Set of points x such 
tha t  the distance from x to a is 
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2 
Now 

smaller than  or equal  to the distance f rom x to any  point not  belonging to A. 
By  a geometrical  invest igat ion we can easily see t ha t  this set  of points  contains 
all the points f rom a closed circle sector, S, consisting of those points lying 

within or on C ~Xo; , which are seen f rom x0 in directions with arguments  
\ 

between v0 + Vl + d _ and Vo § v~ - -  5 The set  contains other  points  too, a fact  
2 2 

however,  t ha t  we do not  need in the  following. The cusp of S is xo. The 
points of S have  the p roper ty  t ha t  their  distance f rom a is --< their  distance 
to any  point  outside A. But  every singular point  is outside A. Thus, if x E S 
then  l a - -  x I ~ R(x) .  

Now we s tudy  the function g ( x ) ~ - ( a -  x).~o (x) where ~ (x) is a limit func- 
t ion of the  sequence which is supposed to be max imal  a t  xo e D. As the sequence 

1 
is max imal  a t  Xo then  ]~(xo) ] -~ R(xo)" As a lies on C (Xo; R(xo)) then 

l a - - x o l = R .  Thus g ( X o ) :  1. But  if x e S  then  ] a - - x l  ~ R ( x )  and fur ther  
1 

we always have  ]~o (x)[ < Thus, if x e S  we have  I g (x)] < 1. Thus the 
- -  R (x)" 

f u n c t i o n  ]gl is --~ 1 in the sector S and ~ - 1  a t  its cusp. Now it is possible 
to use the  same method as in the proof of Theorem 2.5. 

Pu t  x--~ Xo + if" e ie and consider the function 

u ( e ;  8) = Re log g(x) ~-- log tg(x)] 

which is harmonic in D. We have u (0 ;  0) ~ 0 and u(~" 0) < 0 if v0 + vl + (~ < 
' - -  2 - -  

But  

Thus 

o--~ lim ~ 0. 
~ael e-o 

Ig' ( x o )  . eia). 

Relg'(Xo) ) r 
~g(xo) "e i~ ~ 0  or ~ O - } - a r g g ( % o ~ - - -  ~ -  

for all 0 satisfying 

Vo + vl + ~ ~ o ~ Vo + v 2 - - 6  
2 2 

"" n2 V o + V z - - ~ (  ze ) 2  - - < 2 - - 0  - -<arg~-g ' (x~ v~ 

Let  ~ -~ 0; 
v~ + v2 <: arg g-' (x~ --~ 3 7~ v o -~- V 1 

2 2 - -  g (Xo) 2 2 

+ V l ~ -  (~ 
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But  as g ( x ) =  ( a - - x ) . ~  (x) we have 

g'(xo)_ 1 + ~'(xo). 
g(Xo) a - x o  q(xo) 

~' (Xo) This means tha t  

with argument  lying between 

~' (Xo) 
Theorem 2.5 ~ ( ~  

1 
is a point seen from the point  - - - -  

a - -  x o 
Vo+V2 and 3 ~ _ v  o + v  1 

2 2 2 2 

in a direction 

According to 

is si tuated within or on t h e c i r c l e  C ( 0 ; R ~ o )  ) .  T h u s w e  

~ ~ 1  �9 
a - -  Xo 

F i g .  7 .  

~9 t 

have proved tha t  (x~ lies within a certain peripheral angle of this circle 
(Xo) 

(Fig. 7). This angle can be described simply as the angle which has its cusp a t  
1 1 1 

and the sides of which pass through - - - -  and - - - -  
a - -  x o s l  - -  Xo s 2  - -  x o  

1 1 
Now let a tend to s 1 along C(xo; R). Then - - -  tends to - - - -  along 

a - -  x o s 1 - -  Xo 

C ( 0 ; 1 ) ,  and the side of the peripheral angle which passes through ~ 1 -  
8 2 - -  X 0 

tends to the chord between 1 and 1 Thus q0' (xo) sx - -  X--~o s ~  x~" ~ lies on this chord 

or on a given side of it, viz. the side opposite to the side where the point  
1 

- -  moves. 
a - -  x o 

The same argument  is applicable to any  pair of adjacent  singular points on 

C (xo; R (xo)). Thus ~'  (xo) belongs to the closed convex covering of the set of 
~f (xo) 
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/1} 
points ~ where s passes through all the singular points of /(x) situated 

on the circle C (x0; R(xo~). According to Theorem 2.1 the same holds for the 
an~+l (Xo) 

limits of 
an~ (Xo) 

We have proved the 

. v  ( 1 ) 
Theorem: I f  VIan~ (Xo) I is maximal i .e.  -> R~(xo~)) ~ 0 and if xoED then all 

an~+l (Xo) 
the limits of belong to the closed convex covering of the set of points 

an, (Xo) 

{s~lxo} where s passes through the singular points o f / ( x )  lying on C(xo;R(xo)). 

E.g .  if there is only one singular point s on the circle of convergence 
anv+l (Xo) ]. 

C (x0; R (Xo~), then converges to - -  I f  there are only two singular 
an, (xo) s - -  x o 

anv+l (Xo) 
points s 1 and s2 on the circle of convergence then all the limits of 

an~ (Xo) 
1 1 

lie on the chord between - -  and - - - - .  
sl - -  xo s~ - -  Xo 

3.4, From Theorems 3.2 and 3.3 it is possible to deduce a simple method 
for separating the singular points on C (Xo; R(xo~) from the regular ones. Let  

glanv (xo) l be a maximal sequence such that  an,+l (xo) ~ 1 �9 Then, according 
an~ (xo) R (x.) 

an~+l (Xo) 1 
to Theorem 3.3 all the limits of have the form - - ,  where s is a 

an, (xo) s - -  x o 
singular point on C (xoi R(xo~). Conversely, if s is a singular point on C (x0; R(xo~) 

an,+l (Xo) 
then from Theorem 3.2 we can deduce that  there exists a sequence 

an~ (xo) 

which converges to 1 and such that  an~+l (Xo) nv 1 
s - -  x~ an~ (x~ and W[ an v (xo) [ --> R (Xo)" 

Viz. let xv be a sequence of points E D and situated on the line between 
x0 and s and let lim x~-~x0.  Further,  let {e~} be a sequence of positive 

~Lt 

numbers with lira e, : 0. For every/~ there exists a sequence ~/lam~,, (x)[ which 
is maximal in x~. Apparently the hypothesis of Theorem 3.2 holds for such a 

sequence. Thus am u,+l (X/~) 1 a ~ , ,  (x,) converges to - - ' s  - -  x~ I t  is then possible to choose 

l~ so large tha t  
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and 

a,n~z ~ (x+,) s - < ~i~, 

'%z~_ 1 [ <  ~ .  
VI a=,"z~ (x+') [ - R (xz~ ' 

:Now we designate the numbers m,,,~ by n+,. Thus, there exists a sequence 
n~; # : 1, 2, 3 . . . .  with 

and 

] n, 1 I V ~ ( x : ) ]  R (xr < ~ "  

An obvious transformation gives (one side in a quadrangle g the sum of the 
three others) 

I r s II  an +i<x ' an+,+ 1 (xo) 1 < e+~ -4- 1 1 d- 
an~, (xo) s - -  x z  - -  x~, s - -  x o an~ (x , )  an~, (xo) 

and 

I F 1 1 I Va~ng (xo) - 1 < ~" d- R (xt,) R (xo) d. ]/i a% (x . ) l  - -  V I an~ 

Let # - +  c~. Then by hypothesis the two first terms in the right members 
of the two inequalities tend to zero. The two second terms tend to zero since 
the functions involved are continuous in x 0. I t  remains to prove that  the two 
third terms tend to zero. We begin with the first inequality. As the family 

{ an+~ is normal in D, its functions are continuous uniformly with respect to n 
an ) 

(~galement continues) (MoNTEL 2, p. 28) in D - .  This means that  for every 
value of n (e. g. for n : n~) 

a.+l (x/.) a.+l (xo) l 
an (x~,) an (xo)  , < ~ if Ix, - -  xo I < ~" 

Thus the term in question tends to zero with x . - - x ~ l  In the second 
inequality we first use the formula i la I - -  b -< a ~! and then the same 
argument as we used when treating the first inequality, now based on the fact 

n 

tha t  the family {l/a--~} is normal in D. 
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We have now proved tha t  there exists a sequence {%,} such tha t  an~+l (Xo) 
an!, (Xo) 

1 ~ - -  1 1 1 
converges to - -  and l/] an~, (Xo) I to . . . .  As 

s - -  Xo R (Xo) Is - -  Xo ] - -  R (Xo)' our pro- 

position is proved. 

Thus it is possible to determine the singular points on the circle o] convergence 
o[ a power series o/ the type regarded here by the /ollowing method : Find all 

~ l a,~+l (Xo) I 1 Determine all sequences n~ such that V lan,,(xo) l as well as ] ~n~(~O) I ' ~ R  (Xo) 

an~+l (Xo) 
the limits L o] all sequences Determine all numbers o/ the ]arm 

an,, (Xo) 
1 

XO + ~" These and no others are the singular points in question. 

4. Investigation of some Special Cases 

4.1. We have seen (w 3.1 corollary 1) tha t  if s is the only singular point  
on  C (Xo; R (Xo~) and if s is of type  B with respect to Xo, then to every maximal  

n v 
sequence Via~ ~ (%)] corresponds a sequence gn~m~ (X) all the limit functions of 
which are equivalent. As a special case we get: I f  s is the only singular point  

on  C (Xo ; R (Xo~), x0 e D, if s is of type  B with respect to Xo and if lira ]/I av (Xo) ] 
exists, then all the limit functions of {gnm(x)} are equivalent. 

F rom Theorem 2.2 we see tha t  if we do not  merely assume lim l/la,,(xo) I 

to  exist bu t  tha t  Via,, (x)[ converges for all x belonging to D, then the rest 
of  t h e  assumptions in the above proposition becomes superfluous. I t  is not  
even necessary to assume convergence throughout  D but  only at the points of 
a set M c D of the type  considered in 2.2. We shall see tha t  the above assump- 

t ions concerning s follow from the assumption tha t  Via,  (x)] converges at  the 
points of M.  

By  Theorem 2.2 we conclude tha t  all the limit functions of {g~m(x)/ in D 

are equivalent to the same function q (x) and tha t  a ,+l  (x) converges to q '  (x). 
a, (x) ~ (x) 

a,,+L ] 
But  as a ,+l  converges then converges and V] a~] must  converge to the 

a~ a~ 

same limit. Thus I~1 ~ or ~ = ~ . e  i~, where v is a real constant.  This 
q~ 

e-iV 
differential equation has the solution q -  where s is the integration con- 

S - - X  
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stant, s must  be the same for all the limit functions of {gnm} as they  have 

1 1 
to be equivalent. As ] / [ ~  ~ ~ then I~1 = R;  i. e. R (x) ~- Is - -  x I. This means 

tha t  s lies on C(x;  R(x)) for every x ED. Let  si be a singular point on such 
a circle C (xi; R (xl)). Let  x2 e D lie on the radius f rom xi to sl .  The circle 
of convergence around x2, C (x2; R(x2 ~.) contains only one singular point  viz. sl ,  
and this point is the only one it has common with C(xl;R(xl~). But  as s has 
to lie on every circle C (x; R(x)), s and si must  coincide. Thus every singular 
point  on every circle C(x; R(x~); x e D  has to coincide with s, viz. s is the 
nearest singular point  to every x e D a n d  there is no x E D such tha t  its circle 
of convergence, C (x; R(x>), contains more than  one singular point.  As R (x) 
is the modulus of an analytic function s must  be of type  B with respect to 
any x e D  (w 0.24). 

Theorem:  If  Via, (x)] converges for all x eD to a limit different from zero 
then there is only one singular point  on the circle of convergence C (x; R(x)) 
and this singularity has to be of type  B with respect to every x fi D. 

We can affirm tha t  s is an isolated singular point  under the following cir- 
cumstances:  ] (x) is uniform in the neighbourhood of s and D describes at  s 
an angle greater than zt. For  in this case it is possible to find three points 
in D such tha t  their corresponding circles of convergence cover a domain 
containing a circle around s. 

I n  the following number  we shall see tha t  the sequence V]a~ ] converges at  
~a point  which is not  a limit point  provided it has a sufficiently dense maximal  
subsequence. 

4.2. We shall say tha t  a power series ~ ,  a~ x" has Ostrowski gaps if there 
!t--O 

1 / ~ - -  
are numbers (~> 1 and ~, < R and a sequence n~ with V[a~ [ <  ~, for n~ ~ # < (~n,,. 

I n  w 1.4 we noticed tha t  the occurrence of great  Ostrowski gaps in the 

power series around a point  in D is a necessary condition tha t  lim V ~ [  be 
zero. We shall see tha t  the occurrence of Ostrowski gaps is a necessary con- 

dition for lim ]/] a~ I to be different from lim v~a~[. 

Theorem:  If  xoeD and if l iml/ la,(xo)l<~(Xo ) then the power series 

~ a , ,  (x0) (x - -  Xo)~ has Ostrowski gaps. 
/~=0 

Proof: Put  lim Vla~ (Xo) l - - a .  The theorem has already been proved in the 

case a -~ 0 (w 1.4). Therefore suppose a ~ 0. Then a,.+_l (x0) is bounded (w 1.31), 
a,  (x0) [ 
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]a~+l (Xo) 1 
say a~.,(x.i- < M. Let ~ be a number with a < fl < ~ -  Thus there exists 

a sequence n~ with V I an, (xo) l </~- Let # --> n, 

l a " ~ ( x ~ 1 7 6  an~(Xo) " aa-:+l(xo i . . . . .  a u-~(Xo~ ; 

n v n ,  

la , (xo) l<f l~"  i1~-n~; ]/ia,(xo)l<fl." . i l - + ,  . 

1 
Now, let y be a number with fl ~ Y ~ R (x0-)" I t  is then possible to determine 

1 1 log M --  log ft. Thus for /~ 
a number 0 ~ 1  such that  f l ~ . M  1 - ~  viz. O - - ~ l o g M _ l o g y  

satisfying nv ~ /~  ~ On~ we get 

f ~ - - - - -  ] 
V i a~, (x0) I -~ ~ < R-(xo) 

i .e.  the power series has Ostrowski gaps. Q . E . D .  

Corollary: If xoED the necessary and sufficient condition that  lim Vla~ (Xo)! 
n + ,  

exists is that  there exists a maximal sequence ]/] a,,, (x0) ] with lira n~+l ~_ 1. 
n, 

Proof: The necessity is trivial. The condition is sufficient, for suppose that 
such a sequence exists, the~ the series does not present Ostrowski gaps since 
for sufficiently great v there would in every such gap lie at least one coeffi- 
cient any. 

m ~ 

lan~l(X~)]:>~O for xED_ and n ~ N .  Further, let h(x )be  a 4.3. Let  
, , a n  (x) 

M 
finite linear combination of the derivatives of /: h (x) ~- ~ C/~ - az (x). Then 

/~=0" 
h (n) (x); n ~ N1, has no zeros within D_. 

Proof: We have 
M 

h (~) (z) = ~ C,  (/~ + 1) (~ + 2) (/~ + n) a~+ (x). L / i  * . �9 

l~=O 

We may obviously assume CM ~ 0. Thus 

h (n) (x) ~-  CIM �9 aM+n (X) �9 ( M  § 1) (M § 2) . . .  (M § n) �9 

M--1 C, an+/~ (~a § 1 ) . . .  (~ + n ) ] .  

�9 1 + ~_j UMM'a,~+M" (M i) (M + n)J /~=0 
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Substitute Rn for the second term of the [ ]  and let Max CC~MI 

and 

Thus: 

# + i  M - - l + i _  1 
M + i  M + i  1 

1 +  
M - - l + i  

an+M --1 < 
an+M a n + ~ + l  

IRnl < a 
z 

f t  = 0 1) 
i=l I + M - - I + i  

= a. We have 

As the infinite product 1 + is divergent, R~ -> 0 as n -> c~. Therefore 

a number N1 must exist for which I Rnl < 1 if n > N 1 and then h (n) (x) can 
have no zero within D_ as aM+n(X) has not and 1 + Rn cannot be zero. 
Q . E . D .  

The condition an+l [ > ~ > 0 for all x fi D and all n > N (N independent 
[ an I 

of x); is satisfied if there is one single point x0 of D where lim av+l(xo) >0 .  
a~ (Xo) 

~an+l I,~_.,. {an}an+l N i s  For according to w 1.2 the family / ~ -Lv iS  normal in D - .  Thus 

normal in D_. But for N sufficiently great all functions of-this family are 

in D2. Now ~ '  ' I a~(x~ < c ~  i.e.  the family is bounded at holomorphic 
I l a ~ + l  (Xo) 

one point of D_. Then it is bounded uniformly in every domain interior 
to D - .  (MoNTEL 2, p. 35.) 

We get the following theorem 

Theorem: If  Xo E D], lim a~+l (Xo) 
a~ (x0) 

stants) then D I ~  Dh, and 

M 

> 0  and h ( x ) = ~ _ ~ C ~ - a , , ( x ) ;  (C~ con- 
r = 0 

lim lim g I a, (x) I for x e D 1. 

4.4. In the preceding w we saw that  a linear differential transformation of 
] does not essentially change the distribution of non-limit points of zeros of 
the derivatives. We shall see that  the effect of adding to ] a function h does 
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not disturb the distribution of these non-limit points in a domain, the points 
of which lie sufficiently far from a singular point of h. We have the following 
theorem: 

Theorem: Let xoED! and lira ]/la,(xo)l = Rll ~ O. Further, let h(x) be a 

function the singular points of which lie at a distance > R1 from Xo. Then 
x o E DI+ h. 

Proof: Let el be > R 1 but less than the distance from x 0 to the nearest 

singular point of h. Choose a positive number s < 91 2 R~. As lim V i a~ (xo)] = ~ 

n 

there exists a number N1, with Via ,  (x0) l > 1 for n > N1. Further, choose 

R ~ + ~  

a number e < e l -  R1 and such that  all points within C (xo" e) belong to D - .  
2 ' 

Then there is a number N2 such that  {grim}N2 is normal in C(xo; ~). As 

Ig~(xo)l> ~ -  for ~ > N 1  and {g.~(x)}zr is normal in C(xo;e)  there 
R I §  

exists a number N and a number e2 < e with I g.m(x)[ > - - -  

within C (Xo; e2) and all n > N 

�9 " [an(x) I > ~ 1 - - ~  n 
~R1 + e! 

for all n > N and x within C (xo; e2). 
On the other hand let Max [h I be A. Then for x within C(xo; e2) 

C (Xo; el) 

= ~ (~ _ x ) . + l  -< . (el - -  e2) "+1 
(? (Xo; el) 

Now from e 2 < e l - - R ~  and e < - - - -  
2 

Thus for all sufficiently great n: 

i. e. 

for all x within C (xo; q2). 

1 
for all x 

R 1 + 8  

e l - - R 1  it follows that  e l - - e ~ > R l §  
2 

1 A el 
(R1  "q- 8) n ( e l  - -  e2)  n + l  

h(") (x)[ h(") ]a.(x) l > ~ or I/(-)(x)  + (x) l > o  

Thus Xo E Dt+h. Q . E . D .  
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Remark: An immediate consequence is that  if Xo~ D! and if 

] ~ 1  h~ 1 lim [~[/( ' )(x0)+ then xo~Dl+h. 

By means of Theorems 4.3 and 4.4 it is possible to solve the problem of 
finding the distribution of the limit points of the zeros of the derivatives for 
rather extensive classes of functions. We can for example prove a beautiful 
theorem of Pblya concerning meromorphic functions (see PSLYA 4 or 5 or 

1 
WHITTAKER 6). Starting from the function ] ( x ) -  which has the entire 

p - - x  
plane free from limit points we see from Theorem 4.3 that  a meromorphic 
function which has only one pole has the same property. Then we use Theorem 
4.4 in order to prove for an arbitrary meromorphic function, that  the points x 
for which there is only one pole on C (x; R(x)) are non-limit points. 

In the same way we see that  if / is a function having (among other singular 
points)' a pole, then in the domain of action of this pole there are no limit 
points. (The domain of action of a singular point, s, is the set of points to 
which s is the nearest singular point. This domain is easily seen to be convex.) 
On the other hand every point on the boundary of this domain is a limit 
point, for assume this was not the case for a certain point x0 on the boundary. 
Then in a neighbourhood A of x0 the family {gn,, (x)} would have only limit 

functions of type ~ , where p is the pole and [~[ ---- 1, for this is the case 
p - - x  

in the domain of action of p, a part of which belongs to A. But this means 

" 1 
that  lim v[a~ (x)[ - [ p  - x ]  in A, which is impossible as there must be points 

in A the nearest singular point of which is not p, i .e.  for which 

" 1 
lim 1/[ a~ (x)[ > [ ~ - - x [ "  

In this way, the problem of finding the distribution of the zeros for one 
function being solved, it is automatically solved for an infinity of functions. 

5. Further Connections between the Coefficients and the Zeros 

o f  the Derivatives 

In section 2 we began the study of the influence on the coefficients of a 
power series of the assumption that  the series is developed ar0und a point 
which has no zeros of the derivatives of the function in its neighbourhood. 
In this section we are going to continue this investigation. 

We begin with two theorems concerning the behaviour of the functions ~a '~ .  

5.1. Theorems If : teD and if gn,m, converges to a non-constant function q (x), 
it is possible to find a sequence of numbers l, such that g~,§ l~ (z) converges to r (x). 
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Proof:  We have according to formula (a) of w 1.2: 
? p 

n . g n m  ~__ . . . .  n o n + l  g n m  
a n + l - - n  -F 1 an  g n m  n + 1 ~ n m  g n m  

n + l  

7b " ]gnm[ " | - - ]  In+l"  (a )  FI a , . I  - -  n + 1 \ g , ~ . J  I 

Since ~ 0  in D, 1 is bounded in D - .  Thus it must be possible to find a 

0 domain E c D -  where is bounded. By cutting away small circles around 

(;)' any possible zeros of it is possible to construct a domain F c E within 

( (;)' ) which ~i/~)~ is bounded. As ~0 is not a constant is not identically zero. 

Thus we can find a positive number a < 1 such that  for x E F we have 

a <  ~ < - ' a  

On the other hand gn~m,,(X) converges uniformly in F to ~(x). Thus there 
exists another number fl with: 

fl < < f l  in F for all v (sufficiently great). 

B y  combining this result with formula (a) we find: 

n r + l  n~+l  

*,, 1 . ,  Ig,, , , , ,(x)l.  fl~+ql#n,m,(~)l<Vla*~+,(~)l< fin,+1 
ns,+l 

Let ,, ~ oo. The,  lim Vlan,+,  (~) I exists and is equal to I r (x) l. We have 
proved that  if g,~m,, (x) -~ r (x) in D then I g*,+~ l, (x)] -~ 1r (x)] in a certain 
domain F c D .  Now we choose the number sequence lv so that  g,~+l l v - ~ r  
at  a certain point x 1 e F, which is always possible. Then every limit function 

(x) of gn,+l l, (x) has the properties: 

The first property gives ~ = r �9 e iv where v is a real constant. From the second 
property it follows that :  e i ' ~ - 1  

(x) = 9 (x) in F. 

Thus g%+1 l, (x) -~ 9 (x) in F and on account of Vitali's theorem the same pro- 
position holds in D. Q . E . D .  
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,i, 

5.2. Theorem: For every xeD the sequence Vial(z)[ has limits everywhere 

between lira Via, (x)] and lim Via~ (x)l, except possibly for those x which have 

lim ViE, (x) l = 0. 

Proof:  Assume tha t  the proposition does not hold for a certain value of x, xo. 
Then there exist two numbers b and c with b < c situated in an interval that  

does not contain any limits of V~,~(Xo)[. Further the two numbers can be 

chosen so near to each other that  none of the values Vla~ (Xo)] lies between 

them. The numbers Vla~ (Xo){ are separated into two classes by the numbers 
b and c: one class containing the numbers less than b and the other containing 
those which are greater than c. Both classes contain an infinity of elements, 

for if they did not, either lim Vla~ (xo)l >- b or lim 1/la~(xo) l <- c, which is not 
in accordance with the assumption that  b and c are situated in an interval 
between these two limits. 

Now the class consisting of numbers less than b contains an infinity of 
n n + l  

elements V{ an (Xo)[ with the property tha t  the following number V I a~+l (xo){ 
belongs to the other class. Viz. assume tha t  only a finite number of elements 
from the first class have this property. Then there would exist a greatest n 

such tha t  Via,, (Xo) l has the property. But  as the first class contains an in- 
finity of elements, there must  exist a number m greater than n such tha t  
m m + l  m + 2  

V I a ,  (Xo)[ belongs to the first class. Thus Vlam+l (Xo){ and therefore V I am+2 (Xo) l, 
and so on, would belong to the first class. But then the second class would 
not contain an infinity of values. Thus there is in the first class an infinity 

n + l  

of values ~/]a,~(Xo)l such that  ]/[a~+l(xo)l belong to the second class. The 
values of n in question we call n~. 

Thus 
n v n v + l  

and 
o r  

la , , (x0)  l < b and l a, +l(xo) > c .  

But the right member of this inequality tends to infinity with v. On the other 

hand, according to w 1.31 the left member is bounded if lira V~(xo) l  r 0. 
Thus we have arrived to a contradiction and the theorem is proved. 
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5.3. For  the functions a~+l it  is possible to prove  theorems analogous to 
av 

the above two theorems which concern the functions ] / ~ .  
an,,+l (X) 

Let  - - - -  be a sequence of functions uniformly convergent  in D_  to the  
an,, (X) 

l imit function y)(x), holomorphic in D. Fur ther  we assume tha t  ~f is different 
f rom zero a t  one point  of D. Then it is different f rom zero throughout  D 
(for if y J = 0  a t  some point  xoED then  either v / ~ 0  or xo is a limit of the 

zeros of _an~+l. But  the last a l ternat ive  is impossible.) 
an,,, 

an~+l (x) 
Now y ) ( x ) =  lim - - - -  On account  of the uniform convergence an~ (x) 

lim i a% +l !x)_]' 
\ an, (x) l 

exists and is equal to F '  (x). Applying the  rule a~ = (n + 1)an+l  we get 

i t' an+ ! = an (n + 2) an+~ -- an+l (n + l)  a~+l = 
\ an / a~ 

\ - a n  ] [an+l  an J an 
Thus 

l (an , .+ l ]  ~ (anv+2 an,,+,ta%+l ] l im - -  + ( n , . + 2 )  - -  - -  - -  
L \  an v ] \an~+l an~ ] an v J 

exists and  is equal to y/. 

"." y / :  yJ ~ + lim (an:+~t(n~ + 2) (a%+2 an,,+li 
\ an~ ] \an~,+l an v ! 

and the  limit really exists. As lira anv+~ exists and  is different f rom zero, 
an~, 

the  l imit  
[a%+2 an~+~l 

exists, Thus we have  proved 

Theo rem:  I f  lim an,+~ exists and  is equal  to v 2 ~ 0 within D then  
a% 

(an,,+~ an~_~+l t 
lim n~ \a%+1 am, ! 

exists and  i8 equal  to ~ ' -  ~p~ 
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This theorem is analogous to Theorem 2.1 which is fundamenta l  in sect ion 2 
and  in the  proofs of Theorems 3.2 and  3.3. Therefore i t  would p r o b a b l y  be 

possible to deduce theorems for the  funct ions a,,+~ analogous to  the  theorems 
a v  

for V~,.. However ,  we shall  no t  follow this  p rogram in detai l ,  b u t  only  give 
some of the  conclusions which can be drawn as corollaries from Theorem 5.3. 

anr§ 
Corollary I. If - -  

a n  v 

converges in D to a funct ion ~ ~ 0 then  

[ I (1) /uni ~ any+2 an~+l ~ 0 

an~+l an~ 

The second corol la ry  is the  analogy to Theorem 5.1. 

anr+l 
Corol lary  II. I f  

an v 
- - - -  converges in D to a funct ion ~o ~ 0 then  

an~-~ 2 
l im - - ~  in D. 

an~,+l 

This follows d i rec t ly  from corol lary  I .  

anv+l 
Corollary III. If - -  

an v 
converges in D to a funct ion ~ ~ 0 then  

an~+2 an~+l I -  ~-- o ( 1 )  
[ an~+l an~ 

for al l  x e D implies  ~ -  
8 - - X  

- - - - - -  for some complex number  s, and  conversely.  

n,  - -  - -  ---~0 for every  Proof:  I f  ~ = o then lim ~anv+l 

x ED.  Thus = 0 th roughou t  D. This dif ferent ia l  equa t ion  has the  

1 1 
solut ion ~ - -  s - -  x where s is the  in tegra t ion  constant .  Conversely if ~ - -  s - -  x 

y / _  ~2 
then  = 0 and  

lan~+2 anv+ll 
l i m n ,  - - -  - -  = 0 .  

\anv+l an~, ! 
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a,+l  (x0) Corollary IV. I f  lim ~ x ~ ) -  > 0; x0 E D then the set of points 

{vl av+2(x) a*§ 
\av+l (x) a, (x) ]) 

is bounded for every xED (uniformly in D_) (cf. w 1.32). 

P r o o f :  The functions v (a~+~ a,,+l) \ a ,+ l  a~ / are holomorphic in D - .  As the family 

a,,+~ is normal in D_ it is always possible to extract a convergent subsequence 
a v  

from any assigned sequence of functions a,+l  If  an~§ is such a uniformly av an j, 
(anv+2 anv+l i 

. . . .  converges uniformly by Theorem 5.3. convergent sequence then n~, \an~,+l an~ / 

Thus the family ~v~a~+2 a,.+,~( is normal. I t  is then only necessary to prove 
t -  \ a ,+ l  a~ ]] 

that  the family is bounded in one single point in order to have proved tha t  
it is uniformly bounded in D_. Assume that  it is not bounded at  x, ( eD- ) .  

I (an~+2(xl)_ _ anv+l(Xl) t I -+ ) / 
Then there exists a sequence n, such that  n,\an~+l(xl) 

am,.+ 1 
I t  is possible to choose a subsequence m~ of nv such that  - - - -  converges to 

am, 

- - - -  con- a function ~ (which is not c~ by 1.31). Thus m~ am,+~ 

verges to (Xl) YJ~ (xl) what is impossible as the sequence is a subsequence 
(xl) 

of a sequence which tends to infinity. 
The fifth corollary is analogous to Theorem 5.2. 

Corollary V. I f  lira a,+l(Xo!]l 
- -  a ,  (x0) I 

a connected set. 

0; xoED, then the limits of a~+l(X~ 
a, (x0) 

form 

P r o o f :  Viz. assume that  the limits of av+l(Xo) are elements of two sets at  a 
a,  (x0) 

positive distance from each other. I t  would then be possible to find two open 
domains A and B at  a positive distance from each other, each covering one 
of t h e  two separated sets, and such that  only a finite number of points 

a ,+l  (x0) lie outside their sum A + B. A and B must contain an infinity of 
a,(xo) 

points a,.+l (Xo) for otherwise at least one of the domains would not contain 
a, (xo) 

any limit point of these points. Then for an infinity of values n it must  

137 



H. IIADSTROM, Zeros of successive derivatives 

happen that  a~+l (x0) EA and a~+2(Xo) E B (cf. w 5.2). But  the distance between 
an (Xo) a,~+i (Xo) 

a~+l(xo) and a . + 2 ( z o ) i s O  ( 1 ) ( c o r o l l a r y  I V ) a n d  therefore tends to zero with 
an (Xo) an§ (Xo) 

increasing n, which is not in accordance with the fact that  the distance be- 
tween A and B is positive. 

5.4. Most theorems hitherto proved are formulated in the following form: 
" I f  x ED and A, then B", where A and B are various propositions. They might 
equally well have been formulated in the following equivalent way: "If A and 
not B, then x is a limit point of the zeros of the derivatives of ]." In  this 
form they express sufficient conditions for a point x to be a limit point. 

Regarding power series around the origin: ] (x) ---- ~': a,  x we have thus a 
~=0 

multitude of conditions for the coefficients sufficient to guarantee that  the 
origin is such a limit point. But except for what can be concluded from w 1.3, 
we have no necessary conditions of the same kind. I t  is then natural to ask 
whether any of our sufficient conditions are at the same time necessary. This 
is not the case. Except  in w167 1.3, 4 .3  and 5.3 we have only considered suffi- 
cient conditions with the following property:  The conditions only contain 
expressions in the numbers a~ which do not change when the arguments of a~ 
are changed but  their moduli conserved. I f  such a condition were at  the same 
time sufficient and necessary, then all the series with the same moduli of 
coefficients as a given series would have the origin as a limit point of ~he 
zeros of their derivatives when and only when this is the case with the given 
series. But  there certainly exist series for which the origin changes its character 
in this respect if the arguments of the coefficients of the series change. This 
is clear from the fact that  there exist series which satisfy the assumptions of 
the following theorem. 

Theorem: I f  / ( x ) ~  ~ a,x" is a function with a singular point at a finite 
~=0 

distance and if the origin is not a limit point of the zeros of the derivatives 
of /, then it is possible to choose numbers tot with Iw~[----1 such that  the 

or  

origin is a limit point of the zeros of the derivatives of h (x) = ~ a~ w~ x". 
*=0 

Proof: We use the fact that  if a and fl are any two complex numbers, then 
it is possible to choose (o with I(ol = 1 in the way that  

lal. 
a n r + l  

As ] is not entire there exists a s e q u e n c e - - -  which tends to a number 
an, 

different from zero. I t  is no restriction to assume for simplicity tha t  this 

sequence does not simultaneously contain a number an+l and the two next terms 
an  
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an+2 a n d  an+~.  Now we choose o~ in the following way:  I f  m is one of the 
a n + l  an+2  

numbers n~ + 2 then e0m is chosen so tha t  

I om--an  i I 1an F 
anv+l an~ a n  v 

and if m is not  one of the numbers n ,  + 2, then eo-~ 1. With  this conven- 
t ion it is clear tha t  

a s  

I Iq an~,+2 (Dnv+ 2 a n , + l  (.Onv+l ~-- . . . .  

a n ~ + l  O)nr+l a n  r ~ n  v a n  r 

(-On v ~ (/}n,,+l ~ 1. 

But  if the  origin is not  a limit point  of the zeros of the derivatives of h then 

the left member of this inequali ty is 0 ~ (5.3 corollary I) which is not  in 

accordance with the fact t ha t  the r ight member converges to a number  different 
f rom zero. 

Remark" The theorem does not  necessarily hold for entire functions, which 
is seen from the example e x. 
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