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On a conjecture of V. Bernstein

By J. R. SHACKELL

1. Introduction

In this paper, we shall be concerned with the Dirichlet series

S ayent = f(s), (L1
n=1

where the sequence {,} increases and tends to infinity with n. Let N(r) denote the
number of 4, which are less than r; then the number

D=lim {lim sup [N(r) ~ N(¢r)]/r — &1} (12)

is called the mazimum density of the sequence {A,}. Whenever a Dirichlet series is
mentioned in this paper, it will always be assumed to have a sequence of exponents
with finite maximum density. We shall be particularly interested in series of the
form (1.1) which satisfy Ostrowski’s gap condition; that is to say, series which are
such that there exists an increasing sequence of integers {n,} and a positive constant
D, such that

}-nk+1_znk >D}‘nk (13)

A Dirichlet series may converge at no finite point in the plane, it may converge at
every finite point in the plane or else there may exist a finite number, o, such that the
series converges in the half-plane Re (s) > o, but diverges at every point which has
real part less than o,; no other case can occur. In the third-mentioned case, we may
take o0,=0 without loss of generality. Let us then write

Su5)= 3 ame e, (14)

we know that the sequence {S,(s)} cannot converge at any point outside the closure
of the region of convergence, but it is possible that a subsequence, {S,,(s)} may con-
verge in a region D, larger than the region of convergence of (1.1); when this occurs,
we say that (1.1) overconverges in D.

For power series, the phenomena of gaps and overconvergence are connected by
the following well-known theorems of Ostrowski (see, for example Dienes [3]).

Theorem 1 (Ostrowski). If a power series > a,z" satisfies Ostrowski’s gap condition,

the sequence {Z;L *a,2"} comverges in some neighbourhood of each regular point on the
circle of convergence of the series.

6:1 83



J. R. SHACKELL, On a conjecture of V. Bernstein

Theorem 2 (Ostrowski). If {3y "a,2"} converges in a neighbourhood of a point on the
circle of convergence of the series T a,z", then this series may be written as the sum of
two power series, one satisfying Ostrowski’s gap condition and the other having radius
of convergence larger than > a,z".

We are interested in investigating the connection between gaps and overconver-
gence in the more general context of Dirichlet series. It is, of course, well known
that Theorem 1 holds for Dirichlet series and indeed for more general series (see, for
example, Leont’ev [5]). On the other hand, Theorem 2 certainly does not hold for
all Dirichlet series, since examples of such series are known which show overcon-
vergence of a character quite different from the gap-type overconvergence of power
series. Following Bernstein [1], we shall say that {8, (s)} is a closely overconvergent

sequence of partial sums in the region R if the following conditions are satisfied:
(1) Ang,y-1/An, 1 a8 k— oo;

(i) (M1 —ng)/m >0 as k— co;

(iii) the sequence of partial sums {S, (s)} converges whenever s belongs to E.

We shall say that the series (1.1) is closely overconvergent in R if it possesses a se-
quence of partial sums closely overconvergent in R,

V. Bernstein [1, Ch. 2] defined a number §, called the index of condensation of the
sequence {1,}, which measures the extent to which the members of {i,} cluster
together and he showed that close overconvergence cannot occur in any half-plane
larger than Re (s)>o,—0d, but that with the correct choice of the sequence of coef-
ficients {a,}, this half-plane is always a region of close overconvergence. In {1],
Bernstein conjectured that Theorem 2 might hold for some significant class of Dirich-
let series. A natural candidate for such a class is the class for which § =0, since, if
this condition is satisfied, close overconvergence cannot occur. This problem remained
unsolved until the appearance of a paper by M. E. Noble [6] in which it was proved
that Theorem 2 holds for Dirichlet series satisfying the condition

Ans1—Aq = q>0. (1.5)

Noble’s can be extended without great difficulty to the class of Dirichlet series for
which 6 =0 and this result is best-possible, in the sense that if we are given a sequence
{A,} with positive index of condensation, we can choose a sequence of coefficients
{@,} such that Theorem 2 does not hold for the series >, a,e™**.

There remains the possibility of obtaining Theorem 2 in a modified form, valid for
Dirichlet series whose sequence of exponents has positive index of condensation.
A natural modification is suggested when we come to consider the half-plane of
holomorphy of the series (1.1). Let o denote the infimum of the numbers ¢ such that
the function defined by (1.1) is regular in Re (s) >o; then oy is called the abscissa of
holomorphy and the half-plane Re (s) > oy is called the half-plane of holomorphy. The
half-plane of holomorphy is the natural region of close overconvergence, since it
always is a region of close overconvergence (Bernstein [1, Ch. 6, Th. 11]) and a
theorem of Bourion [2] shows that this cannot be true of any larger region. Further-
more, Theorem 1 can be obtained relative to the abscissa of holomorphy instead
of the abscissa of convergence (Bernstein [1, Ch. 6, Th. 18]). These facts lead one to
suspect that Theorem 2 also, might hold relative to the abscissa of holomorphy.
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This again was conjectured by Bernstein in [1]. The main task of this paper is to
show that this conjecture holds in the following form.

Theorem 3. Suppose that the series (1.1) has finite abscissa of holomorphy, oy, and
that the maximwm density of the sequence {,} is also finite. Suppose further, that there
exists a sequence {Sni(s)}, of partial sums of (1.1) whickh converges in some neighbour-
hood of a point on the line Re(s) =0y Then (1.1) may be wrilten as the sum of two
Dirichlet series, S, and S,, where S, satisfies Ostrowski’s gap condition and S, is closely
overconvergent in a half-plane larger than Re (s) > oy.

We note that, in general, it is not possible to draw the conclusion that S, converges
in a half-plane larger than the half-plane of convergence of (1.1). This is clearly
demonstrated by the series

o 1 —n
nglp {e—s 1—e® }4ﬂ+ Z {e—(n+})s_e—(n+§»+e )s}

where P, denotes the modulus of the largest coefficient in the expansion of (1 —2)*"
in powers of z. However, in a certain special case, Theorem 3 does imply that the ha]f-
plane of convergence of S, is larger than that of the series (1.1). Let o, and oy
denote respectively the abscissae of convergence and holomorphy of the series S,
and let ¢’ denote the index of condensation of the sequence of exponents of S,.
A theorem of V. Bernstein [1, Ch. 2, Th. 1] states that for all Dirichlet serles (D< oo)
a, —GH<6 Now suppose that, for the series (1.1), o,—ox=0. Then o, <&’ +0H
aH—I—é since Theorem 3 shows that oy <oy and 0bv1ously §'<6. Hence o, <o,
which is to say that the half-plane of convergence of S, is larger than that of the
geries (1.1). Thus we have the following corollary to Theorem 3.

Corollary. If, for the series (1.1), o,—oy=0, then the series S, has a half-plane of
convergence larger than that of the series (1.1).

We remark that we certainly have ¢,—0y=4 in the case when §=0 and so we
obtain Noble’s result in this case.

In our proof of Theorem 3, we shall find it necessary to consider the affect of certain
transformations on closely overconvergent Dirichlet series. Some of the results
obtained seem to be of sufficient interest in themselves to warrant special mention.

. Theorem 4. Suppose that for each integer k, there are given p,+1 complex numbers
lmk, . /Z»mk.q.pk such that pk/lz‘mkl =0 as k—oco and fO’f' 0 <r<pk, ]Amk-{—r_lmkl = )
Suppose that, for s belonging to some fized domain D,

my+ oy

> Qe

n=my

< Mils). (1.6)

Suppose also that we are given a sequence of function {Oy(z, s)} each being a regular
function of z for z in some convex domain containing the POLES Amy, ..., Ampiox ONA
for s in D. Then, for s belonging to any fized compact subset of D,
Myt Dy lm
( 'p ') - Mi(s) sup | CP(Ew9)], 1D

2. 8nCilAn,8)e ¥ <
mg q<Pk

where &, is some point belonging to the convex hull of the points A s Amgion and A s

st
a posibe constant.
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If {A,} is an increasing sequence, we may apply Theorem 4 with O,(z, s)=
exp[ —#(s —s,)] in order to obtain the following result.

Theorem 5. Suppose that, for s belonging to some neighbourhood of the point sy=
Gy +ity,
M+ Dy

Z a, e 8| < M.

Then, for every £>0, and every bounded set B, there exists a ky(e, B) such that for k>
ky(e, B) and s belonging to B,

m+ Dy

S g et

mg

<My &m0 Vm,

where o =Re (s).
Finally, we can obtain the result of Bourion [2] mentioned above, as an immediate
corollary of Theorem 5.

Theorem 6. Suppose that {Sm(s)} s a closely overconvergent sequence of partial
sums of (1.1) in the region R and let op=inf;cp (Re(s)). Then {Sux(s)} 13 also a closely
overconvergent sequence of partial sums in the region Re (s)>¢rR In particular, the
maximum possible region of close overconvergence of the series (1.1) is its half-plane of
holomorphy.

The principle of the proof of Theorem 3 is as follows. We must divide the series
(1.1) into two series, 8, and §,. The series 8, will be composed of the terms of (1.1)
for which 4, lies in one of the gaps. We need to prove that S, is closely overconvergent
in a half-plane larger than Re (s) > oy and hence we must define a suitable sequence
of intervals, S, such that

23 e ) (1.8

converges in such a half-plane, where >* is taken over all intervals, I, of S which are
contained in one of the gaps of 8. In order to show that (1.8) converges in the required
region, we seek a method of estlmatmg [ Zaner@ne ],

Suppose I < (Any, (1 +c)An;) and let x(t) be an mtegra.l function of exponential type
which has zeros at the pomts of {1,} contained in (Ans, (1+p)Ax)N C(I); a Fourier
transform technique then gives us an estimate for |, {a,%(4,)e~**}|. We would like
to then apply Theorem 4 with C,(2, s) =1/x(2), in order to obtain the required estimate
for |>;a,e™*|, but unfortunately the derivatives of 1/x(z) at points of I may well
well be too large. It can be proved that these derivatives will be sufficiently small if
the distances between I and the other intervals of § are all greater than | I l2/d(1, 0)
(where |I|] is the length of I), but we cannot, in general, obtain a sequence S with
these properties. However, we can define § so that, for any two of its intervals, [
and J,

(1, J) = min {| I]2/d(I, 0), | J|}/d(J, 0)}.

The construction of § is given in section 2. An important property of § is that any
interval of § intersecting a certain neighbourhood of a fixed interval, I, of S8 must
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have length not greater than |I|/4. This allows us to define a partial ordering on S.
Then with a modified kernal function x(f), defined in section 3, which has zeros
sufficiently far from I, we can obtain an estimate for > ,a,x(4,)e~* in terms of
sums over intervals close to I, i.e., in terms of sums of the form >,a,%(4,) e~ % where
J is close to I. We can then use the partial ordering and obtain inductively an esti-
mate for > ,a,%(A,)e*° which is of the required form. Theorem 4 then gives us a
suitable bound for 3 ,a,e ** and the theorem follows.

The proof of Theorem 3 has been inspired by M. E. Noble’s paper [6]; in particular,
Lemmas 6 and 8 and other parts of section 4 have been adapted from his paper. It
scarcely seems necessary to point out that I have made liberal use of theideasof V.
Bernstein, as this must already be apparent to the reader.

The author would like to express his thanks to the Royal Institute of Technology
in Stockholm, where most of the work for this paper was performed, and in particular
to the members of the mathematics department, for their most cordial hospitality.

The letter ‘4’ will frequently be used in this paper to denote a positive constant,
not necessarily the same at each appearance; k(¢) will occasionally be used in the same
way to denote a number depending only on &.

2. Resulis concerning intervals

Following V. Bernstein, we shall give the sequence {1,} a structure by defining a
sequence of intervals on the real line. We shall require our sequence of intervals to
have certain properties not possessed by Bernstein’s intervals. If I and J are two
intervals on the real line, we shall write d(I,J) for the quantity inf}t}|z—y|
and d(Z, 0) for inf, ., |z|.

We first give Bernstein’s construction. He proved ([1], Ch. 2 and Ch. 6, Th. 11)
that for each ¢<1/10D, there exists a disjoint set of intervals, E(g, {A,}) with the
following properties:

(i) each interval of the set E(g, {A,}) contains at least one point 1,;

(ii) if L denotes the length of some particular interval of the set and k denotes
the number of points of {4,} which it contains, then

(k+1)g < L <2kq; 2.1)

(iii) if 2,, ..., Amsx-1 belong to the same interval of E(g, {#,}) and 2z does not
belong to that interval, then

l(}.m—Z) (}'m+k—1 ——z)[ = ]C'qk,

(iv) if we write the intervals of E(g, {1,}) in a sequence {I,} such that d(l,, 0)
increases with n, then the series

S¢> a,e™'n} (2.2)

N=1 A ely
converges in the half-plane of holomorphy of the function f(s), defined by (1.1).
We first wish to modify the set E(g, {4,}) so that the inequality (2.1) can be
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replaced by the equality L =2kg. In order to achieve this, we surround each interval
of E(g, {4,}) by a symmetrically placed interval of length 2kq; some of these new
intervals may intersect each other and when this occurs, we regard two mutually
intersecting intervals as making up a combined interval. The inequality (2.1) holds
for such a combined interval and so we may surround each of these by an interval
of the required length and thus continue the process. Let B be any fixed number.
By using (2.1) and the faect that ¢<1/10D, where D is the maximum density of the
sequence {1,}, we see that after a finite number of stages, the process does not
change any interval intersecting (0, B) and in particular, the process cannot produce
an interval of infinite length. Thus we obtain a new set of intervals E’(¢) for which
L =2kq. Obviously the properties (i) and (iv) hold for the intervals of E’(g) and it is
easy to show that (iii) holds and also the following modified version of (iii):

(iii, @) if z does not belong to any of the intervals I, I, , ..., In, of E'(q) and k

denotes the number of points of {4,} in I, U...U Ip,,

22

I1 11 Gu—a>Ha/a".

€l
nSin,

Lastly, density considerations show that for the intervals of £’'(g), the overconver-
gence of the partial sums given in (iv) is close overconvergence.

Suppose that we are given any sequence of mutually disjoint intervals {J,},
where J;=(a;, a;+1;) and suppose that the numbers ;, j=1, 2, ... have a positive
lower bound. We then define the intervals J; =(a,, a;+1;) as follows. Suppose that
there exist integers M and N with M <N, such that

Ay, Iy) < min(l%ll/aM: l?v‘/azv) (2.3)

and let M be the smallest such integer. With the choice of M now fixed, there can
only be a finite number of possible choices of N; let us choose N as large as possible.
We then define the sequence {/; } by the relations

Iy =1, for j<M or j>N

lM =ay 4 l N—Qp

I, =0 for M<j<N.
If (2.3) is not satisfied for any M and N, then we define j =1, for all j. Let us now
take ¢<1/(16e*D+1) and let us consider the set of intervals E'(q)={I;}. We write
I,=(4;, A;+L,) and we then form the sequence of intervals {I; }. From thissequence,
we can discard any intervals of zero length and then form the sequence {I;'}; clearly,

we can continue this process without limit. Thus for each fixed j, we can define the
sequence L;, L, ..., L}, .... Provided that we allow the value + oo, the limit

L=1lm L (2.4)

n—>00

always exists, since either L =0 for all but a finite number of » or else L} always
increases with n.

Lemma 1. The number L, is finite for each j and L,|A,~0 as j->co.
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It is this lemma which provides the basis for the construction of our required set
of intervals. The principle of our proof of Lemma 1 is to show that, if the result were
false, the intervals of E’(g) would necessarily be packed closer together than is
possible with {1,} having maximum density D. We note that we may assume, without
loss of generality, that each L, is equal to 2q, because we may replace any interval of
length 2%g by & adjacent intervals of length 2¢ and this clearly does not affect the
properties of L,, j=1,2, .... Having made this assumption, let us suppose that
Lemma 1 is false.

We can then find a positive constant o<1 and sequences {m}, {n;} and {N},
with N, <n,, such that

(1+0) Ame < Ly + A (2.5)

Because of the method of construction of {Ly;}, there exists a sequence {r,} such

that Angsre+ Lngsr=An,+Ly, and then the interval A, =(4n, Aw,+Ly;) contains
just the intervals In,, ..., Ingsry of E'(g). If we denote the interval between In,.rand
Tnpere1 by @(k), then clearly

=1

[ Ael= 2 Imer+ 3 |Qulh)], (2.6)

where we have denoted the length of an interval J by |J|. Each @,(k) is contained in
an interval of {I]**} but not in any interval of {I,} and hence there exists a smallest
integer P, such that Q,(k) is contained in an interval of {I7}. This implies that (k)
lies between two intervals, I3 * and I5%, of {IF "'} which satisfy (2.3). Suppose that
the number of intervals of E'(q) contained in I5 ! and 747! is respectively n(M)
and n(N). We then define the order of @,(k) to be the minimum of #{M) and n(N).

All the L,’s are equal to 2¢ and hence, using (2.3), we see that no first order @,(k)
can have length greater that 4¢%/ 4. Therefore the sum of 3¢ Ly, + » and the totallength
of all the first order Q,(k), 0<r<r,—1, is not greater than (1+42¢/A4x) Z?anr.
Similarly the addition of the total length of all the second order @.(k)'s will increase
this number by a factor of at most (1 +2¢/4n,). In general, the sum of >7*Ln,.r and
the total length of all the Q. (k) having order not greater than 7T is at most
(1+2¢/An)" 3 Lng+r. We may assume without loss of generality, that Ly, <54n, for
k sufficiently large; for, if Ly;>5An, then we can find an m; <m, and an N, with
N.<N,<N,;; such that

(1 +0) Any <2A0, SLNE <5 Ay
With this assumption, no @,(k) can have order greater than 24../q. Hence, by (2.6),
% Tk
| Al <(1+29/4, ) S Lysn<ef S Ly . (2.7)
R=0 E=0 -
Let us denote by N(A), the number of points of {4,} in the interval A;. Then,

because of the method of construction of E’(g),
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N(A)=(1/29) 3 Ln,sn
and hence, by (2.7),
N(Ay) = | Ag| [2e%q> (8D + %) | As]. (2.8)

It follows from the definition of D([1] Note 1) that, given any positive &, there exists
a ky(e) such that for 4,,=d(A,, 0)>k,,

Let us choose £ =pD; then, since |A;| = p4n,
N(Ay) < (D+e+efo)|Ax] <(2+0) D] A,

This contradiets (2.8) and thus Lemma 1 is proved.

Let S denote the sequence obtained by removing all intervals of zero length from
the sequence {(4,, 4,+L,)}. S is our required sequence of intervals and we shall
proceed to obtain some of its properties. It is clear that the method of construction
of S ensures that if I,; and Iy are two intervals of S,

[ 1 Tul® IINP}
d(IM,IN)>mm{m, m H (29)

We are going to define a partial ordering on the set S. We shall suppose that for all
n, L,[A,<}. This involves no loss of generality since we may always ensure that the
inequality is satisfied by removing a finite number of 4,. We shall write IpJ whenever
I and J belong to S and

|Z]?
32d(1,0)

Jm(I-l- E) +4, (2.10)

where E={z; |z| <1}. We shall write J<I whenever there exist intervals I=
I, Is, ..., Iy=J of S such that Ipl, ;, 1<r<M-1.

Lemma 2. If I and J are intervals of S, the following statements hold:

(5) if IpJ and I+J, then |J| <|I|/4;
(€) the relation <is a partial ordering on S;
(s53) if J<I, then J<I+|I|E;
(w) there are at most |I|[q intervals J such that J <1I,J + 1.

To see (i), let us first observe that d(J, 0) <2d(I, 0), for
d(J,0) <d(I, 0)+|I| +|I[/324(Z, 0)
<d(l,0)-(1+%+1/288),
since |I]| <d(, 0)/3 by assumption. But then, by (2.10),

[
324(1,0)

|7 _ _1I]*
> UL > 55 6 5dT,0)
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This proves (i), which immediately shows that we cannot have J<I and I<J
without having I=J. Part (ii) is then obvious. Part (iii) is trivial if J=1. If J I,
let I, ..., I}; be the intervals mentioned above. Then

Sl:? {d=, )} <|J |+, Tpp-y)+ | Iyp-1| + T pg-1, T pg_g) + oo + | I, ]+ d(Zy, )

2
<II|(1/4+"'+(1/4)M)+16LZI(II O)(1+1/4+...+(1/4)M—1)

<2|I|/3.

This suffices to prove part (iii) and, since part (iv) is a trivial consequence of this, we
have proved Lemma 2.

We next give a general lemma concerning partial orderings on finite sets. We
shall later apply this lemma to certain subsets of S.

Lemma 3. Suppose that A is a finite set on which is defined a partial ordering rela-
tion <. If a and b are members of A, we shall write a<b if a<b and a==b. Suppose
also that we are given a positive real-valued function 1: 4R and a positive real-valued
Junction B: A x A— R, such that, for all a€A,

Ala) < DZ Bla,b)A(b) +r, (2.11)

where r is a fized real number. For each a €A, let n{a) denote the number of b€ A such
that b<a. Then

Ma) <r-2"® supremum {B(a, b)B(b, ¢) ... B(y, 2)} (2.12)
where the supremum is taken over all subsets, {b,c, ...y, z} of A such that
<y<...<c<b<a.
To each b<a, we may apply (2.11) and obtain
Ab) < cgb B(b,c) Ac) +r.

On substituting this expression in (2.11), we obtain
Aay<r{l+ bz Bla,b)}+ oz Zb B(a,b) B(b,c) Ac). (2.13)

We can now use (2.11) to estimate the numbers A(c) which occur in (2.13). We may
apply this technique successively until, after a finite number of steps, we obtain an
expression of the form

l(a)<r{1+b;lﬁ(a,b)+...+ > S Bla,b)Bbe)...Bw2)}  (2.1a)

b<ac<b a<y

The total number of terms in the bracket on the right-hand side of (2.13) is not more
than

1+n+n(n~1)/2+...+(;)+...+1=2", (2.15)
where n=n(a). The inequality (2.12) now follows from (2.14) and (2.15).
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3. Results concerning transforms

We are going to isolate certain blocks of terms from the series (1.1) by applying
a transform. It is, therefore, important for us to obtain conditions under which the
modulus of the transformed block of terms is comparable with the modulus of the
original block. The result we require is Theorem 4.

Proof of Theorem 4

We commence by introducing some notation. Let

Py
Py(s)= (1/21’zc!)pl;l0 (8~ Amy+n)- 3.1
Let b,(z, W) denote the Borel transform with respect to s of {Py(s) —Py(2)}/(s —2). Let
Py
gul(s)= 2, “mk+pe_1”'k+”s, (3.2)
p=0

and let us choose 7 to be any positive number and set

1
b(s,2)= o ¢ I=”9k(3 — )bz, {)dL. (3.3)
We show that
(8, Amyrp) = PilAmysp) Gy g€ e, (3.4)
On. substituting (3.2) in (3.3), we obtain

Dy 1
— ~Am c—_ Ampy 5 . 5
dils,2) —,,Zso {amﬁ,e 208 S |£l=nbk(z’§)e E+p dé‘} (3.5)

Because P,(s) is a polynomial, b(z, {) is a regular function of { at every point except
0. Hence the standard result concerning the inversion of the Borel transform (see
[1] Note 3) tells ug that

1
21 J141-n
and (3.5) then becomes

bz, £)€ ™+ dE = { Py(Amys5) — Pul@)}/ Amysr —2)

Dy

¢k(8»z) = Z “m,,+pe_;'m"+”{Pk(lmk+p) - Pk(z)}/(lm,,+p —z). (3.6)
p=0

The equality (3.4) now follows on putting z=Am, in (3.6).
Next we require an estimate for the partial derivatives of ¢,(s,2), which is given
by the following lemma.

Lemma 4. Suppose that the points Amy, ..., Ampror Satisfy the hypotheses of Theorem 4.
Suppose that s belongs to some fixed compact subset C of D and that z belongs to the convex
kull, A,, of the points Amy, ..., Amprpe- Then, if g<py,
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[6"43,,(8, Z)

AT ]H\ S M(3) - (4] Amy] /P2, 8.7)

provided that k is larger than a certain number, ky(C).
For Re() >0,

by(z,8) = f:l—a"—(—"g}:—z})"@ e “edw. (3.8)

If we expand P, (w) as a power series in (w —z) and substitute the resulting expression
in (3.8), we obtain, for Re({) >0,

wz)

157
- P(q+l)
blc(z: C) q§=:0 k )f q + 1

= E @D pErD {1 —2 4+ ...+ (—20)%/¢'} /(g +1) (3.9)

2=0

and by analytic continuation, the same formula holds for all {+0. If X belongs to
the set A4, +2p, E, then by the hypotheses of Theorem 4, the diameter of 4, is of
the order of p, and 80 |Am:r—X| < dp,, for 0<r<p,; hence

[Pe(X) | <(Ap)™* ! [p,! < A%
On applying Cauchy’s inequality, we see that for Z€d,+p. £ and 0<¢<p,+1,
| P2(Z)| < gl A%% /pf < A%, (3.10)
n (3.3), let us take n = 4d(C, C(D)); then, if || =7,
| —Z21%1q! < (4| Ame| )/t < (A | Ame | PH/ 23! < (A | A | [P} (8.11)
since we may assume that p, <A|im|. Hence, by (3.9), (3.10) and (3.11),
18:(2, £)| < (A | Ame| [ 2™, (3.12)

for Z€ A, +p, E and |{| =7. Now suppose that 2€4,, s€C and that 0 <q<pj. Then,
using (3.3), we see that if % is sufficiently large,

[3q¢k(3»z)] [aqbk(Z,C)] \
oZ% |5, YR Tz |,

< 27!71Mk(v3) haid

< 27nM(s) - (g!/p}) supremum {sup [b,(Z,()[}

ZeAk+pkE 1&i=7
< M) (A /)™

and this completes the proof of Lemma 4.
We now state a lemmma which is due to Jensen [4].
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Lemma 5 (Jensen). Suppose that x;, ..., xq are points of the complex plane and that
F(2) is a function analytic in some convex domain containing these points. Let us define

<Q
Fo= 3 F(z)/T1(=),

where H(x)=l'[,?,1(x—-x,,). Then there exists a complex number D, with modulus not
greater than one and a point &, belonging to the convex hull of the poinis z,, x,, ..., T
such that

D[
Fo= -1 [W{F(z)}]

Using the equality (3.4), we may write

2'50.

S GOl = 3 (5, 10) Culhus)/ Pilha) (3.13)

Applying Lemma 5 to the right-hand side of (3.13) yields

S a,Cims)e = D| Zotis, 02,9
My Z=§g

Theorem 4 now follows on application of Lemma 4 and Leibnitz formula.

We recall that, in section 1, we mentioned the possibility of using a function »(t)
which is an integral function of exponential type having zeros at the points of
{A.} contained in (An;, (1 +B)An)N C(Z). We shall however, use a slightly different
function, namely one which has zeros at the points of {i,} contained in (i
(14 8)Am)N C(U(I)) but not at the points 4, contained in U(I); here we have used U([)
to denote the union of all the intervals of § which are less than or equal to I in the
sense of the partial ordering of section 2. This will enable us to obtain a formula to
which we can profitably apply Lemma 3. _

Let T denote the set of intervals, I of 8, such that I+ [I| E is contained in
{Ant, (1+p)An) and let V(I) denote the set of intervals {J, J <I}, whose union is
equal to U(I). For each I€T,, we define

Ji(I) = T,nC(V(])) (3.14)
and
. g B
KZo= II sin® {8(¢ ~ 4,)/An,}

3.15
rergniger  O(t— )/ A, (8.19)

where 4 is a constant to be defined later in such a manner that 4/u <6 <7m/2u.

Lemma 6. Suppose that I€T,, z€ I and that Q is less than the number of A, contained
tn I. Then, provided that k is sufficiently large,

<exp (4ukn,)-

Q
|Gea/Ea )]

t=z
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Suppose that u belongs to the interval I+ (]|I[2/32d(Z, 0)) E. Then, by definition
of V(I), w cannot belong to any interval of J(I). Therefore, since property (iii,a)
of section 2 holds for the intervals of S, we must have

JelyD A,eJ

where N =N(I) is the number of 1, contained in the intervals of J,(I). If 1, belongs
to some interval of Jy(I), then |d(u—A4,)/An| <z/2 and hence
e

2 2
< (“ A"k)”.i < (eﬁl_k)'v (3.17)

46(u—1,) dq N &N |’

by (3.16). Now, viewed as a function of X, {P/X)¥ has its maximum when X =Ple

and therefore

[1/E(wl< I

Jelyph 4,87

| 1/E(I, u)| < exp {n?An/(9)}, (3.18)

whenever u belongs to I+ (| I|2/324(, 0)) E. Lemma 6 now follows after the applica-
tion of Cauchy’s inequality.

Lemma 7. Suppose that 1€T, and that J <I (in the sense of section 2). Let n(I)
denote the number of A, in U(I) and let A(I, J)=n(I)—n(J). Suppose also that z€J
and that g<n{J). Then, for k sufficiently large,

[d" (K(I,t)) < Al \7t.d [ Any \™D
d\KJT, 1)) |ies (ﬂ,(I,J)) '(Bn(J)) )

The proof of this lemma is very similar to the proof of Lemma 6 and will, therefore,
not be given.

We may assume that the number N(I) of the inequality (3.16) is not smaller

than 2, for if N(I) <2 for more than a finite number of %, then Theorem 3 is trivially
true. With this assumption, %, | K(I, ¢)|d¢ <oco and hence we may set

k(I,z)= ;E f  ELyedr. (3.19)

Lemma 8. For k sufficiently large,

lk(l, x)l < A}.nk
We have

|6(L,2)| < f " K| du

-0

=J‘lu| 42 ,,,IK(I:u)Idu“'f IK(I,'u)|du
<4,

ful>4dy 18

<84n,/0+ f (22, /0u)" Pdu

lu I>“”"k/6
and the lemma follows immediately from here, since N(I)>2.
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4. Completion of the proof of Theorem 3

In order to simplify our notation, we shall now assume that oy, the abscissa of
holomorphy of the function f(s), is equal to zero and that the sequence of partial
sums {3, (s)} converges in a neighbourhood of the origin. It is clear that these
assumptions involve no loss of generality. The aforementioned neighbourhood of
the origin must contain a square of the form |o| <A, |¢]| <A. Let us choose T'<A
and. let us define the number § of (3.15) by

min(T/2,7/2)
2D+N)pu
where D ig given by (1.2). Then, if I €T, the function K(I, ¢) is an integral function

of order 1, with type not exceeding T'. The theorem of Paley and Wiener ([7], p. 16)
then assures us that k(I, z) vanishes for |z| >7. We define

8= (4.1)

R(o)=f(s) — Sane™ “2)
and fru(8) = Ri(s) etnas, (4.3)

For I€T, and ' >0, we set n=7+ iy’ and then we see that

Z a, e%n? ”’f k(I,t)e*tdt

nptl

= z Ap (I,ln)e(l“" l")”

ng+l

T
f fagln + i) (I, t)e *natdt
-T

But K(I,4,)=0 whenever 4,¢J,(I) and therefore, if I, denotes the first interval of
8 such that Iy, +| Iy |E intersects the interval [(1+ u)A,,,%0),

T
[
~T

T 0
f k(I,t)el"l:ﬂ{ S 3 ae ”<"+“)}dt+ S 3 a,K(LA)e*m W (4.4)

- N=Nidely IyeV(DAely
Lemma 9. There exists a positive number Ay=Ay(n, T, A) and a positive integer
ko=ko(n, T, A, u) such that for k>,

Z Z a, K(I,2,) e(lﬂ"_l")ﬂ < Aﬁk {C_A'l"k +e” i"""'Ink}.

Iye V(D Ayely

We are going to use the equality (4.4). We begm by obta.lmng an estimate for
| Bi(s)| on the segment [¢| <T"=(T+A)/2 of the imaginary axis. We write the
intervals of S in a sequence {I,} such that d(I,, 0) increases with p and we denote
by m, the first integer such that 4, €I,. We recall that |L,| =04, ,)- Liet M be the

smallest member of the sequence {m,,} such that 4y, >4, . Then, for Re(s)>0, we
may write
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M1 My py—1
Bis)= D ae ™+ S5 3 aeh (4.5)
npt+l my=Mp, m,

Let C denote the disc |s—3A| <A/16; then C is contained in the square |o| <A,
|t| <A and hence if s€C there is a £, (A, s) such that for &>k, (A, s),

o0
Z ane—l,,s
ngptl

<i.

But O is contained in the half-plane of holomorphy of the function f(s). Therefore
for each s€C there is a ky(A, s) such that for k>k,(A, s),

-]

My

<i.

Writing £'(A,s) = max (ky,k,), we have

My~1

Z ane—lns
nptl

<1 (4.52)

for s€C and k>Fk'. Let Q(K) denote the set of points of C for which (4.5a) holds for
all k=K. Q(K) is clearly closed in € and C'= J7-1Q(X). The Baire category theorem
then tells us that one of the sets Q(K) contains an open dise U; i.e. there is a £"(A)
such that (4.5a) holds for any s in U and any k>k"(A). Similarly, we can show that
there is an integer K'(A) and an open dise U’ contained in U such that

my 411

Z ane-—).ns
my

<1

for m,=2M,, k=K' and s€U'.
Now suppose that Re(s) = A; then using Theorem 5 with ¢=1A, we see that

|By(s)| < e 2P+ 3 e MmAR
my= My

and since lim inf (4, , —4n,)>¢>0, this implies that
| Bil(s)| <exp(—qAl,,[4). (4.6)

Let y; denote the segment |¢] <A of the line 6=A and let y, denote the remaining
part of the boundary of the square || <A, |¢| <A. The inequality (4.6) gives us an
estimate for | R,(s)| on »; and, by hypothesis, | R,(s)| <1 on yy, if k is sufficiently
large. The Two Constants Theorem then tells us that there exists w=1w(A, T') with
O<w<1, such that for k=£ky(A),

sup | Ry(it)| <exp (—gAwi,,/4). (£.7)

IS
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Next, we use (4.7) to obtain an upper bound for |, (n+14)| as ¢ varies in [¢| <7

This will, in turn, give us an estimate for the integral on the left of the equality
(4.4). Let us suppose first, that Re(s) >2s. We multiply the equality (4.5) by e*%* and
then apply Theorem 5. This yields

| fag(8)| < e‘ﬂf{e“‘ﬂnn‘"'” + > e’lm"’“’}

my> My

o0
< e‘nk”’{ 1+ > e""""‘e’}

=0
and hence, for Re(s) >2¢ and k = ky(¢),
| Fug(8)] < €%, (4.8)

Now suppose that 0 < Re(s) < 2¢ and that |¢] < 7. By an application of Theorem 5,

ng
z a, = O(e‘”lnk)
1
and hence
g
[ fap(8)] < €272 {l f(o)] + ga,,}@“‘"k, (4.9)

for k=ky(z). On combining (4.8) and (4.9), we see that (4.9) holds whenever s belongs
to the rectangle 0 <Re(s) <27, |¢| <T" and k>k(e). But, by (4.7),

sup | f,(it)| = sup | Ry(it)| <exp (— qAwi,/4). (4.10)
ltigr’ 1tI<T’

Therefore, by the Two Constants Theorem, there exists a positive 4,=A4y(n, T, A)
such that, for k sufficiently large and " < (7" —T)/2

Sup |fayln + i8] < exp (= Aok, (4.11)

By combining (4.11) with Lemma 8, we can now obtain an estimate for the integral
on the left-hand side of (4.4). We have

T
f . Fop( i) (L, t) e~ Pt dll] < ADG 0™ 4%, (4.12)
for & sufficiently large.
We now consider the first term on the right-hand side of (4.4). Applying Theorem
5 as above, we obtain
2

o0
z a,,e(‘"k‘l“)("“” < el,‘kn' 2 PR A”‘v

NNl 2,ely v=Ny,
<4 exp {Ank"?l = (' — &)Aq,}, (Qp=my,)
< 4 exp {ed,, + (7' — e)hn, — Ao} (4.13)
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for k> ko(e,n). But, for large k,2q, — Ay, > pth,, — £, and therefore

2

N>Ny

z a, e"'n o A)(m+it)
Ap€ly

<4 exp {A,[e— (' —e)(u—e)}

<A exp (— 9 phn,/2), (4.14)

provided that we choose ¢ <y'u/{2(n' +n+1)} and k larger than a certain ky(n, u).
On combining (4.14) with Lemma 8, we have, for k >z, u),

T

-]
z Z a e(l"k—ln)(q-l-zt)k(l t) —M”ktdt

~T N=Nj A.ely

<AX, exp (—n'ph,/2). (4.15)

Lemma 9 follows from (4.12) and (4.15).
When we use the ordering relation defined in section 2, Lemma 9 gives

S K1) 1| < 3 | 5 0, K(J, 1) e i)
Aer J<I|i,e7 (J }-n)
AR e b AT, (4.16)
for any I€T,. By theorem 4,
> @ K(J,A,)etmtwn K(I ) | <| 3 @, K(J,A,)emtn
zne.r K(J,2,) A.ed

K(J,
A Ank n(Jh) I t) ‘
: (WJ)) e Lo { [dt” (K(J t))Lz u} '
If we substitute this expression in (4.16) and use Lemma 7, we obtain

S a,K(I,3,) el 0"

< Al%k {e_A"A"k + e_"lul"klz}
A1

Alnk n(l, D )[nk nW
+2 () ()

Since (4.17) holds for any choice of the interval 7€T,, we may apply Lemma 3,
which yields

4.17)

S 4, K(J, A,) e,

el

> a, K(I,2,)ePm 41

2.6l

A}""k nd, D A}“nk v, w }*nk n(l) 2’"1: n<W)] (4.18)
R s [(ﬁ(LJ)) "‘(ﬁ(v, W)) '(nt) "‘(n(W)B) '

where r(I) denotes the number of intervals of S which are less than J. We shall

< AR fe Avbn, 4 ¢ Mg} 97D
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obtain an upper bound for the supremum appearing in (4.18). Suppose that
W<V<..<J<I and let us write

w(I)=a(I,J)+...+a(V, W)
and m(I) = n(J)+... +0(V) +n(W). (4.20)
The quantities () and m(I) depend on the choice of the intervals J, ..., V, W but

there is a number C, depending only on the sequence {4,}, such that m(I)<C|I|
and m(I}<C|I|. Next, we note that

wV, W)

(Alnk )'T(f-nm( Ao, )E(V'W)_(Alnk)'_"“’ﬁ( (1)l

al,J) w(]) ILN... &V, W

Al {1+ ok} (@21)

and similarly

Ay \"O (g \MP (o \™O m(I)!
(B”(J)) “'(Bn(W)) _(Bm(I)) n(J)!...n(W)!{1+O(A"k)}' (4.22)

Now Lemma 2 ensures that, if K <J < I, then n(K)<n({J)/4 <n(I)/16 and hence, as
is easily deduced, a(J, K) <#(I, J)/2. We are, therefore, entitled to use the following
lemma, which is easily proved by induction.

Lemma 10. If we are given n numbers, a,, ..., a, such that, for 1<r<n—1, 0<a, <
8y 11/2, then

(@, +...+a,)!

s 4(a,+...+an).
a,l...a,!

On applying Lemma 10, we obtain from (4.18), (4.21) and (4.22)

S, K(I,4,) en 20 < o2y {e™ Aotn, 4 o= Thy /%Y (4.23)

L €1

Since (4.23) holds in a neighbourhood, we may apply Theorem 4 with Ci(z, s) =
e * ¢®~*) K(I, z). We then use Lemma 6 and Leibnitz formula and we see that,

S et | S ehihn{ g Aohn 4 MBI/ A ) =D o~ A (£ ET).  (4.24)

A€l

We choose u so small that 4,4<4,/3 and then, keeping p fixed, we choose %’
larger than 6.4,. Then

z a, e s < { g2 404,18 1 e—r]’wl,,kIS} e(E""l"x) -0 g=4, 0
Aerl
n

and hence
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2 “ne—llns
A,el

< {e Aoty 4 g W12} g7, (4.25)

provided that ¢ > — and

SUD (&~ An,) < A, min (/12 4,/67). (4.26)

§ped

We denote by U,, the set of I €T, for which (4.26) holds. Then, by (4.25), the double
series

5 3 |3 tamet]

k=1IeUy LA, el

converges in some half-plane of the form Re(s)> —d, (d>0); here we have used
Theorem 5. Since (4.26) gives us gaps of the required type, this suffices to prove
Theorem 3.
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