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A generalization of Picard’s theorem'

By Oirrr LenTo

1. Introduction

1. Let f(z) be meromorphic outside a closed point set F in the complex plane,
and let f(z) possess at least one singularity in K. If f(z) cannot omit more than
two values in the complement of E, we call £ a Picard set.

By Picard’s theorem, sets with only a finite number of points are Picard sets.
In this paper, we shall generalize this result and show that all sufficiently thin
countable sets with one limit point are also Picard sets.

Let E:ay,a, ... be a point set whose points converge to infinity. If a func-
tion f(z), meromorphic outside E, is singular at some point a,, then of course
f(2) cannot omit more than two values. Hence, on studying whether E is a Picard
set or not, we may restrict ourselves to functions f(z) possessing their only sin-
gularity at infinity. In other words, we consider functions f(z) meromorphic for
z2F# 0o,

2. If f(z) omits two values w, and w, in the whole finite plane, it is clear
that f(z) takes all other values outside E if the points of E tend to infinity
with sufficient rapidity. For f(z) is then at least of order 1, and this implies an
upper bound for the velocity with which for any w# w,,w,, the w-points con-
verge towards infinity.

If however, f(z) omits only one value or none at all for z# co, no similar
conclusions can be drawn. For it is possible to construct entire or meromorphic
functions for which all w-points tend to infinity as rapidly as we please. Re-
moving from the plane the w-points for three different values w (for two values
for entire functions), we obtain sets £ which are certainly not Picard sets.

The following example shows that in such a case, even the distance of any
two points of £ can be made arbitrarily large. Put

= 1—2/b,

- 1
where b,>0, by<b,< ..., and b, tends rapidly to infinity. Clearly, f(z) has its
zeros at z=0,, poles at z= —b,, and 1-points on the imaginary axis. If the 1-
points are denoted by =+ ic,, ¢=0,¢,>0,7=1,2,..., we have the identity

1 This research was done at the University of Uppsala under a grant from the Mittag-Leffler
Foundation. The author takes pleasure in thanking Professor Lennart Carleson for helpful
suggestions.
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[T —ice/b)=TTA+ice/b), £=0,1,2, ...
v=1

v=1

This can also be written in the form

> arc tg (cx/b)=nm,
r=1

where n iz a positive integer. If the points b, tend to infinity with sufficient
rapidity, this implies that, except for ¢, there is just one ¢, in every interval
(b2, bor+1). Hence, ¢, —cx—y > byig — b Puncturing the plane at the zeros, 1-points
and poles of the function (1), we thus obtain sets E the points of which tend
to infinity as rapidly as we please and in which the distance of any two points
can be made arbitrarily large. In spite of this, these sets are not Picard sets.

3. Hence, neither the rapidity of convergence of the points of E towards in-
finity nor large distances between individual points of E are sufficient to ensure
E to be a Picard set. There is, however, still another way to make the set E
thin, namely, to impose the condition that for large values of », ]a,,+1| must be
much larger than |a,|. If this requirement is strong enough, we arrive at sets
which are always Picard sets.

With this result, which will be established below, the study on Picard sets is
by no means completed. The given density condition, guaranteeing E to be al-
ways a Picard set, is scarcely necessary. Moreover, besides these thin Picard sets,
there may also exist much denser Picard sets. Even the existence of arbitrarily
dense Picard sets is not unlikely.

I1. Existence of Picard sets
4. The result to be established is as follows:

Theorem 1. Let f(z) be meromorphic oulside a set E: ay,a,, ..., a,—>0, and
possess at least ome singulority in E. If the points of E satisfy the condition

(log |, |)*** =0 (log |a,.1]), 6>0, (2)
then E is a Picard set, i.e. [(2) can omit at most two values outside E.

Proof, It is obviously sufficient if we can prove that the assumption of the
existence of a function f(z), meromorphic and non-rational for z# oo and differ-
ent from 0,1, co outside E, leads to a contradiction.

We introduce the standard notations: 7' (r) is the characteristic function of f(z),
N(r,a) the counting function, and N (r,a) the counting function which counts
all a-points only once, irrespective of multiplicity.

Nevanlinna’s second main theorem, applied to f(z) for the values w=0,1, oo,
yields

T(r)<N(r,0)+ N (r,1)+ N (r,00)+ O (log 7).

Hence, considering the density condition (2), it follows by an easy computation
that for any 7 >0,
T (r)=o0(log"*"r). (3)
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Let by, ¢;, di denote the zeros, 1-points and poles, respectively, of f(z). By (3),
at least two of the sequences b, ¢;, d; contain an infinite number of points. In
view of the transformations 1/f and 1—f, permuting the zeros, 1-points and
poles, there is no restriction to suppose that the number of zeros and 1-points
is infinite.

From (3) it also follows that f(z) admits a representation

b;)
1= ORI (0 £0,0),

where 4; and u; denote the multiplicity of the zero or pole in question. The
product over the poles may be finite or even reduce to the constant 1.
Setting z=c¢;, we get the relations

f(o)l:[(l "“Cj/bi)li' =Ik—_[ (l — C}/dk)ﬂk, 7.‘—‘—‘ 1, 2, . e (4:)
between the zeros, 1-points and poles.

b. We shall now prove that, under the condition (2), the equations (4) cannot
be true for all values of j. To begin with, we point out that the numbers 4;
and u; cannot be very large.

In fact, we conclude from (3) that
N (r,0)=o (log"*"7).
Hence, N (2]8:], 0) =0 (log"*"| b ),
while on the other hand,

N@2lo:, 0= >  Aslog (2|bi/bs]) =4 log 2.
1n1<3 18]

Consequently, =0 (log"*"|b;|), (5)
and similarly, pr=o0 (log'*"|dy|). (5"
6. Reverting to the relation (4), we start from the identity

I:J: (1 - Cj/b1)li = i (Cj/b 4 (b /Gj 1) i I__[ (1 —_ Cj/b{ (6)

.<|j| Ibi byl> eyl

and show that for j—oco, the moduli of the two last products tend to 1.
For the first of these products we get, considering (5),

[log H |b/01—1|1i|—0( Z )-ilbi/cfl) |0f|"110g1+"l0i" 2 b))

1b41< bil<leyl

If by is the zero with largest modulus less than |¢;|, it follows immediately from
(2) that

316 =01ba.

497



0. LERTO, A generalization of Picard’s theorem

Hence, log [T |&i/e;—1]*=0(bx/cs|log | c;)),
!

1o51<ley

and by (2), the left-hand side tends to zero as j—oo.
In a similar manner we obtain for the last produect in (6),

llog H l].—“Cj/b,‘llil=0gbil>zlcjlzil0j/bi|)=0(|Cj/bN+lI]og1+’lle+1|)=O(1)-

181> ¢yl
Hence, it follows that the relation (4) can be written in the form

om B TT =4, IT dfx, 0]

155l<1¢jl 1dgl<ieyl
i

where A4; is bounded with respect to j§.

It is the handling of the equation (7) that has determined the density con-
dition (2). By this condition, |c;| is so much larger than II|dy[“* and II|® "
for large values of § that a contradiction follows immediately, unless

2 }.i = E K.
If this condition is satisfied,
A; T djpe =TI bk, (8)

But again, as j—>oo the term corresponding to the largest of the numbers |b;],
|dx| becomes so large compared with all other terms that (8) cannot remain true.
A contradiction has thus been found, and the proof is completed.

7. The condition (2), guaranteeing E to be a Picard set, yields quite thin sets.
On the other hand, E must not be too dense in order to always be a Picard
set, as we shall now show by means of an example.

We shall construct a set £ which is not a Picard set, although

|a,s1/a,|>g>1 )
from a certain v on.
Let F(w) be a double-periodic function with periods w> 0 and 27¢. Let fur-
ther F (w) be even and take every value twice in its periodicity rectangle.
The function F (log z) is then single-valued and meromorphic for z % 0, co.
Obviously, it admits a representation

F(log2)=/(z) +9(2),

where f(z) and ¢(z) are meromorphic for z # co and z # 0, respectively, and
g(o°)=0.

Let now —w/2<ay <oy<oy< /2 such that F(a)=w;,1=1,2,3, are different
from each other. The function F (log z) takes the three values w; at the points
z=eTue 3=0,1,2,... Let {=e*%""® denote an arbitrary w;-point of ¥ (log z)
in the vicinity of z=oco. From |F (log z)—f(z)|=0(1/|z|) it follows that there
is just one w;-point of f(z) in the disc |z2—{|<p, where p=0(1/|¢|). Moreover,
outside such dises, f(z)#w;. Hence, the w;-points of f(z) satisfy (9), thus con-
stituting a desired example.
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III. Entire functions

8. Let f(2) be a non-rational entire function for z # co. We call £ a Picard
set for entire functions if f(z) cannot omit more than one finite value outside Z.
Of course, every Picard set in the above more general sense is a Picard set for
entire functions, while the converse need not always be true.

In the special case of entire functions, the density condition (2) can be con-
siderably relaxed:

Theorem 2. 4 set E: aj,a,,...,a,—> o, is a Picard set for entire functions if
Ia/v/au+1 I = 0 ('V_2)' (10)

Proof. Let f(z) be non-rational and entire for z # oo, and let f(z) #0,1 outside E.
Adopting the same notations. as above, we conclude first that

T (r)=o0 (log? r).
Hence, f(z) must possess an infinite number of both zeros and 1-points and

Ai=o (log2| b ).
We write as above,

IMa—e/bys= TI (e/b) T Gi/o—1% I (-c/b)s. (D

19;1<le4l 1b31<ley] 191=>1¢4l

For the last product we obtain

tog TT11~eyufil =0 1o, 5 PEI)

T 15T, | bi]

and by the condition (10), this is O (log|c;|). The same holds for the second prod-
uct in (11), and it follows that the relation corresponding to (7) now becomes

log T1 Ilcj/bi [ =0 (log]¢;))-

1bgl<ley

This, however, contains a contradiction. For the left-hand side is the counting
function N (|¢;],0), and since f(z) cannot have any finite values with positive
deficiency, the relation N (|c;|,0)=0(log |¢;|) is impossible.

9. If the points of F lie on a ray, the condition (10) can still be weakened.
In this case, the condition

|ayi1/a,|>g>1 (12)

already ensures F to be a Picard set.!

For if f(z) is entire and # 0,1 outside a set F lying on a ray I', it follows
from the Weierstrassian product representation that f(z) is bounded on certain
segments (a,;, a,, ,) of I' clustering to infinity. Since f(z) omits three values out-

side E, an upper bound is obtained for the spherical derivative of f(z) in terms
of the hyperbolic metric do of the complement of E:

1 This is a joint result with Dr. K. I. Virtanen.

499



0. LEHTO, A generalization of Picard’s theorem

ral o ()

1+]f@F  \Jdz]

By the condition (12), this implies that on all rays sufficiently near I', the lower
limit at infinity of f(z) is finite. This, however, contradicts the fact that f(z)
must tend to infinity on every ray except for I.

The sufficient condition (12) cannot be very far from a necessary condition.

In fact, the entire function }(1+ cos Vz) takes the values 0 and 1 at the points
z=12n2, v=0,1,2,... Hence,

2
|avs1/a | >1+;

does not imply E to be a Picard set.
Let it be recalled that, as we showed above, (12) is not a sufficient condition
in the general case of meromorphic functions.

10. Certain well-known modifications of Picard’s theorem concerning non-zero
entire functions admit obvious generalizations for functions with zeros in a Picard
set. For instance, we obtain immediately.

Theorem 3. If f, and [, are entire functions with zeros in a Picard set for en-
tire functions, and if identically f,+fy=1, then f, and f, are rational functions.

If 1, fo f3 are entire functions with zeros lying in a Picard set for meromorphic
functions, and if identically

e htefitesf;=0

with monm-zero coeffictents, then the quotient of any two of these functions is a ra-
tional function.

University of Helsinks.
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