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On a Diophantine equation of the second degree
By BeneT StOLT

§ 1. Iniroduction

It is easy to solve the Diophantine equation
Ax?2+ Bxy+Cyt+ D+ Ey+ F =0

with integral coefficients, in integers z and y when the equation represents an ellipse
or a parabola in the (z,y)-plane. If the equation represents a hyperbola, the problem
is much more difficult. For solving an equation of this type one may use either the
theory of quadratic forms or the theory of quadratic fields.

T. Nagell has shown ([1]1-[5]) how it is possible to determine all the solutions of
the Diophantine equation

2~ Dyt = N, M

where D and N are integers and D is not a perfect square, by quite elementary meth-
ods. The author ([6]-[8]) used these methods to the equation

x? — Dy? = +4N. 2)
Consider the Diophantine equation
Au?+ Buv +Cv?= + N, (3)

where 4, B, C and N are integers and B2 —44C = D is a positive integer which is
not a perfect square. It is obvious that (3) can be transformed into (1) by means of
linear transformations with integral coefficients. The problem of determining all the
solutions of (3) in integers u and v then reduces to the problem of finding all the
integral solutions z and ¥ of (1) which satisfy certain linear congruences; see Nagell
[4], pp. 214-215. However, in this way we get no general view of the solutions of (3),
and it will be rather laborious to discuss the different cases which may occur.

The purpose of this paper is to show how it is possible to avoid the linear transfor-
mations and congruences. In fact, for equation (3), we shall deduce inequalities
analogous to those determined by Nagell for equation (1). We shall use the notions
proposed by Nagell or notions analogous to them.
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§ 2. The Diophantine equation x* — Dy?=4
Consider the Diophantine equation
2 — Dy*=4, 4)

where D is a positive integer which is not a perfect square. When x and y are integers
satisfying this equation, the number }(x +yV17) is said to be an integral solution
of this equation. Two solutions % (z +y VD) and & +y Vﬁ) are equal, if z =2’ and
y =y . Among all the integral solutions of the equation there is a solution

$(z + oy VB)

in which #, and y, are the least positive integers satisfying the equation. This integral
solution is called the fundamental solution.

A well-known result is the following

THEOREM. When D s a natural number which is not a perfect square, the Diophantine
equation

22— Dy?=4 4)

has an infinity of integral solutions. If the fundamental solution is denoted by &, every
integral solution i{x +y VY)) may be written in the form

Jae+yVD)y=+e, (=0, +1, £2, +3,..).

If D=*5 (mod. 8), there only exist integral solutions with even z and .

§ 3. The classes of solutions of the Diophantine equation 4Au® + Buv + Cv®= + N.
The fundamental solutions of the classes

Let A and N be positive integers and B and C be rational integers such that
B2—4AC =D is a positive integer which is not a perfect square. Consider the

Diophantine equation
Au?+ Buv +Cv®= + N. (3)

It is suitable to define a solution of (3) in the following way. If « = ¢/ A is a fractional
number and v is an integer which satisfy (3), the number

(2Au + Bv) + vVD
2

(3)

is called a solution of (3). If (= + yl/f)) /2) is an integral solution of the Diophantine
equation
2 = Dyt =4, @)
the number
(24w + Bv) + o/ D zty VD _ (24uzx+ Bvx + Dvy) + (24Auy + Boy +v:'v) VD
2 2 4
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is also a g)lution of (3). This solution is said to be associated with the solution [(24u +
Bo) + VD]/2. The set of all solutions associated with each other forms a class of
solutions of (3).

If u and v are two integers satisfying (3), the number [(24% + Bv) + v/ D]/2 is
called an sntegral solution of (3).

It is possible to decide whether the two given solutions [(24u + Bv) + vV D]/2
and [(244' + Bv') + vV D}/2 belong to the same class or not. In fact, it is easily
seen that the necessary and sufficient condition for these two solutions to be asso-
ciated with each other is that the two numbers [2 Auwn' + B(uv' +4'v) +2Cvo']|N
and (v’ —uv')[N be integers.

If w =t/ A is a fractional number and v is an integer which satisfy (3), —u and —v
also satisfy (3). It is apparent that the two solutions + [(24% + Bv) +UV.D] {2
belong to the same class.

Let u and » be two integers satisfying (3). Then there exists a fractional number
uw' = —(Au + Bv)[ A such that the numbers %’ and v satisfy (3). So do the numbers
—u' =(Au+ Bv)]A and —wv. It is easily seen that the solutions '

+(2Au’+Bv)+vl/B= T (2Au+Bv)—vV_13
- 2 2

belong to the same class.

Suppose that K is the class consisting of the solutions [(24u; + Bv,) +v; V D] /2,
1=1,2,3,.... Then it is evident that the solutions [{(2A4u, + Bv,) — v, V?)}/?;, 1=1,
2,3,..., also constitute a class, which may be denoted by K'. The classes K and K’
are said to be conjugates of each other. Conjugate classes are in general distinct but
may sometimes coincide. :

Among all the solutions [(2A4u + Bv) + vV5]2 in a given class K we now choose

a solution [(24wu, + Bv,) + v,V D]/2 in the following way: Let v, be the least non-
negative value of v which occurs in K. If K and K’ do not coincide, then the number
u, is also uniquely determined; for the solution

(2Aw; + Bo) + v, 1/5_ — (24w, + Bv) +v, VD
2 B 2

belongs to the conjugate class K'. If K and K’ coincide, we get a uniquely determined
u, by prescribing u, =u;. The solution [(24u, + Bv;)+ v, V¥ D]/2 defined in this
way is said to be the fundamental solution of the class.

The case v; =0 can only occur when the classes coincide.

We prove

THEOREM 1. Suppose that [(2Au + Bv) +v V D]/2 is the fundamental solution of
the class K of the Diophantine equation

Au?+ Buv + Cv? =N, (7
where A and N are positive tntegers and B and C rational integers, and further D = B? —
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4 A C 1is a positive integer which is not a perfect square. If (z; +y, V—ﬁ) /2 is'the funda-
mental solution of equation (4), we have the inequality

ogvgl/‘ig(xl—z). (8)

Proof. If equality (8) is true for a class K, it is also true for the conjugate class K'.
Thus we can suppose that (24w + Bv) is positive.
We easily get

2 2 2 2
Doy, _ 91.%=Vﬂ_1) ML_AN]>O. (9)
4 4 4 4 4

Consider the solution

(2Au+Bv)+vl/~l~)':z:1-—y1 VD
2 2

(2Aw + Bv)x, — Dvy, + (va, — (24w +Bv)y,)V D
4

which belongs to the same class as [(24u + Bv) +v V_b]/ 2. Since [(24u + Bv) +

v Vﬁ]/ 2 is the fundamental solution, and since by (9) [(24u + Bv)x, — Dvy;]/4
is positive, we must have

(24w + Bv)z, — Dvy, < 24u+ Bv

4 2 (10)

From this inequality it follows that

(24u + Bv)? (x; — 2)2 = Dv2y}
and finally
- D _
Tz —2

AN

This proves inequality (8).
THEOREM 2. Suppose that [(2Au + Bo) +v VE]/2 18 the fundamental solution of
the class K of the Diophaniine equation
Au?+ Buv + Ce¢?= — N, {11)

where A and N are positive integers and B and C rational integers, and further D = B? —
4 AC ts a positive integer which is not a perfect square. If (x, +y, Y D) |2 is the funda-
mental solution of equation (4), we have the inequality

0<vgl/%v(x1+z). (12)
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Proof. If equality (12) is true for a class K, it is also true for the conjugate class K'.
Thus we can suppose (24« + Bv) = 0.
We clearly have

22 0?

ay v* yi(24u+ Bo)?
4

4

=[S

1
+5(24u+Boj*+44N])>

v — Yy, (2Au + Bv)
4

Thus >0. (13)

Consider the solution

(24u+Bv)+v ]/5.9«‘1‘?/1 VE__(2Au+Bv)x1—Dvy1+(vx1—(2Au+Bv)y1) VD
2 2 4

which belongs to the same class as [(24% + Bv) +v VT)]/2. Since [(24u + Bv) +

vV 5] /2 is the fundamental solution of the class, and since, by (13), [2;v ~ ¥, (24u +
Bv)]/4 is positive, we must have

v~y (24u+Bv)_ v
4 2

v

(14)

From this inequality it follows that
(x, —2)20% > 43 (24u + Bv)2 =y2(Dv2 —4AN)

AN
or vzg—D—-(m1+2).

This proves inequality (12).
As only integral solutions are of interest, we prove

TuEOREM 3. If one of the solutions of the class K is an iniegral solution, every solu-
tion of K is integral.

Proof. Let K be a class and [(24u + Bv) +v V D]/2 be an integral solution of it.
If there existed a solution [(2 44, + Bw,) + v, V D}/2 belonging to K, where u, =t/ A
were no integer, we would have an integral solution (xz +y l/_ﬁ) |2 of (4) such that

(24Au + Bv) -l—vl/ﬁ_x—l-yl/f)_ (2Au1+Bv1)+le5
2 2 2

would hold.

_ u(z — By)
- 2

— Cuy, vl=w +Aduy.

Hence Uy
2 .

Both %, and v, are integers, for if B is even, D is divisible by 4 and = is divisible by 2.
If Bis odd, D is odd. In that case both x and y are either even or odd. This proves
the theorem.
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If the solutions of a class K are integral, K is called a class of integral solutions. 1f
the classes K and K’ are conjugates of each other, it may happen that K but not K’
is a class of integral solutions.

From the preceding theorems we deduce at once

TarEoREM 4. If A and N are positive integers and B and C rational integers, and
further D = B2 — 4 A C is a positive integer which is not a perfect square, the Diophantine
equations (7) and (11) have a finite number of classes of integral solutions. The funda-
mental solutions of all the classes can be found after a finite number of trials by means
of the inequalities in Theorems 1 and 2.

[(2Au, + By,) +v, VD]/ 2 18 the fundamental solution of the class K, we obtain all

the solutions [(2Au + Bv) +vV D]/2 by the formula

(24u+Bv)+vV/D_ (24w, +Bv) +v, /D =+tyVD
2 2 TR

where (x +y 12 D) [2 runs through all the solutions of (4), including + 1. The Diophantine
equations (7) and (11) have no integral solutions at all when they have no integral solu-
tions satisfying inequality (8), or (12) respectively.

We next prove

THEOREM 5. The necessary and sufficient condition for the solutions

(2Au+Bv)+vl/-13 (24uy + Bv,) + v, VD
2 ’ 2

of the Diophantine equation
Au+ Buv+Cv2=+4+N (3)
to belong to the same class s that

UY; — Uy v
N

be an integer.
Proof. We already know that a necessary and sufficient condition is that
2Auu, + B (uv, +u,v) +2Cvov, UV — Uy
N N

be integers. Thus it is sufficient to show that

2 Auu, + B (uv, +u,v) + 2Cvv,
N

is an integer when (zv, — u,v)/N is an integer.
Multiplying the equations
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Au?+ Buv +Cv® =+ N, Au} + Buyv, + Cvi=+ N (14)
we get (2Auwu, + Buv, +uyv) +2Cvv)% — D(uv, — u,v)2=4N2 (15)

It is apparent from (15) that 2Awu, + B(uv, +u,v) +2Cvv, is divisible by N
when wv; — u,v is divisible by N.

§ 4. Quasi-ambiguous classes

Let K be a class of solutions of the Diophantine equation
A+ Buv+Cv?=+ N. {3)
Further let [(24u% + Bv) + v I/_l_)]/2 be a solution of K. If the number

(24Au+ Bo)v

v (16)

is an integer, K is called a quasi-ambiguous class. If » and v are integers, Kis a quasi-
ambiguous class of integral solutions.
We prove

TaroreEM 6. If the conjugate classes K and K' of (3) coincide, the resulting class is
quasi-ambiguous.
Proof. Let K and K’ be a pair of conjugate classes of (3), and let [(24u« + Bv) +

V D1 /2 and [(24%' + Bv) +v VB] /2 be one solution of every class. As the classes
coincide, according to Theorem 5 the number (v —u')v /N is an integer.
As 2Au + Bv)= — (244 + Bv), we get Bv= — A (u —«'). Hence we get

(2Au+Bv)v= —(2Au’+Bv)v=A(u'— u’)v‘_
N N N

Clearly this number is an integer. This proves the theorem.

It is apparent from Example 4 that two conjugate classes K and K’ may be quasi-
ambiguous without coinciding.

Tueorem 7. Let K and K’ be two conjugate classes of integral solutions. If their
fundamental solutions are [(2Au + Bv) +v l/D]/2 and [(24Aw" + Bv) +v VT)]/2,
respectively, and if we have v =0, the classes K and K’ coincide.

Let K be a class of integral solutions. If it has a solution [(2Awu + Bv) +v VD/2,
where u =0, and if C divides B, the class is quasi-ambiguous. ,

Proof. Let K and K’ be two conjugate classes of integral solutions, and let [(24u +
Bv)+vVD]j2 and [(24Aw + Bv) +vV D]/2 be their fundamental solutions. The
necessary and sufficient condition for the two classes to coincide it that the number
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(x—u)v
N

be an integer. If we have v =0, the condition is clearly fulfilled.

Let K be a class of integral solutions, and let [(24» + Bv) +v V D]/2 be a solution
of it, where u = 0. If we put the values 0 and » into the Diophantine equation

Au?+ Buv+Cev:=+ N, (3)
we get + N=0Cv

The condition for the class K to be quasi-ambiguous is that the number

(2Au+Bo)v
ittt 1
- (16)
be an integer.
Putting » =0 and + N = (Cv? into (16) we get
(24w +Bv)v _ B
N Ic|
This proves the theorem.
THEOREM 8. A necessary condition for the Diophantine egquation
Au?+ Buv+Cv?=+ N 3)

to have quasi-ambiguous classes is N = st?, where s is a square-free integer that divides
4AD.
Proof. Let
Aut+ Buv=Cv*=+ N (3)

be a Diophantine equation, and suppose that « =w/[ 4 is a fractional number and »
an integer which satisfy (3). Then the Diophantine equation

(2Au + Bv): — Dv*= +44N (18)

is solvable in integers (24w + Bv) and v.

Suppose that we have N =st?, where s is square-free. Further suppose that (3)
has a quasi-ambiguous class, and let the number [(24A% + Bv) +v VD] /2 be a solu-
tion of it. Then the number

(24u+ Bo)v (19)
st?
is an integer.

Let p be a prime that divides ¢. If p divides v, it follows from (18) that it also
divides (24w + Bv). If p and v are coprime, p? divides (24« + Bv) as is easily seen
from (19). But then it follows from (18) that p? divides D.

Now let p be a prime that divides s. If p divides v, it also divides (24u + Bv).
But then p? divides 4 A N and thus p divides 44. If p and » are coprime, p divides
(24w + Bv) and thus p divides D. This proves the theorem.
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§ 5. Numerical examples

Finally, we give some examples which illustrate the preceding theorems.

Example 1. 209 w2 +29uv + 02 =31, D =5.
The fundamental solution of the equation 2% —5y% =4 is (3 +V5)/2. For the
fundamental solutions, according to inequality (8), we get 0 < v < 35.

We find the fundamental solutions [(24u,-+ Bv,) +v; l/_b]/Z, 1=1,2,...,8,
where v;, =1, u; =6/19, up= —5/11; v 4 =14, ug= —11/19, u,= —15/11;
Vs, 86 = 23, Us = — 249/209, Ug = — 2; V7,8~ 35, Uy = — 2, Ug = — 597/209. Thus the
equation has only two classes of integral solutions.

Example 2. 4% +3uv+12=—5, D=5.

For the fundamental solutions, according to inequality (12}, we get 0 <v < 1.

We find the fundamental solution {(24u + Bv) +v V D] /2, where v=1, u=1.
The equation is also satisfied by the numbers v =1, 4 = —4. However, according

to Theorem 5 there is only one class, and this class is quasi-ambiguous, according to
Theorem 6.

Example 3. 34®+7uv+30*= —13, D=13.

The fundamental solution of the equation a* — 1332 =4 is (11 +3 V13)/2. For
the fundamental solutions, according to inequality (12), we get 0 < v < 6.

We find the fundamental solutions [(2A4u, + Bv,) + viV‘f)] /2, 1 =1,2, where v, ,

=5, u,=11/3, u,= —8. Thus the equation has only one class of integral solu-
tions, and this class is quasi-ambiguous.

Example 4. 2u? +5uv +12=16 =24, D=17.

The fundamental solution of the equation 22 — 1732 = 4 is (66 + 16 V17) /2.

For the fundamental solutions, according to inequality (8), we get 0 < v < 10.

We find the fundamental solutions [(2A4u, + Bv,) + v,V D] /2,7=1,2,...,6, where
V=2, U1 =2 u=—6v3 =4, u3=0,u3= ~10; 05 6 =7, %= — 1, ug = — 33/2.
According to Theorem 7 the solutions [(2A4wu;+ Bwv,) + v, VT)] /2, where j =3 or
4, belong to quasi-ambiguous classes.

Example 5. u? +5uv +212=382=25 D=17.

For the fundamental solutions, according to inequality (8), we get 0 <o < 10.

We find the fundamental solutions [(24u; + Bv;) + v,V D]/2,1=1,2,...,6, where
11,272, =2, U= —12; 03 4 =4, us =0, ug= —20; v5,6 =7, us = — 2, g = — 33.
According to Theorem 7 the solution [(2.4 %, + Bv,) + v, 1/1—)] /2, where u; = 0, belongs
to a class which is not quasi-ambiguous. '

Example 6. 3u? + 14uv + 492 =259 = 7.37, D = 148.

The fundamental solution of the equation a? — 14842 =4 is (146 + 12/148) /2.
For the fundamental solutions, according to inequality (8), we get 0 < v < 27.
We find the fundamental solutions [(2 A%, + Bv,) + v,V D] /2,i=1,2, where v; o =

4, uy =3, uy = — 65/3. According to Theorem 8 the only class of integral solutions
is not quasi-ambiguous.
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