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A prediction problem in game theory 

B Y  U L F  G R E N A N D E R  

1 Diagram 

1. Introduction 

Two persons, X and P, play the following game. X controls a random 
mechanism producing a stationary stochastic process x = {xt}. The mean value 
E x  ( t )=0  and the variance E x  ~ (t)= 1 are given, but the form of the spectrum of 
the process can be determined completely by X. The player P observes the 
values x (t) for t < 0  and wants to predict the value of 

1 

z=  f a(t) x t d t =  Ax ,  
0 

where a (t) is a real and continuous function of t in (0, 1). For this purpose 
P has available all the linear predictors formed from the stochastic variables 
xt, t<O. Let us denote the chosen predictor b y  p and the predicted value 
by px. 

The payoff function of the game is ( A x - p x )  2. X'wishes  to maximize the 
quanti ty l t A x - p x i i Z = E [ A x - p x ]  z and P tries to minimize the same ex- 
pression. 

In  the next section we study the value of m a x m i n  H A x - p x H  2 and how 
this value is attained. In  section 3 we show that  this value coincides with 
minmax  I I ~ - V ~ l l  z, the game is definite, and the pair of pure strategies is 
obtained tha t  forms a solution of the game. I t  may  be a matter  of convention 
whether the strategy of the player X is considered as pure (a single choice of 
g (t)) or randomized (a choice of the stochastic process x). Sections 4 and 5 are 
devoted to some applications of the theorem in section 3. 

The author was led to this result when working on an applied problem. The 
reader may be interested in consulting the paper of M. C. Yovits and J. L. 
Jackson [1] for a different approach to a similar problem. 

2. Derivation of  max min 

When P first chooses his strategy p to minimize I I A x - p x l l  2 and then X 
chooses x to maximize the minimum value, it is clear tha t  we can immediately 
limit the set of strategies of X to processes that  are completely non deterministic. 
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To see this we note first tha t  for given x we minimize H A x - p x l l  2 by 
choosing 

1 

p x = f  a(t) xFdt, 
0 

where x~ is the best prediction of the value x~, when x~, v<_0, have been ob- 
served. Second, if xt is an arbi t rary stat ionary process i t  is well known tha t  
it can be decomposed xt = yt + zt into two terms, one, yt, completely non deter- 
ministic and the other, z~, deterministic and such tha t  ys±zt  for all s, t. But  
then  for the  opt imal  predictor c o r r ~ p o n d i n g  to  z~ we  have  EI A x -  pz l l  ~ = 11"4 y -  p y  II ~ 
and I l y l l < ] ] x l l = l  with equality only if z=O. If  z * O  we would have reached 
a larger value be choosing the process []y[I-lyt instead of xt, which proves the 
statement. 

But  if xt is completely non-deterministic it  can be represented as 

X t 

t 

g ( t -  u) d ~ (u), 
- - o 0  

where ~ (u) is a process with orthogona] increments and normed [I A ~ (u)II ~ =  A u, 
and 

oO 

f g2 (t) d t =  1. (1) 
0 

There are in general many different representations of this form, but  we are 
especially interested in the one (which always exists) such tha t  the linear 
manifolds spanned by x~, s<_t, and ~ (s), s<_t, coincide for all values of t. Then 
the optimal predictor is simply 

0 

x* = f g ( t -  ~) d~ (~), 
- - o o  

and we have 

1 1 1 
* 2 m i n l l A x - p x l ] ~ = l l f a ( t ) ( x t - x t ) d t l l  = f f a ( s ) a ( t ) r ( s , t ) d s d t ,  

P 0 0 0 

where 

X ~ r(s, t ) = E ( x ~ - x * ) ( x t -  ~)= 
r a i n  (s, t) 

f g ( s - u ) g ( t - u ) d u .  
0 

Hence the minimum value is given by  
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1 1 min  (s, t) 

m i n H A x - p x l [  2= f f a(s)a(t) f g ( s - u ) g ( t - u ) d u d s d t  
0 0 0 

1 

= f K (x, y)g(x)g(y)dx dy 
0 

rain ( l - -x ,  l - - y )  

with K (x, y) = f a (x + u) a (y + u) d u. (2) 
0 

N o w  the  p layer  X tries to make this min imum value as large as possible 
b y  choosing x in an  appropr ia te  way.  Because of the  side condit ion (1) i t  is 
clear t h a t  

max  min II A v xll 2 -< v 
g~ p 

if v is the largest  eigenvalue of the continuous and  symmet r i c  kernel K (x, y) 
in (2). On the  o ther  hand  if ~, (t) is the  normed eigenfunction corresponding to  
the  eigenvalue v (or one of  the  functions if v is a multiple value) t hen  

1 

min  f .K ay=v. 
P 0 

For  this inequal i ty  and  o ther  results on s ta t ionary  processes used in this section 
we re fe r - the  reader  to  J .  L.  Doob. [1]. 

W e  have now proved t h a t  max  rain = the largest eigenvalue v of the kernel 
K (x, y). We  now proceed to  the derivat ion of the  value of rain max.  

3.  D e r i v a t i o n  o f  m i n  m a x  

Let  us approx imate  a (t) uniformly with a s tep-funct ion 

As 

a , ( t ) = a  - -  =a~ for - < t < - - ,  v = 0 , 1  . . . .  n - 1 .  

w e  

instead of A x. Let  us denote  
the stochast ic  variables 

1 1 1 

Ilf f gtll<-II ,ll f (Old* 
0 0 0 

1 

see t h a t  we commit  an  arbi trar i ly small error if we deal with f an (t)xt d t 
0 

by  C the  class of all predictors fo rmed f rom 
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Then it is clear tha t  

v + I  

it 

x~=n f xtdt ,  
._v 
n 

v = O + l ,  + 2  . . . . .  

min max 11 An x - p x ll -< men max II An  x -  p x l]. 
l$ z p ~ C  x 

The x, form a stationary process with a variance less than but  close to one 
when n is large. Let  us denote by P the class of all discrete stochastic pro- 
cesses tha t  can be represented as x, above in terms of a stationary stochastic 
process with a continuous time parameter. Then 

rain max ]1 A,~ x -  p x  I1 = rain max 11 An x - p x  11 <- rain max l] A,~ x - p x  ][, 
p e C  x p e g  z E F  p e C  x ~ D  

where D stands for the class of all discrete stationary processes with vari- 
ance one. 

Now the maximum can be expressed conveniently in another way. Using 
the well-known spectral representation we can write 

- - g  

with [[AZ($)]I s = A F ( ~ )  and F ( ~ ) - F ( - x ) = I .  We also have 

- a~ x,. - ~ c~ x ,  = [~ (~) - ~, (;t)] d Z (~), 
n 0 - o o  

where 

and 

n - 1  

a (2.) = ! n ~o a'e"~' 

- 1  

q~ (I) = 7. c, e t'~ 
- c o  

n o 

Then m a x  [ [ A ~ x - p x l l ~ = m a x  f ~ ( t ) - ~ , ( ~ ) ] ~ .  
x~D 1 

We can now apply the following theorem: Consider the class of all power 
n 

series /(~) which are regular in IF] < 1 and begin with the given terms 7. g~ ~k. 
k = 0  

We denote by  /x~ the highest eigenvalue of the matrix with elements 
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hpq = ~p ~q -37 ~p-1 ~q-1 2i- "'" 27 {x 0 ~q -p  

p,q=O, 1 ... .  m. 

Then if #= > O, 

max 11(~)[_>/~,~ 
I¢ l f f i l  

for P-< q' / 

J 

and equality holds for a function of the form 

rn  / ( ~ ) = ~  d ~  1 ¢+wk 
= 1 + ff~k ~' y real, l w k l < l .  

For  a fuller discussion and proof of this theorem see G. Szeg5 and U. Gre- 
nander  [1]. 

I n  the present case we have to derive the largest eigenvalue of the sym- 
metric matr ix  with the elements 

hvq=-~[a(1-P/n) a ( 1 - q / n ) + a ( 1 - P : l ) a ( 1 - q : l ) + . . . +  

+ a , l ) a I l - q : P t ]  for p~q,p,  q=O, l . . . . .  9 ~ - - 1 .  
\ n lj 

As a (t) is a continuous function of t it follows tha t  for Pin-+x, q/n--+y, X<_y 
we have 

min (x, y) 

lim nhv•= f a ( 1 - x + u ) a ( 1 - y + u ) d u = K ( 1 - x ,  l -y ) .  
n'--~a° 0 

I t  now follows tha t  lira #~ = v, the largest eigenvalue of the kernel K (x, y)., 
n - > o o  

Hence we have shown tha t  

rain max  IIAx-pxli~<_v=max min I I A x - p x I I  ~, 
p x x p 

where only the equality sign is possible. This completes the proof of the 

T h e o r e m :  The zero sum two person game defined above with the payoff  
function ( A x - p x f  is definite. A solution of the game is given by  the pure 
strategies 

~ = .[ r ( t -  ~) ~ ~ (~) 
- - o o  

px= fa(t)x~[ dt 
o 
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where ~ (t) is an eigenfunction corresponding to the largest eigenvalue v of the 
symmetr ic  kernel 

r a i n  ( l - x ,  i - y )  

K ( x ,  y ) =  f a ( x + u ) a ( y + u ) d u .  
0 

The value of the game is v. When v is a simple eigenvalue the solution of 
the game is unique. 

4. First application 

When a (x)= 1 - x  we have to solve the integral equation 

1 

f K (x, y) g (x) d x = ~ g (y) 
0 

with K (x, y) = K (y, x) and 

K ( x , y ) =  f ( 1 - u - y ) ( 1 - u - x ) d u  for y < x .  
0 

This e lementary  problem will be solved by  an argument  of the type  used in 
connection with Green's functions. 

We have the part ial  derivatives with respect to y 

x ; = -  f 
0 

H t H  
K~ -=- Ky = 0 

for y < x  

and 
1 - - y  

0 

t t  
Ky = y -  x 

t r !  
Ky = 1 

for y > x .  

Except  for the point y = x the function K (x, y) has continuous derivatives of 
all orders with respect to y. In  y = x  the first and second derivatives are con- 
tinuous 

g I I 
( ~ ) ~ x -  = ( K ~ ) ~ x +  = - f (1 - x -  u )  d u  

0 

t t  pt 
(Ky) ,_ ,_  = (K~)y-,+l  = 0 
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bu t  the third derivative has a discontinuity. Le t  us differentiate the integral 
equat ion twice with respect to y, 

1 y 

¢ '  (y) = f K'~' (x, y) g (x) d .  = f (y - x) g (~) d ~ .  
0 0 

Differentiating this equation twice more we get 

2 grV (y) = g (y). 

The solutions of this differential equation are of the form 

g (t) = A e t~t + B e -~'`t + C e "`t + D e  -~t 

with u=~t  -~.  To determine A, B, C and D we have to observe the boundary 
conditions tha t  g (t) has to satisfy. Indeed, as K (x, 1 )=  K'y (x, 1 )=  0 and be- 
cause of g" ( 0 ) = g ' "  (0)= 0 we get 

A ei'` + B e-*'` + C e'` + De- ' `  = OI 

n (A i d'` - B e -t" + Ce'` - D e - " )  = O~ 

n 2 ( - A - B + C +  D ) = O [ "  

u 3 ( - i A  + i B + C - D ) = O ]  

I n  order tha t  this system of linear equations have non-trivial solutions it  is 
necessary tha t  its determinant  is zero 

ei'`~ e-i ' `~ e'`~ e - ' `  

- - 1  - 1 ,  1, 1 

I - i ,  i ,  1, - 1  

=0 .  

Expanding  this determinant  after its first row we have 

D (u) = [2 i e -i'` + (i - 1) e'` + (i + 1) e-'`] e ~" - 

- [ -  2 ie~'` + ( -  1 - i )  e'`+ (1 - i )  e-'`] e-~'` + 

+ [(1 + i )  e~'`+ ( - 1 + i )  e-~'` + 2 ie-'`] e ' ` -  

- [(1 - i )  e~'`+ ( -  1 - i )  e - ~ ' ` - 2 i e  "̀ ] e-" 

= 8 i [1 + cos ~ cosh ~]. 

The largest value of 2 corresponds to the smallest u satisfying 

c o s u c o s h  u = - l .  
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We find a p p r o x i m a t e l y  ~ n ~ 1 . 8 8 ,  so t h a t  the  va lue  of the  game  is 

P u t t i n g  

or 

we get  

v = 2m= = ~ ~- 0.08. 

To  de te rmine  the  corresponding eigenfunct ion we s t a r t  f rom 

A £ig 

-A 
-iA 

+Be-~"-B+iB +Ce"+De-"=O+C+c +D_D =0=0[ 

c¢=A+B=C+:} 

A = 1 (o¢ + f i l l ) ,  

0 = 1 (o~ + ~) ,  D = I ( ~ - t ~ )  J 

(t) = ~ (cos ~ t + cos h u t) + fl (sin ~ t + sin h ~ t), 

where  0¢ and  fl can be de te rmined  f rom 

~](l)l =0 / 

f ~,~ if) d t = 1 
0 

The  form of ~, (t) is shown in the  d iagram.  

5. Second application 

I f  a (x )~- I  we have  to  s t udy  ins tead the  simple in tegral  equa t ion  

1 
f K (x, y) g (x) d x = ~ g (y) 
0 

with  K (x, y) = min  (1 - x, 1 - y), 

y 1 
~g ( y ) = ( 1 - y ) f g ( x )  dx + f ( l - x )  g(x) dx. 

0 y 

With  a famil iar  a r g u m e n t  we get  ~.g" (y)+g (y)=O with  g(1)=g' ( 0 ) = 0 .  Hence  
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1.0- 

i , , J 

0 0.2 0.4 0.6 0.8 1.0 

Diagram 1 

y ( t )  

wi th  u = 2 - ½ .  As 

g (t) = A e ~ t  + B e - ~ t  

Ae i ~+  Be- i~  =O, 

A - B  = 0 ,  

we should have  cos u =  O, so tha~ v = ~max ~- V 2 / ~  and 

(t) = 1/2 cos  ~ t. 
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